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ARTICLE INFO ABSTRACT

Keywords: Cone penetration testing (CPT) is a preferred method for characterizing soil profiles for evaluating seismic
Cone penetration test liquefaction triggering potential. However, CPT has limitations in characterizing highly stratified profiles
Data quality because the measured tip resistance (g.) of the cone penetrometer is influenced by the properties of the soils

Inverse problems above and below the tip. This results in measured g, values that appear “blurred” at sediment layer boundaries,

inhibiting our ability to characterize thinly layered strata that are potentially liquefiable. Removing this “blur”
has been previously posed as a continuous optimization problem, but in some cases this methodology has been
less efficacious than desired. Thus, we propose a new approach to determine the corrected g, values (i.e. values
that would be measured in a stratum absent of thin-layer effects) from measured values. This new numerical
optimization algorithm searches for soil profiles with a finite number of layers which can automatically be
added or removed as needed. This algorithm is provided as open-source MATLAB software. It yields corrected
g, values when applied to computer-simulated and calibration chamber CPT data. We compare two versions
of the new algorithm that numerically optimize different functions, one of which uses a logarithm to refine
fine-scale details, but which requires longer calculation times to yield improved corrected g, profiles.

1. Introduction and motivation function. Notice how the peaks of the simulated data are shifted up
relative to the true high ¢, layers and how the true ¢, in the thin

Cone penetration testing (CPT) is a preferred method to characterize layers is obscured. Because soil profiles are typically stratified, the
soil profiles to evaluate seismic liquefaction triggering potential. The location of the interfaces between layers and the true g, of layers can
test consists of hydraulically pushing an instrumented cone-shaped become difficult to precisely identify from the measured q,, even in
penetrometer into the soil profile at a constant rate, with measurements relatively simple profiles. These phenomena are typically referred to as
typically taken every one to two centimeters as the cone advances. thin-layer, transition-zone, or multiple thin-layer effects, as discussed
In its basic form, CPT sounding data include tip resistance (g.) and in Yost et al. (2021b). Herein, we will generally refer to all of these

sleeve friction (f,) as a function of depth (Schmertmann, 1978). CPT g,
profiles are extensively used in geotechnical applications, in particular,
they serve as a proxy for a soil’s ability to resist liquefaction triggering
due to ground shaking (Shibata and Teparaksa, 1988).

CPT 4, profiles do not provide truly depth-specific measurements,
because they are influenced by soil materials several cone diameters
away from the cone tip (Ahmadi and Robertson, 2005). Consequently, if
soil properties vary with depth, the measured ¢, are “blurred" compared
to the actual depth-specific or “true" corrected g, (i.e., the g, value
that would be measured at that depth in a uniform profile, absent of
boundary or thin-layer effects). This “blurring" is asymmetrical, with
soil below the cone tip affecting g. more strongly than soil above, as
illustrated in Fig. 1 (Boulanger and DeJong, 2018). This figure shows a
multi-layer “true” g, profile along with the computationally simulated
data we would generate by convolving the profile with an asymmetrical thin-layer effects in profiles consisting of a stiff layer embedded in a soft

effects as “thin-layer effects". In this context, a soil “layer" or “stratum"
is a depth increment in the profile over which the soil has relatively
uniform geotechnical engineering properties (e.g., soil type and g¢,).
Furthermore, a “thin" layer or stratum is one that is too thin for the
measured g, to fully develop or reach values that would be measured
in the stratum absent of thin-layer effects (i.e. true corrected g, profile).
This required thickness will vary as a function of soil stiffness, but
typically 10 to 30 cone diameters is required (Ahmadi and Robertson,
2005), and thus a stratum thinner than this would be a “thin layer”.
The majority of studies on thin-layer effects on measured CPT g,
data have focused on developing corrections to apply to measured g,
for specific layering sequences and geometries, as outlined in Boulanger
and DeJong (2018). Some past efforts to correct the measured ¢, for
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Fig. 1. The ¢ profile of a layered soil (left, solid) and its predicted blurred observation, §

that is a truncated chi-squared distribution (right).

layer (e.g. sand and clay layers, respectively) assumed that the effect
of the softer layer will be greater at the boundaries and lesser towards
the middle of the stiff layer. This results in a V-shaped deblurring
correction function to correct the CPT-measured ¢, in the stiff layer
so the corrected values more closely represent the true g, that would
be measured in the absence of thin-layer effects (Youd et al., 2001;
de Greef and Lengkeek, 2018).

In comparison to corrections for specific layering scenarios,
Boulanger and DeJong (2018) propose a potentially more flexible
inverse problem approach that can be applied to measured ¢, from a
CPT performed in a profile containing any number of layers. However,
the procedure is less efficacious than desired in some scenarios where
layer thicknesses are less than 40 mm, even if there is significant
contrast between the strengths and stiffnesses (i.e., the true g.) of the
thin layers and surrounding soil (Yost et al., 2021a). The inability to
cost-effectively determine the true g, from the measured g, may be
contributing to widespread over-prediction of the liquefaction hazard
in highly interlayered soil deposits (e.g., as observed in Christchurch,
New Zealand (Maurer et al., 2014, 2015) and the Hawk’s Bay region of
New Zealand (El Korthawi et al., 2019)). In this regard, a quantitative
comparison of previous correction procedures is presented in Yost et al.
(2021a).

