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A B S T R A C T

Cone penetration testing (CPT) is a preferred method for characterizing soil profiles for evaluating seismic

liquefaction triggering potential. However, CPT has limitations in characterizing highly stratified profiles

because the measured tip resistance (𝑞𝑐) of the cone penetrometer is influenced by the properties of the soils

above and below the tip. This results in measured 𝑞𝑐 values that appear ‘‘blurred’’ at sediment layer boundaries,

inhibiting our ability to characterize thinly layered strata that are potentially liquefiable. Removing this ‘‘blur’’

has been previously posed as a continuous optimization problem, but in some cases this methodology has been

less efficacious than desired. Thus, we propose a new approach to determine the corrected 𝑞𝑐 values (i.e. values

that would be measured in a stratum absent of thin-layer effects) from measured values. This new numerical

optimization algorithm searches for soil profiles with a finite number of layers which can automatically be

added or removed as needed. This algorithm is provided as open-source MATLAB software. It yields corrected

𝑞𝑐 values when applied to computer-simulated and calibration chamber CPT data. We compare two versions

of the new algorithm that numerically optimize different functions, one of which uses a logarithm to refine

fine-scale details, but which requires longer calculation times to yield improved corrected 𝑞𝑐 profiles.

1. Introduction and motivation

Cone penetration testing (CPT) is a preferred method to characterize

soil profiles to evaluate seismic liquefaction triggering potential. The

test consists of hydraulically pushing an instrumented cone-shaped

penetrometer into the soil profile at a constant rate, with measurements

typically taken every one to two centimeters as the cone advances.

In its basic form, CPT sounding data include tip resistance (𝑞𝑐) and

sleeve friction (𝑓𝑠) as a function of depth (Schmertmann, 1978). CPT 𝑞𝑐
profiles are extensively used in geotechnical applications, in particular,

they serve as a proxy for a soil’s ability to resist liquefaction triggering

due to ground shaking (Shibata and Teparaksa, 1988).

CPT 𝑞𝑐 profiles do not provide truly depth-specific measurements,

because they are influenced by soil materials several cone diameters

away from the cone tip (Ahmadi and Robertson, 2005). Consequently, if

soil properties vary with depth, the measured 𝑞𝑐 are ‘‘blurred" compared

to the actual depth-specific or ‘‘true" corrected 𝑞𝑐 (i.e., the 𝑞𝑐 value

that would be measured at that depth in a uniform profile, absent of

boundary or thin-layer effects). This ‘‘blurring" is asymmetrical, with

soil below the cone tip affecting 𝑞𝑐 more strongly than soil above, as

illustrated in Fig. 1 (Boulanger and DeJong, 2018). This figure shows a

multi-layer ‘‘true’’ 𝑞𝑐 profile along with the computationally simulated

data we would generate by convolving the profile with an asymmetrical
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function. Notice how the peaks of the simulated data are shifted up

relative to the true high 𝑞𝑐 layers and how the true 𝑞𝑐 in the thin

layers is obscured. Because soil profiles are typically stratified, the

location of the interfaces between layers and the true 𝑞𝑐 of layers can

become difficult to precisely identify from the measured 𝑞𝑐 , even in

relatively simple profiles. These phenomena are typically referred to as

thin-layer, transition-zone, or multiple thin-layer effects, as discussed

in Yost et al. (2021b). Herein, we will generally refer to all of these

effects as ‘‘thin-layer effects". In this context, a soil ‘‘layer" or ‘‘stratum"

is a depth increment in the profile over which the soil has relatively

uniform geotechnical engineering properties (e.g., soil type and 𝑞𝑐).

Furthermore, a ‘‘thin" layer or stratum is one that is too thin for the

measured 𝑞𝑐 to fully develop or reach values that would be measured

in the stratum absent of thin-layer effects (i.e. true corrected 𝑞𝑐 profile).

This required thickness will vary as a function of soil stiffness, but

typically 10 to 30 cone diameters is required (Ahmadi and Robertson,

2005), and thus a stratum thinner than this would be a ‘‘thin layer’’.

The majority of studies on thin-layer effects on measured CPT 𝑞𝑐

data have focused on developing corrections to apply to measured 𝑞𝑐

for specific layering sequences and geometries, as outlined in Boulanger

and DeJong (2018). Some past efforts to correct the measured 𝑞𝑐 for

thin-layer effects in profiles consisting of a stiff layer embedded in a soft
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Fig. 1. The 𝑞𝑡𝑟𝑢𝑒
𝑐

profile of a layered soil (left, solid) and its predicted blurred observation, 𝑞𝑠𝑖𝑚
𝑐

(left, dashed), generated by convolving the profile with a point spread function

that is a truncated chi-squared distribution (right).

layer (e.g. sand and clay layers, respectively) assumed that the effect

of the softer layer will be greater at the boundaries and lesser towards

the middle of the stiff layer. This results in a V-shaped deblurring

correction function to correct the CPT-measured 𝑞𝑐 in the stiff layer

so the corrected values more closely represent the true 𝑞𝑐 that would

be measured in the absence of thin-layer effects (Youd et al., 2001;

de Greef and Lengkeek, 2018).

In comparison to corrections for specific layering scenarios,

Boulanger and DeJong (2018) propose a potentially more flexible

inverse problem approach that can be applied to measured 𝑞𝑐 from a

CPT performed in a profile containing any number of layers. However,

the procedure is less efficacious than desired in some scenarios where

layer thicknesses are less than 40 mm, even if there is significant

contrast between the strengths and stiffnesses (i.e., the true 𝑞𝑐) of the

thin layers and surrounding soil (Yost et al., 2021a). The inability to

cost-effectively determine the true 𝑞𝑐 from the measured 𝑞𝑐 may be

contributing to widespread over-prediction of the liquefaction hazard

in highly interlayered soil deposits (e.g., as observed in Christchurch,

New Zealand (Maurer et al., 2014, 2015) and the Hawk’s Bay region of

New Zealand (El Korthawi et al., 2019)). In this regard, a quantitative

comparison of previous correction procedures is presented in Yost et al.

(2021a).

The main objectives of this work are (i) to pose a new inverse

problem to estimate true 𝑞𝑐 from measured (or ‘‘blurred") 𝑞𝑐 in highly

stratified soil profiles, and (ii) to propose a new numerical optimization

algorithm for efficiently correcting 𝑞𝑐 in highly stratified soil profiles for

thin-layer effects. This paper is organized as follows: In Section 2, we

review the background of prior efforts to adjust or correct CPT data

for thin-layer effects, including efforts to pose this correction as an

inverse problem to be solved via numerical optimization. Further, we

provide relevant background information on numerical optimization

techniques. In Section 3, we propose a new approach to correct CPT

data by removing the thin-layer effects via an inverse problem, posed in

two different ways. We describe a new algorithm to solve both proposed

versions of this inverse problem that incorporates global numerical op-

timization techniques, routines to automatically generate a reasonable

initial guess, to adjust the number of layers, and to computationally

simulate the blurring process. In Section 4, we show the results of this

new algorithm for one version of the inverse problem applied to CPT

data from calibration chamber tests, and the improvements typically

achieved over simpler computational methods to automatically correct

thin-layer effects in measured 𝑞𝑐 profiles. In Section 5, we compare

the results of the new algorithm for both formulations of the inverse

problem, yielding a more precise, but more computationally expensive

data correction method. In Section 6, we discuss some possible future

extensions of this method, and in Section 7, we discuss limitations and

benefits of the new algorithm.

