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Abstract— We consider an underlay coexistence scenario where
secondary users (SUs) must keep their interference to the primary
users (PUs) under control. However, the channel gains from the
PUs to the SUs are uncertain due to a lack of cooperation
between the PUs and the SUs. Under this circumstance, it is
preferable to allow the interference threshold of each PU to
be violated occasionally as long as such violation stays below
a probability. In this article, we employ Chance-Constrained
Programming (CCP) to exploit this idea of occasional interference
threshold violation. We assume the uncertain channel gains are
only known by their mean and covariance. These quantities are
slow-changing and easy to estimate. Our main contribution is to
introduce a novel and powerful mathematical tool called Exact
Conic Reformulation (ECR), which reformulates the intractable
chance constraints into tractable convex constraints. Further,
ECR guarantees an equivalent reformulation from linear chance
constraints into deterministic conic constraints without the lim-
itations associated with Bernstein Approximation, on which our
research community has been fixated on for years. Through
extensive simulations, we show that our proposed solution offers
a significant improvement over existing approaches in terms of
performance and ability to handle channel correlations (where
Bernstein Approximation is no longer applicable).

Index Terms— Channel uncertainty, underlay coexistence,
spectrum sharing, chance-constrained programming (CCP).

I. INTRODUCTION

UNDERLAY is one of the most important schemes
to achieve coexistence and to improve spectrum effi-

ciency [2]. In underlay coexistence, primary and secondary
users (PUs and SUs) are allowed to transmit simultaneously
on the same spectrum and the SUs must keep their interference
to the PUs under control (i.e., below a threshold). A key benefit
of underlay is that no new requirement (neither hardware nor
software) is needed for the PUs to achieve coexistence. As
a result, underlay is ideal for incremental deployment where
a secondary network (new infrastructure) is added on top
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of a primary network (existing infrastructure) in the same
geographical area. Due to this benefit, underlay coexistence
has attracted many efforts from the research community (see,
e.g., [3]–[6]).

However, such benefits do not come without new technical
challenges. To achieve underlay, we must ensure that there is
no additional burden on the PUs to cooperate with the SUs.
The SUs must take sole responsibility of keeping their inter-
ference to the PUs under a threshold, without requiring any
cooperation from the PUs. This can be accomplished through
transmission power control, based on Channel State Informa-
tion (CSI) solely on the SUs side. However, in the absence of
any cooperation with the PUs, an accurate estimation of CSI
by the SUs is impossible. Specifically, the channel gains from
the PUs to the SUs should be modeled as random variables
(RVs). With such uncertainty in CSI, how to exercise power
control by the SUs to protect the PUs is a challenging problem.

On the other hand, in many situations, we notice that
occasional violations of the interference threshold are not
fatal to the PUs. For example, today’s communication systems
always use error correction codes (e.g., Turbo code and LDPC
code) that is capable of recovering the transmitted bits (to
some extent) in the presence of interference [7]. Further,
media-rich applications (e.g., audio and video streaming) are
quite lenient to occasional transmission errors and packet
loss. This is because, for such applications, human biological
hearing, and vision systems are quite tolerable to occasional
distortions [8] and there are numerous techniques to mitigate
or conceal their adverse impacts [8], [9].

In the literature, there are three approaches to address chan-
nel uncertainty, namely, stochastic optimization, worst-case
optimization and chance-constrained programming (CCP).
Stochastic optimization assumes the distributions of the RVs
are known and rely on the corresponding distribution functions
to solve the problem [10]. For example, in [11], the wireless
channel was assumed to have log-normal shadowing and Nak-
agami small-scale fading while in [12], it was assumed to have
Rayleigh fading. However, most wireless channels in reality
do not exactly follow the assumed distributions. Consequently,
a blind application of these simplified distribution models
could lead to misleading results (either overly optimistic or
pessimistic). Further, the formulated optimization problem
could still be very hard to solve depending on the structure of
the distributions (e.g., non-convex).

As for worst-case optimization, the RVs are assumed to
have some known boundaries (upper or lower bounds) and
this approach only focuses on the worst-case that is usually
associated with such boundaries [13]. For instance, in [14],
the authors relaxed the interference constraints in underlay
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scenario to linear constraints by defining maximum estimation
errors. Although worst-case optimization provides the simplest
mathematical formulations, it often gives overly conservative
performance due to its focus on upper/lower bounds, which
may hardly (or rarely) occur in practice. Further, worst-case
optimization will not work when channel models are either
unbounded (e.g., Rayleigh fading) or accurate estimation of
the bounded set is difficult.

The third approach is called Chance-Constrained Program-
ming (CCP). Although CCP was developed in the mathematics
community more than six decades ago [15], it has only found
applications in wireless communication and networking com-
munity in the 2000’s [16]. In contrast to stochastic program-
ming and worst-case optimization, CCP can be applied even
when only a subset of statistics (e.g., mean and covariance) and
properties (e.g., symmetricity and unimodality) is available.
Different combinations of these statistics and properties are
sufficient to make CCP applicable and as a result, CCP offers
great flexibility in terms of problem settings. Another strength
of CCP is to allow occasional violations of certain constraints,
as long as the violation probability is smaller than a given
probability upper bound. This small probability upper bound is
termed risk level. By choosing different risk levels, we are able
to explore a trade-off between achievable performance and
tolerance in constraints violations. It is easy to see that CCP
effectively circumvents the fundamental limitation associated
with worst-case optimization.

However, the fruits of CCP come with a price. A major
challenge in CCP is that chance constraints are usually
mathematically intractable due to its probabilistic nature and
absence of distribution knowledge. A critical step in solving
CCP successfully is, therefore, to reformulate (substitute) the
chance constraints into deterministic constraints. By doing so,
we convert the CCP into a tractable optimization problem and
can then design a customized algorithm for the deterministic
problem.

In the literature, there are a number of methods to achieve
this reformulation (substitution), such as Chebyshev inequal-
ities, Markov inequalities [17], conditional value-at-risk [18],
and Bernstein Approximation [19]. Among them, Bernstein
Approximation is the state-of-the-art technique to address
channel uncertainty in our research community (see, e.g.,
[20]–[23]). It performs such substitution by treating each
RV separately (assuming they are independent and bounded)
and deriving deterministic constraints after solving additional
optimization problems regarding each RV.

However, there are a number of serious limitations associ-
ated with Bernstein Approximation. First, Bernstein Approx-
imation explicitly requires that the RVs must be independent
of each other. But this assumption does not always hold as
correlations among uncertain RVs (e.g., CSI of sub-channels
in our problem) are common and cannot be ignored. Second,
the performance of Bernstein Approximation depends heavily
on the knowledge of the boundaries of uncertain RVs [19],
which is hard to obtain in many cases. Finally, due to its
generic nature, Bernstein Approximation does not explore
the unique structure of linear CCP, which can characterize
a broad class of problems in practice. Consequently, results
by Bernstein Approximation tend to be conservative, as to be
shown in our simulation results (Section VII).

In this article, we study an underlay coexistence problem
using CCP. The goal is to maximize the spectrum efficiency
of picocells while keeping SUs’ occasional violation of

interference threshold within a given risk level. We introduce
a novel technique called Exact Conic Reformulation (ECR)
to reformulate the chance constraints with deterministic
constraints. The reformulated deterministic constraints from
ECR introduce no relaxation errors (i.e., “exact”) and are
convex second-order cones (i.e., “conic”). We show that
the proposed ECR allows us to handle more practical and
general problem settings and to achieve better performance
when compared to Bernstein Approximation. The main
contributions of this article are summarized as follows:

• To address channel uncertainty in underlay coexistence,
we employ CCP under the assumption that only mean and
covariance of the uncertain channel gains are available.
The advantage of using mean and covariance is that they
are rather time-invariant and can be readily estimated.

