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ABSTRACT: We introduce a new fragmentation-based molecular
representation framework “FragGraph” for QM/ML methods
involving embedding fragment-wise fingerprints onto molecular
graphs. Our model is specifically designed for delta machine
learning (A-ML) with the central goal of correcting the deficiencies
of approximate methods such as DFT to achieve high accuracy.
Our framework is based on a judicious combination of ideas from
fragmentation, error cancellation, and a state-of-the-art deep
learning architecture. Broadly, we develop a general graph-network
framework for molecular machine learning by incorporating the
inherent advantages prebuilt into error cancellation methods such
as the generalized Connectivity-Based Hierarchy. More specifically,
we develop a QM/ML representation through a fragmentation-
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based attributed graph representation encoded with fragment-wise molecular fingerprints. The utility of our representation is
demonstrated through a graph network fingerprint encoder in which a global fingerprint is generated through message passing of
local neighborhoods of fragment-wise fingerprints, effectively augmenting standard fingerprints to also include the inbuilt molecular
graph structure. On the 130k-GDB9 dataset, our method predicts an out-of-sample mean absolute error significantly lower than 1
kJ/mol compared to target G4(MP2) calculated energies, rivaling current deep learning methods with reduced computational

scaling.

1. INTRODUCTION

The field of quantum chemistry has undergone a vast number of
computational advances, allowing for the study of an ever-
expanding range of chemical systems at varying levels of
accuracy, rivaling experiments for many small molecules.' ™
Although the most sophisticated ab initio methods are
approaching the exact solution of the Schrédinger equation,
such state-of-the-art methods cannot be used for systems larger
than ~10 atoms given the current computational resources.
Thus, the quantum chemist’s toolbox has been filled with a range
of more tractable computational methods, e.g.,, DFT at different
rungs of complexity, introducing significant approximations that
cause a loss in accuracy.’ Despite this deterioration in
performance, DFT remains the primary workhorse for electronic
structure studies due to its broad availability, high computational
speed, and wide range of applicability. Improving the accuracy of
DFT remains one of the primary challenges in quantum
chemistry.

Of particular interest to this work is computational
thermochemistry, which focuses on quantifying changes in
energy associated with various chemical processes, giving
insights into chemical reactivities, stability, and spontaneity.
The accuracy of the computed quantities is, however, highly
dependent on the level of theory chosen. Despite the success of
modern density functionals, these methods are still inadequate
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for many demanding applications that require a highly accurate
treatment of electron correlation effects. For an acceptable
accuracy, at least one of two conditions must be met: (1)
chemically accurate energies of all species in a reaction or (2) a
high degree of error cancellation between reactants and
products.

The direct calculation of accurate energies of all reactant and
product species requires a highly sophisticated level of theory,
such as composite wave function theory approaches
(cWFTs).'7>77"> Mid-level cWFTs, such as the Gaussian-n
(Gn) and complete basis set (CBS) approaches, typically utilize
DFT for geometry optimization and then calculate the
electronic energy from a series of more sophisticated electron
correlation methods such as MP2 and CCSD(T), providing a
means to study moderately sized molecules within 1—2 kcal/mol
of experiments.”'”'""* Although cWETs provide a good
approximation to CCSD(T) with a large or complete basis set,
many are still limited in applicability due to the steep scaling cost
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of calculating accurate electronic energies (e.g, O(N’) for
CCSD(T)), leading computational chemists to rely on the use
of density functionals.