2. Background

In computational science and engineering, the terms ‘‘forward prob-

lem" and ‘‘inverse problem" are often used to describe the problems we

solve when different parts of a system are unknown. When we assume

we know the subsurface soil characteristics and stratigraphy of a soil

profile (i.e., we assume an unblurred 𝑞𝑐 profile), and then perform

a computational simulation to predict the response of the soil to an

action (e.g., simulating a CPT in a ‘‘known" (unblurred) 𝑞𝑐 profile to

compute a simulated blurred tip resistance profile, 𝑞𝑠𝑖𝑚
𝑐
, comparable

to a measured 𝑞𝑐 profile for a real CPT), we are solving the ‘‘forward

problem’’. In contrast, we are solving the ‘‘inverse problem" when we

only know the measured tip resistance profile, 𝑞𝑚𝑒𝑎𝑠
𝑐

, but need to infer

the true soil characteristics and stratigraphy (i.e., 𝑞𝑡𝑟𝑢𝑒
𝑐
) that would lead

to computationally simulated data, 𝑞𝑠𝑖𝑚
𝑐
, that most closely match the

measured tip resistance 𝑞𝑚𝑒𝑎𝑠
𝑐

. In this inverse problem scenario, we

begin with some initial guess at 𝑞𝑐 and iteratively update the current

guess to incrementally improve the match between 𝑞𝑚𝑒𝑎𝑠
𝑐

and 𝑞𝑠𝑖𝑚
𝑐

until

reaching "the best" guess (i.e., the solution to the inverse problem),

denoted by 𝑞𝑖𝑛𝑣
𝑐
.

In this regard, the inverse problem is posed as an optimization

problem (i.e., were the minimum difference between 𝑞𝑚𝑒𝑎𝑠
𝑐

and 𝑞𝑠𝑖𝑚
𝑐

is

targeted) and solved using a variety of numerical optimization tech-

niques. All numerical optimization techniques require calculating 𝑞𝑠𝑖𝑚
𝑐

for every 𝑞𝑐 guess, so we solve the forward problem many times to

solve the inverse problem once. We can predict 𝑞𝑠𝑖𝑚
𝑐

for any 𝑞𝑐 either

through (i) numerical simulation of the soil being displaced by the

cone penetrometer (e.g., with numerical methods such as the material

point method (Yost et al., 2021b)), or (ii) applying a simplified blurring

function to 𝑞𝑐 . This workflow, beginning with 𝑞𝑚𝑒𝑎𝑠
𝑐

, iteratively updating

the proposed 𝑞𝑐 and its corresponding 𝑞𝑠𝑖𝑚
𝑐
, and ultimately outputting

the corrected 𝑞𝑖𝑛𝑣
𝑐
, is diagrammed in Fig. 2.

Approaches to solve inverse problems have previously been applied

to other geotechnical engineering challenges. Notably, the multichan-

nel analysis of surface waves (MASW) technique for seismic imaging of

the near surface is an inverse problem (see Socco and Strobbia (2004)

for details). However, the development of thin-layer corrections for

CPT data collected in interlayered soil profiles has only recently been

posed as an inverse problem by Boulanger and DeJong (2018). In the

following, we present some background on these methods.

2.1. Prior methods and limitations

Regardless of the method to calculate 𝑞𝑠𝑖𝑚
𝑐
, this inverse problem

can be generically posed as finding the assumed 𝑞𝑐 that minimizes a

function known as a misfit function:

𝑞𝑖𝑛𝑣
𝑐

∶= argmin
𝑞𝑐

‖𝑞𝑚𝑒𝑎𝑠
𝑐

− 𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑐 )‖ (1)
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Fig. 2. Diagram of the inverse problem approach to remove thin-layer effects.

where 𝑞𝑚𝑒𝑎𝑠
𝑐

, 𝑞𝑐 , and 𝑞𝑠𝑖𝑚
𝑐

are all vectors with as many entries as there

are depths of interest. The tilde indicates profiles that are ‘‘blurry’’

while the lack of a tilde indicates profiles that are constrained to be

layered profiles with sharp transitions. The misfit function (Eq. (1))

measures the difference between the actual measured profile and the

simulated measured profile for any 𝑞𝑐 guess. An engineers’ physical

understanding of the influence of thin-layer effects on measured CPT

data can be incorporated by using a physically realistic computational

simulation process (i.e., ‘‘blurring function") to map the current guess at

the resistance profile, 𝑞𝑐 , to 𝑞𝑠𝑖𝑚
𝑐
. However, inverse problems are often

ill-posed and data include noise, so it is possible that a small change in

𝑞𝑚𝑒𝑎𝑠
𝑐

could allow for significantly different 𝑞𝑖𝑛𝑣
𝑐

profiles that both yield

𝑞𝑠𝑖𝑚
𝑐

equally close to 𝑞𝑚𝑒𝑎𝑠
𝑐

. By modifying the way that we discretize

and mathematically represent the soil profile, changing the form of

the misfit function, adding physically realistic restrictions on 𝑞𝑐 that

are considered, or using different numerical optimization algorithms to

iteratively improve the corrected 𝑞𝑐 guesses, we may be able to improve

the efficacy of our solution.

This inverse problem approach to correcting 𝑞𝑐 for thin-layer effects

was first used by Boulanger and DeJong (2018). Their key insight was

representing thin-layer effects on 𝑞𝑚𝑒𝑎𝑠
𝑐

at a particular depth as a simple

blurring filter, 𝑤𝑐 (𝑧), applied to the true tip resistance profile 𝑞𝑡𝑟𝑢𝑒𝑐
. They

inherently assumed that the coefficients of the blurring function may

vary with depth.

𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑐 ) ∶= 𝑞𝑐 ∗ 𝑤𝑐 (𝑧) (2)

where ∗ represents convolution. It is assumed that 𝑤𝑐 is the discretiza-

tion of a continuous function that represents the influence of soil above

and below the cone tip on 𝑞𝑚𝑒𝑎𝑠
𝑐

at a particular depth. An example of

a 𝑤𝑐 function that is a scaled and truncated chi-squared distribution

is shown along with the layered soil 𝑞𝑐 and 𝑞𝑠𝑖𝑚
𝑐

in Fig. 1. This differs

from the 𝑤𝑐 used in Boulanger and DeJong (2018), but our numerical

tests suggest this 𝑤𝑐 more closely matches calibration chamber data.