• To reformulate the intractable chance constraints,
we introduce ECR – which offers mathematically “exact”
conic reformulation. ECR is able to reformulate the
original chance constraints into deterministic constraints
while maintaining the same (hence “exact”) optimization
space w.r.t. decision variables.

• We compare our proposed ECR with the state-of-the-art
Bernstein approximation. ECR allows for unbounded
and correlated RVs to describe the interference while
Bernstein approximation cannot. Further, ECR enables
direct reformulation from the original problem without
solving additional optimization problems (as required by
Bernstein Approximation). To the best of our knowledge,
this is the first paper that has successfully addressed
the limitations (e.g., correlations and conservativeness) of
Bernstein Approximation, on which our research com-
munity has become fixated for years. As such, ECR
represents a new and more effective technique to solve
CCP problems in wireless networks.

• Through extensive simulations, we show that our two
solutions (predicated on ECR) outperform Bernstein
Approximation in two aspects. First, our solutions achieve
higher spectrum efficiency (33% and 30% on average)
when channel gains are independent (where Bernstein
Approximation is applicable). Second, in the correlated
scenario (where Bernstein Approximation is no longer
applicable), our proposed approaches can still offer com-
petitive solutions while meeting the target risk level.
Therefore, our proposed approaches are able to reap the
full benefits of CCP in both general and practical settings
thanks to our novel ECR technique.

We organize the remainder of this article as follows. In
Section II, we review related work. In Section III, we introduce
the system model of our underlay coexistence problem. In
Section IV, we offer a CCP formulation to our problem.
In Section V, we present the novel ECR technique for the
CCP formulation. In Section VI, we present solutions to the
equivalent (reformulated) deterministic optimization problem.
In Section VII, we present simulation results. Section VIII
concludes this article.

II. RELATED WORK

There is a large body of work studying various problems
in underlay coexistence [24]–[27]. We categorize these works
based on whether they assumed perfect channel knowledge
or not (i.e., imperfect channel knowledge, or channel
uncertainty).
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The majority of works that assumed perfect channel knowl-
edge have looked into problems on spectrum efficiency
[3], [28], energy efficiency [29], beamforming design [30],
secure transmission [31], to name a few. These works assumed
that the channel is static and channel gains are given constants.
This allowed simplifying the underlying problem and analysis
significantly. However, such an assumption does not hold in
reality as channel dynamics are common and must be observed
for problems dealing with power control or scheduling on a
small time scale.

For those works that considered channel uncertainty
(or imperfect channel knowledge) in underlay, they
employed mathematical tools such as stochastic programming
[11], [12], [32], worst-case optimization [14], [33], [34] and
CCP [20]–[23], [35], [36]. Though a learning-based algorithm
seems relevant, to the best of our knowledge, there is no
existing work that addressed channel uncertainty in underlay.
Thus, we will only discuss related work for the above three
approaches.

In stochastic programming, exact knowledge of channel gain
distributions is needed. Some widely used distributions include
Rayleigh fading [12], Rician fading [32], and Nakagami fad-
ing [11]. Such an assumption of channel gain distributions
could be problematic as they may not match how channels
actually behave in reality.

In worst-case optimization, the channel gains are assumed to
be inside certain bounded sets, such as norm bounded region
[14], [33], polyhedron [14] and maximum Kullback-Leibler
divergence [34]. As discussed in Section I, solutions following
worst-case optimization tend to be overly conservative, as will
be demonstrated in our numerical study in Section VII.

In CCP for underlay, some previous works include
[20]–[23], [35], [36]. As expected, all these works assumed
unknown distributions and allowed occasional violations of
the interference threshold. To reformulate the CCP problem,
they all employed Bernstein Approximation [19], where safety
approximations are derived to replace the chance constraints
(with probabilities) by assuming the RVs (e.g., channel
gains in underlay) are independent and bounded. However,
correlations among channel gains are possible depending
on the physical paths. Further, reformulation from Bernstein
Approximation introduces relaxation errors, which affect
its performance (the issue of conservativeness). In contrast,
we show in this article that our proposed ECR can mitigate
the limitations of Bernstein Approximation (independent RVs
and conservativeness).

III. SYSTEM MODEL

Consider a number of picocells residing within a macrocell
as shown in Fig. 1. An example of such a scenario is that
each picocell is installed as a set-up box inside a residential
unit [37], [38]. Users connected directly to the macro base
station (BS) are called PUs while users connected to the
pico BSs are called SUs. As for spectrum allocation among
the macro- and picocells, we follow a well-known scheme
called “fractional frequency reuse” in the literature [39]–[41].
Specifically, each picocell is assigned only a fraction of the
spectrum allocated to the macrocell and adjacent picocells use
different frequency bands to avoid the inter-cell interference
between neighbors (as shown in different colors of footprint
in Fig. 1).

In an underlay coexistence paradigm [2], the SUs must
ensure that the normal operations of the PUs are not

Fig. 1. A network topology for underlay: Multiple picocells inside a
macrocell (upper portion) and multiple SUs in a picocell (lower portion).

interrupted and that the PUs are unaware of the presence of the
SUs. We consider a TDD system that the uplink and downlink
transmissions of SUs and PUs are performed in the same spec-
trum. Although the macrocell and picocells can choose uplink
and downlink directions arbitrarily, we consider the most diffi-
cult problem when transmissions in the macrocell are in down-
link and transmissions in the picocells are in uplink. Under this
circumstance, there are multiple SUs transmitting to their pico
BSs and multiple nearby PUs need to be protected. Here, exer-
cising power control inside each picocell is the key to ensure
normal network operations for the PUs (and to increase the
spectrum efficiency for the SUs). Once the reader understands
the proposed solutions in this article, they can easily extend
our proposed solutions to other transmission cases, such as:

• Downlink in both the macrocell and the picocells. Math-
ematically, this is equivalent to one SU per picocell in
our model.

• Uplink in both the macrocell and the picocells. Mathe-
matically, this is equivalent to one PU in our model.

• Uplink in the macrocell and downlink in the picocells,
Mathematically, this is equivalent to one PU and one SU
in our model.

It is well-known that information on channel gains inside
the network is needed for power control. Following cellular
terminology, we consider the time domain is divided into
transmission time intervals (TTIs) and the frequency domain
is divided into sub-channels. Each sub-channel over one
TTI is called a resource block (RB). With respect to an
RB, channel gains (between the SUs and the pico BS) are
location-dependent and vary over time (due to multipath).
For different RBs, one would expect a certain degree of
correlations among the channel gains due to similar physical
paths. Thus, each SU must perform channel sensing before
transmission to estimate the channel gains. There are two
types of channel gains, namely transmission channel gains
(from the SUs to the pico BS) and interference channel gains
(from the PUs to the SUs). The transmission channel gains can
be estimated by traditional channel sounding procedure such
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as pilot-based training (with cooperations between the SUs
and their associated pico BSs). The interference channel gains
can only be measured based on known signals (e.g., pilots
and preambles used in the macrocell) and channel reciprocity
property [42]. To differentiate different PUs, a SU can exploit
the orthogonality in pilots as well as location techniques by
leveraging existing spectrum sensing algorithms [43], [44].

After channel sensing, all the CSI will be reported to the
pico BS through a dedicated control channel. Upon receiv-
ing the CSI, the pico BS will find the optimal scheduling
decisions (in frequency and/or time) and transmission powers
for the SUs. The goal is to maximize spectrum efficiency
while keeping the aggregate interference from the SUs to
each nearby PU below a threshold (see Fig. 1). The optimal
solution for scheduling and power control will be sent to the
SUs by the pico BSs and then the SUs can execute their
uplink transmissions based on this solution. In the case of
fractional frequency reuse, we only need to focus on one
picocell since neighboring picocells operate independently on
non-overlapping frequency bands.