The main objectives of this work are (i) to pose a new inverse
problem to estimate true g, from measured (or “blurred") g, in highly
stratified soil profiles, and (ii) to propose a new numerical optimization
algorithm for efficiently correcting g, in highly stratified soil profiles for
thin-layer effects. This paper is organized as follows: In Section 2, we
review the background of prior efforts to adjust or correct CPT data
for thin-layer effects, including efforts to pose this correction as an
inverse problem to be solved via numerical optimization. Further, we
provide relevant background information on numerical optimization
techniques. In Section 3, we propose a new approach to correct CPT
data by removing the thin-layer effects via an inverse problem, posed in
two different ways. We describe a new algorithm to solve both proposed
versions of this inverse problem that incorporates global numerical op-
timization techniques, routines to automatically generate a reasonable
initial guess, to adjust the number of layers, and to computationally
simulate the blurring process. In Section 4, we show the results of this
new algorithm for one version of the inverse problem applied to CPT
data from calibration chamber tests, and the improvements typically
achieved over simpler computational methods to automatically correct
thin-layer effects in measured ¢, profiles. In Section 5, we compare
the results of the new algorithm for both formulations of the inverse
problem, yielding a more precise, but more computationally expensive
data correction method. In Section 6, we discuss some possible future
extensions of this method, and in Section 7, we discuss limitations and
benefits of the new algorithm.
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2. Background

In computational science and engineering, the terms “forward prob-
lem" and “inverse problem" are often used to describe the problems we
solve when different parts of a system are unknown. When we assume
we know the subsurface soil characteristics and stratigraphy of a soil
profile (i.e., we assume an unblurred ¢, profile), and then perform
a computational simulation to predict the response of the soil to an
action (e.g., simulating a CPT in a “known" (unblurred) ¢, profile to
compute a simulated blurred tip resistance profile, 62""”, comparable
to a measured g, profile for a real CPT), we are solving the “forward
problem”. In contrast, we are solving the “inverse problem" when we
only know the measured tip resistance profile, §'***, but need to infer
the true soil characteristics and stratigraphy (i.e., ¢."*°) that would lead
to computationally simulated data, 5", that most closely match the
measured tip resistance ¢7*“*. In this inverse problem scenario, we
begin with some initial guess at ¢, and iteratively update the current
guess to incrementally improve the match between g™ and 5" until
reaching "the best" guess (i.e., the solution to the inverse problem),
denoted by ¢".

In this regard, the inverse problem is posed as an optimization
problem (i.e., were the minimum difference between §"*** and qg"’" is
targeted) and solved using a variety of numerical optimization tech-
niques. All numerical optimization techniques require calculating 5"
for every g, guess, so we solve the forward problem many times to
solve the inverse problem once. We can predict §5™ for any g, either
through (i) numerical simulation of the soil being displaced by the
cone penetrometer (e.g., with numerical methods such as the material
point method (Yost et al., 2021b)), or (ii) applying a simplified blurring
function to g.. This workflow, beginning with §7"**, iteratively updating
the proposed g, and its corresponding ¢™, and ultimately outputting
the corrected ¢, is diagrammed in Fig. 2.

Approaches to solve inverse problems have previously been applied
to other geotechnical engineering challenges. Notably, the multichan-
nel analysis of surface waves (MASW) technique for seismic imaging of
the near surface is an inverse problem (see Socco and Strobbia (2004)
for details). However, the development of thin-layer corrections for
CPT data collected in interlayered soil profiles has only recently been
posed as an inverse problem by Boulanger and DeJong (2018). In the
following, we present some background on these methods.

2.1. Prior methods and limitations

Regardless of the method to calculate 5, this inverse problem
can be generically posed as finding the assumed ¢, that minimizes a
function known as a misfit function:

inv

g :=argmin [|§7° - " (q,)| €))
4e
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Fig. 2. Diagram of the inverse problem approach to remove thin-layer effects.

where "%, q,, and qj"'" are all vectors with as many entries as there
are depths of interest. The tilde indicates profiles that are “blurry”
while the lack of a tilde indicates profiles that are constrained to be
layered profiles with sharp transitions. The misfit function (Eq. (1))
measures the difference between the actual measured profile and the
simulated measured profile for any g. guess. An engineers’ physical
understanding of the influence of thin-layer effects on measured CPT
data can be incorporated by using a physically realistic computational
simulation process (i.e., “blurring function") to map the current guess at
the resistance profile, ¢, to qg"'". However, inverse problems are often
ill-posed and data include noise, so it is possible that a small change in
g could allow for significantly different ¢ profiles that both yield
g™ equally close to §™. By modifying the way that we discretize
and mathematically represent the soil profile, changing the form of
the misfit function, adding physically realistic restrictions on ¢, that
are considered, or using different numerical optimization algorithms to
iteratively improve the corrected g, guesses, we may be able to improve
the efficacy of our solution.