The numerical optimization method proposed in Boulanger and DeJong

(2018) uses a common iterative splitting optimization technique, and

smooths the results to keep them from becoming unstable. However,

when applied to laboratory calibration chamber test data, we found

that this method may still be unstable (i.e., it did not yield corrected 𝑞𝑐
profiles that matched the stratigraphy of known soil profiles with thin

layers) (Yost et al., 2021a). We have explored a variety of ways to pose

this inverse problem as different optimization problems, methods to

discretely represent the soil profiles, and numerical optimization tech-

niques including both gradient-based methods and global optimization

techniques. In this paper we (i) propose two new representations of this

inverse problem, (ii) detail a new robust numerical optimization algo-

rithm for each representation to find the best guess for the resistance

profile, 𝑞𝑖𝑛𝑣
𝑐
, (iii) present the tradeoffs in accuracy and computational

cost of these algorithms, and (iv) provide open source MATLAB code

for all algorithms and test cases.

3. New method

We generally assume each soil layer is homogeneous and refer to

the ‘‘corrected tip resistance’’ in this homogeneous layer as the tip

resistance that would be measured in an entirely uniform profile of

the same material (perhaps with some level of noise). Accordingly, our

new method describes any proposed 𝑞𝑐 profile as a piecewise constant

function. Assuming there are 𝑁 soil layers, each layer in the piecewise

constant function is represented by just two degrees of freedom, rather

than having as many degrees of freedom as number of depths where

CPT data were collected. The two variables associated with each layer

would be (i) its depth, and (ii) its characteristic tip resistance if the

uniform material in the layer were measured without any thin-layer

effects. This representation results in far fewer degrees of freedom

compared to the formulation of Boulanger and DeJong (2018), and

improves computational speed of the method. However, even simple

soil profiles can have several dozen degrees of freedom (i.e., two

degrees of freedom per layer), requiring a global optimization method

that balances efficiency and precision.

We define the inverse problem to seek the 𝑞𝑐 that results in 𝑞𝑠𝑖𝑚
𝑐

that most closely matches 𝑞𝑚𝑒𝑎𝑠
𝑐

. We restrict 𝑞𝑐 to be a piecewise

constant function defined by 𝑁 layer depths paired with 𝑁 𝑞𝑐 values.

Therefore, each piecewise proposed 𝑞𝑐 profile is described by a material

property vector, 𝑚, that has 2𝑁 components. For any assumed 𝑚 we

can reconstruct the corresponding 𝑞𝑐 at each depth where CPT data

were measured by simply extracting the value of the piecewise function

described by 𝑚 at every depth of interest. The 𝑞𝑐 profile resulting from

this reconstruction process is denoted by 𝑞𝑐 (𝑚). In what we refer to
as the new algorithm with the standard misfit function, we quantify how

closely the measured and simulated profiles match by calculating 𝑞𝑐(𝑚),
calculating 𝑞𝑠𝑖𝑚

𝑐
from 𝑞𝑐 (𝑚), then calculating the norm (the Euclidean

or 2-norm) of the error between 𝑞𝑠𝑖𝑚
𝑐

and 𝑞𝑚𝑒𝑎𝑠
𝑐

, scaled to be between 0

and 1. For reference, a good fit would have a score of less than 0.01

(i.e., less than 1% error). By convention, we consider the depth of the

layer to be the depth to the top of the layer, and we also force the depth
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to the first layer to be zero. Written as an equation, this new algorithm

with the standard misfit function optimizes:

𝑚𝑖𝑛𝑣 = arg min
𝑚∈R2𝑁

‖𝑞𝑚𝑒𝑎𝑠
𝑐

− 𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑐 (𝑚))‖2. (3)

However, this is not the only way to quantify the misfit between

𝑞𝑚𝑒𝑎𝑠
𝑐

and 𝑞𝑠𝑖𝑚
𝑐
. Some inverse problems that have data or material

parameters that include both small-scale and large-scale values benefit

from quantifying misfits with a logarithm applied. Thus we also propose

the new algorithm with the log misfit function, which optimizes:

𝑚𝑖𝑛𝑣 = arg min
𝑚∈R2𝑁

log
(‖𝑞𝑚𝑒𝑎𝑠

𝑐
− 𝑞𝑠𝑖𝑚

𝑐
(𝑞𝑐 (𝑚))‖2

)
. (4)

Computationally optimizing either form of the misfit function based on

measured and simulated data allows us to assess 𝑞𝑐 guesses without

direct knowledge of 𝑞𝑡𝑟𝑢𝑒
𝑐
, even when additional site characterization

data are unavailable. The best assumed 𝑞𝑐 profile we reconstruct, 𝑞
𝑖𝑛𝑣
𝑐

=
𝑞𝑐 (𝑚𝑖𝑛𝑣), is likely to be close to the 𝑞𝑡𝑟𝑢𝑒

𝑐
profile with thin-layer effects

removed, but practical numerical optimization algorithms may yield

different answers depending on the choice of the misfit function.

In addition to designing the optimization problem, one must select

a numerical optimization algorithm to iteratively update the 𝑞𝑐 guesses.

We chose the Particle Swarm Optimization (PSO) algorithm. PSO finds

minima of the selected misfit function starting with many randomly

generated trial 𝑚 values (i.e., the ‘‘particles"), each following its own

path of new updated guesses of the 𝑞𝑐 profile (i.e. guesses for 𝑚 with

a corresponding 𝑞𝑐 (𝑚)). Each particle explores the space of possible

𝑚 vectors based on its most recent 𝑚 guess, the best 𝑚 guess it has

tested, and the best 𝑚 guess previously tested among all the particles.

In this way, PSO does indeed have particles that swarm around local

and global minima.

Since PSO does very well when the global minimum is surrounded

by local minima or has a wide basin of attraction (i.e. a large re-

gion around the global minimum with no other local minima), and

small adjustments to either the layer depths or resistances should only

marginally affect 𝑞𝑚𝑒𝑎𝑠
𝑐

− 𝑞𝑠𝑖𝑚
𝑐
, we believe PSO is a practical choice.

When 𝑞𝑚𝑒𝑎𝑠
𝑐

does not suggest a piecewise constant layer resistance

profile (e.g., when there is a gradient in the 𝑞𝑐 profile), we can still

approximate the result well by adding several additional layers, each

with constant 𝑞𝑐 . In this case, there may be multiple local minima

surrounding the global minimum, and so again PSO should be quite

effective. The only drawback to PSO is that it can have low accuracy,

i.e., different initial particle guesses may yield quite different 𝑞𝑖𝑛𝑣
𝑐

values even if the average over all particles’ 𝑞𝑐 guesses is at the global

minimum.

