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Abstract 

The structure-function coupling in brain networks has emerged as an important research topic 

in modern neuroscience. The structural network could provide the backbone of the functional 

network. The integration of the functional network with structural information can help us 

better understand functional communication in the brain. This paper proposed a method to 

accurately estimate the brain functional network enriched by the structural network from 

diffusion magnetic resonance imaging. First, we adopted a simplex regression model with 

graph-constrained Elastic Net to construct the functional networks enriched by the structural 

network. Then, we compared the constructed network characteristics of this approach with 

several state-of-the-art competing functional network models. Furthermore, we evaluated 

whether the structural enriched functional network model improves the performance for 

predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 

participants from the Human Connectome Project database. The results demonstrated that our 

network model improves network consistency and its predictive performance compared with 

several state-of-the-art competing functional network models. 

 

Keywords: Functional network; structure-function coupling; simplex regression; graph-
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1. Introduction 

Brain network analysis is a powerful technique for investigating a hard-wired brain architecture 

and its functions (Rubinov and Sporns, 2010). Typically, the functional network, reflecting 

brain activation patterns, is defined as the temporal coherence of resting-state functional 

magnetic resonance imaging (rs-fMRI) between different brain regions (Rubinov and Sporns, 

2010). Structural network is defined as structural wiring in the white matter, approximated by 

tractography algorithm using diffusion-weighted magnetic resonance imaging (dMRI) between 

the brain regions (Hagmann et al., 2008). Other studies have explored covariance patterns of 

morphometry, such as volume and cortical thickness, between different brain regions (He et al., 

2007; Mechelli et al., 2005) as a surrogate of the structural network.  

The rapid growth of the public database on neuroimaging allowed the researcher investigating 

the relationship between an individual’s brain network properties and behavior differences. For 

example, many researchers demonstrated that functional network property was related to 

cognition and behavior. Finn et al. proposed a unique connectome fingerprinting used to predict 

an individual’s human intelligence (Finn et al., 2015; Miranda-Dominguez et al., 2014). Baum 

et al. demonstrated that the structural-functional network coupling was associated with higher-

order cognitive processes during youth (Baum et al., 2020). Some studies demonstrated that 

functional network patterns could predict cognitive abilities, behavior outcomes, and 

personality traits, as well as could distinguish healthy and diseased brains (Beaty et al., 2018; 

Damaraju et al., 2014; Hsu et al., 2018; Nostro et al., 2018; Park et al., 2016; Rosenberg et al., 

2016; Stam et al., 2007).  

Recently, identifying structure-function coupling in brain network has been an important 

research topic in modern neuroscience. The structural network could provide the backbone of 

the functional network. The integration of the functional network with structural information 
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can help us better understand functional communication in the brain. For example, the 

researchers demonstrated that the structural network provides cortico-cortical and cortico-

subcortical connectivity information that reflects spatial proximity and long-range structural 

wiring and governs ongoing repertoire of cognitive function (Batista-Garc\’\ia-Ramó and 

Fernández-Verdecia, 2018; Baum et al., 2020; Mišić and Sporns, 2016; Park and Friston, 2013; 

Rubinov and Sporns, 2010; Snyder and Bauer, 2019). However, most of the functional network 

studies did not consider structural information; the functional network based on the statistical 

association, such as Pearson’s correlation, partial correlation, and sparse inverse covariance 

(Friedman et al., 2008). Hence, the integration of multi-modal brain networks (i.e., coupling 

structural network with the functional network) may lead to the construction of more sensitive 

brain network than using a single modality. 

In this sense, we proposed a method to estimate the brain functional network enriched by 

structural network accurately. A simplex regression model with graph-constrained Elastic Net 

(GraphNet) was adopted to estimate the functional networks enriched by the structural network 

(Grosenick et al., 2013; Kim et al., 2020). Our main scientific contributions were described as 

follows. First, we incorporated GraphNet and simplex constraints to estimate the interpretable 

functional network enriched by the structural network. Second, we proposed an efficient 

optimization algorithm using the projected gradient descent method. Third, we applied and 

compared several state-of-the-art network models with our method to provide insights into the 

clinical benefits of our model.  

The rest of the study is organized as follows: In Section 2, we briefly described the data, the 

related pre-processing procedure, and how we estimated the SFN. In Section 3, we described 

the experimental setups and results. We evaluated our network approach and compared it with 

the competing network models. In Section 4, a summary of this study and discussion for 

potential implications were included. 
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2. Material and Methods 

2.1. Data collection and pre-processing 

2.1.1. Datasets 

In this study, we collected neuroimaging data (i.e., rs-fMRI and dMRI) for 218 participants 

from the Human Connectome Project (HCP) database (Van Essen et al., 2013). The participants 

who are genetically unrelated, non-twins, non-Hispanic with full demographic information 

were considered. The average age was 29.11 years (standard deviation = 3.74 years, range 22-

36 years). Further details were shown in Table 1.  

