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ABSTRACT

Imaging genomics is a rapidly evolving field that combines state-of-the-art bioimaging with
genomic information to resolve phenotypic heterogeneity associated with genomic variation,
improve risk prediction, discover prevention approaches, and enable precision diagnosis and
treatment. Contemporary bicimaging methods provide exceptional resolution generating
discrete and quantitative high-dimensional phenotypes for genomics investigation. Despite
substantial progress in combining high-dimensional bioimaging and genomic data, methods for
imaging genomics are evolving. Recognizing the potential impact of imaging genomics on the
study of heart and lung disease, the National Heart, Lung, and Blood Institute convened a
workshop to review cutting-edge approaches and methodologies in imaging genomics studies,
and to establish research priorities for future investigation. This report summarizes the
presentations and discussions at the workshop. In particular, we highlight the need for
increased availability of imaging genomics data in diverse populations, dedicated focus on less

common conditions, and centralization of efforts around specific disease areas.
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A. INTRODUCTION

The burden of heart and lung disease remains immense despite the substantial progress
made by large scale population-based initiatives such as primary prevention statin therapy' and
smoking cessation®. Advancing the prevention of heart and lung diseases depends on
identifying individuals at increased risk and targeting lifestyle modifications or medical therapies
to reduce the progression or consequences of the condition. Multivariable risk prediction models
provide accurate assessments at the population level, but individual-level risk prediction
remains challenging;®> many events occur in individuals determined to be at low risk*. Methods
that more precisely identify heart and lung disease risk and its biological determinants are
needed to reduce these disorders.

Genomics assesses how variation in the genetic code contributes to phenotypic
heterogeneity. In heart and lung diseases, genetic mutations have been identified to contribute
to numerous (usually rare) conditions, and ever-larger genome-wide association (GWA) studies
seek to associate genetic variation (common and rare) with common clinical phenotypes.
Actionable insights from genetic association studies depend on mapping genetic risk variants to
specific clinical phenotypes or discrete pathophysiologic mechanisms to identify true causal
variants. However, the identification of true causal genetic variants is challenging with traditional
GWA studies when there is high correlation among variants in close proximity to each other
(linkage disequilibrium) or because a large number of variants identified by GWA studies map to
intergenic areas®. Moreover, common heart and lung diseases are heterogeneous conditions
rendering GWA studies inherently less powerful both statistically and with regard to gaining
potential mechanistic insights. Precise clinical phenotyping is crucial to disentangle genetic
drivers of heart and lung diseases.

Progress in bioimaging, assisted by computational advances and the use of artificial
intelligence (Al) technologies, enables identification of more precise imaging features to serve
as intermediate and/or advanced phenotypes for genetic analyses. The synergy between
bioimaging and genomics lies in the fact that modern molecular and statistical genetics methods
embrace quantitative phenotyping (i.e., description of traits on a continuous scale).
Contemporary bioimaging methods provide phenotypic measurements with exceptional
resolution (e.g., three-dimensional spatial sampling of 100-500 microns), and, therefore, are
ideally suited as quantitative high-dimensional phenotypes. By combining state-of-the-art
bioimaging techniques with genomic information, the emerging field of imaging genomics seeks
to elucidate the genomic architecture of bioimaging traits. With higher resolution of both

genomic interrogation and bioimaging phenotypes, imaging genomics has the potential to
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resolve heterogeneity in the phenotypic expression associated with genomic variation, improve
disease risk prediction, discover novel prevention approaches, and enable precision diagnosis
and treatment (Figure 1).

The National Heart, Lung, and Blood Institute convened a workshop in October 2019 in
recognition of this rapidly evolving field with the aim of bringing together a multi-disciplinary
group of experts to review the latest cutting-edge approaches and methodologies in imaging
genomics studies in heart and lung diseases, and to establish research priorities for the next
phase of imaging genomics investigations’. In the following report, we summarize the
presentations and recommendations from the workshop to provide a resource to serve as a

roadmap of for the next phase of imaging genomics investigations.

B. IMAGING MODALITIES AND PHENOTYPES IN HEART AND LUNG DISEASES

Imaging genomics analyses rely on robust, reproducible, and clinically relevant discrete
and quantitative imaging traits. The more precisely these imaging traits reflect underlying
molecular mechanisms explained by genomic variation, the higher the expected yield of imaging
genomics findings may be. A detailed review of imaging techniques themselves is beyond the
scope of this workshop report. In this section, we review common imaging modalities used in
heart and lung diseases with a focus on imaging techniques that are being used, or may be

used in future studies, as quantitative traits for imaging genomics analysis (Table 1).