Alternatively, the errors of more approximate methods can be
exploited under the assumption that structurally similar
molecules will lead to similar deviations from the “exact” energy
or property. This can be seen anecdotally through reactions in
which only a small chemical transformation (where products
and reactants are very structurally similar) takes place, e.g,
isomerization reactions or conformer energy differences. For
such reactions, inexpensive levels of theory can approach
accuracy similar to those from more sophisticated methods. This
idea was recognized and popularized in the 1970s by Pople et al.
with the introduction of the (isodesmic) bond separation
reaction, in which a molecule is separated into its constituent
heavy atom bonds.'* The number of bonds of a given formal
type is retained throughout a given chemical transformation, and
the associated energy change (heat of bond separation) could be
calculated accurately with inexpensive levels of theory employ-
ing modest basis sets.'*

Since the conception of the isodesmic scheme, these ideas
have been explored further and applied to a wide range of
applications in computational thermochemistry.'> For example,
we have developed the Connectivity-Based Hierarchy (CBH) of
error cancellation schemes that provides an automated protocol
to generate isodesmic-type reactions, which increasingly
preserve the chemical environment on both sides of a
reaction.'®"” CBH reactions can be used to eliminate certain
systematic errors present in approximate levels of theory via a
corrective term derived from the reactants and products of the
CBH reaction calculated at low and high levels of theory. The
CBH approach has been utilized to study a broad range of
thermochemical problems with an accuracy comparable to
c¢WFT methods at the cost of low-fidelity DFT calculations,
including heat of formation of charged and neutral organic and
biomolecules,'°™>* redox potentials,®> pK,s,”* and bond
dissociation energies.”> Thus, where the direct computation of
accurate energies is not possible, the exploitation of systematic
error cancellation provides a viable (and often the only)
alternative to achieve high accuracies in thermochemistry.'> In
this context, we note that related ideas using multiple levels of
theory have also been developed via the fragmentation-based
hybrid QM/QM approach for the study of large molecules to
perform electronic structure calculations that would otherwise
be computationally prohibitive.”*™>° The CBH can be
considered as a systematic fragmentation-based approach that
is particularly tuned for error cancellation.

A range of parallel developments has emerged more recently
in a completely different context from the growth of artificial
intelligence technology and application of machine learning
(ML) techniques to the prediction of chemical properties at a
greatly reduced cost. One of the more significant frameworks in
this field is a hybrid QM /ML method, or A-ML>' (and its multi-
level generalized version CQML’”), combining low-cost
quantum chemical methods with ML models to mitigate the
inaccuracies introduced from such approximations. The success
of these QM/ML methods, however, is dependent on the
architecture of the model, such as artificial feed-forward neural
network (ANN) models or kernel ridge regression (KRR), along
with the chosen input representation—commonly referred to as
molecular descriptors or fingerprints (FP)—which typically
encode the presence or frequency of a set of substructures in the
form of a bit vector. Thus, substantial research efforts have
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focused on designing a suitable numerical description of
molecules for common chemistry-related ML tasks.

Nevertheless, many of the most successful representations
thus far have been designed to replace QM through standard ML
techniques by describing the composition and the 3D structure
of a chemical system as either an encoded vector through
popular fingerprinting algorithms, such as Morgan FP or
ECFP,* or as a higher dimensional tensor through machine
learning interatomic potentials.”*** Such models are typically
benchmarked against large datasets of DFT-calculated proper-
ties. Although these ML models can achieve mean absolute
errors (MAEs) below the threshold of “chemical accuracy”
(~1kcal/mol), the reference values being reproduced (typically
DFT) are still significantly inaccurate compared to experiments
or more sophisticated CCSD(T)-based cWFTs such as G4 or
G4(MP2).%073¢

While the aforementioned ML models are still useful in some
large-scale screening processes in which DFT calculations are
too computationally expensive, the problems related to
insufficient accuracy of DFT still remain in computational
thermochemistry. To mitigate the accuracy loss, different
variants of ML models have recently been developed as hybrid
QM/ML methods, in which the ML model is tasked to learn the
difference between a baseline (typically DFT) and a tar§et
(experimental value or more accurate level of theory).”>*”*7*
In this context, we note that many learning models developed
earlier were designed to produce energy (or other properties)
solely from a set of atomic numbers {Z,,-+, Z,} and Cartesian
coordinates {ry,-, r,}.>**>*" While such a simplistic brute-force
approach may be appropriate for learning the patterns in the
total energy of a molecule, the differences between two levels of
theory do not necessarily contain the same patterns. Instead, the
present work focuses on designing a physically insightful
molecular representation specifically for QM/ML by expanding
on the well-established ideas from computational thermochem-
istry, i.e., error cancellation and fragmentation.