2.1.2. fMRI pre-processing 

The HCP database provided the pre-processed rs-fMRI data following “minimal pre-processing 

pipeline” (Glasser et al., 2013). The rs-fMRI data were provided as the Connectivity 

Informatics Technology Initiative (CIFTI) dense time-series format which was defined in 

standard grayordinate space. The pre-processing procedures included skull removal, intensity 

normalization, distortion correction, and head motion correction, and registration to the 

Montreal Neurological Institute’s standard space. The artifacts (e.g., head movement, cardiac 

pulsation, arterial, and large vein related noise) were removed using FMRIB’s ICA-based X-

noisifier (FIX) (Salimi-Khorshidi et al., 2014). Finally, we computed the functional network 

using the averaged vertex-wise time courses (filename “dt-series”) for brain regions. We 

Table 1. Demographic information. Values are reported as mean ± standard deviation (SD) 
format.  

 Demographic information 

Age 29.11 ± 3.74 

Sex M: 118, F:100 

Fluid intelligence 17.66 ± 4.58 

Working memory 2-back accuracy [%] 84.44 ± 9.90 
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concatenated the time series of each left-to-right/right-to-left phase-encoded data into form a 

single time series data. 

The Human Connectome Project multi-modal parcellation atlas (HCP-MMP) was used to 

determine the nodes of the network (Glasser et al., 2016). The HCP-MMP atlas is one of the 

most detailed cortical in-vivo parcellations, which divided the cortical area into 360 regions 

considering cortical architecture, function, connectivity, and topography in a precisely aligned 

group average of 210 healthy young adults. To compute edges of the functional network, we 

adopted different similarity measurements, as described in Section 2.2 and 3.1., between each 

pair of the brain regions.  

2.1.3. dMRI pre-processing 

For dMRI data, HCP released the estimated fiber orientation data processed with FSL's multi-

shell spherical deconvolution toolbox (bedpostx) (Jbabdi et al., 2012). In detail, the following 

steps were performed; intensity normalization, distortion correction, eddy current correction, 

head motion correction, and gradient nonlinearity correction (Andersson et al., 2012). Then, 

fiber orientation for each voxel was estimated from dMRI. We then added tractography steps 

to construct the structural network (SN). In detail, the probabilistic tractography algorithm, 

implemented in FSL (probtrackX), was performed to estimate fiber streamlines for every voxel 

(Behrens et al., 2003). Output streamlines of the probtrackX were mapped onto the 360 brain 

regions of HCP-MMP to build the structural connectivity matrix. Finally, the constructed 

matrix was used as the SN that was used as the constraint in our proposed approach described 

later. 

2.2. Estimation of structural enriched functional network 

Herein, we used the boldface lowercase letter to denote a vector, and the boldface uppercase 

letter to denote a matrix. Specifically, given the datasets 𝑿 ∈  ℝ𝑛×𝑝, where X corresponded 
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to the rs-fMRI data as described in Section 2.1.2., n denoted the number of time-points of the 

rs-fMRI, and p denoted the number of brain regions.  

2.2.1. Functional network based on simplex regression framework 

In this section, we calculated the functional network based on the simplex regression 

framework (FNsimplex). The simplex regression framework has advantages for interpretation and 

low model complexity due to simplex constraint (Huang et al., 2013, 2015). The model is 

defined as follows.   

 𝜷𝑖̃ = min
𝜷𝑖

‖𝑿(:,𝑖) − 𝑿(:,≠𝑖)𝜷𝑖‖2

2
    𝑠. 𝑡. 𝜷𝑖 ≥ 0, 𝜷𝑖

𝑇𝟏 = 1, (1) 

where, 𝑿(:,≠𝑖) is the matrix X with the i-th column (i.e., region) removed, 𝑿(:,𝑖) is the i-th 

column vector from matrix X, and 𝜷𝑖̃ ∈  ℝ𝑝−1 is the estimated coefficient vector for the i-th 

brain region. We constructed the functional network 𝑺 =  [𝜷1̂, 𝜷2̂, … , 𝜷𝑝̂]  by solving the Eq. 

(1) p times for every brain region. The 𝜷𝑖̂  is a p-dimensional vector, where zero value is 

inserted for the i-th coefficient of estimated coefficients vector 𝜷𝑖̃. The symmetric functional 

network based on the simplex regression framework (FNsimplex) was computed by the 

elementwise average between 𝑺 and its transpose. 

2.2.2. Structural enriched functional network based on simplex regression with 

GraphNet penalization  

In this section, we expanded the FNsimplex by adding the GraphNet constraint for integrating the 

functional network with the structural network. This approach has the advantage of integrating 

prior information of structural network into the functional network (Du et al., 2016; Grosenick 

et al., 2013; Kim et al., 2020). The model is defined as follows: 

 𝜷𝑖̃ = min
𝜷𝑖

‖𝑿(:,𝑖) − 𝑿(:,≠𝑖)𝜷𝑖‖2

2
+ 𝜆𝐺𝜷𝑖

𝑇𝑳𝑠𝑛𝜷𝑖     𝑠. 𝑡. 𝜷𝑖 ≥ 0, 𝜷𝑖
𝑇𝟏 = 1, (2) 

where, 𝑳𝑠𝑛 is the Laplacian matrix of the SN, and 𝜆𝐺  is the regularization parameter. The 
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Laplacian matrix is defined as Lsn = D – A, where D is the degree of structural network matrix 

A. Eq. (2) was optimized using the accelerated projected gradient method (Huang et al., 2015).  

The enriched functional network 𝑺 =  [𝜷1̂, 𝜷2̂, … , 𝜷𝑝̂]  was constructed by repeating the Eq. 