Imaging of the heart and vasculature

Computed tomography (CT)

CT imaging can be performed rapidly with minimal radiation exposure and provides
detailed assessment of cardiovascular structures with high spatial resolution®. Calcium burden
in the coronary arteries (coronary artery calcium, CAC), great vessels, or cardiac valves can be
detected by CT imaging without intravenous contrast (or by other imaging techniques such as
chest X-ray®) and each of these traits is associated with risk of future cardiovascular events'®'".
Accordingly, imaging investigations have evaluated the genomic determinants of vascular and
valvular calcification. Initial GWA studies for CAC identified single nucleotide variants (SNVs)
that were also associated with clinically apparent coronary artery disease'*", lending support to
the clinical (and pathogenetic) overlap of CAC and clinical atherosclerotic events. Translation of
these findings to clinical risk prediction or identification of novel therapeutic targets has been
limited by lack of linkage to disease-causing mechanisms®. Calcification of other arterial sites is

also associated with cardiovascular risk. Recently, investigators identified SNVs within the
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HDAC9 gene to associate with aortic calcification'. HDAC9 knockout mice displayed reduced
aortic calcification indicating that HDAC9 may be an important regulator of vascular calcification.
In addition, calcification in the aortic valve is easily obtained from CT, reproducible, and
represents an earlier stage in aortic valve disease that predicts future clinical aortic stenosis’".
GWA studies of aortic valve calcium linked SNVs in the apolipoprotein(a) gene to aortic valve
calcification" and to clinical manifestations of aortic stenosis'®. Clinical trials are now testing the
hypothesis that pharmacologic lowering of circulating apolipoprotein(a) levels leads to
reductions in aortic stenosis'®. As shared risk factors and disease co-occurrence challenge the
separation of causal factors for atherosclerotic CVD and calcific aortic stenosis in observational
studies, this interventional trial may be particularly informative.

CT imaging of the coronary arteries with intravenous contrast (CT angiography) can
provide detailed assessment of coronary plaque burden, location, and morphology, and the
degree of blood flow obstruction as well as integrative measures such as fractional flow reserve
and plaque characterization®'"'®. Whereas the requirement for intravenous contrast and
technical expertise required for image acquisition has limited the availability of coronary CT
angiography in large community-based cohorts, smaller studies have associated coronary
stenoses by CT angiography with family history of coronary heart disease'®?°. Future studies of
larger samples will be important to elucidate genetic markers of relevant atherosclerotic plaque

characteristics.

Echocardiography

Echocardiography provides detailed assessment of cardiac structure and function
without exposure to contrast agents or radiation. As the clinical syndrome of heart failure
progresses through stages of asymptomatic structural and functional cardiac remodeling,
echocardiographic traits are important for imaging genomic studies of heart failure. Toward this
end, GWA studies of echocardiographic traits have identified numerous SNVs, genes, and
pathways linked with cardiac structural remodeling and heart failure risk?'°.

Imaging genomics has been used to discover rare variants associated with
cardiomyopathy phenotypes, such as dilated cardiomyopathy (DCM). DCM is defined as
enlarged left ventricular dimensions with reduced left ventricular function. The most common
underlying genetic cause of DCM is truncation variants in the TTN gene, which encodes the
sarcomeric protein titin?®. There is not one common variant underlying DCM but rather there are
many individual TTN truncations that are each rare in the population. In aggregate, 1-2% of the

general population carries TTN truncations, which are associated with subclinical



O 00 N o 1 A W N -

W W W W W N NNNNDNDNDNNNIRRRRRRPRRP P R R
B W N P O OO®OWMNO U MSMBWNPRPR O VOWOWNOGUDMWN PR O

echocardiographic features, such as lower ejection fraction, and demonstrate ten-fold
enrichment in DCM cases?”?®. Importantly, not all TTN truncation carriers manifest with a
cardiomyopathy phenotype. Taking a genotype-first approach, one study queried the electronic
health record for diagnoses associated with TTN truncations and uncovered a higher
prevalence of heart failure, atrial fibrillation, and paroxysmal non-sustained ventricular
tachycardia in the absence of manifest DCM?°. This ‘genotype-first’ view provides an estimate of
the phenotypic expressivity of genetic variants and offers a broader assessment of the range of
clinical diagnoses linked to a given genetic signature. In addition to TTN truncation variants,
mutations in at least 50 genes lead to inherited cardiomyopathies, and each is associated with
variable expressivity®.