Our goal in this work is to develop a general graph-network
framework for combining the strategies from machine learning
to further enhance the inherent advantages prebuilt into error
cancellation methods. In particular, we will combine the
systematic behavior of CBH fragments arising from local
connectivities from the molecular structure to build the
molecular descriptors for ML. Our framework is termed
“FragGraph”, or FG(CBH) for short, to denote that it uses
fragments from CBH in conjunction with a molecular graph
network. The localized fragment-based molecular descriptors
(vide infra) automatically encode the knowledge about chemical
bonds to yield a physically motivated method that incorporates
chemical insights. The FragGraph framework is specifically
developed for A-ML with the central goal of correcting DFT
deficiencies to achieve high accuracy. The specific demon-
stration in this work is based on the CBH-2 rung of the hierarchy
(vide infra) that can potentially be extended to higher rungs in
future work. Nevertheless, the performance of our CBH-2 based
ML models for theoretical thermochemistry is quite comparable
to the best in the literature (vide infra). We also note that while
this initial calibration is for theoretical thermochemistry, the
FragGraph framework can potentially be used to investigate a
broad range of other electronic and spectroscopic properties as
well. Finally, the FragGraph framework is designed to
incorporate any atom-wise or bond-wise electronic descriptors
that can be derived from the baseline calculation for ML. While
such electronic descriptors were not needed for theoretical
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Figure 1. Overview of fingerprint encodings referenced in this study. (a) Traditional fingerprint representatlons generated through an autoencoder or

user-defined, (b) MLCBH representation constructed from the generalized isodesmic scheme,®

and (c) the FragGraph localized embedding

procedure; first the full molecule is fragmented via the CBH-2 scheme, then fragment-wise representations are generated, and finally these fingerprints
are embedded into a graph representation of the full molecule and passed through a graph network.

thermochemistry, they may be important for other properties
such as redox potentials or electronic excited states.

2. METHODS

2.1. Representation. Standard machine learning techni-
ques often fall short for more challenging tasks, typically
resulting in a shift to “deep learning” architectures featuring a
large number of stacked units, e.g., hidden layers or convolution
operations, capable of learning complex patterns in the
data.*'~* Deep learning models have been revolutionary for a
wide range of applications, including deep neural networks
(DNN) for standard vector representations,””**~** recurrent
neural networks (RNN) for temporal sequences such as speech
recognition and natural language processing,”” and convolu-
tional neural networks (CNN) for image classification. 0 They
have also been adapted and showcased in scientific applications,

51,5

3,5

such as protein-folding,”"*”* drug design,””** and synthesis
planning.”*° A recent review from Google’s DeepMind®’
unified these deep learning building blocks and presented a
general framework for graph networks (GN, neural networks
that operate on graphs).

Defined broadly, a graph is a mathematical data structure
consisting of nodes connected by edges that describe
information about entities (nodes) and the relationships
between them (edges). GN perform edge- and node-wise
operations on these graphs to facilitate pattern recognition and
connect graph structures to observable trends. These models
have already shown great success in general Al applications as
much of the structured data in the world can be represented as
graphs. Molecular systems are no exception, as chemists
typically visualize molecules and molecular reactions through
skeletal formulae drawn as a set of atoms with lines between
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Figure 2. Diagrams of all machine learning architectures and representations used in this work: (a) graph structure G(e,n,g) consisting of edge
attributes, node attributes, and the global graph-level vector, (b) initial graph attributes for the graph-based representations, (c) a standard artificial
feed-forward neural network (ANN) or a multilayer perceptron (MLP) model with one or more dense layers, which consist of a fully connected layer
followed by an activation layer, and (d) graph network architecture used in this work containing three graph blocks: an encoder, updater, and decoder.