(2) p times for every brain region. The 𝜷𝑖̂  denoted a p-dimensional vector and zero was 

inserted for the i-th element of estimated coefficients vector 𝜷𝑖̃ . Finally, we obtained the 

symmetric SFN based on the simplex regression with GraphNet (SFNsimplex) by the 

elementwise average between 𝑺 and its transpose. Detailed description for constructing the 

SFNsimplex is described in the next section and open-source implementation of the model 

including documentation and examples is publicly available on GitHub 

(https://github.com/lshen/sfn). 

The regularization parameter 𝜆𝐺   of SFNsimplex was tuned using the nested 5-fold cross-

validation strategy. Blind grid search of the parameters is very time-consuming and thus we 

tuned the parameter from the following finite set: [10-3, 10-2, 10-1, 100, 101, 102, 103].  The 

optimized 𝜆𝐺  ’s varied across different nodes and different subjects; see Figure S1 in 

Supplementary Material for their distributions. 

2.2.3. Efficient optimization algorithm for constructing SFNsimplex  

In this section, we describe how to efficiently optimize Eq. (2) using the accelerated projected 

gradient descent method and construct the SFNsimplex. Let 𝜷𝑖
(𝑘−1) be the estimate of 𝜷𝑖 at the 

previous iteration k – 1, the update rules for estimating 𝜷𝑖 at the current iteration k is defined 

as follows: 

 𝜷𝑖
(𝑘)

= min
𝜷𝑖

1

2
‖𝜷𝑖 − 𝜶𝑖

(𝑘−1)
 ‖

2

2
  𝑠. 𝑡. 𝜷𝑖 ≥ 0, 𝜷𝑖

𝑇𝟏 = 1 (3) 

 𝜶𝑖
(𝑘)

=  𝒛𝑖
(𝑘)

− 𝑡∇𝑓(𝒛𝑖
(𝑘)

)  (4) 

 𝒛𝑖
(𝑘)

= 𝜷𝑖
(𝑘)

+
𝑐(𝑘)−1

𝑐(𝑘+1)
(𝜷𝑖

(𝑘)
− 𝜷𝑖

(𝑘−1)
), (5) 

where t is the step size, ∇𝑓(𝜷𝑖
(𝑘)

) is the derivative of the Eq. (2) with respect to 𝜷𝑖, and 𝑐(𝑘) 

https://github.com/lshen/sfn
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is the acceleration coefficient as follows:  

 ∇𝑓(𝜷𝑖
(𝑘)

) = 𝑿(:,≠𝑖)
T  𝑿(:,≠𝑖)𝜷𝑖

(𝑘)
+ 𝜆𝐺𝑳𝑠𝑛𝜷𝑖

(𝑘)
−  𝑿(:,≠𝑖) 𝑿(:,𝑖). (6) 

 𝑐(𝑘+1) =
1+√1+4𝑐(𝑘)2

2
. (7) 

The unconstrained formulation of the Eq. (3) can be written as  

 1

2
‖𝜷𝑖 − 𝜶𝑖

(𝑘−1)
 ‖

2

2
− 𝛾(𝜷𝑖

T𝟏 − 1) − 𝝀T𝜷𝑖 , (8) 

where 𝛾 and 𝛌 are a Lagrangian multiplier and Lagrangian multiplier vector, respectively 

and both of them are to be determined. Since the problem of Eq. (3) is a convex optimization 

problem with differentiable objective and constraint functions and is strictly feasible (Slater’s 

Algorithm 1. Efficient algorithm for constructing SFNsimplex  

Input: Normalized data 𝐗 ∈ ℝ𝑛×𝑝, and 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜆𝐺. 
Output : 𝑺 ∈ ℝ𝑝×𝑝 

1: Initialize c(0), 𝜶𝑖
(0)  

2: for each region i (i = 1, ... , p) do  
3:  Set k = 0 
4: While no convergence do 
5:  k = k + 1 

6:  𝜷𝑖
(𝑘)

= min
𝜷𝑖

1

2
‖𝜷𝑖 − 𝜶𝑖

(𝑘−1)
 ‖

2

2
  𝑠. 𝑡. 𝜷𝑖 ≥ 0, 𝜷𝑖

𝑇𝟏 = 1, 

7:  𝜶𝑖
(𝑘)

=  𝒛𝑖
(𝑘)

− 𝑡∇𝑓(𝒛𝑖
(𝑘)