Future genomic studies of echocardiographic traits may use additional
echocardiographic measures, such as strain imaging®' or cardiac microstructure®?, as well as

enhanced clinical phenotyping.

Cardiac magnetic resonance imaging (CMR)

CMR provides detailed structural and functional assessment of the heart and great
vessels and can be performed efficiently in large community-based studies®. Indeed, CMR is
being performed in the UK Biobank with a planned enrollment of 100,000 individuals®. In a
report of the first 36,000 participants with CMR data, GWA identified 57 different genetic loci
that were associated with cardiac structure and function®. A polygenic risk score derived from
these loci was associated with dilated cardiomyopathy risk. Besides measuring heart structure
and function, dedicated CMR imaging protocols can be used to evaluate specific cardiac
features such as inducible myocardial ischemia®®, inflammation and fibrosis®’, and findings
suggestive of specific underlying disease states®?. The capability of CMR to accurately
measure cardiac structure and function and complementary detailed imaging phenotypes

makes it important for future imaging genomics studies.

Molecular imaging of the heart

Molecular imaging leverages targeted tracers labeled with an imaging reporter to identify
specific biological processes*’. For the assessment of coronary plaque activity, tracers can be

404 o Ultra-

used to assess vascular inflammation (18F-fluorodeoxyglucose with PET imaging
small superparamagnetic particles of iron oxide imaged with CMR*?), or microvascular
calcification (representing active inflammation and higher risk for plaque rupture and identified

by the 18F-fluoride PET tracer*®). PET imaging can also be used to assess myocardial
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perfusion, metabolism**, and energetics*®. Other imaging techniques such as magnetic

resonance spectroscopy or imaging the cardiac sympathetic nervous system*®, may provide
insight into disease activity and status. These emerging imaging techniques allow linkage of
genetic variation with discrete biochemical processes. However, the feasibility of conducting

these studies at the scale necessary to facilitate genetic interrogation is yet unproven.

Lung imaging phenotypes
Chest CT

Chest CT imaging provides excellent spatial resolution of lung architecture and
diagnosis of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD),
emphysema, and interstitial lung disease (ILD). Qualitative chest CT assessments used in
clinical practice are being expanded to allow phenotypic characterization of early disease states.
Additionally, quantitative chest CT imaging approaches facilitate association with environmental
exposures and genomic variation in large consortia, such as COPDGene*’, SPIROMICS*®, and
the MESA Lung Study*.

Initial imaging genomic assessments of COPD and emphysema used volumetric chest
CT scans to generate measures of emphysema as defined by the percent of lung occupied by
low attenuation areas (LAAs; regions with less than -910 or -950 Hounsfield Units [HU])*°. Other
quantitative chest CT measures can be used for imaging genomic analyses, including airway
wall thickness and luminal diameter, small vessel pruning, large artery characteristics, gas

trapping, bronchiectasis, and fibrosis, among others®*’. Subsequently, GWA studies have

|51,52 ( 53,54

assessed quantitative measures of emphysema overal including its patterns and
distribution®) in conjunction with other airway phenotypic assessments*®*¢*”. While GWA
studies of quantitative chest CT measures have made important discoveries, the largest COPD
GWA studies have focused on spirometry, which is more readily available in large numbers of
individuals. In the largest COPD GWA study to date (comprising more than 335,000
participants) 82 independent loci were associated with COPD defined by spirometry®®. Some of
these loci are more strongly associated with measures of emphysema (e.g., FAM13A and
HHIP), or airways measures (e.g. HTR4 and RASEF) separately, while others (e.g., EEFSEC
and MFAP?2) are associated broadly across phenotypes®®. Increased sample sizes and wider
availability of quantitative CT phenotypes will improve our understanding of the genetic
architecture of COPD.

Qualitative and quantitative chest CT imaging assessments can also identify features

associated with early forms of interstitial lung disease (ILD). Interstitial lung abnormalities (ILA;
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recently formally defined by the Fleischner Society®®) are qualitative chest CT assessments
suggestive of underlying ILD or pulmonary fibrosis in individuals not previously suspected of
having ILD. Efforts to identify ILD In its early stages may improve detection and prevention
methods for diseases such as idiopathic pulmonary fibrosis (IPF), the most common and severe
form of ILD with a mortality rate rivaling many malignancies®. ILAs therefore represent valuable
phenotypes for imaging genomics analyses. Variants in the promoter region of the mucin 5B
gene (MUC5B; a common variant that may explain as much as 30% of IPF risk®') have been
consistently associated with ILAs®®*. A recent GWA study demonstrated four additional loci
associated with both ILA and IPF (including those near genes DDP9, DSP, FAM13A, and
IVD)®*. This study also demonstrated novel genetic loci associated with ILAs but not with IPF
suggesting that visually detected ILAs likely includes phenotypically heterogeneous subsets,
some of which may not correlate with overt IPF®.