them to represent bonds. Indeed, a chemical graph theory has
been utilized for decades in cheminformatics to study structure—
property relationships and has benefitted immensely from recent
advances in deep learning, leading to the development of
molecular graph networks, such as MPNN,* MEGNet,* and
SchNet. "’

Molecular graph networks have many unique advantages over
other deep learning architectures. First of all, most ML models
require input representations of constant size across all of the
chemical space. Graph networks bypass this restriction since
graph operations are performed pairwise between nodes along
their edges, allowing computations on graphs of arbitrary size. In
addition, deep learning approaches, other than GN, receive
either fixed-size images (CNN) or sentences (RNN) as input.
Pixels of an image can be represented as nodes in a fixed 2D grid-
structured pattern with edges connecting neighboring pixels
(up, down, left, and right), while sentences are sequences
denoted as a linearly directed graph with nodes representing
each word. Graphs, on the other hand, are unordered sets with
arbitrary structures, which utilize internal coordinates and can
feature any number of edges around a single node.
Consequently, molecular graphs are invariant to the permuta-
tion of atomic indices as well as isometric transformations such
as translations and rotations, eliminating the need for any data
augmentation or larger training sets to ensure that the models
learn such invariances.

Typical methods for constructing molecular representations
(Figure 1a) include either a handcrafted fingerprint algorithm or
through unsupervised learning with an autoencoder or a
clustering method. The former relies heavily on chemical
intuition by requiring the user to choose which atomic or
molecular attributes are important for the problem at hand.
Recent developments from our group proposed a class of
fragmentation-based representations termed ML(CBH) or
simply MLCBH,”® in which a system is broken apart into
smaller fragments based on the generalized isodesmic schemes
of the Connectivity-Based Hierarchy.'®'” CBH reactions are
characterized by deconstructing the molecule into smaller n
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diameter fragments, corresponding to the nth rung on CBH, as
well as their overlaps, to satisfy the inclusion—exclusion
principle. Once the full reaction scheme is constructed, the
coefficients of the fragments along with their overlaps are multi-
hot encoded into a vector of all possible fragments (Figure 1b).
The ML(CBH-2) representation achieves a generalization error
(out-of-sample MAE) within 0.5 kcal/mol of the CCSD(T)-
based ¢cWFT method G4 on the 1k-G4-C9 dataset of
(HCNOCIS)-containing molecules, outperforming other mo-
lecular descriptors, such as the Coulomb matrix’* (2.77) and
bag of bonds™® (0.81), while featuring a shorter input vector
length.

This work extends the ideas of fragmentation and the
ML(CBH-2) representation into a graph theoretic framework
by encoding molecular fingerprints of fragments onto nodes of a
graph (Figure 1c). First, a molecule is decomposed into a set of
nodes centered on nonhydrogen atoms. Each node represents an
atom-centered fragment defined by CBH-2, including only the
immediately connected heavy atoms saturated with hydrogens
to preserve the original hybridization. Coincidentally, these
CBH-2 fragments align with the maximum diameter considered
in ECFP2,” both defining each heavy atom’s neighborhood
within one bond. The FragGraph representation includes a node
for each fragment along with edge connections between two
nodes if the two atom centers are adjacent in the parent
molecule. Next, each fragment is passed individually through a
pretrained encoder or algorithm to generate fragment-wise
fingerprints. Last, fragment-wise fingerprints are embedded onto
their respective nodes. The nodes of the attributed graphs in this
work (Figure 2a,b) contain fragment-wise representations
calculated from a pretrained mol2vec model (N = 300),"® an
unsupervised natural language processing (NLP)-inspired
model that treats Morgan substructures as “words” and
molecules as “sentences.” The mol2vec model was trained on
a compiled database of 20 million biorelevant molecules to
return a high-dimensional dense representation of substructures,
which can be summed together and used as a molecular
descriptor. The directed edges of FragGraphs are encoded with