The pseudocode for this new algorithm is described in Algorithm 1

below. The following subsections step through the process to automat-

ically compute good initial 𝑚 guesses, followed by two methods used

in tandem with PSO for adjusting the number of layers and re-fitting

the 𝑞𝑐 profile guess automatically. The pseudocode assumes that the

user has already selected whether they wish to use the standard or log

misfit function. Further, while the pseudocode is written assuming use

of the recommended initialization methods outlined in Section 3.1, an

engineer applying this algorithm may substitute their own initial guess

of 𝑞𝑐 based on their knowledge of local soils and geology.

3.1. Calculating reasonable initial 𝑚 guess

In order to combat the accuracy limitations of PSO, a standard tech-

nique in optimization is to focus on developing a good initial 𝑚 guess

(and its corresponding 𝑞𝑐 (𝑚), referred to here as the initial 𝑞𝑐 guess)
which can then be further refined by PSO. Many PSO implementations

allow for the specification of the initial 𝑚 guess. Even if a single particle

starts at a good initial 𝑚 guess, by the nature of PSO, the other particles

will quickly swarm the location and discover the global minimum. Here

we propose a novel technique to automatically generate a good initial

guess, which is specific to the thin soil layer problem.

The first step in constructing a good initial 𝑚 guess (and its cor-

responding 𝑞𝑐 (𝑚)) is to automatically calculate an approximation of

𝑁 , the number of layers, and the depths of each layer. This can

be done by looking at the locations where the derivative of 𝑞𝑚𝑒𝑎𝑠
𝑐

changes signs. This will not capture features of 𝑞𝑡𝑟𝑢𝑒
𝑐

such as gradually

increasing/decreasing resistances, but effectively this should identify

most locations where there is a transition either from a layer having

a low 𝑞𝑡𝑟𝑢𝑒
𝑐

value to a high 𝑞𝑡𝑟𝑢𝑒
𝑐

value or vice-versa. The 𝑞𝑐 values of

the 𝑁 layers can simply be initialized as being equal to the measured

resistances at a subset of the depths where 𝑞𝑚𝑒𝑎𝑠
𝑐

was measured.

Although this initialization works much better than a random ini-

tialization, there is a chance that the asymmetry of the influence of

the soil above and below the cone tip on 𝑞𝑚𝑒𝑎𝑠
𝑐

, and the number of

thin layers might result in an initial 𝑚 and 𝑞𝑐 (𝑚) guess that are offset
in depth from the true resistance profile, as seen in Fig. 3. To fix

this, the new proposed algorithm applies a simple coordinate descent

optimization algorithm with the selected misfit function to improve the

initial 𝑚 guess further at low computational cost. Coordinate descent is

a common numerical optimization technique (Wright, 2015). Applying

coordinate descent optimization here helps to correct 𝑚 when the

locations of multiple layers are shifted from the true layer depths, and

improves the estimated 𝑞𝑐 values slightly.

The result of these steps is a reasonable initial guess for 𝑞𝑐 which, in

rare cases, might already be optimal. However, coordinate descent op-

timization is typically unable to refine the details of 𝑞𝑖𝑛𝑣
𝑐
, so coordinate

descent is only used for a quick update to the initial guess followed by

application of PSO and computational procedures to add/remove layers

for further improvement. This is because PSO explores many more

minima than just the single local minimum that coordinate descent

finds. By using a good initial guess, PSO takes far less time to converge

than with a random initial guess. These steps for constructing a good

initial 𝑚 guess (and its corresponding initial 𝑞𝑐 guess) have no way of

adjusting the number of layers in the profile, usually resulting in initial

guesses that are too simplistic, so our proposed new algorithm includes

computational procedures to automatically add and remove layers.

3.2. Leave-One-Out (LOO)

We propose a new computational procedure to improve a 𝑞𝑐 guess

by removing any layers that would help reduce the misfit function

(either the standard or log misfit, depending on the user’s choice) up

to some pre-defined tolerance, referred to as the Leave-One-Out (LOO)

procedure. To accomplish this, LOO computes what the misfit would be

if the 𝑖th layer were removed from the profile for each 𝑖 = 1, 2,… , 𝑁 ,

then removes whichever layer increases the misfit the least, up to the

tolerance. This process is repeated until the removal of any single

layer increases the misfit beyond the tolerance, or when the model

contains only one layer. Algorithm 2 details the pseudocode of the LOO

procedure (see Fig. 4).

LOO was designed to remove insignificant, if not detrimental, layers

from any 𝑞𝑐 guess that are not physically realistic and contribute to

unnecessary additional degrees of freedom (which increase the run-

time of) PSO. The provided software includes several options to set the

tolerance automatically, most of which only rely on the misfit of the

initial 𝑞𝑐 guess and do not change between iterations.

3.3. Add-One-In (AOI)

In addition to removing unnecessary layers, we also developed

a new computational procedure to automatically add missing layers,

referred to as Add-One-In (AOI). AOI adds new layers between existing

layers if the addition of that layer would reduce the misfit function at

the proposed new profile, until the addition of another layer does not

sufficiently decrease the misfit. This is a necessary condition to stop

adding layers, since adding a layer is always guaranteed to at least

keep the misfit the same, if not decrease it, which potentially allows the
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Fig. 3. An initial guess for 𝑞𝑐 (left, solid red) was automatically generated from derivative sign changes of the measured 𝑞𝑚𝑒𝑎𝑠
𝑐

resistance profile (dashed blue). Its computationally

simulated 𝑞𝑠𝑖𝑚
𝑐

data is shown(left, dashed red). Coordinate descent optimization starting from that initial guess of 𝑞𝑐 yielded a new initial guess (right, solid red) with an improved

predicted blurred profile (right, dashed red).

Fig. 4. The first (top) and second (bottom) steps of the Leave-One-Out (LOO) process are demonstrated. At each step 𝑞𝑠𝑖𝑚
𝑐

(red dashed) is calculated from the current guess at

𝑞𝑐 (red solid), and compared to 𝑞𝑚𝑒𝑎𝑠
𝑐

(blue dashed). The predicted misfit if each layer were to be removed is calculated (right). The first step has layers that can be removed to

lower the misfit, but no layers are below the tolerance for removal in the second step.

number of layers in the profile to grow to infinity without the stopping

criteria. AOI accomplishes this by adding in a layer between every

two consecutive pairs of layers, improving these layers’ 𝑞𝑐 values and

thicknesses using PSO (a quick, 2-variable optimization for each layer),

and computing which proposed additional layer decreases the misfit the

most. Algorithm 3 details the pseudocode of the AOI procedure. AOI

was designed to populate regions of high data misfit with more layers,

assuming the next full application of PSO will be able to adjust these

new layers appropriately. AOI struggles to add layers where multiple

layers having a mix of high and low 𝑞𝑐 values are missing. Unlike

LOO, AOI tolerances must be updated each iteration to account for the

potentially rapidly decreasing misfit (see Fig. 5).
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Fig. 5. The first (top) and second (bottom) steps of the Add-One-In (AOI) process are demonstrated. At each step the predicted blurred data (red dashed) is calculated from the

current guess at the resistance profile (red solid) and compared to the measured resistance profile (blue dashed). The predicted misfit assuming additional layers is calculated

(right).