Quantitative efforts to identify early stages of ILD and pulmonary fibrosis include
assessments of high attenuation areas (HAAs; typically between -600 and -250 HUs), local
histograms (referred to as “interstitial features”), and deep learning-based lung textural
assessments of lung fibrosis®®. These quantitative chest CT features can potentially detect,
characterize, and grade early stages of pulmonary fibrosis. However, these measures are not
interchangeable, demonstrate varying degrees of sensitivity and specificity when compared to

66,67

visual assessment of pulmonary fibrosis®”’, and can be affected by technical differences

between studies.

Molecular imaging of pulmonary fibrosis

Molecular probes targeting several components of pro-fibrotic pathways are under
development for imaging fibrotic activity in IPF. By discovering early activity in pulmonary
fibrosis before it is apparent by CT imaging, these molecular probes may identify earlier forms of
the disease prior to overt lung fibrosis and can potentially be used to assess therapeutic
responses to antifibrotic agents.

Molecular probes have been developed for type | collagen, a primary component of
fibrosis (*®Ga-CBP8)® and for collagen cross-linking (Gd-CHyd)°. In clinical studies, patients
with IPF had increased lung uptake of ®®Ga-CBPS8, but it was also found in areas of normal
appearing lung suggesting that ®*Ga-CBP8 may be sensitive in detecting regions of active
collagen deposition prior to manifest fibrosis evident on CT imaging™. Probes also target drivers
of fibrosis, such as integrin a,Bs’', and the C-X-C chemokine-receptor type 4 (CXCR4)".

Somatostatin receptor 2 is expressed on fibroblasts and increases in fibrosis’>. Somatostatin
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receptor expression in humans with pulmonary fibrosis can be assessed using '"'In-octreotide
scintigraphy (Octreoscan) and ®®Ga-DOTANOC PET-CT’*"®. Beyond fibrosis-specific pathways,
broader processes such as vascular leak’®, coagulation, and inflammation have been implicated
in the development of pulmonary fibrosis and each can be assessed with specific molecular
probes’”®. Similar to molecular imaging of the heart and vasculature, molecular imaging of the

lungs is not yet being done at the scale necessary for GWA studies.

C. ARTIFICIAL INTELLIGENCE FOR BIOIMAGING

Terminology and methods

Al is a general term describing disciplines that aim to mimic human intelligence®'. Here,
we focus on the relatively narrow functions of data interpretation and risk prediction, but Al
technologies capable of accomplishing complex human tasks are also being developed and
may have additional wide-ranging applications®. At the core of Al is machine learning (ML),
which uses mathematical models to substitute for human thought and decision-making. ML
algorithms take inputs (e.g., clinical characteristics) and map them to given outputs (e.g.,
mortality), optimizing the fit of the model to achieve optimal performance. ML models are not
explicitly programmed to achieve a given task. Instead, they minimize the ‘cost’ of the model
(the proportion of misclassified patients)®’. This is regarded as the learning process of ML
algorithms. Accordingly, ML algorithms gradually increase their accuracy as they ‘see’ and

‘learn’ from more data.

Application of Al for identification of anatomical structures and pathologies

Deep learning (DL) is a type of ML that can use pixels or voxels from bioimaging data as
inputs to neural network models, which iteratively relate inputs to outputs in flexible models
allowing complex nonlinear functions®®. DL is well-suited for automating time-intensive tasks in
imaging interpretation®. To train such an algorithm, images are used as inputs, and labeled
segmentations are needed as outputs. The DL algorithm can then learn to automatically
segment radiological images to identify potential pathologies. For example, large contemporary
datasets (such as UK Biobank) provide vast amounts of imaging data, which are mostly present
in “unlabeled” formats without phenotypic measures or annotation. Several groups have recently
developed DL models to derive clinically relevant phenotypic data from these images®®’. In
addition, DL algorithms can identify diabetic retinopathy from retinal images with a higher risk of
vision loss in individuals with diabetes®. There are several potential challenges in developing

effective DL algorithms for phenotypic characterization, however. These models may not
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translate well from one sample/dataset to another, as even slight differences in image
acquisition and quality may negatively impact model performance®%. Furthermore, DL
algorithms are statistical models that do not understand the underlying meaning of the inputted
information. It is therefore conceivable that decisions are being made not based upon disease-
related imaging abnormalities, but based on acquisition settings or other imaging features, such
as markers on chest X-rays®'. In addition, it is increasingly recognized that DL algorithms may
perpetuate health inequities based on gender, race, ethnicity, or other factors if training data
sets lack demographic diversity or if outcomes partially reflect underlying healthcare

disparities®.