),  

       where∇𝑓(𝜷𝑖
(𝑘)

) = 𝑿(:,≠𝑖)
T  𝑿(:,≠𝑖)𝜷𝑖

(𝑘)
+ 𝜆𝐺𝑳𝑠𝑛𝜷𝑖

(𝑘)
−  𝑿(:,≠𝑖) 𝑿(:,𝑖) 

8:  𝒛𝑖
(𝑘)

= 𝜷𝑖
(𝑘)

+
𝑐(𝑘)−1

𝑐(𝑘+1) (𝜷𝑖
(𝑘)

− 𝜷𝑖
(𝑘−1)

) 

9:  𝑐(𝑘) =
1+√1+4𝑐(𝑘−1)2

2
  

10:  end 

11: 𝜷𝑖̂  = [𝛽1, … , 𝛽𝑖−1, 0, 𝛽𝑖+1, … , 𝛽𝑝] 

12: end for 

13: 𝑺 = [𝜷1̂, … , 𝜷𝑝̂] 

14: 𝑺𝑭𝑵𝑠𝑖𝑚𝑝𝑙𝑒𝑥 =
𝑺+𝑺T

𝟐
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condition holds), the Karush–Kuhn–Tucker conditions provide necessary and sufficient 

conditions for optimality (Boyd et al., 2004). The detailed optimization procedure for Eq. (8) 

is described in Supplementary Section 1.  

The pseudocode of algorithm was described in Algorithm 1.  

2.3. Model evaluation using prediction task 

2.3.1. Behavioral outcome prediction 

The constructed networks were used to predict two different behavioral outcomes (i.e., fluid 

intelligence [gF] and working memory 2-back recall accuracy [WM-2bk-acc]) to assess the 

association between higher-order cognitive ability and network measures. We chose seven 

different functional network models (as described in Section 3.1) and compared their predictive 

performances. In the prediction model, we used the degree centrality of the constructed 

networks as predictors and each behavior outcome as the response variable. The elastic-net 

regression model was adopted to build the prediction model for predicting the behavioral 

outcome. The model was trained on 90% of data and tested on the remaining 10% of data, 

which was repeated 1,000 times to evaluate the stability of the model in a bootstrapping 

framework. The performance of the prediction model was measured using correlation 

coefficient and root-mean-square-error (RMSE) between the actual and predicted behavior 

scores.  

2.3.2. Neurosynth meta-analysis  

To interpret prediction results from a biological perspective, we adopted the Neurosynth meta-

analysis platform (Gorgolewski et al., 2015; Yarkoni et al., 2011) (http://neurosynth.org, 

http://neurovault.org). Neurosynth is a platform to characterize the neural systems associated 

with the topics (e.g., cognitive, movement, or decision) by identifying the relationship and 

mapping between the brain activation map and the topic loading. We uploaded 14 sets of the 

http://neurosynth.org/
http://neurovault.org/
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averaged standardized regression coefficients (7 for gF prediction, and 7 for WM-2bk-acc 

prediction) to the Neurosynth and Neurovalt websites to decode our results. The cognition-

related topics (78 topics) were selected by the intersection of the list of cognitive topics (250 

topics) in Table S1 of (Poldrack et al., 2012) and the list of all topics (1,308 topics) provided 

by the Neurosynth website. The decoded topics were visualized in the word-cloud function in 

Matlab. The Neurosynth decoding results of our 14 sets of the averaged standardized regression 

coefficients are available on Neurovault at https://neurovault.org/collections/8470/. 

3. Experiments and Results 

3.1. Experimental setups 

The proposed network models based on the simplex framework (i.e., FNsimplex and SFNsimplex) 

were compared with other competing network models using the same dataset: Pearson’s 

correlation functional network (FNPearson), partial correlation functional network (FNPartial), 

graphical LASSO functional network (FNgl), structural network (SN), and adaptive graphical  

LASSO network (SFNagl). In detail, the FNPearson and FNPartial were calculated using MATLAB 

(i.e., command corr and parcorr, respectively), and the FNgl and SFNagl were computed using 

a library implemented Python (Hsieh et al., 2014). 

We used graph theory for comparing networks and the comparison is heavily influenced by the 

number of nodes and the average degree of the network. Direct comparisons of graph measures 

between the networks with different numbers of nodes or average degree can yield spurious 

results (Drakesmith et al., 2015). To make fair comparison among various networks, we 

controlled all the networks to be at the same sparsity level (i.e., the ratio between the number 

of connected nodes and the number of all possible connections) according to the existing 

literature (Margulies et al., 2016; Toussaint et al., 2014; van Wijk et al., 2010; Wang et al., 

2009). Specifically, we retained the top 10% connections in actual values of a given network 

https://neurovault.org/collections/8470/
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for each subject.  

3.2. Whole-brain network characteristics 

The average connectivity matrices constructed with eight different network models (i.e., 

 

Figure 1. Visualizing the average network pattern across subjects. Sub-figures (a) and (b) 

visualized the average network pattern before thresholding and after thresholding, respectively. 