Algorithm 1 Thin-Layer Correction Optimization

Require: measured data 𝑞𝑚𝑒𝑎𝑠
𝑐

, and function to simulate data 𝑏𝑙𝑢𝑟𝑓𝑐𝑛

𝑛𝑑𝑎𝑡𝑎 ← normalize(𝑞𝑚𝑒𝑎𝑠
𝑐

)

create 𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛, a misfit function based on 𝑛𝑑𝑎𝑡𝑎 and 𝑏𝑙𝑢𝑟𝑓𝑐𝑛

initialize 𝑚 based on where deriv(𝑛𝑑𝑎𝑡𝑎)changes signs

𝑚 ← coordinateDescent(𝑚,𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛)

while length(𝑚) ! = length(𝑚𝑂) or ‖𝑚−𝑚𝑂‖ > 𝜀 or first iteration do

𝑚𝑂 ← 𝑚

𝑚 ← LOO(𝑚,𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛)

𝑚 ← PSO(𝑚,𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛)

𝑚 ← AOI(𝑚,𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛)

𝑚 ← PSO(𝑚,𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛)

end while

𝑚 ← LOO(𝑚,𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛)

check for potential uncertainties, state warnings

𝑚𝑖𝑛𝑣 ← rescale 𝑚 to remove normalization

𝑞𝑖𝑛𝑣
𝑐

← reconstruct depth profile 𝑞𝑐 (𝑚𝑖𝑛𝑣)
return 𝑞𝑖𝑛𝑣

𝑐

3.4. Convolutional blurring procedure

A user of the proposed new algorithm can use any method to

calculate 𝑞𝑠𝑖𝑚
𝑐

that they prefer. For the purposes of this study, we

defined an artificial computational blurring function that, when applied

to idealized 𝑞𝑡𝑟𝑢𝑒
𝑐
, replicates the blurring caused by the thin-layer

effects. That is, it computationally simulates the 𝑞𝑠𝑖𝑚
𝑐

from 𝑞𝑡𝑟𝑢𝑒
𝑐
, and the

Algorithm 2 Leave-One-Out (LOO)

Require: profile guess 𝑚, function to evaluate misfit 𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛,

tolerance 𝑇𝑂𝐿

𝑚𝑖𝑠𝑓𝑖𝑡𝑠 ← zeros(𝑁 ,1)

while true do

if 𝑁 == 1 or all(𝑚𝑖𝑠𝑓𝑖𝑡𝑠 > 𝑇𝑂𝐿) then

break

end if

𝑖 ← index of minimum entry of 𝑚𝑖𝑠𝑓𝑖𝑡𝑠

𝑚 ← removeLayer(𝑚, 𝑖)

𝑁 ← 𝑁 − 1
for 𝑖 = 1 ∶ 𝑁 do

𝑡𝑒𝑚𝑝 ← removeLayer(𝑚, 𝑖)

𝑚𝑖𝑠𝑓𝑖𝑡𝑠(𝑖) ← 𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛(𝑡𝑒𝑚𝑝)
end for

end while

return 𝑚

resulting values should be close to the actual 𝑞𝑚𝑒𝑎𝑠
𝑐

. Similar to Boulanger

and DeJong (2018) we chose to use a blurring function defined by

convolving the true resistance profile with a point spread function 𝑝(𝑧):

𝑞𝑠𝑖𝑚
𝑐

(𝑧) ∶= (𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑐 ))(𝑧) = ∫
∞

−∞
𝑞𝑐 (𝛥𝑧)𝑝(𝑧 − 𝛥𝑧)d𝛥𝑧, (5)

where ∫ ∞
−∞ 𝑝(𝑧)𝑑𝑧 = 1 and 𝑝(𝑧) ≥ 0 for all 𝑧. In practice, this integral is

only calculated on a finite interval. This blurring function was chosen
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Algorithm 3 Add-One-In (AOI)

Require: profile guess 𝑚, function to evaluate misfit 𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛

while true do

recompute 𝑇𝑂𝐿

if 𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛(𝑚) ≤ 𝑇𝑂𝐿 then

break

end if

𝑚𝑖𝑠𝑓𝑖𝑡𝑠 ← zeros(𝑁 − 1,1)
for 𝑖 = 1 ∶ 𝑁 − 1 do
initialize 𝑒𝑥𝑡𝑟𝑎𝐿𝑎𝑦𝑒𝑟 between layer 𝑖 and layer 𝑖 + 1
𝑡𝑒𝑚𝑝 ← addLayer(𝑚, 𝑒𝑥𝑡𝑟𝑎𝐿𝑎𝑦𝑒𝑟, 𝑖)

𝑚𝑖𝑠𝑓𝑖𝑡𝑠(𝑖) ← 𝑚𝑖𝑠𝑓𝑖𝑡𝑓𝑐𝑛(𝑡𝑒𝑚𝑝)
end for

if all(𝑚𝑖𝑠𝑓𝑖𝑡𝑠) > 𝑇𝑂𝐿 then

break

end if

𝑖 ← index of minimum entry of 𝑚𝑖𝑠𝑓𝑖𝑡𝑠

𝑚 ←addLayer(𝑚, 𝑒𝑥𝑡𝑟𝑎𝐿𝑎𝑦𝑒𝑟, 𝑖)
end while

return 𝑚

Fig. 6. A CPT tip resistance profile from Soil Model 3 CPT 3 of the De Lange (2018)

report, Section A. Here, the observed resistance profile 𝑞𝑚𝑒𝑎𝑠
𝑐

(black) is being contrasted

with 𝑞𝑠𝑖𝑚
𝑐

(magenta) that is calculated from the true resistance profile 𝑞𝑐 (blue) by

simple convolution.

because it is simple to implement and only requires the use of a ma-

trix convolution function (‘‘conv" in MATLAB). This blurring function

results in a 𝑞𝑠𝑖𝑚
𝑐

value at each depth that is a weighted combinations of

the surrounding soil layers’ 𝑞𝑐 values. Although this method can very

quickly compute 𝑞𝑠𝑖𝑚
𝑐

for any 𝑞𝑐 guess, it is a simplification of the true

physics. For example, in regions with alternating thin layers of stiff

and soft soils, 𝑞𝑚𝑒𝑎𝑠
𝑐

in the layered zone is much closer to the lower of

the two true resistances throughout the region (i.e., it is not a simple

averaging process), as we see in Fig. 6. Simplified physics models sug-

gest that the layers below the tip of the cone affect the resistance more

than the layers above the cone tip (Boulanger and DeJong, 2018), so

in our implementation, we performed the convolution in Eq. (5), with

a point spread function 𝑝(𝑧) derived from the Chi squared probability

density function as the artificial blurring function for its smoothness

and asymmetry, pictured in Fig. 1. Our computational experiments to

find the optimal 𝑝(𝑧) point spread function indicate that Eq. (5) is likely
too simple, and the existence of an efficient computational method to

predict 𝑞𝑠𝑖𝑚
𝑐

for any 𝑞𝑐 remains an open question.