Consider one picocell (the lower portion of Fig. 1) with
several nearby PUs. The signal from the macro BS to the PUs
are considered as “noise” by the SUs and the pico BS inside
the picocell. Such a noise will be included in the respective
channel gain calculations between the SUs and the pico BS. To
control the aggregate interference to each PU, the CSI from
the SUs to each PU is needed. Since there is no feedback
from the PUs to the SUs, the SUs can only estimate CSI to
the PUs unilaterally based on overhearing known signals from
the PUs and channel reciprocity. As a result, the interference
channel gains from the SUs to the PUs, the key parameters
for controlling the transmission powers of the SUs, can only
be characterized as RVs.

In this work, we assume that the mean and covariance
of the interference channel gains are available via online
estimation. Specifically, whenever the SUs overhear the signals
transmitted by a nearby PU during the PU’s transmission,
the SUs can estimate the corresponding interference channel
gains in current TTI based on channel reciprocity. Then the
SUs will update the mean and covariance of the interference
channel gains. Since these statistics are slow-changing, it is
reasonable to assume such statistics are up-to-date at the SUs
through continuous tracking of the mean and covariance over
time. Thus, it is reasonable and more practical to use the mean
and covariance than assuming certain types of distributions for
the interference channel gains.

Further, we assume the PUs can tolerate occasional thresh-
old violation as long as the probabilities of such violations
are smaller than given constants. For practical purposes, such
occasional violations are tolerable, as discussed in Section I.
As we shall see in the next section, such tolerance can be
formulated as chance constraints under CCP.

IV. MATHEMATICAL MODELING AND FORMULATION

In this section, we formulate the optimization problem using
CCP. Consider a single picocell in the lower portion of Fig. 1.
We are interested in maximizing spectrum efficiency for the
SUs in a picocell while keeping their interference threshold
violations (to each nearby PU) under small probabilities. The
notations used in this article are summarized in Table I.

Denote N as the number of SUs in the picocell, J as the
number of nearby PUs, and M as the number of RBs per TTI.

TABLE I

NOTATIONS

At the start of each TTI, the pico BS will run a scheduling
algorithm to allocate the available RBs to the SUs and decide
the SUs’ transmission powers for uplink transmissions. We
consider single user OFDMA where one RB can be allocated
to at most one SU but one SU may be allocated with multiple
RBs in each TTI. A popular scheduling objective is to achieve
long-term proportional fair (PF) among SUs’ throughput [45].
This is equivalent to maximizing a weighted sum of throughput
in each TTI, with the weight of each SU being updated at
the beginning of each TTI based on their long-term data rates.
Thus, the objective function used in this article is the weighted
sum (with given weights) of throughput for all SUs in the
picocell.

Denote xm
i as a binary variable to indicate whether or not

SU i will transmit to the pico BS on RB m, i.e.,

xm
i =

{

1 if SU i will transmit to the pico BS on RB m,

0 otherwise.

Under single user OFDMA, each RB (say m) can only be
assigned to at most one SU. We have

∑

i∈N

xm
i ≤ 1 (m ∈ M). (1)

Denote pm
i as the transmission power from SU i to the pico

BS on RB m. Clearly, pm
i must be zero if xm

i is zero because
the transmission power must follow the scheduling decision.
Further, it is common that each SU’s device has a maximum
power limit over all RBs. Denote P max

i as the maximum power
of SU i. Then we have

0 ≤ pm
i ≤ xm

i P max
i (i ∈ N , m ∈ M) , (2)

and
∑

m∈M

pm
i ≤ P max

i (i ∈ N ) , (3)

where N = {1, 2, · · · , N}.
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Denote gm
ij as the interference channel gain (a RV) from

SU i to PU j on RB m and Ij as the interference thresh-
old (constant) for PU j (j ∈ J where J = {1, 2, · · · , J}).
Under CCP, the aggregate interference from the SUs to PU j is
allowed to occasionally violate Ij but the probability of such
a violation must be below a target (small) probability. Denote
this target probability as εj , which is also called risk level.
This behavior, in its complementary form, can be formulated
by the following chance constraints:

P

{

∑

i∈N

∑

m∈M

gm
ij pm

i ≤ Ij

}

≥ 1 − εj (j ∈ J ) , (4)

where P{·} denotes the probability function w.r.t. gm
ij . In (4),

pm
i ’s are decision variables; Ij and εj are constants; gm

ij ’s

are RVs with known mean and covariance. Note that gm
ij ’s

are independent of pm
i ’s, Ij’s, and εj’s. Constraints (4) state

that the aggregate interference from the SUs to PU j must
be smaller than the threshold Ij with a probability of at
least 1 − εj . Clearly, proper power control of the SUs is the
key to meet these chance constraints. This risk level εj is a
small number that serves as the upper bound for the violation
probability. It could vary over a wide range (e.g., 0.01 to 0.5)
depending on the application of PU j. A higher εj means
a larger tolerance to violation of interference threshold (and
corresponding to a larger optimization space) and hence higher
spectrum efficiency.

Per our earlier discussion, in constraints (4), the interference
channel gains gm

ij ’s are modeled as RVs with known mean
(a MN × 1 vector) and covariance (a MN × MN matrix)
via online estimation. Since gm

ij ’s are the interference channel
gains, they can be independent or correlated with each other
due to similar physical paths. In reality, we can check the
covariance matrix of gm

ij ’s to see whether they are independent
or correlated. gm

ij ’s are independent with each other if and only
if the covariance matrix is diagonal.

Assume each RB occupies the same bandwidth, which we
normalize to 1 unit. Denote hm

i as the transmission channel
gain from SU i to the pico BS on RB m, including both
interferences from the macro BS and thermal noise at the pico
BS. Then the capacity of SU i on each RB can be calculated
by Shannon theorem. In this work, we use weighted sum of
capacity as our objective function to maximize the spectrum
efficiency. Denote wi as the weight of SU i in the current
TTI, which is a given constant (but may differ over TTIs).
Based on the above notations, our problem can be formulated
as follows:

(P1) max
xm

i
,pm

i

∑

i∈N

∑

m∈M

wilog2(1 + hm
i pm

i )

s.t. Scheduling constraints (1),

Transmission power constraints (2), (3),

Interference power constraints (4),

xm
i ∈ {0, 1}, pm

i ≥ 0.

Clearly, the main challenge in this optimization problem
lies in chance constraints (4) due to its probabilistic nature.
Although we have the mean and covariance of gm

ij ’s, we do

not have the knowledge of their distributions.1 For the same

1Even if we had the knowledge of distributions, it remains unclear if problem
P1 could be solved optimally and efficiently, which heavily depends on the
distribution density functions.

mean and covariance, there is an infinite number of possible
distributions. Since it is impossible to enumerate all possible
distributions for constraints (4), P1 is intractable.

V. A NOVEL REFORMULATION OF CHANCE CONSTRAINT

In general, to solve an intractable CCP problem, we need
to perform reformulation of the chance constraints based
on available knowledge (e.g., mean and covariance in our
problem). In this section, we introduce a novel technique
to perform exact reformulation of chance constraints (4) as
second-order cones. By its name Exact Conic Reformulation
(ECR), we mean that the optimization space of the newly
derived deterministic constraints (with tractable conic formula-
tions) is the same as that from the original chance constraints.
In other words, for some worst-case distributions, the threshold
violation probability is exactly the risk level εj , while for
all other distributions, the threshold violation probability is
smaller than εj [46]. Besides, the derived deterministic con-
straints belong to second-order cones which are guaranteed to
be convex.