This inverse problem approach to correcting g, for thin-layer effects
was first used by Boulanger and DeJong (2018). Their key insight was
representing thin-layer effects on §"*** at a particular depth as a simple
blurring filter, w,(z), applied to the true tip resistance profile ¢¢. They
inherently assumed that the coefficients of the blurring function may
vary with depth.

q"™q,) = q, * w.(2) 2

where = represents convolution. It is assumed that w, is the discretiza-
tion of a continuous function that represents the influence of soil above
and below the cone tip on §7*** at a particular depth. An example of
a w, function that is a scaled and truncated chi-squared distribution
is shown along with the layered soil g, and 5™ in Fig. 1. This differs
from the w, used in Boulanger and DeJong (2018), but our numerical
tests suggest this w, more closely matches calibration chamber data.
The numerical optimization method proposed in Boulanger and DeJong
(2018) uses a common iterative splitting optimization technique, and
smooths the results to keep them from becoming unstable. However,
when applied to laboratory calibration chamber test data, we found
that this method may still be unstable (i.e., it did not yield corrected g,
profiles that matched the stratigraphy of known soil profiles with thin
layers) (Yost et al., 2021a). We have explored a variety of ways to pose
this inverse problem as different optimization problems, methods to
discretely represent the soil profiles, and numerical optimization tech-
niques including both gradient-based methods and global optimization

techniques. In this paper we (i) propose two new representations of this
inverse problem, (ii) detail a new robust numerical optimization algo-
rithm for each representation to find the best guess for the resistance
profile, ¢/, (iii) present the tradeoffs in accuracy and computational
cost of these algorithms, and (iv) provide open source MATLAB code
for all algorithms and test cases.

3. New method

We generally assume each soil layer is homogeneous and refer to
the “corrected tip resistance” in this homogeneous layer as the tip
resistance that would be measured in an entirely uniform profile of
the same material (perhaps with some level of noise). Accordingly, our
new method describes any proposed ¢, profile as a piecewise constant
function. Assuming there are N soil layers, each layer in the piecewise
constant function is represented by just two degrees of freedom, rather
than having as many degrees of freedom as number of depths where
CPT data were collected. The two variables associated with each layer
would be (i) its depth, and (ii) its characteristic tip resistance if the
uniform material in the layer were measured without any thin-layer
effects. This representation results in far fewer degrees of freedom
compared to the formulation of Boulanger and DeJong (2018), and
improves computational speed of the method. However, even simple
soil profiles can have several dozen degrees of freedom (i.e., two
degrees of freedom per layer), requiring a global optimization method
that balances efficiency and precision.

We define the inverse problem to seek the ¢, that results in c?ji'"
that most closely matches §***. We restrict g, to be a piecewise
constant function defined by N layer depths paired with N ¢, values.
Therefore, each piecewise proposed g, profile is described by a material
property vector, m, that has 2N components. For any assumed m we
can reconstruct the corresponding ¢, at each depth where CPT data
were measured by simply extracting the value of the piecewise function
described by m at every depth of interest. The g, profile resulting from
this reconstruction process is denoted by g.(m). In what we refer to
as the new algorithm with the standard misfit function, we quantify how
closely the measured and simulated profiles match by calculating g.(m),
calculating qgf'" from g.(m), then calculating the norm (the Euclidean
or 2-norm) of the error between qg"‘m and g"**, scaled to be between 0
and 1. For reference, a good fit would have a score of less than 0.01
(i.e., less than 1% error). By convention, we consider the depth of the
layer to be the depth to the top of the layer, and we also force the depth
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to the first layer to be zero. Written as an equation, this new algorithm
with the standard misfit function optimizes:
inv __ . ~meas __ ~sim

m'™ =arg min 4, 4" (g (m)l,- 3)
However, this is not the only way to quantify the misfit between
gree and (ij”". Some inverse problems that have data or material
parameters that include both small-scale and large-scale values benefit
from quantifying misfits with a logarithm applied. Thus we also propose
the new algorithm with the log misfit function, which optimizes:

m" =arg min log (I7** = 4" @c(m)ll2) - @
Computationally optimizing either form of the misfit function based on
measured and simulated data allows us to assess g, guesses without
direct knowledge of ¢/*¢, even when additional site characterization
data are unavailable. The best assumed ¢, profile we reconstruct, qi"” =
q.(m"v), is likely to be close to the g profile with thin-layer effects
removed, but practical numerical optimization algorithms may yield
different answers depending on the choice of the misfit function.

In addition to designing the optimization problem, one must select
a numerical optimization algorithm to iteratively update the g, guesses.
We chose the Particle Swarm Optimization (PSO) algorithm. PSO finds
minima of the selected misfit function starting with many randomly
generated trial m values (i.e., the “particles"), each following its own
path of new updated guesses of the g, profile (i.e. guesses for m with
a corresponding ¢.(m)). Each particle explores the space of possible
m vectors based on its most recent m guess, the best m guess it has
tested, and the best m guess previously tested among all the particles.
In this way, PSO does indeed have particles that swarm around local
and global minima.