The brain regions were ordered according to the Cole-Anticevic Brain-side Network (Ji et al., 

2019).  



13 

 

FNPearson, FNPartial, FNgl, SFNagl, SN, FNsimplex, and SFNsimplex) were shown in Figure 1. Before 

any thresholding, the average network density (the ratio of non-zero elements in the 

connectivity matrix) across subjects is shown in Figure 2. We found that FNPearson and FNPartial 

were almost fully connected, (mean density of 99.72%, SD of 0.007%, and mean density of 

99.86%, SD of < 0.001% respectively), SN showed 52.04% of mean density, and FNgl, SFNagl, 

FNsimplex, and SFNsimplex showed 8.10% ~ 27.41% of mean density, as shown in Figure 2. The 

results were as expected because sparse models led to lowered mean density of connectivity. 

3.3. Structural-functional correlation  

To explore the network-level structural-functional relationship, we performed correlation 

analyses between proposed networks (i.e., FNsimplex, and SFNsimplex) and SN/FNPearson. Overall, 

the SFNsimplex showed a higher correlation coefficient with SN (0.401 for SFNsimplex and 0.390 

for FNsimplex) and a lower correlation with FNPearson (0.394 for SFNsimplex and 0.400 for FNsimplex) 

compared with the FNsimplex. Specifically, we found that both FNsimplex and SFNsimplex showed 

a high correlation with FNPearson in the primary visual, dorsal attention, language, frontoparietal, 

and posterior multimodal networks. Both FNsimplex and SFNsimplex showed a high correlation 

with SN in the secondary visual, auditory, ventral multimodal, and orbito affective networks. 

 
Figure 2. Boxplots of density values for seven different brain network approaches.  
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The detailed network-level correlation results were shown in Table 2. 

3.4. Consistency of networks across subjects 

We compared the consistency of the networks across subjects by calculating the proportion of 

the common edges across subjects (POC) and the coefficient of variation (COV). Given a 

specific edge (𝑖, 𝑗), its POC(𝑖, 𝑗) is the proportion of the subjects with nonzero edge weights, 

and is defined as follows: POC(𝑖, 𝑗) = |𝑥: 𝑥 ≠ 0,   𝑥 ∈ 𝐹𝑁(𝑖, 𝑗)|/𝑁,  where 𝐹𝑁(𝑖, 𝑗) denotes 

a set of all functional network edges between i-th and j-th regions across all samples, and N 

denotes the number of samples. The COV is the ratio of the standard deviation to the mean 

edge weight across subjects, and is defined as follows: COV(𝑖, 𝑗) = 𝑠𝑡𝑑(𝐹𝑁(𝑖, 𝑗))/

𝑚𝑒𝑎𝑛(𝐹𝑁(𝑖, 𝑗)) = √(1/𝑁) ∑ (𝐹𝑁(𝑛)(𝑖, 𝑗) − (1/𝑁) ∑ 𝐹𝑁(𝑛)(𝑖, 𝑗)𝑁
𝑛=1 )2𝑁

𝑛=1 /((1/

𝑁) ∑ 𝐹𝑁(𝑛)(𝑖, 𝑗) 𝑁
𝑛=1 ), where 𝐹𝑁(𝑛)(𝑖, 𝑗) denotes network edge value between i-th and j-th 

regions for n-th sample. The COV and POC were computed before and after thresholding the 

networks to measure inter-subject variability. 

We found that the FNPearson showed the lowest inter-subject variability (2.322 mean COV). The 

Table 2. Network-level structural-functional correlation for the simplex based 

networks. The correlation coefficients were reported in terms of twelve subnetworks. The sub-

network acronyms were reported as follows: V1=Primary visual network, V2=Secondary 

visual network, SM=Somatomotor network, CO= Cingulo-opercular network, DA=Dorsal 

attention network, L=Language network, FP=Frontoparietal network, A=Auditory network, 

DMN=Default mode network, PM=Posterior multimodal network, VM=Ventral multimodal 

network, and OA=Orbito affective network  

 Overall V1 V2 SM CO DA L FP A DMN PM VM OA 

SN vs. FNsimplex 0.390 0.018 0.456 0.394 0.416 0.331 0.459 0.284 0.681 0.437 0.434 0.482 0.649 

SN vs. SFNsimplex 0.401 0.041 0.474 0.417 0.437 0.332 0.465 0.283 0.704 0.451 0.443 0.541 0.676 

FNPearson vs. FNsimplex 0.400 0.537 0.34 0.39 0.438 0.475 0.596 0.508 0.529 0.462 0.544 0.215 0.289 

FNPearson vs. SFNsimplex 0.394 0.546 0.337 0.387 0.435 0.474 0.598 0.504 0.528 0.458 0.548 0.171 0.288 
 



15 

 

proposed networks (i.e., FNsimplex, and SFNsimplex) showed low inter-subject variability (5.423 

and 6.111 mean COV, respectively). However, the FNPartial, FNgl, and SFNagl showed high 

inter-subject variability (mean COV > 10). The full details were shown in Table 3.  