Identification of abnormalities and novel imaging phenotypes

Al-derived outcomes may provide novel bioimaging phenotypes that are not apparent to
the human eye through unbiased assessments of imaging characteristics or imaging data. For
example, DL algorithms can extract complex information from low cost and widely available
images such as chest X-rays that can be used to predict incident lung cancer or cardiovascular,
respiratory, or lung cancer mortality®***. Radiomics is a feature-generative technique that
derives new imaging measures based on mathematical properties of the imaging data including
intensity distribution, texture, and shape®. Radiomic analysis of coronary plaques may
potentially improve prediction of cardiovascular events via detailed description of high-risk
properties of atherosclerotic lesions®*’. Analysis of radiomic features describing texture
properties of the myocardium on CMR images may enable detection of subtle differences in the
myocardial intensity values to better distinguish patients with subacute and chronic myocardial
infarction®®. Radiomics features may also help to differentiate pathologies with similar gross
appearance to the human eye, such as hypertensive heart disease and hypertrophic
cardiomyopathy®. It is important to note that potential association of radiomic features with
disease entities does not imply causation®. Connecting biological processes with specific
radiomic features is, therefore, only speculative at present.

Al methods are being applied to CT images to develop novel disease classifications in
COPD (Figure 2). For example, DL algorithms have been trained to classify emphysema on
lung CT and scores derived from the DL algorithms can improve classification of emphysema
and outcome prediction when compared to visual scoring'’. Using these methods, investigators
identified two distinct trajectories of emphysema progression: 1) airway->tissue type in which
large airway abnormalities precede emphysema; and 2) tissue—~>airway type in which small

airway dysfunction and emphysema antedate large airway wall abnormalities 2. Unsupervised

10
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ML methods have also been applied to define novel emphysema sub-phenotypes based upon
texture and anatomical location of emphysema on lung CT scans'®.

Radiomics and DL-based imaging traits have been mostly evaluated in small pilot
studies, thus far; larger scale observational studies'®, clinical trials, or innovative study designs
such as in silico trials, are necessary to assess their superiority over traditional imaging

measures for clinical applications.

D. EMERGING GENOMIC APPROACHES

The GWA era has yielded many important mechanistic insights and information
regarding genetic variants associated with higher disease risk. However, several barriers to
clinical translation of genomic findings are present currently. First, there remains substantial
unexplained heritability for many common complex diseases of multifactorial etiology. Second,
the underlying mechanisms linking genetic variants with imaging traits, and ultimately with
disease states, is currently lacking for many SNVs®. Third, variable expressivity (penetrance) of
genetic variation needs to be better understood through analysis of gene-gene and gene-
environment interactions, and the variability of such interactions in the time domain over the
lifecourse. Fourth, genetic determinants of bioimaging traits may vary based on racial/ethnic
background and should be studied in diverse populations. Advances in the resolution of genetic
sequencing and harnessing complementary multi-omic analyses have the potential to address

these current challenges thereby broadening the impact of imaging genomics investigations.

Whole genome sequencing

The initial phases of GWA studies used genotyping arrays to directly ascertain 200,000—
1 million genetic variants and then leveraged reference panels to impute a larger number of
variants'"'?'*?2_ However, historical reference panels have important limitations including
inadequate coverage of rare or private variants, difficulty identifying causal variants due to
linkage disequilibrium blocks, and the potential for bias when non-European populations are
less well represented in the derivation samples.

Whole genome sequencing (WGS) provides expanded coverage of the entire genome
thereby overcoming the reliance on reference panels and imputation and enabling a balanced
assessment across the genome. To harness WGS for genetic discovery, the National Heart,
Lung, and Blood Institute initiated the large-scale WGS TOPMed (Trans-Omics for Precision

Medicine) initiative (www.nhlbiwgs.org). TOPMed was established to advance genetic discovery

by addressing some of the limitations of the European-ancestry centric, and array-based GWA

11
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studies conducted previously. Over 80 existing studies with phenotypic data are part of
TOPMed. Across these studies, TOPMed has generated WGS data on over 181,000
participants, at an average sequencing depth of 38x. Ethnic and racial diversity is a priority in
TOPMed with 40% participants of European ancestry, 31% of African ancestry, 15% of Hispanic
ancestry, and 9% of Asian ancestry.