https://doi.org/10.1021/acs.jpca.1c06152
J. Phys. Chem. A 2021, 125, 6872—-6880


https://pubs.acs.org/doi/10.1021/acs.jpca.1c06152?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c06152?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c06152?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c06152?fig=fig2&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c06152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

one-hot atomic number vectors for the sending and receiving
nodes along with the Gaussian-expanded bond distance. Finally,
graph-wise global attribute vectors are initialized as the mol2vec
representation for the full system. Note that this approach could
work for any molecular descriptor in place of mol2vec to
generate fragment-wise node embeddings and global feature
vectors.

2.2. Architecture. Graph networks are a general class of
architectures that map an input graph to an output graph. A full
graph block, as defined by ref 57, is a series of attribute updates
to the edges, nodes, and global vectors (in that order).”” These
updates take the form of a standard ANN (Figure 2c), which
maps a vector to another vector. The full architecture of our
graph model (Figure 2d) is composed of three GN blocks
resembling the Encode-Process-Decode model of ref 57 with the
process step implemented in a manner analogous to the update
function of message-passing neural networks (MPNN). The first
block GNgy consists of three independent ANNs (@), in which
each vector (edges, nodes, and global vectors) of a graph
G(e, n, g) is encoded into a latent space graph representation
G'(e’,n'yg")

G/(E/;"/;g/) = GNENC(G(er n, g))

GNgne = (Pines Phnes Pinc)

ei;' = (DEENC(%,-)

n = Ppne(n)

g/:‘I)%NC(g)

Next, latent space graphs are passed to the graph update block,
GNpgpc, where edges, nodes, and global vectors are updated
through a series of message passing steps. Each attribute update
consists of two components: (1) the aggregation function p and
(2) the update function ®. Graphs contain directed edges to
define which vectors to broadcast for neighboring vector
updates. In the case of multiple vectors being broadcast to the
same location, an aggregation function is applied, typically
chosen to be sum, average, or maximum (as appropriate). This
ensures that atomic indices of the molecular graphs satisfy
permutation invariance. For the update step ¢, sender nodes #;
are broadcast to update each of the connected edges e;, then
updated edges are aggregated (¢j) to update common receiving
nodes n;, and finally the updated node vectors are aggregated
(n') to update the global vector g". Note that before passing
through their respective update function, the aggregated vector
is concatenated with the current vector undergoing the update

Gt(et, ﬂt, gt) — GNPROC(Gt_l(Et_I) nt—l, gt—l))
GNproc = (CD;ROO (I);[’ROCJ q’fmoc)

t_ g =1 t—1
& = (DPROC(eij )
t _ e—ong t
g =p (eij

t__ n t t—1
n o= (I)PROC(e}., n; )

W= )

gt = cD%Roc("t; gt_l)

After the T graph updates, the global vector g” is taken as the
final latent space representation of the full molecule to be used
for ML, in this case, paired with ®% e.g, a standard ANN or
other decoder function. Thus, the first two GN blocks, GNgyc
and GNppoc, can be viewed as a molecular representation
encoder, transforming an input graph to a single latent space
vector

Y= GNDEC(GT(ET; nT; gT))
GNpgc = (q)gDEC)

Y= ¢%Ec(gt)

In total, the Encode-Process-Decode model has nine neural
networks, three for each GN block, returning a graph as the final
output. The GN architecture used in this work consists of seven
independent neural networks disregarding the final node and
edge vectors by learning the full molecule energy (or energy
differences) as a global attribute. The final graph outputs could
be utilized further to learn other properties that depend on each
node or edge.