4. Results of the new algorithm with standard misfit

A suite of CPT tip resistance (𝑞𝑐) data for known sand–clay layered

profiles from calibration chamber tests performed by de Lange (2018)

at Deltares (de Lange, 2018) were used to test the new algorithm with

the standard misfit function. Details on how the digitized data and

reported sample preparation were used to estimate 𝑞𝑡𝑟𝑢𝑒
𝑐

are provided in

Appendix. Before calculations were performed, 𝑞𝑚𝑒𝑎𝑠
𝑐

and 𝑞𝑡𝑟𝑢𝑒
𝑐

profiles

were converted to normalized cone tip resistance (𝑞𝑐1𝑛) profiles, where

𝑞𝑐1𝑛 is computed as:

𝑞𝑐1𝑛 = 𝐶𝑁

𝑞𝑐

𝑃𝑎

(6)

where 𝑃𝑎 is atmospheric pressure in the same units as 𝑞𝑐 and 𝐶𝑁

is a unitless overburden correction factor computed per the proce-

dure in (Boulanger and Idriss, 2016). Furthermore, data in the upper

0.1 meters of the soil profiles was excluded from the analyses pre-

sented herein because it contained unintended artifacts caused by

experimental testing limits and was considered to be unreliable.

It should be noted that all soil models in the de Lange (2018) report

only have layered zones that contain layers of the same thicknesses,

however soil models with varying layer thicknesses do not affect the

algorithm’s performance beyond what is discussed here. For the sake

of designing and testing the optimization scheme described in Sec-

tion 3, we replace our 𝑞𝑚𝑒𝑎𝑠
𝑐

data (which are ‘‘naturally blurred") with

profiles that are ‘‘computationally blurred" (i.e., 𝑞𝑠𝑖𝑚
𝑐
) by applying the

convolution in Eq. (5) to known soil resistance profiles. In the field of

inverse problems, this is an example of an inverse crime, and it is done

to test and verify algorithms in a more controlled setting by removing

a source of error from these computational tests. This may mean that in

practice, the new algorithm is less likely to yield an accurate estimate

of 𝑞𝑡𝑟𝑢𝑒
𝑐
, or that it is more sensitive to the initial 𝑞𝑐 profile guess used to

begin particle swarm optimization. See the software in Section 8 and

Appendix for more implementation details.

The first soil profile we used to test the new algorithm with the

standard misfit was Soil Model 4 CPT 2 from the start-up phase of

the de Lange (2018) data (Section C of the report). This soil profile

features 80-mm-thick layers of alternating stiffnesses, which are thin

enough that existing algorithms struggle to correct for thin-layer ef-

fects (Yost et al., 2021a). The results are shown in Fig. 7, comparing

the automatically generated initial guess for 𝑞𝑐 (red solid, left) to the

final optimized 𝑞𝑖𝑛𝑣
𝑐
resulting from the new algorithm with the standard

misfit function (solid red, right), which is much closer to the true

resistance profile, 𝑞𝑡𝑟𝑢𝑒
𝑐
, based on the known experimental soil layering

(solid blue). The measured 𝑞𝑚𝑒𝑎𝑠
𝑐

(dashed blue) deviate noticeably from

the 𝑞𝑠𝑖𝑚
𝑐

calculated using the initial resistance profile guess (dashed red,

left), but 𝑞𝑠𝑖𝑚
𝑐

is extremely close to the computationally simulated 𝑞𝑠𝑖𝑚
𝑐

of

the final optimized resistance profile 𝑞𝑖𝑛𝑣
𝑐
. All computations were done

in serial on an Intel i7 8th generation quad core processor with 8GB

DRAM in MATLAB 2020a. The algorithm has a fairly good initial guess

for 𝑞𝑐 following the procedure in Section 3, but the final best profile,

𝑞𝑖𝑛𝑣
𝑐
, matches 𝑞𝑡𝑟𝑢𝑒

𝑐
extremely well. The only discrepancy is at the very

top of the profile where the 𝑞𝑡𝑟𝑢𝑒
𝑐

profile shows a gradient rather than a

constant value.

Although the new algorithm is only designed to fit piece-wise

constant 𝑞𝑐 profiles, it is still able to fit smooth transitions by approx-

imating them with a stair step-like pattern, the granularity of which

depends on the AOI and LOO parameters passed to the algorithm.

Fig. 8, which was calculated by the new algorithm with the standard

misfit, shows an example of this. The default parameters result in an

initial 𝑞𝑐 profile guess with several unnecessary layers at the top of

the profile (solid red, left), which were then removed in the final 𝑞𝑖𝑛𝑣
𝑐

(solid red, right). This required changing the LOO procedure to include

so-called ‘‘absolute thresholding’’. This means that, rather than just

removing any layer that does not decrease the misfit much relative

to the current misfit value, the LOO algorithm also removes any layer
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Fig. 7. A known CPT tip resistance profile (solid blue), Soil Model 4 CPT 2 from the

de Lange (2018) report, section C, compared with a measured 𝑞𝑐 profile (dashed blue),

an initial 𝑞𝑐 guess (left, solid red), and the final 𝑞𝑖𝑛𝑣
𝑐

after coordinate descent, LOO,

AOI and particle swarm (right, solid red) show the performance of the method after

the code ran for 30 s.

Fig. 8. Soil Model 2 CPT 2 from the de Lange (2018) report, Section A. The new

algorithm with run with default parameters yielded 𝑞𝑖𝑛𝑣
𝑐

(left, solid red) that differs

from 𝑞𝑖𝑛𝑣
𝑐

resulting from the new algorithm run with a LOO parameter set to remove

layers more aggressively (right, solid red). This example took 80 s to run.

that only contributes to the misfit function in a very small region of

the profile. Note that this increased the misfit score from 0.003560 to

0.014702, which can be interpreted to mean that the final 𝑞𝑖𝑛𝑣
𝑐

profile

has a larger misfit by a roughly a factor of four compared to the initial

𝑞𝑐 guess, although the final profile is more physically realistic.