Data on the first 53,831 participants with available sequencing data in TOPMed were
recently reported’'®. In this subsample, 410 million genetic variants were identified, of which
97% had a minor allele frequency below 1%. In fact, 46% appeared only in a single individual
(‘singletons’). When this dataset was used as a reference panel for genotype imputation, the
variants with minor allele frequencies as low as 0.01% were imputed with high quality (r* >0.9)
in individuals of both European and African ancestry allowing the inclusion of much rarer
variants in GWA studies than was possible with previous reference panels. The inclusion of
participants from multiple ancestry groups leads to a substantial reduction in the size of linkage
disequilibrium blocks at most loci (i.e., trans-ancestry fine-mapping) enhancing the ability to
identify causal variants within large blocks of the genome with relatively high linkage

disequilibrium in certain populations'®

(NHLBI TOPMed imputation server can be found at
https://imputation.biodatacatalyst.nhlbi.nih.gov/).

With resources available through TOPMed, WGS data can be combined with high

quality complementary “omics” data (including epigenetics, transcripts, metabolites, and
proteins) and detailed phenotypic information (available phenotypic data can be found at

https://biodatacatalyst.nhlbi.nih.gov). Numerous studies included in TOPMed have heart and

lung imaging phenotypes including CAC, echocardiograms, CT, and MRI. GWA studies
leveraging WGS are now underway and are expected to identify variants that are not well
covered by standard imputation approaches such as rare variants, variants on the X
chromosome, and variants restricted to non-European populations, providing the potential for

discovery of novel disease-causing variants.

Trans-omic signatures of imaging traits

High-dimensional molecular data (e.g., transcriptomics, proteomics, metabolomics) can
provide complementary information to genetic studies for identifying mechanisms of disease
related to imaging phenotypes. These tools can be used to better understand the downstream
implications of genetic variants, to improve the precision of CVD phenotyping by defining
endophenotypes that can be correlated with imaging traits, or to identify novel disease-

associated biological pathways for mechanistic investigations'®. Importantly, molecular

12
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signatures may reflect causal links between genetic variation and clinically relevant phenotypes
(such as bioimaging traits), but they also might represent compensatory mechanisms or
epiphenomena associated with both the genetic variant and the phenotype, but without a causal
relation. Thus, an integrative trans-omic approach that assimilates data across profiling
platforms will be the ideal approach to elucidate the potential roles of different molecular
signatures in disease pathogenesis. Herein, we discuss investigations using proteomic and
metabolomic data to examine molecular signatures of adverse cardiac structural remodeling
traits as examples of how high-dimensional data derived from different profiling methods may be

used to complement imaging genomics analyses'®’.

High-throughput proteomic and metabolomic data and imaging phenotypes

Numerous proteins have been associated with imaging signs of cardiac remodeling and
with heart failure risk in prior studies assessing a limited set of candidate proteins'®.
Technological advances in high-throughput proteomic profiling platforms now enable deep and
relatively unbiased profiling of more than 5000 of the =20,000 human proteins'®®, which can
provide a broader view of the relations of the circulating proteome with cardiac imaging traits.
For example, proteomic signatures of coronary flow reserve can be identified in peripheral
blood'"°. Such a molecular signature can be used as a discrete disease phenotype for other
analyses (such as genetic discovery) or to uncover biological pathways relevant to heart failure
pathobiology. Proteomic profiling has also been used to evaluate how inflammatory pathways
may mediate the association of general comorbidity and echocardiographic traits in patients with

111

heart failure with preserved ejection fraction' . A discovery platform comprising =1300 plasma

proteins was used to identify novel associations of proteins representing different biological
pathways with echocardiographic traits'"?.

Hundreds of small molecule metabolites can also be measured from the blood using
nuclear magnetic resonance- or mass spectrometry-based techniques''®. Heart failure and its
imaging correlates represent attractive conditions for metabolomic analysis as the failing heart
undergoes extensive metabolic remodeling with reduced fatty acid oxidation and a shift to using
glucose as its primary fuel source''*. The reduction in fatty acid oxidation is reflected by
increased circulating levels of long-chain acylcarnitines’". In individuals with aortic stenosis,
long-chain acylcarnitines are present in higher levels in blood in those with adverse cardiac
remodeling phenotypes, such as severe left ventricular hypertrophy and reduced LV systolic
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function . Within 24 hours after aortic valve replacement, a drop in circulating long-chain