Since PSO does very well when the global minimum is surrounded
by local minima or has a wide basin of attraction (i.e. a large re-
gion around the global minimum with no other local minima), and
small adjustments to either the layer depths or resistances should only
marginally affect g™ — g5, we believe PSO is a practical choice.
When §7** does not suggest a piecewise constant layer resistance
profile (e.g., when there is a gradient in the g, profile), we can still
approximate the result well by adding several additional layers, each
with constant ¢,. In this case, there may be multiple local minima
surrounding the global minimum, and so again PSO should be quite
effective. The only drawback to PSO is that it can have low accuracy,
i.e., different initial particle guesses may yield quite different ¢
values even if the average over all particles’ g, guesses is at the global
minimum.

The pseudocode for this new algorithm is described in Algorithm 1
below. The following subsections step through the process to automat-
ically compute good initial m guesses, followed by two methods used
in tandem with PSO for adjusting the number of layers and re-fitting
the g, profile guess automatically. The pseudocode assumes that the
user has already selected whether they wish to use the standard or log
misfit function. Further, while the pseudocode is written assuming use
of the recommended initialization methods outlined in Section 3.1, an
engineer applying this algorithm may substitute their own initial guess
of g, based on their knowledge of local soils and geology.

3.1. Calculating reasonable initial m guess

In order to combat the accuracy limitations of PSO, a standard tech-
nique in optimization is to focus on developing a good initial m guess
(and its corresponding g.(m), referred to here as the initial g, guess)
which can then be further refined by PSO. Many PSO implementations
allow for the specification of the initial m guess. Even if a single particle
starts at a good initial m guess, by the nature of PSO, the other particles
will quickly swarm the location and discover the global minimum. Here
we propose a novel technique to automatically generate a good initial
guess, which is specific to the thin soil layer problem.

Computers and Geotechnics 141 (2022) 104404

The first step in constructing a good initial m guess (and its cor-
responding ¢.(m)) is to automatically calculate an approximation of
N, the number of layers, and the depths of each layer. This can
be done by looking at the locations where the derivative of g
changes signs. This will not capture features of ¢ such as gradually
increasing/decreasing resistances, but effectively this should identify
most locations where there is a transition either from a layer having
a low ¢/*¢ value to a high ¢/“¢ value or vice-versa. The g, values of
the N layers can simply be initialized as being equal to the measured
resistances at a subset of the depths where §*** was measured.

Although this initialization works much better than a random ini-
tialization, there is a chance that the asymmetry of the influence of
the soil above and below the cone tip on §7*“’, and the number of
thin layers might result in an initial m and q.(m) guess that are offset
in depth from the true resistance profile, as seen in Fig. 3. To fix
this, the new proposed algorithm applies a simple coordinate descent
optimization algorithm with the selected misfit function to improve the
initial m guess further at low computational cost. Coordinate descent is
a common numerical optimization technique (Wright, 2015). Applying
coordinate descent optimization here helps to correct m when the
locations of multiple layers are shifted from the true layer depths, and
improves the estimated g, values slightly.

The result of these steps is a reasonable initial guess for ¢, which, in
rare cases, might already be optimal. However, coordinate descent op-
timization is typically unable to refine the details of 4™, so coordinate
descent is only used for a quick update to the initial guess followed by
application of PSO and computational procedures to add/remove layers
for further improvement. This is because PSO explores many more
minima than just the single local minimum that coordinate descent
finds. By using a good initial guess, PSO takes far less time to converge
than with a random initial guess. These steps for constructing a good
initial m guess (and its corresponding initial ¢, guess) have no way of
adjusting the number of layers in the profile, usually resulting in initial
guesses that are too simplistic, so our proposed new algorithm includes
computational procedures to automatically add and remove layers.

3.2. Leave-One-Out (LOO)

We propose a new computational procedure to improve a g, guess
by removing any layers that would help reduce the misfit function
(either the standard or log misfit, depending on the user’s choice) up
to some pre-defined tolerance, referred to as the Leave-One-Out (LOO)
procedure. To accomplish this, LOO computes what the misfit would be
if the ith layer were removed from the profile for each i = 1,2,..., N,
then removes whichever layer increases the misfit the least, up to the
tolerance. This process is repeated until the removal of any single
layer increases the misfit beyond the tolerance, or when the model
contains only one layer. Algorithm 2 details the pseudocode of the LOO
procedure (see Fig. 4).

LOO was designed to remove insignificant, if not detrimental, layers
from any g, guess that are not physically realistic and contribute to
unnecessary additional degrees of freedom (which increase the run-
time of) PSO. The provided software includes several options to set the
tolerance automatically, most of which only rely on the misfit of the
initial g, guess and do not change between iterations.