The algorithm performed very well on most of the suite of cal-

ibration chamber soil models, but in models with a cluster of very

thin layers, the algorithm skips fitting the last several layers. Fig. 9

provides a clear example (see also A.13 and A.14). Even though the

difference between the output profile from the new algorithm with the

standard misfit, 𝑞𝑖𝑛𝑣
𝑐
, and 𝑞𝑡𝑟𝑢𝑒

𝑐
is large in these cases, the difference

between 𝑞𝑚𝑒𝑎𝑠
𝑐

and 𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑖𝑛𝑣
𝑐

) (indicated by dashed lines) is quite small.
The small misfit in this region is due to the choice of the blurring

function, as we can see in the bottom layers in Fig. 1. Considering

this limitation, the algorithm performs rather well. Although this result

might be improved by including more layers in this region in the

initial 𝑞𝑐 guess, it is unlikely that all of the layers will be recovered.

A blurring function that is more in accord with the physical process

might prevent missed layers in regions with many very thin layers, but

this is not guaranteed. Another approach is to use the new algorithm

with the log misfit function, which emphasizes small differences more

than the standard misfit function when close to the global minimum.

More results comparing the new algorithms with the standard and log

misfit are presented in Section 5.

To alert software users when it appears there may be a similar sce-

nario with many thin layers averaged together and missed, the provided

software implementation of the new algorithm includes automatically

generated warnings indicating where the algorithm is potentially leav-

ing out a distinct soil layer. This is done by dividing up the entire

depth profile into regions according to where 𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑖𝑛𝑣
𝑐

) overestimates
or underestimates 𝑞𝑚𝑒𝑎𝑠

𝑐
, and looking at the ratio of the misfit function

to the signed difference. In practice, this seems to work very well even

on the example shown in Fig. 9. So, it could be incorporated into future

improvements of the AOI method.

5. Results of the new algorithm with log misfit

We found that the new algorithm with the log misfit function

posed in Eq. (4) was better suited to accurately refine small details of

thinly layered profiles than the new algorithm with the standard misfit.

Fig. 10 shows the result of this log misfit function applied to the most

difficult of our previous examples. Note how the 𝑞𝑖𝑛𝑣
𝑐

resulting from the

standard misfit (left, solid red) misses many layers in the true resistance

profile (solid blue), while the 𝑞𝑖𝑛𝑣
𝑐

resulting from the log misfit (right,

solid red) detects every single thin layer. For both the standard misfit

and the log misfit 𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑐 ) was extremely close to 𝑞𝑚𝑒𝑎𝑠
𝑐

, showing that

the detailed refinement done by the new algorithm with the log misfit

was necessary to truly match the thin soil profile.

Note that minor modifications to LOO and AOI were implemented to

accommodate the misfit function taking on negative logarithmic values.

We found it necessary to limit the number of layers that could be

added with each use of AOI to a small number (three worked well)

since marginal improvements to 𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑐 ) can significantly impact the log
misfit function. This means that, when close to the global minimum,

it becomes increasingly difficult to add new layers as the algorithm

progresses. The new algorithm with the log misfit takes between 5 and

10 min to run depending on how complex the actual resistance profile

is, as well as how many layers are added each iteration. While it is

more computationally expensive than the standard misfit, the log misfit

is also more accurate and robust.

Why the log misfit outperforms the accuracy of the standard misfit

can be understood as follows. Since the minimum of the standard misfit

function is unique and equals zero, application of a log transform pre-

serves the global minimizer (i.e. the best possible 𝑞𝑖𝑛𝑣
𝑐
), which becomes

the only location where the log misfit approaches negative infinity.

This guarantees that as we approach the 𝑞𝑡𝑟𝑢𝑒
𝑐

profile, PSO should not

terminate due to insufficient decrease in the objective function value

(i.e. the new algorithm with the log misfit continues to refine 𝑞𝑐). This

also has the effect of flattening out any local minima that are far from

the global minimum, making it even easier for PSO to ignore those

shallow minima and gravitate towards the global minimum. In Fig. 11,

we compare the contour plots of both misfit functions for a simple

two-layer profile problem. Note that the original misfit function has

very elongated contours around the minimum. Like the well-known

Rosenbrock function, this elongated feature can cause numerical op-

timization algorithms to approach the minimum very slowly. Under

the log transform, the region with elongated contours only has shallow

decreases in the misfit function with more circular contours closer to

the minimum.
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Fig. 9. Soil Model 9 CPT 3 from de Lange (2018), Section A. The automatically generated initial 𝑞𝑐 profile guess (left, red solid) and the final updated 𝑞𝑖𝑛𝑣
𝑐

profile (center, red

solid) both miss several layers that are in 𝑞𝑡𝑟𝑢𝑒
𝑐

(blue solid). A zoom in of this region (right) shows small-scale differences between 𝑞𝑚𝑒𝑎𝑠
𝑐

and 𝑞𝑠𝑖𝑚
𝑐

(𝑞𝑖𝑛𝑣
𝑐

). This process took 40 s to
run.

Fig. 10. Soil Model 9 CPT 3 from de Lange (2018), Section A. The 𝑞𝑖𝑛𝑣
𝑐

solution using

the standard misfit (solid red, left) is much less accurate than the solution using the

log misfit (solid red, right). The standard misfit algorithm took 40 s to run, while the

log misfit algorithm took approximately 7 min.

6. Extensions of method

Additional improvements in the computational efficiency of this

method could be achieved through the use of parallel computing and

GPU computing. While parallel computing in science and engineering

has historically focused on massive problems running on large com-

puter clusters, multi-core architectures and rapidly improving graphics

cards are now widely available in laptops and desktops accessible to

most engineers.

Further improvement in the accuracy of the method could be

achieved through a more realistic representation of the measurement

blurring process (i.e., the influence of thin-layer effects on 𝑞𝑚𝑒𝑎𝑠
𝑐

). For

our examples, we use a simple convolution with a smooth, asymmet-

ric pointspread function (that is, 𝑞𝑚𝑒𝑎𝑠
𝑐

at a given depth is affected

more by 𝑞𝑡𝑟𝑢𝑒
𝑐

below the depth than 𝑞𝑡𝑟𝑢𝑒
𝑐

above the depth). However,

calibration chamber test data and high-fidelity material point method

numerical simulations of soil displacement during penetrometer test-

ing (Zambrano-Cruzatty and Yerro, 2020; Yost et al., 2021b) reveal

much more complex physics, suggesting that a simple convolution with

a single pointspread function is inadequate in some scenarios.

Moving forward, we aim to develop a method based on high-

fidelity simulations to yield a more physically realistic computational

model of this blurring process that is computationally fast to apply.

For example, a neural network trained to mimic the numerical blurring

of any 𝑞𝑡𝑟𝑢𝑒
𝑐

profile will also be computationally cheap to evaluate.