Figure 3 showed the heatmap and the histograms of the POC for after thresholding the network. 

Specifically, we observed high POC within sub-network module and low POC between sub-

Table 3. The comparison of mean coefficients of variation (COV) for seven different 

approaches for building the networks. The mean COV across the edges were reported. The 

low COV denoted that the constructed network showed lower inter-subject variability. 

 FNPearson FNPartial FNgl SFNagl SN FNsimplex SFNsimplex 

COV 2.322 151.660 53.349 54.880 3.167 5.423 6.110 
 

 
Figure 3. The comparison of proportion of common connection (POC) for seven different 

approaches for building the networks. The POC was computed after thresholding the 

networks. Each subfigure has two rows, where the first row visualized the heatmap of the POC, 

and the second row visualized the histogram of the POC. The histogram distribution following 

the power law denoted lower inter-subject variability. 
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network modules for all approaches, as shown the heatmap in Figure 3. Furthermore, we found 

that the distributions of POC in the FNPearson, SN, FNsimplex, and SFNsimplex approximately 

followed the power law. However, those of the FNPartial, FNgl, and SFNagl followed 

approximately normal distributions.  

3.5. Model evaluation for prediction tasks 

We compared the performance of prediction models based on an elastic-net regression 

framework using the degree centrality from the constructed networks including features from 

single-modality networks, either dMRI or rs-fMRI, (i.e., FNPearson, FNPartial, FNgl, FNsimplex, 

and SN), features from the network fusing dMRI and rs-fMRI (i.e., SFNagl, and SFNsimplex), 

and features from two different the single modality networks in a concatenated fashion (i.e., 

FNPearson + SN, FNPartial + SN, and FNgl + SN). 

3.5.1. Predicting working memory 2-back recall accuracy 

We compared the models to predict a working memory 2-back recall accuracy (WM-2bk-acc) 

in a format of mean ± SD over 1,000 bootstrap samples. The prediction model using features 

from SFNsimplex yielded the highest correlation coefficient of 0.304 ± 0.098 and a relatively low 

RMSE of 10.47 ± 1.39 between the actual and predicted WM-2bk-acc scores. The model of 

SFNagl yielded the second-highest correlation coefficient of 0.299 ± 0.114 with a low RMSE 

10.60 ± 1.53, and model of SN was the third place (i.e., the correlation coefficient of 0.281 ± 

0.099, and RMSE of 10.60 ± 1.40). The full details were shown in Table 4.  

The averaged standardized regression coefficients of the prediction model over 1,000 bootstrap 

samples for SFNsimplex and FNsimplex were shown in Figures 4-(a) and (d). The yellow or blue 

regions showed positive or negative contributions to predict the WM-2bk-acc, respectively. 

The selection probability values over 1,000 bootstrap samples for SFNsimplex and FNsimplex were 

shown in Figure 4-(b) and (e). The yellow regions were consistently selected regions over 1,000 
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bootstraps. We mapped the regression coefficients map with 78 cognitive-related topics 

extracted from Poldrack et al. (Poldrack et al., 2012), as shown in Figure 4-(c) and (f). The 

detailed results for other networks were shown in Supplementary Figure S2. 

For the SFNsimplex, we observed that the parietal lobe, prefrontal cortex, precuneus gyrus, and 

cingulum cortex contributed to predicting WM-2bk-acc scores. We found that listening, 

comprehension, attention, auditory, and perception were highly associated with the regression 

coefficients map, as shown in Figure 4-(c). For the FNsimplex, we observed that the 

somatosensory cortex, parietal lobe, prefrontal cortex, para-central lobe, and cingulum cortex 

contributed to predicting WM-2bk-acc scores. We found that comprehension, listening, 

perception, language, auditory, and attention, were highly associated with the regression 

coefficients map, as shown in Figure 4-(f). We found that twelve topics commonly contributed 

to the prediction for WM-2bk-acc between SFNsimplex and FNsimplex. The full details were shown 

in Table S1 and Figure S3 in Supplementary Material. 

 

Table 4. Comparison of the prediction models to predict a WM-2bk-acc score. The 

prediction performance was reported in terms of RMSE and correlation coefficient (r) between 

actual and predicted scores. The values were reported as format of mean ± standard deviation. 

The performance measurements were computed from 1,000 bootstrap samples. 