3.3. Add-One-In (AOI)

In addition to removing unnecessary layers, we also developed
a new computational procedure to automatically add missing layers,
referred to as Add-One-In (AOI). AOI adds new layers between existing
layers if the addition of that layer would reduce the misfit function at
the proposed new profile, until the addition of another layer does not
sufficiently decrease the misfit. This is a necessary condition to stop
adding layers, since adding a layer is always guaranteed to at least
keep the misfit the same, if not decrease it, which potentially allows the
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Fig. 3. An initial guess for g, (left, solid red) was automatically generated from derivative sign changes of the measured §*** resistance profile (dashed blue). Its computationally
simulated §*™ data is shown(left, dashed red). Coordinate descent optimization starting from that initial guess of ¢, yielded a new initial guess (right, solid red) with an improved

predicted blurred profile (right, dashed red).
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lower the misfit, but no layers are below the tolerance for removal in the second step.

number of layers in the profile to grow to infinity without the stopping
criteria. AOI accomplishes this by adding in a layer between every
two consecutive pairs of layers, improving these layers’ g, values and
thicknesses using PSO (a quick, 2-variable optimization for each layer),
and computing which proposed additional layer decreases the misfit the
most. Algorithm 3 details the pseudocode of the AOI procedure. AOI

was designed to populate regions of high data misfit with more layers,
assuming the next full application of PSO will be able to adjust these
new layers appropriately. AOI struggles to add layers where multiple
layers having a mix of high and low ¢, values are missing. Unlike
LOO, AOI tolerances must be updated each iteration to account for the
potentially rapidly decreasing misfit (see Fig. 5).
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Algorithm 1 Thin-Layer Correction Optimization

Algorithm 2 Leave-One-Out (LOO)

Require: measured data ¢7'***, and function to simulate data blurfcn
ndata < normalize(zig"““‘)
create misfitfcn, a misfit function based on ndata and blur fcn
initialize m based on where deriv(ndata)changes signs
m « coordinateDescent(m,mis f it f cn)
while length(m) ! = length(m,) or |[m—mg|| > € or first iteration do
mg < m
m <« LOO(m,mis fit fcn)
m « PSO(m,misfitfcn)
m <« AOI(m,misfitfcn)
m < PSO(m,mis fitfcn)
end while
m «— LOO(m,mis fit fcn)
check for potential uncertainties, state warnings
m"’ « rescale m to remove normalization
g™ « reconstruct depth profile g,(m™)
return g

3.4. Convolutional blurring procedure

A user of the proposed new algorithm can use any method to
calculate ¢ that they prefer. For the purposes of this study, we
defined an artificial computational blurring function that, when applied
to idealized ¢, replicates the blurring caused by the thin-layer
effects. That is, it computationally simulates the g5 from ¢”*¢, and the

Require: profile guess m, function to evaluate misfit misfitfcn,
tolerance TOL
misfits <« zeros(N,1)
while true do
if N ==1 or all(misfits > TOL) then
break
end if
i « index of minimum entry of mis fits
m < removeLayer(m, i)
N<N-1
fori=1: N do
temp < removeLayer(m, i)
mis fits(i) « misfit fcn(temp)
end for
end while
return m

resulting values should be close to the actual ¢7'***. Similar to Boulanger
and DeJong (2018) we chose to use a blurring function defined by
convolving the true resistance profile with a point spread function p(z):

©

") = (")) = / 4.(Az)p(z — Az)dAz, )

—00

where f_°; p(z)dz =1 and p(z) > 0 for all z. In practice, this integral is
only calculated on a finite interval. This blurring function was chosen
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Algorithm 3 Add-One-In (AOI)

Require: profile guess m, function to evaluate misfit misfitfcn
while true do
recompute TOL
if misfitfen(m) < TOL then
break
end if
misfits « zeros(N — 1,1)
fori=1: N-1do
initialize extraLayer between layer i and layer i + 1
temp < addLayer(m, extraLayer, i)
mis fits(i) < misfitfcn(temp)
end for
if all(misfits) > TOL then
break
end if
i « index of minimum entry of misfits
m <—addLayer(m, extraLayer, i)
end while
return m

Soil Model 3 CPT 3

Depth (m)

05 =X
——— *

| True Resistance Profile
=— Observed ("Blurred") Profile
Artificially Blurred Profile
-0.7 t * _— * '
0 10 20 30 40 50 60 70 80 90

qc1n Resistance

R

Fig. 6. A CPT tip resistance profile from Soil Model 3 CPT 3 of the De Lange (2018)
report, Section A. Here, the observed resistance profile §7** (black) is being contrasted
with ¢ (magenta) that is calculated from the true resistance profile g, (blue) by
simple convolution.

because it is simple to implement and only requires the use of a ma-
trix convolution function (“conv" in MATLAB). This blurring function
results in a g5 value at each depth that is a weighted combinations of
the surrounding soil layers’ g, values. Although this method can very
quickly compute 75" for any g, guess, it is a simplification of the true
physics. For example, in regions with alternating thin layers of stiff
and soft soils, ¢7*** in the layered zone is much closer to the lower of
the two true resistances throughout the region (i.e., it is not a simple
averaging process), as we see in Fig. 6. Simplified physics models sug-
gest that the layers below the tip of the cone affect the resistance more
than the layers above the cone tip (Boulanger and DeJong, 2018), so
in our implementation, we performed the convolution in Eq. (5), with
a point spread function p(z) derived from the Chi squared probability
density function as the artificial blurring function for its smoothness
and asymmetry, pictured in Fig. 1. Our computational experiments to
find the optimal p(z) point spread function indicate that Eq. (5) is likely
too simple, and the existence of an efficient computational method to
predict qg"'" for any ¢. remains an open question.
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4. Results of the new algorithm with standard misfit