In constraints (4), the j-th constraint is the probabilistic
interference guarantee for PU j. Since the interference guar-
antees for the PUs are independent of each other, we can
perform ECR for each chance constraint w.r.t. PU j. For ease
of exposition, we rewrite j-th constraint of (4) into its vector
form

P
{

gT
j p > Ij

}

≤ εj , (5)

where superscript “T ” denotes transposition, p is an MN ×1
column vector given as

p =
[

p1
1, p

2
1, · · · , pM

1 , p1
2, · · · , pM

N

]T
, (6)

which represents the MN transmission powers from SUs (over
all RBs). gj is also an MN × 1 column vector given as

gj =
[

g1
1j, g

2
1j , · · · , gM

1j , g1
2j , · · · , gM

Nj

]T
, (7)

which represents MN random channel gains from the SUs
(over all RBs) to PU j.

Denote gj (a MN×1 column vector) and Rj (a MN×MN
matrix) as the mean and covariance of gj , i.e., gj ∼ (gj ,Rj).
Note that Rj is always symmetric positive semi-definite and
is a diagonal matrix when the interference channel gains gm

ij ’s
are independent of each other. Since constraint (5) is satisfied
for gj under all possible distributions with gj ∼ (gj ,Rj),
we have

sup
gj∼(gj ,Rj)

P
{

gT
j p > Ij

}

≤ εj , (8)

where the “sup” is taken over all distributions of gj with mean
gj and covariance Rj .

Denote ξj as a scalar RV which is defined as ξj = gT
j p −

gT
j p. It is easy to see that ξj has mean 0 and variance pT Rjp,

i.e., ξj ∼ (0,pTRjp). For ease of exposition, denote φj as

φj = Ij − gT
j p. Since we require (5) to hold for all possible

gm
ij ’s, we must have

sup
ξj∼(0,pT Rjp)

P {ξj > φj} ≤ εj . (9)

To perform an exact reformulation of chance constraint (9),
we need to derive a closed-form expression for the supremum
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of violation probability where ξj can take any form of distri-
bution with mean 0 and variance pTRjp. We wish to choose
p so that this closed-form supremum is upped bounded by εj .
Since this closed-form expression has no randomness, we have
a deterministic constraint of the decision variables in p.

To derive a closed-form expression for the “sup” in (9),
we rely on Cantelli’s Inequality [47] (also known as one-sided
Chebyshev inequality [48]). Cantelli’s Inequality states that for
a given random variable ξ, with known mean µ and variance
σ2, we have

⎧

⎪

⎨

⎪

⎩

1 − σ2

σ2 + λ2
≤ P {ξ − µ ≥ λ} ≤ 1 if λ < 0,

0 ≤ P {ξ − µ ≥ λ} ≤ σ2

σ2 + λ2
if λ ≥ 0.

(10)

The upper bounds in Cantelli’s Inequility (10) are tight
since we can find worst-case distributions of ξ that achieve
these upper bounds. For instance, when λ < 0, an example of
worst-case distribution of ξ is given as

P{ξ =
λ

2
+ µ} =

4σ2

4σ2 + λ2
,

P{ξ =
−2σ2

λ
+ µ} =

λ2

4σ2 + λ2
.

When λ ≥ 0, an example of worst-case distribution of ξ is
given as

P{ξ =
−σ2

λ
+ µ} =

λ2

σ2 + λ2
, P{ξ = λ + µ} =

σ2

σ2 + λ2
.

We encourage readers to verify the violation probability in
these distributions.

Based on Cantelli’s Inequality, if we set ξ = ξj , µ = 0,
λ = φj in (10) and note that

sup
ξj∼(0,pT Rjp)

P {ξj >φj} = sup
ξj∼(0,pT Rjp)

P {ξj ≥φj} , (11)

we can derive a closed-from expression of our violation
probability in (9), which we state in the following Lemma.

Lemma 1: A closed-form supremum of threshold violation
probability in (9) is given by

sup
ξj∼(0,pT Rjp)

P {ξj > φj} =

⎧

⎨

⎩

1 φj < 0 ,
pT Rjp

φ2
j + pT Rjp

φj ≥ 0 .

(12)
The significance of Lemma 1 is that we can convert an

intractable probability in (9) to a deterministic equation in (12)
without any relaxation (due to tightness of Cantelli’s Inequal-
ity). We also know that there exist “worst-case distributions of
ξj” that achieve (or asymptotically achieve) the supremum of
the threshold violation probability P {ξj > φj}. For all other
distributions, the threshold violation probability will be smaller
than the supremum. In fact, we can derive some necessary
conditions of the worst-case distributions, as stated in Property
1.

Property 1: (Worst-case Distributions of ξj ) A worst-case
distribution of ξj must have the following properties:
(i) If φj < 0, then P{ξj ≤ φj} = 0;
(ii) If φj ≥ 0, then P{ξj > Φj} = 0 for all Φj > φj .

Proof: (i) When φj < 0, it is a trivial case since otherwise
we will have P{ξj > φj} = 1 − P{ξj ≤ φj} < 1.

(ii) When φj ≥ 0, our proof is based on contradictions.
Suppose (ii) doesn’t hold and we have a worst-case distribu-
tion ξ∗j and there exists Φ∗

j > φj with P{ξ∗j = Φ∗
j} > 0.2 Then

we will construct another distribution ξ′j with identical mean

and variance as ξ∗j such that P{ξ′j > φj} > P{ξ∗j > φj} > 0
to claim a contradiction.

We first derive the upper bound of P{ξ∗j = Φ∗
j}. Since

P{ξ∗j = Φ∗
j} > 0 and E{ξ∗j } = 0, we can always find an

interval B ∈ (−∞, 0) such that

E{ξ∗
j
∈{B,Φ∗

j
}}ξ

∗
j = 0 . (13)

Then we can calculate the probability and second-order statis-
tics of ξ∗j in {B, Φ∗

j}, denoted as p and q2 respectively. p and

q2 are calculated by

p = P{ξ∗j ∈ {B, Φ∗
j}} , q2 = E{ξ∗

j
∈{B,Φ∗

j
}}(ξ

∗
j )2. (14)

Define a new random variable ζ on {B, Φ∗
j} with

P{ζ = φ} =
P{ξ∗j = φ}

p
(φ ∈ {B, Φ∗

j}) . (15)

Clearly, ζ has mean 0 and variance q2

p
. Based on Cantelli’s

Inequality, we have

max P{ξ∗j = Φ∗
j} = p · max P{ζ ≥ Φ∗

j} =
pq2

q2 + p(Φ∗
j )

2
.

(16)

Then we construct a new random variable ξ′j by replacing

the part of ξ∗j ’s distribution on ξ∗j ∈ {B, Φ∗
j} by

P{ξ′j = − q2

pΦ′
j

} =
p2(Φ′

j)
2

q2 + p(Φ′
j)

2
,

(17)

P{ξ′j = Φ′
j} =

pq2

q2 + p(Φ′
j)

2
,

where φj < Φ′
j < Φ∗

j . If can be easily verified that ξ′j and
ξ∗j have the same mean and variance. Clearly, the violation

probability from ξ′j is higher than ξ∗j since

P{ξ′j > φj} − P{ξ′j > Φ′
j} ≥ pq2

q2 + p(Φ′
j)

2
− pq2

q2 + p(Φ∗
j )

2

> 0 . (18)

This contradicts the assumption that ξ∗j is a worst-case
distribution. �

Property 1 states that when φj < 0, any worst-case distri-
bution of ξj should task no values in the interval (−∞, φj ];
when φj ≥ 0, any worst-case distribution of ξj only takes
one value that is sufficiently close to φj as the possibilities
of ξj in interval (φj , +∞) are pushed to φj . Any distribution
that does not satisfy Property 1 is not a worst-case distribution.
Consequently, the resulting threshold violation probability will
be smaller than the supremum and the gap depends on the
distribution of ξj .