3. RESULTS AND DISCUSSION

3.1. Results on the G4(MP2)-GDB9 Dataset. Both ANN
and GN models were trained on up to 117k training molecules
with the remaining 13k of the GDB9 dataset acting as the out-of-
sample generalization set.”>*’ Learning curves for five models
(Figure 3) were tested with the same 13k test set for every

G4(MP2)-GDB9

84 o ANN
w
4+ * % 0o o
= o
= o
) @ mol2vec
S14, ML(CBH-2)
© Simple Graph
03 ¥ Fo(CBH)
@ FC-FG(CBH-2)
0.25 e ey
10° 104 10

Training Set Size

Figure 3. Generalization performance (out-of-sample mean absolute
error in kJ/mol) of five representations on the G4(MP2)-GDB9
dataset. Simple feed-forward ANNs are used with traditional molecular
representations mol2vec and MLCBH2, while graph networks (GN)
are paired with the simple graph representation (atomic number) and
fragment-wise embedded graphs FragGraph. FG(CBH-2) models use
either locally connected (FG) or fully connected (FC-FG) update
steps.

training point on each curve. The models include two standard
molecular representations, mol2vec and ML(CBH-2), each
paired with an ANN. The other three are graph network models:
a simple graph model starting with only atomic number and
bond length information and two fragment-embedded graph
models: a skeletal graph that is locally connected through
bonding interactions of fragments alone and a complete graph in
which every node is connected to every other node. All graph
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networks employ the same architecture and hyperparameters.
Fragment-embedded graphs were the top-performing models in
this study, reaching a generalization error between 0.50—0.68
kJ/mol on the unseen test set. By comparison, mol2vec fared
much worse with an MAE of 4.8 kJ/mol and the previous
fragmentation-based fingerprint ML(CBH-2) had an MAE of
3.8 kJ/mol. The simple graph model performed better than the
standard representation methods at an MAE of 1.7 kJ/mol,
indicating that the graph network structure itself is responsible
for a significant part of the improvement in overall performance.

FG(CBH-2) is a combination of standard mol2vec,
ML(CBH-2), and simple graph models but performs signifi-
cantly better than all three methods, indicating that the graph
network model is learning more complex patterns about the
relationships between embedded fragments. Graph updates on
the FragGraph representation not only capture the graph
structure of the neighborhood but also the local representations
of nearby nodes allowing for learning of perturbations from the
initial mol2vec vectors.

Learning curves can give useful insights into the general-
izability of a model as well as its training efficiency. Typically,
these curves are approximately linear in the log—log space due to
the inverse power law relationship between the generalizability
of a model and the number of data points in the training set.***’
At the asymptotic limit, the generalization error should scale as
approximately 1/¢, where t is the number of training samples. In
practice, a faster 1/£* scaling is observed during training at
medium training set sizes and a large deviation from this pattern
is seen with small training set sizes due to a large amount of
overfitting. Learning curves for all methods in this work are
approximately linear in the log—log space, indicating that the
training set sizes are sufficiently large to learn generalizable
patterns in our data. Moreover, GN models feature steeper
slopes than ANN models, showcasing their ability to generalize
with smaller datasets. Indeed, embedded graph models outper-
form the best simple graph counterpart (117k training data
points) with a factor of 10—20 less training data (starting around
Sk to 10k) and cross the 1 kJ/mol threshold with merely 17k and
50k training data points for the two models. Additionally, even
the simple graph-based model provided with information about
atomic numbers and interatomic distances reaches a general-
ization error within the typical range of chemical accuracy
(1 kcal/mol) after being trained on 10k training data points,
outperforming the standard ANN-based models given the full
117k training set.

Although this work primarily focuses on eliminating the
systematic errors of DFT, models utilizing less expensive
baseline calculation, i.e., semi-empirical method PM7, were
also trained and compared in Table 1. FG(CBH-2) models
reduced the out-of-sample errors to just under 0.5 kcal/mol,
which is around 5—6% of the baseline PM7 MAE of 7.99 kcal/
mol. As a comparison, the models trained on the B3LYP baseline