A suite of CPT tip resistance (g,) data for known sand-clay layered
profiles from calibration chamber tests performed by de Lange (2018)
at Deltares (de Lange, 2018) were used to test the new algorithm with
the standard misfit function. Details on how the digitized data and
reported sample preparation were used to estimate ¢/ are provided in

Appendix. Before calculations were performed, §7*** and g™ profiles
were converted to normalized cone tip resistance (g,,) profiles, where
4.1, is computed as:

q,
dein = CNFC (6)
a

where P, is atmospheric pressure in the same units as ¢, and Cy
is a unitless overburden correction factor computed per the proce-
dure in (Boulanger and Idriss, 2016). Furthermore, data in the upper
0.1 meters of the soil profiles was excluded from the analyses pre-
sented herein because it contained unintended artifacts caused by
experimental testing limits and was considered to be unreliable.

It should be noted that all soil models in the de Lange (2018) report
only have layered zones that contain layers of the same thicknesses,
however soil models with varying layer thicknesses do not affect the
algorithm’s performance beyond what is discussed here. For the sake
of designing and testing the optimization scheme described in Sec-
tion 3, we replace our §7*** data (which are “naturally blurred") with
profiles that are “computationally blurred" (i.e., ™) by applying the
convolution in Eq. (5) to known soil resistance profiles. In the field of
inverse problems, this is an example of an inverse crime, and it is done
to test and verify algorithms in a more controlled setting by removing
a source of error from these computational tests. This may mean that in
practice, the new algorithm is less likely to yield an accurate estimate
of g’ or that it is more sensitive to the initial ¢, profile guess used to
begin particle swarm optimization. See the software in Section 8 and
Appendix for more implementation details.

The first soil profile we used to test the new algorithm with the
standard misfit was Soil Model 4 CPT 2 from the start-up phase of
the de Lange (2018) data (Section C of the report). This soil profile
features 80-mm-thick layers of alternating stiffnesses, which are thin
enough that existing algorithms struggle to correct for thin-layer ef-
fects (Yost et al., 2021a). The results are shown in Fig. 7, comparing
the automatically generated initial guess for g, (red solid, left) to the
final optimized ¢ resulting from the new algorithm with the standard
misfit function (solid red, right), which is much closer to the true
resistance profile, ¢!, based on the known experimental soil layering
(solid blue). The measured qree (dashed blue) deviate noticeably from
the §*™ calculated using the initial resistance profile guess (dashed red,
left), but i is extremely close to the computationally simulated qg" m of
the final optimized resistance profile ¢"**. All computations were done
in serial on an Intel i7 8th generation quad core processor with 8GB
DRAM in MATLAB 2020a. The algorithm has a fairly good initial guess
for g.following the procedure in Section 3, but the final best profile,
¢, matches ¢” extremely well. The only discrepancy is at the very
top of the profile where the ¢/** profile shows a gradient rather than a
constant value.

Although the new algorithm is only designed to fit piece-wise
constant g, profiles, it is still able to fit smooth transitions by approx-
imating them with a stair step-like pattern, the granularity of which
depends on the AOI and LOO parameters passed to the algorithm.
Fig. 8, which was calculated by the new algorithm with the standard
misfit, shows an example of this. The default parameters result in an
initial g, profile guess with several unnecessary layers at the top of
the profile (solid red, left), which were then removed in the final qé””
(solid red, right). This required changing the LOO procedure to include
so-called “absolute thresholding”. This means that, rather than just
removing any layer that does not decrease the misfit much relative
to the current misfit value, the LOO algorithm also removes any layer
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Fig. 7. A known CPT tip resistance profile (solid blue), Soil Model 4 CPT 2 from the
de Lange (2018) report, section C, compared with a measured g, profile (dashed blue),
an initial g, guess (left, solid red), and the final ¢ after coordinate descent, LOO,
AOI and particle swarm (right, solid red) show the performance of the method after
the code ran for 30 s.
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Fig. 8. Soil Model 2 CPT 2 from the de Lange (2018) report, Section A. The new
algorithm with run with default parameters yielded ¢ (left, solid red) that differs
from ¢ resulting from the new algorithm run with a LOO parameter set to remove
layers more aggressively (right, solid red). This example took 80 s to run.

that only contributes to the misfit function in a very small region of
the profile. Note that this increased the misfit score from 0.003560 to
0.014702, which can be interpreted to mean that the final ¢'* profile
has a larger misfit by a roughly a factor of four compared to the initial
q. guess, although the final profile is more physically realistic.