We note that there may exist many functions for the
worst-case distributions even under Property 1 but they all
have the same supremum of the threshold violation probability,

2Here we use the notation of a discrete RV. The same conclusion holds for
a continuous RV through discretization.
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as given in Lemma 1. Since we are not assuming any knowl-
edge of the distributions in our problem setting, we cannot
ignore the worst-case distributions. In other words, Lemma 1
is the best bound for our problem setting.

With Lemma 1 at hand, we can derive our reformulation
by upper bounding the closed-form supremum of threshold
violation probability by εj as in (9). Since εj < 1, the case
with φj < 0 is always infeasible. So we only need to consider
the case when φj ≥ 0. That is, chance constraint (9) can be
replaced by the following two constraints:

φj ≥ 0 , (19a)

pTRjp

φ2
j + pTRjp

≤ εj . (19b)

We can rewrite (19b) as

1 − εj

εj

· pT Rjp ≤ φ2
j . (20)

Taking the square root of both sides in (20) and
considering (19a), we have

√

1 − εj

εj

·
√

pT Rjp ≤ φj . (21)

Note that (21) implicitly implies that φj ≥ 0 and thus (19a)
is no longer needed. Substituting φj = Ij − gT

j p into (21),
we have the following main result.

Theorem 1: (ECR) With respect to the decision variables
in p, chance constraints (4) are equivalent to the following
second-order cones

√

1 − εj

εj

√

pTRjp + gT
j p ≤ Ij (j ∈ J ) . (22)

ECR says that in term of optimization space, the original
chance constraints in (4) and the second-order cones
in (22) are equivalent. Such equivalence is a direct result of
Lemma 1.3 Constraints (22) are deterministic constraints since
the random interference channel gains gm

ij ’s are eliminated and
the mean gj and covariance matrix Rj are given constants.
Through our derivation, we only rely on mean gj and covari-
ance Rj of gm

ij ’s without requiring any other assumptions.
Comparing ECR to Bernstein Approximation [19]–[23],

ECR is more general as Bernstein Approximation explicitly
assumes independence and boundaries.4 Interestingly,
constraints (22) appear quite similar to the deterministic
constraints obtained by Bernstein Approximation, with the
difference being the non-linear terms. This seemingly small
difference is, in fact, the main reason for the conservativeness
in Bernstein Approximation, as we shall show in simulations
in Section VII.

We summarize the benefits of ECR over Bernstein
Approximation as follows:

• Bernstein Approximation explicitly assumes that the RVs
(interference channel gains gm

ij ’s) must be independent
while ECR can handle the case with correlated RVs.
In reality, correlations among gm

ij ’s are common due to
similar physical paths.

3Incidentally, our results in Theorem 1 has been previously developed inde-
pendently by J. Pinter in [48] (Proposition 2.1) in his work on deterministic
approximations of probability inequalities.

4We refer interested readers to [19] for more details of Bernstein
Approximation.

• The RVs (gm
ij ’s) must be bounded to be normalized in

Bernstein Approximation while ECR does not need the
boundaries and can handle unbounded RVs. In practice,
the exact boundaries are also hard to estimate, which
affects the overall performance. The authors in [20] pro-
posed a method to handle RVs with unbounded supports
by truncation. Unfortunately, such truncation is designed
for a specific distribution and cannot be easily extended
to other distributions.

• Reformulated constraints in Bernstein Approximation are
safety approximations with relaxation errors to guarantee
the risk level while ECR offers an exact reformulation
with no relaxations (based on Lemma 1).

• In Bernstein Approximation, the parameters to derive the
deterministic constraints must be obtained through an
optimization problem, which requires additional efforts.
In contrast, ECR enables direct reformulation from the
original problem based on mean gj and covariance Rj .

To use ECR for the reformulation of P1, we only need
to replace chance constraints (4) by deterministic con-
straints (22). Then we obtain a deterministic maximization
problem as follows:

(P2) max
xm

i
,pm

i

∑

i∈N

∑

m∈M

wilog2(1 + hm
i pm

i )

s.t. Scheduling constraints (1) ,

Transmission power constraints (2), (3) ,

Interference power constraints from ECR (22) ,

xm
i ∈ {0, 1}, pm

i ≥ 0 .

P2 is a mixed-integer non-linear program (MINLP). In [49],
the authors showed that a special case of P2 is NP-hard where
no channel uncertainty is considered. In this special case,
the covariance matrix Rj is set to Rj = 0 and (22) becomes
linear constraints. Since P2 is the general case, it must be
NP-hard, which takes a long time to compute a solution.
Thus, for efficient computation, we devise approximation
solutions to P2 in the next section.

VI. SOLVING THE DETERMINISTIC

OPTIMIZATION PROBLEM

The main difficulties of P2 lie in the two nonlinear terms in
the objective function and (22). In this section, we show how
to linearize them and reduce the computation complexity.

A. Logarithmic Terms

To linearize the logarithmic terms in the objective function,
we use piecewise linear functions for each logarithmic term.
Denote cm

i as SU i’s normalized capacity to the pico BS on
RB m (w.r.t. normalized RB bandwidth). Then we have

cm
i = log2(1 + hm

i pm
i ) (i ∈ N , m ∈ M) . (23)

Recall that hm
i is the transmission channel gain from SU i

to the pico BS on RB m. We employ a convex hull to relax
each logarithmic term log2(1 + hm

i pm
i ) [50]. Since P2 is a

maximization problem, we only need to consider a series of
linear constraints to upper bound the convex hull.

For each log term log2(1 + hm
i pm

i ), we break the interval
of pm

i (i.e., [0, P max
i ]) into K equal-length sub-intervals, each

with length
P max

i

K
. Then for the K +1 end points, we solve the
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tangential lines at each end point and obtain the K + 1 linear
functions as follows:

cm
i ≤ 1

ln 2
·
[

Khm
i

K + kP max
i

· pm
i + ln

(

1 +
kP max

i

K

)

− kP max
i

K + kP max
i

]

(k ∈ K, i ∈ N , m ∈ M) , (24)

where K = {0, 1, · · · , K}.
Constraints (24) are linear with cm

i and pm
i as variables.

Clearly, the larger the K , the tighter the linear relaxation and
the relaxation error can be made arbitrarily small (with an
increasing number of linear constraints). In reality, we can
choose K to let the relaxation errors be as small as desired.
Since constraints (24) are linear constraints, a relatively larger
K does not add much to computation complexity. Note that
most of the parameters in (24) are constants except for hm

i ’s
and thus the cost of calculating (24) is negligible. After this
linearization, the problem is a mixed-integer second-order
conic program (MISOCP), which can be handled directly by
commercial solvers. However, it may still take a lot of time
due to non-linearity. Thus, we design a speed-up procedure by
linearizing the second-order cones.

B. Second-Order Cones

Constraints (22) from ECR are second-order cones where
the non-linear terms are in the form of pTRjp. To linearize
the non-linear terms pTRjp, we rely on the L∞-norm of a
vector. This part is heuristic and introduces relaxation errors.
Although we are not able to quantify the loss theoretically,
we will show the loss numerically in Section VII. We first
introduce a constant matrix Vj as the square root of Rj ,
i.e., Rj = VT

j Vj . Since Rj is the covariance of gj , it is
guaranteed to be positive semi-definite and symmetric. Thus,
Vj always exists and can easily be calculated by Cholesky
decomposition after obtaining the latest covariance Rj .