Functional 
N

etw
ork 

 FNPearson FNPartial FNgl FNsimplex 
r 0.059 ± 0.155 0.142 ± 0.116 0.257 ± 0.113 0.263 ± 0.090 

RMSE 11.85 ± 4.59 10.40 ± 1.12 10.40 ± 1.33 10.95 ± 1.58 

Functional  
+ 

 Structural  

 SN + FNPearson SN + FNPartial SN + FNgl SFNagl SFNsimplex 

r 0.255 ± 0.131 0.195 ± 0.151 0.241 ± 0.168 0.299 ± 0.114 0.304 ± 0.098 

RMSE 4.98 ± 1.88 9.52 ± 1.89 9..45 ± 1.85 10.60 ± 1.53 10.47 ± 1.39 

Structural 
N

etw
ork 

 SN     

r 0.281 ± 0.099     

RMSE 10.60 ± 1.40     
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3.5.2. Predicting fluid intelligence 

For gF score prediction, the prediction model using features from the SN yielded the highest 

correlation coefficient of 0.331 ± 0.109 and the lowest root-mean-square-error (RMSE) of 4.48 

± 0.38 between the actual and predicted gF scores. The models of SFNsimplex yielded the second-

highest correlation coefficient of 0.287 ± 0.090 with the RMSE of 4.54 ± 0.37, and model of 

the FNsimplex took the third place (the correlation coefficient of 0.271 ± 0.054, and RMSE of 

4.53 ± 0.35). The full details were shown in Table 5.  

The averaged standardized regression coefficients of the prediction model over 1,000 bootstrap 

samples for SFNsimplex and FNsimplex were shown in Figures 5-(a) and (d). The yellow or blue 

 
Figure 4. The activation pattern maps and the related cognitive topics for predicting WM-

2bk-acc score. Top row: the mean standardized regression coefficients from the prediction 

model and their decoding results using SFNsimplex. Bottom row: the mean standardized 

regression coefficients from the prediction model and their decoding results using FNsimplex. 

For each sub-figure, left column: mean standardized regression coefficients map. Center 

column: selection probability map. Right column: word clouds plot related to cognitive 

function in the Neurosynth database. 
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regions showed positive or negative contributions to predict the gF score, respectively. The 

selection probability values over 1,000 bootstrap samples for SFNsimplex and FNsimplex were 

shown in Figures 5-(b) and (e). The yellow regions were consistently selected regions over 

1,000 bootstraps. We mapped the regression coefficients map with 78 cognitive-related topics 

extracted from Poldrack et al. (Poldrack et al., 2012), as shown in Figure 5-(c) and (f). The 

detailed results for competing networks were shown in Supplementary Figure S4. 

For the SFNsimplex, we observed that the sensorimotor cortex, medial prefrontal cortex, 

ventrolateral prefrontal cortex, and precuneus gyrus were highly contributing to predicting gF 

score. We found movement, action, imagery, rhythm, and auditory were highly associated with 

the regression coefficients map, as shown in Figure 5-(c). For the FNsimplex, we observed that 

the somatosensory cortex, prefrontal cortex, mid temporal gyrus, and cingulum cortex 

contributed to predicting gF scores. We observed action, retrieval, imagery, language, and 

multisensory were highly associated with the regression coefficient map, as shown in Figure 5-

(f). We found that seven topics commonly contributed to the prediction for gF between 

Table 5. Comparison of the prediction models to predict a gF score. The prediction 

performance was reported in terms of RMSE and correlation coefficients between actual and 

predicted scores. The values were reported as format of mean ± standard deviation. The 

performance measurements were computed from 1,000 bootstrap samples.  

Functional 
N

etw
ork 

 FNPearson FNPartial FNgl FNsimplex 
r 0.062 ± 0.109 0.103 ± 0.110 0.080 ± 0.104 0.271 ± 0.054 

RMSE 5.28 ± 2.06 4.79 ± 0.44 4.77 ± 0.40 4.53 ± 0.35 

Functional  
+ 

 Structural  

 SN + FNPearson SN + FNPartial SN + FNgl SFNagl SFNsimplex 

r 0.255±0.131 0.110 ± 0.080 0.112 ± 0.089 0.105 ± 0.107 0.287 ± 0.090 

RMSE 4.98±1.88 4.61 ± 0.51 4.61 ± 0.40 4.73 ± 0.39 4.54 ± 0.37 

Structural 
N

etw
ork 

 SN     

r 0.331±0.109     

RMSE 4.48±0.38     
 



20 

 

SFNsimplex and FNsimplex. The full details were shown in Supplementary Table S1 and Figure S3.  

4. Discussion 

In this study, we used seven different techniques, including Pearson’s correlation, partial 

correlation, graphical LASSO, adaptive graphical LASSO, structural connectivity, simplex 

regression, and simplex regression with GraphNet, to model brain connectivity. We compared 

the network characteristics in terms of the network density, consistency, and network 

measurements and performances of the prediction task for cognitive-behavioral outcomes: 

working memory 2-back accuracy and fluid intelligence. We choose node-based degree 

centrality (DC) measures to predict the clinical outcomes due to its relative simplicity, 

 
Figure 5. The activation pattern maps and the related cognitive topics for predicting the 

gF score. Top row: the mean standardized regression coefficients from the prediction model 

and their decoding results using SFNsimplex. Bottom row: the mean standardized regression 

coefficients from the prediction model and their decoding results using FNsimplex. For each sub-

figure, left column: mean standardized regression coefficients map. Center column: selection 

probability map. Right column: word clouds plot related to cognitive function in the 

Neurosynth database. 
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neurobiological interpretability, and wide usage compared with four other regional measures, 

including betweenness centrality, eigenvector centrality, clustering coefficients, and local 

efficiency, as shown in Supplementary Section 2 and Table S2. 