The algorithm performed very well on most of the suite of cal-
ibration chamber soil models, but in models with a cluster of very
thin layers, the algorithm skips fitting the last several layers. Fig. 9
provides a clear example (see also A.13 and A.14). Even though the
difference between the output profile from the new algorithm with the
standard misfit, qi"”, and ¢/ is large in these cases, the difference
between g™ and §5™(¢") (indicated by dashed lines) is quite small.
The small misfit in this region is due to the choice of the blurring
function, as we can see in the bottom layers in Fig. 1. Considering
this limitation, the algorithm performs rather well. Although this result
might be improved by including more layers in this region in the
initial g, guess, it is unlikely that all of the layers will be recovered.
A blurring function that is more in accord with the physical process
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might prevent missed layers in regions with many very thin layers, but
this is not guaranteed. Another approach is to use the new algorithm
with the log misfit function, which emphasizes small differences more
than the standard misfit function when close to the global minimum.
More results comparing the new algorithms with the standard and log
misfit are presented in Section 5.

To alert software users when it appears there may be a similar sce-
nario with many thin layers averaged together and missed, the provided
software implementation of the new algorithm includes automatically
generated warnings indicating where the algorithm is potentially leav-
ing out a distinct soil layer. This is done by dividing up the entire
depth profile into regions according to where q;‘”"(q;'w) overestimates
or underestimates ¢"'*“*, and looking at the ratio of the misfit function
to the signed difference. In practice, this seems to work very well even
on the example shown in Fig. 9. So, it could be incorporated into future
improvements of the AOI method.

5. Results of the new algorithm with log misfit

We found that the new algorithm with the log misfit function
posed in Eq. (4) was better suited to accurately refine small details of
thinly layered profiles than the new algorithm with the standard misfit.
Fig. 10 shows the result of this log misfit function applied to the most
difficult of our previous examples. Note how the ¢’ resulting from the
standard misfit (left, solid red) misses many layers in the true resistance
profile (solid blue), while the qé”” resulting from the log misfit (right,
solid red) detects every single thin layer. For both the standard misfit
and the log misfit zig"'”'(qc) was extremely close to ¢7'**’, showing that
the detailed refinement done by the new algorithm with the log misfit
was necessary to truly match the thin soil profile.

Note that minor modifications to LOO and AOI were implemented to
accommodate the misfit function taking on negative logarithmic values.
We found it necessary to limit the number of layers that could be
added with each use of AOI to a small number (three worked well)
since marginal improvements to §5"(q,) can significantly impact the log
misfit function. This means that, when close to the global minimum,
it becomes increasingly difficult to add new layers as the algorithm
progresses. The new algorithm with the log misfit takes between 5 and
10 min to run depending on how complex the actual resistance profile
is, as well as how many layers are added each iteration. While it is
more computationally expensive than the standard misfit, the log misfit
is also more accurate and robust.

Why the log misfit outperforms the accuracy of the standard misfit
can be understood as follows. Since the minimum of the standard misfit
function is unique and equals zero, application of a log transform pre-
serves the global minimizer (i.e. the best possible qi’”’), which becomes
the only location where the log misfit approaches negative infinity.
This guarantees that as we approach the ¢/ profile, PSO should not
terminate due to insufficient decrease in the objective function value
(i.e. the new algorithm with the log misfit continues to refine g.). This
also has the effect of flattening out any local minima that are far from
the global minimum, making it even easier for PSO to ignore those
shallow minima and gravitate towards the global minimum. In Fig. 11,
we compare the contour plots of both misfit functions for a simple
two-layer profile problem. Note that the original misfit function has
very elongated contours around the minimum. Like the well-known
Rosenbrock function, this elongated feature can cause numerical op-
timization algorithms to approach the minimum very slowly. Under
the log transform, the region with elongated contours only has shallow
decreases in the misfit function with more circular contours closer to
the minimum.
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Fig. 10. Soil Model 9 CPT 3 from de Lange (2018), Section A. The ¢ solution using
the standard misfit (solid red, left) is much less accurate than the solution using the
log misfit (solid red, right). The standard misfit algorithm took 40 s to run, while the
log misfit algorithm took approximately 7 min.

6. Extensions of method

Additional improvements in the computational efficiency of this
method could be achieved through the use of parallel computing and
GPU computing. While parallel computing in science and engineering
has historically focused on massive problems running on large com-
puter clusters, multi-core architectures and rapidly improving graphics
cards are now widely available in laptops and desktops accessible to
most engineers.

Further improvement in the accuracy of the method could be
achieved through a more realistic representation of the measurement
blurring process (i.e., the influence of thin-layer effects on g"***). For
our examples, we use a simple convolution with a smooth, asymmet-
ric pointspread function (that is, §’** at a given depth is affected
more by ¢/ below the depth than ¢/ above the depth). However,
calibration chamber test data and high-fidelity material point method
numerical simulations of soil displacement during penetrometer test-
ing (Zambrano-Cruzatty and Yerro, 2020; Yost et al., 2021b) reveal

much more complex physics, suggesting that a simple convolution with
a single pointspread function is inadequate in some scenarios.