acylcarnitine concentrations can be observed, demonstrating changes in cardiac metabolism
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that precede detectable changes in cardiac structure or function'®. Additional metabolites, such
as lipid ceramides'", kynurenine (a tryptophan derivative implicated in vasodilation), and
aminoadipate are also associated with cardiac structure and function''®. Metabolite profiling,
therefore, can identify signatures in circulating blood that correspond to molecular abnormalities
in the heart itself; these abnormal metabolite profiles relate to imaging measures of heart
structure and function and may predict future heart failure. It can be a challenge, however, to
decipher whether these molecular signatures are causal in the disease process. Leveraging
longitudinal molecular data in carefully phenotyped individuals before the onset of manifest
heart or lung disease will be an important tool to elucidate which molecular profiles or pathways

might play causal roles.

Correlating circulating protein and metabolite concentrations with genetic determinants

Circulating protein and metabolite concentrations are partly heritable, with a relatively
large amount of their variation explained by genetic factors''®*'?'. Protein or metabolite levels
that are related to imaging traits can be associated, therefore, with genetic variation (i.e., protein
quantitative trait loci [pQTLs] or metabolomic quantitative trait loci [mQTLs]) to discover new
genetic markers of disease risk'?’. The statistical technique of Mendelian randomization can
provide data in support of a causal role for a protein or metabolite in disease pathogenesis by
leveraging the random allocation of pQTLs/mQTLs among individuals'??. Genetic determinants
of protein/metabolite levels can also be used to “replicate” findings from proteomic and
metabolomic analyses in external cohorts by using their quantitative trait loci as proxies for the
level of the molecule itself''*'%. This approach was recently used to replicate relations of novel
proteins with echocardiographic traits from one community-based sample in a large,

112

international, genetic consortium' <. Alternatively, metabolomic and proteomic profiles can be

used to better understand the molecular mediators of the associations of genetic variants with

clinical traits'®"124,

E. METHODOLOGICAL DEVELOPMENTS IN IMAGING GENOMICS

Imaging genomics involves analysis of high-dimensional data sources and, therefore,
poses challenges for standard data analysis and computing techniques. In the following section,
we provide an overview of methodological developments in computational strategies and
bioinformatics approaches aimed at harnessing massive datasets for imaging genomics

analysis.
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Computational strategies for heritability and genetic association studies

The standard statistical genetics model for both heritability and association studies
becomes computationally impractical when applied in large-scale imaging genetic studies.
Through algorithmic and hardware acceleration approaches, the computational burden can be

reduced from 10'%"? to 10" hours.

Algorithmic acceleration of the standard genetic model

For imaging genomics studies, a relevant model needs to be evaluated for every
imaging trait and every genetic polymorphism. A typical voxel-wise MRI/CT analysis may
involve several hundred thousand traits each detailing regional information. These analyses
require maximizations of likelihood for each of the voxel-wise traits and can each take between
10-50 iterations. Therefore, a GWA of 1,000,000 SNVs and 100,000 voxels would require 10"
maximizations of likelihood. Each iteration of the likelihood algorithm requires the inversion of
the covariance matrix, which is a substantial computational effort that grows as N%2 with
increasing sample size (N) and becomes impractical for large-scale imaging genomics efforts.

Algorithmic acceleration of the standard genetic model can provide substantial
improvements in the efficiency of conducting large-scale imaging genomics analyses'?>"?’. This
is accomplished by reducing the computational effort associated with the inversion of the
covariance matrix for each likelihood calculation. The eigen value decomposition approach
performs an orthogonal transformation to diagonalize the covariance matrix, thereby making the
matrix inversion computationally trivial'®. To reduce the iterative burden of maximum likelihood
estimates, a two-step ordinary linear squares followed by a weighted linear squares
approximation (Fast and Powerful Heritability Inference [FPHI]) can be used to solve the
maximum likelihood estimation non-iteratively'®. The FPHI model can then be expanded to a
Fast and Powerful Genome-wide Association (FGPA) for genotype association analysis of the

full model including measured SNVs'#

. Additional computational performance can be achieved
by testing the statistical significance of association using the Wald test (FPGA-Wald). Hence,
the algorithmic approximation of standard genetic models using FPHI, FPGA and FPGA-Wald,
provides significant improvement in computational efficiency versus classical approaches,
reducing the computational complexity from N?2 to N'. Detailed discussion of these acceleration

approaches is included in the Supplemental Material.