Speed is an important feature in the layer optimization algorithm,

since we expect to calculate 𝑞𝑠𝑖𝑚
𝑐

many times within each iteration. The

primary drawback is the large amount of training data required, which

is experimentally challenging to acquire and computationally taxing to

generate via high-fidelity simulation.

7. Discussion and conclusions

Thin-layer correction for CPT data can be posed as an inverse prob-

lem, similar to other signal deblurring problems. Our tests indicate that

solving for a 𝑞𝑐 profile mathematically represented by an independent

tip resistance value at every depth (as done in Boulanger and DeJong

(2018)) does not reliably yield improved data quality (Yost et al.,

2021a), even when one adds regularization to enhance blocky layers

of stratigraphy (a common strategy in image deblurring). We pose

this inverse problem in a new way, searching for a finite number of

subsurface layers, each having a thickness and uniform resistance that

must be found such that 𝑞𝑠𝑖𝑚
𝑐

most closely matches 𝑞𝑚𝑒𝑎𝑠
𝑐

. Our tests

indicate this new formulation of the inverse problem is better able to

identify thin interbedded layers in the soil profile compared to previous

methods tested in Yost et al. (2021a).

We developed open-source software that takes as inputs a measured

CPT tip resistance profile (𝑞𝑚𝑒𝑎𝑠
𝑐

) together with code to mimic the

natural ‘‘blurring" of the true 𝑞𝑐 profile due to the stress bulb that forms

around the cone penetrometer tip. It estimates a piecewise constant 𝑞𝑐
profile that is expected to result in data similar to the measured data,

up to a desired tolerance. With appropriate settings, this method will

correct for thin-layer effects during CPT soundings, although there may

be other sources of measurement error that remain uncorrected. Our

tests indicate that typical profiles characterized by a moderate number

of depths at which 𝑞𝑚𝑒𝑎𝑠
𝑐

is recorded (i.e., with several hundred values)

can be corrected using the new algorithm with the standard misfit

within 1–2 min on a standard laptop with one core.

This software has limitations. In many cases, the resulting 𝑞𝑖𝑛𝑣
𝑐

profile will be simpler and smoother than what we might expect from
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Fig. 11. The standard misfit (left) and log misfit (right) are shown for all possible two-layer profiles with the 𝑞𝑡𝑟𝑢𝑒
𝑐

value of the top layer known.

the true resistance profile if we were to have other soil profile char-

acterization data (e.g. core samples). However this tendency towards

simplified models can easily be adjusted by the user’s settings. The

existence of a fast computational procedure that closely mimics this

‘‘natural blurring" of the true soil resistance profile remains an open

question, so we use a simple convolution (5) to compute the ‘‘blurred"

data, 𝑞𝑠𝑖𝑚
𝑐
. Future research will focus on quantifying uncertainty in the

corrected 𝑞𝑖𝑛𝑣
𝑐

profiles, and improving the blurring functions that are

used to represent a wider range of geotechnical scenarios.

For particularly complex soil stratigraphies, we suggest users take

advantage of the new algorithm with the log misfit, which balances

regions with large-scale and fine-scale features contributing to the

misfit. Our tests reveal this yields more accurate and robust profiles,

better reflecting subsurface stratigraphy, with more thin layers cor-

rectly identified. Our open-source software includes both the standard

and log misfits. Note that the new algorithm with the log misfit re-

quires a longer run time, typically 5–10 min for CPT soundings with

several hundred depth points. By providing software for both formu-

lations, users can decide which version to apply based on tradeoffs

in computing time, accuracy, and assumed complexity of the soil

stratigraphy.
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Multiple examples in this paper were performed using data that is

available through a technical report from Deltares (de Lange, 2018).
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available at https://github.com/jonc7/Soil-Layer-Optimization.
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Fig. A.12. Soil Model 4 CPT 3 from the de Lange (2018) report, Section A. The

automatically generated initial 𝑞𝑐 profile (left, solid red) is compared to the final 𝑞
𝑖𝑛𝑣
𝑐

profiles resulting from the new algorithm with standard misfit (center, solid red) and

the log misfit (right, solid red). The algorithm with the standard and log misfits took

50 s and over 7 min, respectively, to run.

Fig. A.13. Soil Model 3 CPT 3 from the de Lange (2018) report, Section A. The

automatically generated initial profile (left, solid red), the final 𝑞𝑖𝑛𝑣
𝑐

profiles from the

new algorithm with the standard misfit (center, solid red) and the log misfit (right,

solid red) are shown. The new algorithm with the standard misfit took 100 s, and

10 min with the log misfit.
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Fig. A.14. Soil Model 8 CPT 3 from the de Lange (2018) report, Section A. The

automatically generated initial 𝑞𝑐 profile (left, solid red), the final 𝑞
𝑖𝑛𝑣
𝑐
profiles generated

by the new algorithm with the standard misfit (center, solid red) and log misfit (right,

solid red) are shown. The algorithm with the standard misfit took 70 s, and the log

misfit took over 11 min.

Appendix. Additional soil model information

In the de Lange (2018) study, several different soil models consisting

of layered sand–clay profiles were constructed and CPTs were per-

formed in these models at various in-situ stress conditions. Sand layers

in the soil models were prepared with target relative densities of either

30% (loose) or 60% (dense). Uniform or ‘‘reference" sand models were

also prepared with the same target relative densities. CPTs performed

in the reference sand models therefore provided a good estimate of the

‘‘true" resistance profile 𝑞𝑐 for the sand layers in the corresponding lay-

ered soil models. Note that due to variation in experimental preparation

of the soil models, the sand relative densities in the layered models

did not always match well with that of the reference sand model.

For the purposes of this study, only the layered soil models that were

relatively good matches were considered [this included several layered

models presented in the ‘‘Test Results" section (Section A) and Soil

Model 4 from the ‘‘Start-Up Phase" section (Section C) of the de Lange

(2018) report]. Furthermore, no uniform/reference clay soil models

were considered by de Lange (2018), therefore, the ‘‘true" 𝑞𝑐 in the clay

was estimated based on the minimum 𝑞𝑐 observed in the thickest of

the clay layers in the de Lange (2018) experiments. With the estimated

‘‘true" 𝑞𝑐 for both the clay and sand layers, and knowledge of the layer

depths and thicknesses, 𝑞𝑡𝑟𝑢𝑒
𝑐

profiles for the layered soil models were

constructed for comparison to the measured CPT tip resistance profiles,

𝑞𝑚𝑒𝑎𝑠
𝑐

, and the corrected tip resistance profiles calculated by the new

algorithms, 𝑞𝑖𝑛𝑣
𝑐
.

Figs. A.12, A.13 and A.14 show results of the simple procedure to

pick an initial profile guess, the final 𝑞𝑖𝑛𝑣
𝑐

for the standard objective

function, and the final 𝑞𝑖𝑛𝑣
𝑐

for the log objective function for three

laboratory datasets from the de Lange (2018) report.
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