Table 1. Generalization Performance (Mean Absolute Errors
in kcal/mol) of FG(CBH-2) and ANN(mol2vec) Models
Compared to Baseline Methods

number of molecules on

model which MAE is based PM7 B3LYP
uncorrected 13,026 7.99 4.63
ANN(mol2vec) 13,026 3.96 1.15
FG(CBH-2) 13,026 050  0.16
FC-FG(CBH-2) 13,026 0.38 0.12
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achieved around 3—4% of the uncorrected DFT MAE of 4.63
kcal/mol. The increase in performance from the standard
mol2vec representation to the FC-FG(CBH-2) models was
similar, decreasing the MAE by a factor of 10, for both PM7 and
B3LYP baselines. These results indicate that our fragmentation-
based framework could potentially be useful in other
applications, such as virtual screening, when paired with less
expensive quantum chemical methods.

Graph networks have an inherent affinity for generalization
due to their large amount of parameter sharing in the encoder
and update blocks. Each block is composed of three ANN
update functions: @°, ®", and ®¥, which maps each of the
edges, nodes, and global vectors to a corresponding updated
vector based on the surrounding neighborhood. As an example,
the full 130k GDB9 dataset contains 870k nodes connected by
approximately 2M edges in the locally connected FragGraph
representation and 9M edges for the fully connected variant.
Accordingly, the number of vectors passed through each @ in
the encoder block is equal to the total number of edges, nodes,
and global vectors in the training set, while this number is
multiplied by the number of recurrent update passes T for the
graph update block. As a result, each of the ANN update
functions in the encoder and update blocks is able to learn from a
larger pool of data, leading to a more widespread generalization.

3.2. Comparison to Other Methods. Machine learning-
based interatomic potentials (MLIP) and deep tensor neural
networks (DTNN) are among the current state-of-the-art deep
learning methods. In the context of graph networks, these
methods employ complete graphs with nodes representing every
atom of a chemical system. For example, one of the best
methods, SchNet,*' starts with a set of atomic numbers
individually mapped to latent space vectors. Each atomic vector
is updated through multiple convolution layers based on the
distances to every other atom in the molecule. After
convolutions, the final vector representation for each atom is
converted to an atom-wise contribution to the total energy and
summed to give the energy of the molecule. Similar ideas are
present in many machine learning-based atomic potentials,
which learn energy contributions from individual units of a
molecular system.”** In contrast, the FG(CBH-2) model more
closely resembles a molecular representation encoder, which
learns a global vector to represent the full molecule starting from
local representations of its fragments.

Although SchNet was originally designed for standard ML,
with the task of reproducing the total energy of a molecule from
atomic numbers and coordinates, it has more recently been
applied as a hybrid QM/ML protocol, performing with an MAE
of 0.1 kcal/mol on the G4(MP2)-GDB9 dataset.””°" While the
best FG(CBH-2) models in this work are competitive in
performance with field-leading models, our aim is more focused
on improving existing descriptors through the ideas of
fragmentation and the relational inductive biases from graph
networks. Nonetheless, the FragGraph representation features a
few advantages, including reduced scaling of the number of
edges, decreased computational complexity, and the ability to
generalize to more difficult problems through the choice of
fragment-wise vectors. Unlike complete graphs in MLIP,
FragGraph was designed to simplify the system into individual
coarse-grained units. In this work, these units are nonhydrogen
atoms. Additionally, the fragment-wise vectors on these units
encode information about the surrounding environment,
reducing the number of required edges for graph updates in
order to learn a sufficient representation. Since a graph’s edges
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Figure 4. Comparison of the scaling of the average number of edges for
different graph-based deep learning representations.

complete graphs of fully connected atoms Graph(all atom)-FC,
complete graphs of fully connected non-H atoms Graph(non-
H)-FC, and our locally connected FragGraph. In the fully
connected non-H atom case, the number of edges grows as N(N
— 1), where N is the number of nodes (corresponding to CONF
atoms). The number of neighbors in the FragGraph
representation grows approximately linearly with each node
added, introducing 2—4 new edges for linear or branched
molecules. At the asymptotic limit, the edges of complete graphs
scale as O(N?), while locally connected graphs scale as O(N).
The inclusion of hydrogen nodes in Graph(all-atom)-FC, as
done in the SchNet model, significantly increases the total
number of edges for a fully connected graph. Thus, the
FragGraph representation provides a more efficient molecular
structure encoding while performing similar to other deep
learning methods, at a reduced cost while requiring much fewer
edges.