Many studies demonstrated that functional communication in the brain was highly associated 

with the structural connection (Baum et al., 2020; Greicius et al., 2009; Rykhlevskaia et al., 

2008; Van Den Heuvel et al., 2009). We confirmed that the constructed networks showed 

similar functional-structural correlation patterns as shown in Section 3.3 and Table 2. We found 

that SN outperformed all four kinds of FNs, including FNPearson, FNPartial, FNgl, and FNsimplex, 

in terms of correlation in Tables 4 and 5. A previous study reported that the correlation between 

FA values and working memory score was higher than that of blood-oxygen-level-dependent 

response (Olesen et al., 2003). Several studies showed that working memory score was 

associated with the white matter integrity in the parietal lobe and lateral prefrontal cortex, 

which supports our findings (Baddeley, 2003; Klingberg, 2006; Takeuchi et al., 2010). Previous 

studies demonstrated that complex brain structure information, including brain network 

organization of white matter, total brain volume, and cortical thickness, was linked with human 

intelligence (Chiang et al., 2009; Choi et al., 2008; Park et al., 2014; Thompson et al., 2001). 

These studies collectively supported and suggested that SN could have a stronger association 

with the working memory score than FNs. 

We demonstrated that the multimodal integration network models (i.e., SFNsimplex and SFNagl) 

offer advantages over single modal network models (i.e., FNPearson, FNPartial, FNgl, FNsimplex, 

and SN). Specifically, we observed that only the proposed model (i.e., SFNsimplex) outperformed 

SN in the WM-2bk-acc prediction task and it was also ranked the second place in gF prediction 

task. Furthermore, the prediction performance using SFNsimplex was better than those of the 

FNsimplex: up to 15.58 % for predicting WM score, 5.90% for predicting the gF score. Here, we 

identified several brain regions predictive of cognitive functions for working memory and fluid 
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intelligence. These regions included frontoparietal and limbic regions, as well as 

somatosensory areas. The frontoparietal and limbic cortices are located at the higher end of the 

cortical hierarchy, which controls human cognition (Margulies et al., 2016; Mesulam, 1998). 

Our findings are supported by earlier studies that associated connectomics in higher-order brain 

regions and an individual’s cognitive performance (Dryburgh et al., 2019; Greene et al., 2018; 

Jiang et al., 2020). Somatosensory regions are located at the other end of the cortical hierarchy 

from frontoparietal and limbic networks, which regulates an individual’s primary sensory 

processing such as motor, vision, and audition (Margulies et al., 2016; Mesulam, 1998). The 

development of sensory regions is highly associated with the development of executive 

controls. Indeed, the sensory-first theory supports that the abnormal maturation of sensory 

circuits during early age yield higher-order functions in adults, such as communication and 

social cognition (Hong et al., 2019; Robertson and Baron-Cohen, 2017). These studies 

collectively support our findings that the identified brain regions are associated with executive 

functions and further provide the rationale for constructing structural-enriched functional 

networks. 

This study has several limitations. First, we performed the multimodal network integration by 

regularizing the regression model with the GraphNet penalty focusing on the squared loss 

between signals from one region and estimated signals from the other regions. This was 

equivalent to optimization at the column level of the raw data. Still, the same network can be 

generated by solving the simplex regression at the node level equivalent to the optimization of 

each element in the raw data (i.e., element level), which is left for future research. Another 

issue is that we employed the same parcellation to integrate functional and structural networks, 

where the performance could be suboptimal. The different imaging modalities (e.g., rs-fMRI 

and dMRI) require different parcellations (e.g., automated anatomical label and Power 

templates) optimized for the given modality. Applying different templates to the model may 
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vary the performance for integrating functional and structural networks, which is an interesting 

future research topic. Another issue is sample size. We evaluated clinical benefits of networks 

by measuring predictive performance. We collected neuroimaging data from the HCP database 

with limited samples. The relatively small sample size might lead to an overfitting problem. 

Specifically, the predictive performances of three kinds of Structural+Functional methods (i.e., 

SN + FNPearson, SN + FNPartial, and SN + FNgl) were lower than that of SN. This could be partly 

attributed to the fact that the number of features (i.e., 720 features) was larger than the sample 

size (i.e., 218 samples), leading to an overfitting risk. Hence, our algorithm's results should be 

further confirmed with independent replications and possibly with additional biological 

evidence. 

5. Conclusion 

In this study, we applied a simplex regression model with GraphNet to estimate SFN better. 

Specifically, the SFNsimplex approach improved the predictive performance for cognitive-

behavioral outcomes compared to seven different network models. Furthermore, the SFNsimplex 

showed robust performance in network consistency across subjects. We hope to apply our 

algorithm to disease cohorts to see if our algorithm generalizes to other cases.  
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