With Vj , we can rewrite constraints (22) as
√

1 − εj

εj

||Vjp||2 + gT
j p ≤ Ij (j ∈ J ) , (25)

where || · ||2 is the L2−norm of a column vector. We propose
to relax this L2−norm based on the L∞−norm, which is given
as

√

1 − εj

εj

√
rj ||Vjp||∞ + gT

j p ≤ Ij (j ∈ J ) , (26)

where ||Vjp||∞ is the L∞−norm of Vjp and rj is a design
parameter that satisfies ||Vjp||2 ≤ √

rj ||Vjp||∞. Note that
constraints (26) are linear with decision variables in p since
a L∞-norm can be easily converted to linear constraints with
auxiliary variables. Further, Vj and rj are only updated when
the slow-changing Rj is updated and the computation of Vj

and rj can be done within a TTI since the dimension of Rj

(MN×MN ) are usually less than 1,000 in a picocell scenario.
Thus, the cost of computing (26) is negligible.

Clearly, we want to choose a small rj to reduce relaxation
errors. Thus, we set rj as an upper bound on the number
of non-zero elements in the column vector Vjp for any
feasible p. Such an upper bound can be solved based on the
sparse structures of Vj and p in our problem, as we describe
below.

Recall p (i.e.,
[

p1
1, · · · , pM

1 , · · · , p1
N , · · · , pM

N

]T
) has at

most M non-zero elements because each RB can only be
allocated to at most one SU. Further, Vj , as the square root
of the covariance matrix Rj , is a MN × MN matrix. Since
the channel gains from different SUs to PU j are usually
independent, Vj is a block diagonal matrix with the i-th block
(denoted as Vij ) corresponding to SU i (i = 1, · · · , N ), i.e.,

Vj =

⎡

⎢

⎣

V1j

V2j

· · ·
VNj

⎤

⎥

⎦
. (27)

Moreover, for SU i, the correlation between two RBs
decreases as their carrier spacing increases. Define Lj as the
maximum subcarrier spacing that has correlation, meaning
that an RB is correlated with at most 2Lj neighboring RBs.
That is, RB m is at most correlated with RB M − Lj , M −
Lj + 1, · · · , M − 1, M + 1, · · · , M + Lj . In reality, Lj

can be determined upon solving Vj . Clearly, Lj = 0 and
Lj = M − 1 represent the scenarios of independent RBs and
fully correlated RBs respectively. Then, each block Vij is a
band matrix [51] in the following form:

Vij =

⎡

⎢

⎢

⎢

⎣

v11
ij · · · v

1(Lj+1)
ij

v21
ij v22

ij · · · v
2(Lj+2)
ij

· · · · · · · · · · · · · · ·
v

M(M−Lj)
ij · · · vMM

ij

⎤

⎥

⎥

⎥

⎦

Based on the sparse properties of Vj and p, we consider the
following two cases to calculate rj .

Case 1. When M ≥ 2Lj + 1, denote rm
j as the number of

non-zero elements in Vjp if pm
i is the only positive element

of p. rm
j is calculated (based on m) by

rm
j =

⎧

⎨

⎩

m + Lj if m ≤ Lj,

(2Lj+ 1) if Lj+ 1 ≤ m ≤ M− Lj ,

M − m + Lj + 1 if m ≥ M − Lj + 1.

(28)

The three cases in (28) corresponds to the RBs on the
lower sub-channels (1 ∼ Lj), middle sub-channels
(Lj +1 ∼ M−Lj) and upper sub-channels (M−Lj+1 ∼ M )
of the spectrum allocated to the pico cell.

Since only one SU can transmit on RB m, i.e., only one
positive pm

i in set {Pm
1 , Pm

2 , · · · , Pm
N }, we can set rj to

rj =
∑

m∈M

rm
j = M(2Lj + 1) − Lj(Lj + 1) . (29)

Case 2. When M < 2Lj + 1, rj can be set to rj =
min {MN, M(2Lj + 1) − Lj(Lj + 1)} since MN is always
an upper bound of rj .

Combining both cases, we set rj to

rj = min {MN, M(2Lj + 1) − Lj(Lj + 1)} (j ∈ J ).

(30)

By replacing logarithmic terms in the objective function and
(22) with constraints (24) and (26) respectively, we have the
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following relaxed optimization problem:

(P3) max
xm

i
,pm

i

∑

i∈N

∑

m∈M

wic
m
i

s.t. Scheduling constraints (1) ,

Transmission power constraints (2), (3) ,

Linearized interference power constraints (26),

Linearized throughput calculations (24),

xm
i ∈ {0, 1}, pm

i ≥ 0.

P3 belongs to mixed-integer linear program (MILP), which
can also be solved directly by commercial solvers with a
smaller amount of time than P2. Note that the computation cost
to derive P3 is negligible since the parameters in (24) and (26)
are all constants. The actual running time of P3 depends on
the number of binary variables. Luckily, the number of binary
variables in P3 is MN , which is usually small in underlay
settings. To further reduce the computation time of MILP (e.g.,
to millisecond time scale), one can employ a recent work in
real-time optimization by using GPU platforms [52] to solve
a large MILP. But such an effort is beyond the scope of this
article.

VII. SIMULATION RESULTS

In this section, we conduct simulations to evaluate our pro-
posed solutions predicated on ECR. We focus on the achiev-
able spectrum efficiency (our objective value) and the actual
threshold violation probability. We first show performance
under independent channels where Bernstein Approximation
is applicable. Then we evaluate our proposed solutions in
more general settings (e.g., other fading channels, correlated
channels, and large-scale networks). Our numerical study also
considers different risk levels, interference thresholds, and the
number of RBs.

A. Settings

For all topologies in the simulation study, we set the distance
between the macro BS and the pico BS to 400 meters. The
radius of a picocell is set to 40 meters, which is on the same
scale from 3GPP standard [53]. The maximum transmission
power Pmax

i of each SU across all RBs is set to 20 dBm. The
weight wi of each SU, the interference threshold Ij of each
PU, and the risk level εj of each PU will be given when they
are used in different settings.

The wireless channel gains (hm
i ’s for transmission and gm

ij ’s
for interference) are calculated based on the ITU path loss
model and fast fading. We consider two types of path loss
models as follows [53]:

(i) The path loss from the macro BS follows the ITU outdoor
path loss model, i.e., PLBS(dB) = 128.1+37.6× log10(dBS),
where dBS is the distance from the macro BS to the pico BS
(in kilometers).

(ii) The path loss from SU i to the pico BS and PU j follows
the ITU indoor path loss model, i.e., PLi(dB) = 38 + 30 ×
log10(di), PLij(dB) = 38 + 30 × log10(dij), where di and
dij are the distances from SU i to the pico BS and PU j (in
meters), respectively.

Denote fm
i and fm

ij as the fast fading (in power domain)
from SU i to the pico BS and PU j on RB m, respectively.
In this work, we consider the most common fast fadings
such as Rayleigh, Rician, and Nakagami fading [54]. Denote
PBS and σ2 as the transmission power from the macro BS

and the thermal noise, respectively. Based on these notations,
we calculate hm

i and gm
ij as follows:

hm
i =

PLif
m
i

PLBSPBS + σ2
, gm

i = PLijf
m
ij .

In our simulation study, we set PBS =46 dBm and σ2 =
1 × 10−7 mW. Note that we do not assume any knowledge
of distributions in our system model and proposed solutions.
But in simulation, we have to generate the random parameters
based the above distributions. This is only for numerical study
in simulations and does not infer such knowledge is available
in our proposed solutions. In other words, the proposed
solutions are “blindfolded” when we are generating these
distributions in the simulation study.

B. Independent Channels With Rayleigh Fading

In this section, the channels are generated independently
with Rayleigh fading as fast fading. This scenario is widely
considered in previous works and we will compare our pro-
posed solutions with Bernstein Approximation. We consider
two scenarios for network topology: (i) the SUs are randomly
distributed in the picocell; (ii) the SUs are in close proximity
to the PU (a stressful scenario in terms of interference).