3.3. Fingerprint Similarity. Pivotal to the success of
structure—activity relationships is describing structural charac-
teristics of molecules as a vector through molecular finger-
printing. Molecular fingerprints are essential tools for chem-
informatics studies describing chemical diversity in chemical
space as well as virtual screening and similarity searching in drug
design. Chemical fingerprint space is a multidimensional
conceptual space in which dimensions represent properties of
the molecular structure or the feature vector of a fingerprint. In
this context, molecules are placed on the coordinates
corresponding to their feature vector, and the distance between
two points can be used as a measure of similarity. The
distribution of these distances is therefore important for
understanding how well a given molecular representation can
distinguish chemicals with similar structures. Pairwise distances
between all vectors were calculated for both mol2vec and
FG(CBH-2) to compare their distributions (Figure 5). Since
mol2vec is essentially the starting point to the FG(CBH-2)
model, a shift to a wider distribution indicates a higher
differentiation between different molecules. Furthermore,
FragGraph models can eliminate deficiencies of the base-level
fragment-wise representation chosen. For mol2vec, there were
over 2 million pairwise distances of 0.0, mainly due to the
inability to distinguish some constitutional isomers. The graph
network-based models could learn directly from the connectivity

6878

of the fragments to the point that no two molecules in our
dataset were represented by the same vector. The drastic
increase in performance from mol2vec (4.8 kJ/mol) to
FG(CBH-2) utilizing the mol2vec feature vector (0.5—0.68
kJ/mol) can be attributed, at least in part, to this broader
distinction of similarly structured molecules. Additionally, the
FragGraph framework is capable of interfacing with virtually any
molecular representation or fingerprinting method for the
fragment-wise vector embeddings, potentially improving many
other popular descriptors. Once a molecule is coarse-grained
into a graph, nodes can be embedded with any vector or
properties of the molecular fragment the unit represents,
allowing the FragGraph representation to be applied to more
complex problems where structural information may be
insufficient.

4. CONCLUSIONS

Molecular graph networks provide a deep learning framework
allowing for the accurate prediction of thermochemistry. Many
strategies in computational thermochemistry, such as fragmen-
tation and error cancellation, have not yet been explored fully
within the realm of machine learning, despite the potential for
leading to new strategies for designing molecular representa-
tions. In this context, our work provides a new foundation for
QM/ML-based methods with the following conclusions:

e Deep learning and the FragGraph representation can be
used to obtain accuracy in the sub-kJ/mol range
compared to G4(MP2). Since the deviation of
G4(MP2) to experimental values is an order of magnitude
higher than this range, errors from the model are
predominately from the reference calculation.
FragGraph provides a general framework that combines
fragmentation, error cancellation, and graph networks.
These fragmentation-based embeddings could be used in
conjunction with a wide range of fragmentation schemes
and currently available fingerprints. As shown above, the
standard mol2vec representation was drastically improved
through the use of FG(CBH-2) in terms of overall
performance and fingerprint similarity.

FG(CBH-2) is competitive in performance to current
state-of-the-art QM/ML methods, which have a steeper
computational scaling. FragGraph provides a computa-
tional cost reduction from the simplification of molecular
systems through chemical environment embeddings,
implicit hydrogens, and locally connected graphs.
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e The FragGraph framework is not limited to computa-
tional thermochemistry and can potentially be used to
investigate a broad range of other electronic and
spectroscopic properties as well. The incorporation of
additional atom-wise or bond-wise electronic descriptors
from the baseline calculation may be useful in such
applications that we plan to pursue in the future.
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