Moving forward, we aim to develop a method based on high-
fidelity simulations to yield a more physically realistic computational
model of this blurring process that is computationally fast to apply.
For example, a neural network trained to mimic the numerical blurring
of any ¢”" profile will also be computationally cheap to evaluate.
Speed is an important feature in the layer optimization algorithm,
since we expect to calculate 42" many times within each iteration. The
primary drawback is the large amount of training data required, which
is experimentally challenging to acquire and computationally taxing to
generate via high-fidelity simulation.

7. Discussion and conclusions

Thin-layer correction for CPT data can be posed as an inverse prob-
lem, similar to other signal deblurring problems. Our tests indicate that
solving for a ¢, profile mathematically represented by an independent
tip resistance value at every depth (as done in Boulanger and DeJong
(2018)) does not reliably yield improved data quality (Yost et al.,
2021a), even when one adds regularization to enhance blocky layers
of stratigraphy (a common strategy in image deblurring). We pose
this inverse problem in a new way, searching for a finite number of
subsurface layers, each having a thickness and uniform resistance that
must be found such that cij“" most closely matches §7*“*. Our tests
indicate this new formulation of the inverse problem is better able to
identify thin interbedded layers in the soil profile compared to previous
methods tested in Yost et al. (2021a).

We developed open-source software that takes as inputs a measured
CPT tip resistance profile (3/"**’) together with code to mimic the
natural “blurring" of the true g, profile due to the stress bulb that forms
around the cone penetrometer tip. It estimates a piecewise constant g,
profile that is expected to result in data similar to the measured data,
up to a desired tolerance. With appropriate settings, this method will
correct for thin-layer effects during CPT soundings, although there may
be other sources of measurement error that remain uncorrected. Our
tests indicate that typical profiles characterized by a moderate number
of depths at which ¢/"*** is recorded (i.e., with several hundred values)
can be corrected using the new algorithm with the standard misfit
within 1-2 min on a standard laptop with one core.

This software has limitations. In many cases, the resulting ¢
profile will be simpler and smoother than what we might expect from
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Fig. 11. The standard misfit (left) and log misfit (right) are shown for all possible two-layer profiles with the /™ value of the top layer known.

the true resistance profile if we were to have other soil profile char-
acterization data (e.g. core samples). However this tendency towards
simplified models can easily be adjusted by the user’s settings. The
existence of a fast computational procedure that closely mimics this
“natural blurring" of the true soil resistance profile remains an open
question, so we use a simple convolution (5) to compute the “blurred"
data, g"™. Future research will focus on quantifying uncertainty in the
corrected ¢ profiles, and improving the blurring functions that are
used to represent a wider range of geotechnical scenarios.

For particularly complex soil stratigraphies, we suggest users take
advantage of the new algorithm with the log misfit, which balances
regions with large-scale and fine-scale features contributing to the
misfit. Our tests reveal this yields more accurate and robust profiles,
better reflecting subsurface stratigraphy, with more thin layers cor-
rectly identified. Our open-source software includes both the standard
and log misfits. Note that the new algorithm with the log misfit re-
quires a longer run time, typically 5-10 min for CPT soundings with
several hundred depth points. By providing software for both formu-
lations, users can decide which version to apply based on tradeoffs
in computing time, accuracy, and assumed complexity of the soil
stratigraphy.

8. Data statement

Multiple examples in this paper were performed using data that is
available through a technical report from Deltares (de Lange, 2018).
Code for every algorithm and example in this paper are publicly
available at https://github.com/jonc7/Soil-Layer-Optimization.
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Appendix. Additional soil model information

In the de Lange (2018) study, several different soil models consisting
of layered sand-clay profiles were constructed and CPTs were per-
formed in these models at various in-situ stress conditions. Sand layers
in the soil models were prepared with target relative densities of either
30% (loose) or 60% (dense). Uniform or “reference" sand models were
also prepared with the same target relative densities. CPTs performed
in the reference sand models therefore provided a good estimate of the
“true" resistance profile g, for the sand layers in the corresponding lay-
ered soil models. Note that due to variation in experimental preparation
of the soil models, the sand relative densities in the layered models
did not always match well with that of the reference sand model.
For the purposes of this study, only the layered soil models that were
relatively good matches were considered [this included several layered
models presented in the “Test Results" section (Section A) and Soil
Model 4 from the “Start-Up Phase" section (Section C) of the de Lange
(2018) report]. Furthermore, no uniform/reference clay soil models
were considered by de Lange (2018), therefore, the “true" g, in the clay
was estimated based on the minimum g, observed in the thickest of
the clay layers in the de Lange (2018) experiments. With the estimated
“true" ¢, for both the clay and sand layers, and knowledge of the layer
depths and thicknesses, ¢/ profiles for the layered soil models were
constructed for comparison to the measured CPT tip resistance profiles,
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g, and the corrected tip resistance profiles calculated by the new
algorithms, ¢/*.

Figs. A.12, A.13 and A.14 show results of the simple procedure to
pick an initial profile guess, the final ¢ for the standard objective
function, and the final 4" for the log objective function for three
laboratory datasets from the de Lange (2018) report.
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