We tested four algorithms where the linearization of log-
arithmic terms (Section VI.A) is always used since it only
introduces less than 1% performance loss (with K = 50). Two
proposed algorithms are called “P-ECR” and “R-ECR” repre-
senting the one after linearization of logarithmic terms (i.e.,
MISOCP) and P3 respectively. For comparison, we include
results from Bernstein Approximation and worst-case opti-
mization in the same figure whenever applicable. Worse-case
optimization uses the upper bounds of interference channel
gains to remove uncertainty and consequently the chance
constraints (4) become deterministic linear constraints. As
for Bernstein Approximation, since our channel model is
unbounded, we employ the same truncation method pro-
posed in [20]. Then the reformulated MINLP is solved by
CPLEX without any further relaxation. For a fair comparison,
Bernstein Approximation is also “blindfolded” when we are
generating these distributions in the simulation study, same
with our proposed solutions.

For each topology, we perform 200 simulation runs and
the results are the average values for P1 based on the
obtained feasible solutions. For each simulation, we generate
10,000 samples of the channel gain from each SU to each PU.
The first and second-order statistics from the 10,000 samples
are used in our solutions. These 10,000 samples are also used
to calculate the actual threshold violation probability after
the solutions (including scheduling decisions and transmission
powers) in each simulation are obtained. All optimization
problems are solved on 16-core Intel Xeon E5-2687w. We
use CPLEX version 12.8.0 for a mixed-integer solution with a
relative gap (between integer solution and continuous solution)
of less than 1%.

For the cases tested in this subsection and similar scales
later (N = 6, M = 12, and J = 1, 3), the running times of
“Bernstein Approximation” and P-ECR are on the order of sec-
onds while R-ECR and “worst-case optimization” runs on the
order of sub-seconds. Specifically, we found that R-ECR runs
3∼ 6 times faster than R-ECR. Thus, we will omit the running
times and focus on performance except for the large scale
network considered in Section VII.E.
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Fig. 2. Performance as a function of risk level ε with one PU.

1) Randomly Distributed SUs: In this subsection, we con-
sider the settings with six SUs (N = 6) and one or three PUs
(J = 1 or 3). Assuming the pico BS is at the origin and the
coordinates of SUs are generated based on uniform distribu-
tion. For this numerical study, the coordinates (all in meters)
of SUs are (−10.67,−19.01), (32.47,−11.77), (−0.23, 8.90),
(12.04,−5.03), (28.89,−10.00) and (−22.66, 5.34). The cor-
responding weights of SUs are 0.22, 0.09, 0.09, 0.23, 0.19, and
0.18. The spectrum allocated to the picocell is divided into
12 RBs (M = 12) and remains unchanged in the simulation
study. The coordinates and interference threshold Ij for each
PU are given per discussion below.

(i) One PU. Consider the case with one PU located at
(0, 50) and the interference threshold I is set to 3 × 10−7 mW.
The achievable spectrum efficiency and actual threshold vio-
lation probability are shown in Fig. 2.

In Fig. 2(a), we find that the objective value of our solutions
monotonically increases with the risk level. The spectrum effi-
ciency improvement is due to a larger optimization space since
the PU can tolerate more interference threshold violations.
Further, the objective values of P-ECR and R-ECR are very
close. In particular, P-ECR and R-ECR achieve 2.97 bps/Hz
and 2.92 bps/Hz with a risk level of ε = 0.01; 5.15 bps/Hz
and 5.089 bps/Hz with ε = 0.5.

In Fig. 2(a), the objective value of worst-case optimization
stays the same since it does not involve any risk. Clearly,
the performance of worst-case optimization is overly pes-
simistic (due to zero tolerance of interference threshold vio-
lation). Further, as shown in Fig. 2(a), with a small risk level
ε = 0.01 (or 1%), the performance of Bernstein Approx-
imation drops to 2.20 bps/Hz (almost the same with the
one from worst-case optimization) while P-ECR and R-ECR
achieve 2.97 bps/Hz and 2.92 bps/Hz respectively. In terms
of relative improvement ratio, our solutions can achieve 15%
to 44% improvement over that by Bernstein Approximation.
The 44% improvement is achieved when ε = 0.05 by P-ECR
(a common risk level that one may use in practice).

Fig. 3. Objective as a function of interference threshold I with one PU.

Fig. 4. Objective as a function of number of RBs M with one PU.

Fig. 2(b) shows the actual threshold violation probability
from four algorithms. This actual threshold violation prob-
ability is obtained by calculating the percentage of observed
instances where the interference threshold is violated. Interest-
ingly, P-ECR has a higher violation probability than R-ECR
but their objective values are rather close. This is due to the
concavity of the log functions in our objective function. As
shown in Fig. 2(b), the actual threshold violation probability
from Bernstein Approximation stays below 0.02 even though
the risk level is 0.5, which is unnecessarily conservative and
thus loses substantial benefits of CCP. On the other hand, our
solutions violate the interference threshold with a probability
lower than the risk level but much larger than that from
Bernstein Approximation. Thus, our solutions can better reap
the benefits of CCP while still keeping the threshold violation
probability below the risk level. The gap between the actual
threshold violation probability and risk level ε (the supremum
of threshold violation probability) is attributed to our channel
model (ITU path loss and Rayleigh fading), which is not the
worst-case distribution (since it does not satisfies the properties
in Property 1). As discussed in Section V, the threshold
violation probability does not achieve the supremum (the risk
level). Consequently, a gap exists between the actual threshold
violation probability and the risk level ε.

The results of different interference threshold I and number
of RBs M are shown in Fig. 3 and Fig. 4 respectively. As
expected, the achievable objective values (spectrum efficiency)
under all three solutions increase with higher interference
threshold I or the number of RBs M . The objective values
of P-ECR and R-ECR are very close, meaning the relaxation
errors from linearization is small. Our solutions provide a
higher spectrum efficiency with relative 13%∼50% improve-
ments compared to Bernstein Approximation.

(ii) Multiple PUs In this study, we consider three PUs
(J = 3) that are located at (50, 0), (−45, 5) and (−25,−35),
respectively.

Our proposed solutions are able to handle the general case
when each PU has a different interference threshold Ij and
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Fig. 5. Performance as a function of risk level ε with three PUs.

risk level εj . Without loss of generality, we use the same risk
level for the PUs but different interference threshold Ij . The
interference thresholds for the three PUs are 3 × 10−7 mW,
4×10−7 mW, and 2×10−7 mW respectively. The results are
summarized in Fig. 5.

As shown in Fig. 5(a), our solutions outperforms Bernstein
Approximation with up to 37% improvement (by P-ECR when
ε = 0.05). R-ECR only loses 1∼4% spectrum efficiency when
compared to P-ECR. We also note that the objective values
are less than that of the single PU scenario in Fig. 2(a). This
is intuitive as more interference constraints are imposed on
the SUs due to multiple PUs. The actual threshold violation
probability is given in Fig. 5(b). We use the maximum thresh-
old violation probability among the three PUs in Fig. 5(b).
It shows that the violation probabilities from our proposed
solutions is smaller than the risk level but higher than that from
Bernstein Approximation, which is similar to that in Fig. 2(b).

2) SUs in Close Proximity to the PU: In this subsection,
we consider a more stressful network topology with one
PU where all the SUs in the picocell are close to the
PU. The PU is located at (50, 0) with an interference
threshold I = 3 × 10−7 mW. The coordinates of six SUs
are (20.79,−21.49), (17.86,−24.49), (32.16, 14.79),
(30.65, 5.08), (24.90,−15.41), and (34.21,−5.52),
respectively. Their corresponding weights are 0.19, 0.13, 0.26,
0.12, 0.20, and 0.10, respectively. Under this circumstance,
the channel gains from the SUs to the PU are larger, and
more stringent power control on the SUs should be exercised.

Fig. 6(a) shows the achievable spectrum efficiency under
this stressful scenario. Since the SUs are closer to the PU,
they must further lower their transmission power to control
their interference to the PUs. Consequently, the spectrum
efficiency will be lower than that when SUs are randomly
distributed. P-ECR has the highest objective value followed
by R-ECR. Specifically, R-ECR loses 11% ∼ 14% spectrum

Fig. 6. Performance as a function of risk level ε when SUs are close to the
PU.

efficiency when compared to P-ECR. Thus, when the
interference channel gains become larger (due to closer
proximity), the relaxation error from the linearization will
increase. Further, Bernstein Approximation is inferior to our
proposed ECR-based solutions (P-ECR and R-ECR).

Fig. 6(b) shows the actual threshold violation probability.
We see the threshold violation probabilities from our solutions
are lower than the risk level but higher than that from Bernstein
Approximation.

C. Independent Channels With Rician and Nakagami Fading

In this section, we evaluate our proposed solutions under
different channel models. We only show the results of R-ECR
but the same conclusions also hold for P-ECR. We want
to show our proposed solution can guarantee the risk level
with only a knowledge of mean and covariance (without
distribution). Note that gm

ij ’s are always independent regardless
of their distributions. The topology we use is the same as
in Section VII-B.1. We consider the three most popular fast
fading models: Rayleigh, Rician, and Nakagami fading. Since
these channel models are unbounded and no truncation method
has been designed for Bernstein Approximation, we will only
present the results from R-ECR.

Fig. 7 shows the results of our simulations. To better
understand the results, we first discuss the relationship among
these wireless channel models. Note that our solution only
require the mean and covariance of the RVs regardless of the
underlying distributions. Nakagami fading is a general model
for the wireless channel that includes both Rayleigh and Rician
fading. It uses a parameter called “Nakagami-m” to represent
the seriousness of fading, where a small “Nakagami-m” means
a faster (more serious) fading situation [54]. For Rayleigh
fading, it is equivalent to Nakagami fading with Nakagami-
m = 1. On the other hand, Rician fading uses a parameter
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Fig. 7. Performance of R-ECR as a function of risk level ε under different
channel models.

called “Rician-K” which has a mathematical relationship with
“Nakagami-m” through m = (K + 1)2/(2K + 1).

We employ six different settings of fast fading: Nakagami-
m = 0.75, 2, 4, Rician K = 4, 10 and Rayleigh fading,
as shown in Fig. 7. These six channel models have the
following equivalent Nakagami-m parameters: 0.75, 2, 4, 2.78,
5.76, 1, respectively. Fig. 7 shows that a smaller Nakagami-m
leads to a lower spectrum efficiency. Given the same mean,
a small Nakagami-m generates a higher covariance (more seri-
ous fading) and consequently, we have a smaller optimization
space that leads to worse performance.

Fig 7(b) shows that our proposed solution can successfully
maintain the risk level (with the actual threshold violation
probability smaller than the risk level). The gap between
risk level ε and the actual threshold violation probability still
exists because none of these channel models belongs to the
worst-case distributions.

D. Correlated Channels With Rayleigh Fading

In this section, we consider the general case where RBs
have correlations. We want to validate that our proposed
solutions are applicable to correlated channels. Since
Bernstein Approximation explicitly requires independent
channels and is no longer applicable to correlated channels,
we will only show the results from our proposed solutions
P-ECR and R-ECR. Specifically, we use the same topology in
Section VII-B.1 but introduce different levels of correlations
among RBs. The channels are based on the path-loss model
and Rayleigh fading.

We consider two levels of correlations in this subsection of
numerical study. For low correlation case, only the adjacent
RBs are correlated with a relative correlation of 0.5 (i.e.,
L = 1, r = 34). For high correlation case, the correlation
coefficient between any two RBs (adjacent or not) is set to
0.5 (i.e., L = 11, r = 72). L is maximum sub-carrier spacing

Fig. 8. Performance as a function of risk level ε in correlated channels.

Fig. 9. Network topology of a large-scale network with 20 SUs and 1 PU.

of correlation and rj is a design parameter defined in (29).
We set the interference threshold I = 3 × 10−7 mW.

Fig. 8 shows the results. In Fig. 8(a), we find that under
the same risk level, as correlation increases, the achievable
spectrum efficiency decreases for both P-ECR and R-ECR
due to a smaller optimization space. This can be seen from
constraints (22) that pT Rjp is higher for a given p. Further,
in correlated channel, R-ECR loses 2%∼30% spectrum
efficiency compared to P-ECR. This is because the relaxation
errors from L2−norm to L∞−norm is larger as correlation
increases. The actual threshold violation probability is shown
in Fig. 8(b). We see that the actual threshold violation
probabilities are all smaller than the risk level εj (our
required performance guarantee) but the gaps from R-ECR
are larger than from P-ECR due to the relaxation errors from
norm linearization.

E. Large-Scale Network

To check the scalability of our proposed solutions, we con-
sider a large-scale network with 20 SUs, 50 RBs and 1 PU
(i.e., N = 20, M = 50 and J = 1). The topology we use
is shown in Fig. 9 and the channels are based on Rayleigh
fading (independent). We found that R-ECR runs on the order
of tens of seconds while the solver cannot close the gap even
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Fig. 10. Performance as a function of risk level ε in a large-scale network.

after several days in Bernstein Approximation and P-ECR.
Thus, we will only show the results of R-ECR (in Fig. 10).

As shown in Fig. 10(a), the achievable spectrum efficiency
is larger under higher risk level ε, which is consistent with the
one from the small-scale network. Further, the objective value
is 10.5 bps/Hz when ε = 0.05, which is much higher than
that of small-scale networks. This is because we assume the
bandwidth of each RB is normalized to 1 and thus the band-
width allocated to the picocell is proportional to the number
of RBs (M ). In other words, the picocell in this large-scale
setting is actually using a wider spectrum. Moreover, with a
larger number of SUs, it is more likely that some of them
are not close to the PUs. As a result, the interference channel
gains from these SUs to the PUs are relatively smaller and
there are more opportunities for these SUs to transmit without
harmful interference to the PUs.

However, the improvement of spectrum efficiency is not
proportional to the total bandwidth. As we increase the
total bandwidth by more than four times (from 12 to 50),
the achievable spectrum efficiency only increases 2∼3 times.
The main reason is that we use the threshold for aggregate
interference across all RBs to protect the PUs. With more RBs,
the average allowable interference on each RB is decreasing.
Thus, the ratio of objective improvement is less than the ratio
of spectrum bandwidth.

Fig. 10(b) shows that the actual threshold violation prob-
ability from our solution is indeed lower than the risk level.
We see that under the same risk levels, the actual threshold
violation probability becomes smaller comparing to that in
small-scale networks. This is because that the relaxation errors
from linearization is higher in large-scale networks.

VIII. CONCLUSIONS

In this article, we studied underlay coexistence with channel
uncertainty where the knowledge of interference channel

gains is limited to mean and covariance. We used the notation
of risk level to exploit SUs’ occasional interference threshold
violation to the PUs and formulated a chance-constrained
program (CCP). To address the intractable CCP formulation,
we introduced a powerful reformulation tool called Exact
Conic Reformulation (ECR) that offers an exact reformulation
from intractable chance constraints into convex second-order
cones. ECR overcomes the limitations of the state-of-the-art
Bernstein Approximation (i.e., certain assumptions for random
variables and conservative performance). Through extensive
performance evaluation, we show that: (i) for independent
channels, our proposed approaches outperform Bernstein
Approximation by 33% and 30% on average in terms of
spectrum efficiency; (ii) for correlated channels, our proposed
approaches offer competitive solutions while Bernstein
Approximation is no longer applicable. We believe that ECR is
not limited to the problem studied in this article. It represents a
novel and powerful technique to fully reap the benefits of CCP
when addressing uncertainty in wireless networking problems.
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