Hardware acceleration of imaging genomics computations
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Even with the algorithmic approximations discussed above, the computational burden of
large-scale imaging genomics studies is immense and calls for efficient implementation using
modern hardware. Computational clusters are built of nodes equipped with central processing
and graphics processing units (CPU/GPU) offering multiple computational cores (typically 2-64
for CPUs and 1000-8000 for GPU). The CPU and GPU version of FPHI and FPGA can be
implemented using linear algebra software libraries that optimize the code for parallel scientific

computing in a CPU and GPU environment (OpenMP; https://www.openmp.org). FPHI and

FPGA algorithms are coded using cuBLAS (https://developer.nvidia.com/cublas) linear algebra

libraries for GPU computing. More information is available in the Supplemental Material. All
algorithmic, software, and hardware approaches discussed above are implemented in the solar-

eclipse software (http://www.solar-eclipse-genetics.org/) and are freely available for download,

use, and distribution.

Bioinformatics strategies for imaging genomics studies

Given the high dimensionality of both imaging and genomics data, massive univariate
analysis methods (i.e., single imaging trait vs. single variants) face a huge burden for multiple
statistical testing correction, which results in reduced detection power. Various bioinformatics
strategies can be used to reduce the multiple hypothesis testing burden and to improve the

interpretability and mechanistic insight gained from imaging genomics investigations.

Meta- and mega-analysis

Meta- and mega-analyses can be used to boost the statistical power of imaging
genomics analyses by creating massive datasets. In meta-analysis, summary data from many
collaborating cohorts can be combined after overcoming logistical and regulatory challenges in
merging participant-level data®. In mega-analysis, participant-level data on many individuals are

centrally analyzed.

Polygenic and multivariate analysis

Another strategy to improve detection power is to leverage associations involving
multiple imaging or genomic markers, thereby reducing the effective number of tests performed.
By combining SNVs or imaging traits into statistically or biologically related groups, these
techniques may also help deconvolute mechanistic complexity and lead to better understanding

of disease subtypes.
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Polygenic risk scores (PRS) can capture the accumulated effect from a set of trait-
related SNVs'?°. While each SNV may not have a statistically significant effect on the trait, the
collective effect captured by the PRS may explain a considerable portion of the trait variance.
By examining a PRS instead of many individual SNVs, the burden for multiple hypothesis
testing correction is reduced. Other methods can be used to investigate associations involving
multiple genomic markers, such as multiple regression to examine the joint effect of several
SNVs (chosen based on prior knowledge) on each imaging trait'*°. Gene-based GWA can
estimate the aggregate effect of all the SNVs within each gene on each imaging trait'".
Commonly used techniques for multi-trait analysis include: 1) combining single-trait results (e.g.,
selecting the SNV with the minimum p-value'®); 2) applying univariate analysis on a small
number of extracted trait features (e.g., the average trait or first few components from principal
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components analysis °°); and 3) classical multivariate analysis methods such as multivariate

analysis of variance (MANOVA'*) and generalized least squares regression'.

Pathway and network enrichment analysis

Enrichment analysis organizes data into sets based on functional pathways and
networks, thereby providing natural connections to biological mechanisms. There are two
standard types of methods for enrichment analysis: 1) threshold-based methods (e.g.,
hypergeometric test or Fisher's exact test) are designed to identify pathways or networks over-
represented by GWA hits; and 2) rank-based methods (e.g., GSEA-SNP'®), which employ a
Kolmogorov-Smirnov-like running sum to quantify the degree to which a gene set is over-
represented at the top of the gene list ranked by the GWA results. Similarly, network-based
GWA studies can identify functional modules from biological networks that are enriched for top
GWA findings'®’. Most existing methods analyze tissue-free networks without reflecting
phenotypic specificity, but novel tissue-specific functional interaction networks are being

developed'®.

Reqularized regression and correlation analyses

139140 5nd bi-multivariate correlation models, such as

Regularized regression models
sparse canonical correlation analysis (SCCA)"""'*?, can be used to examine multi-SNV-multi-
trait associations. These models often include a sparsity-inducing regularization term to identify
a smaller number of relevant imaging and genomic markers and to minimize overfitting"**4°,

Regularized regression and SCCA models benefit from relative ease of interpretation.
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Outcome prediction and joint association learning and outcome prediction

Another challenge in imaging genomics is integration of imaging and genomics data for
improved prediction of clinical outcomes. The most straightforward methods are to concatenate
imaging and genomic data together, and then apply conventional predictive models'*.
Advanced ML and DL methods are also being developed to co-relate genetic and imaging
markers with relevant outcomes'**'*°. ML models can also be used for joint exploration of the

associations among genomics, imaging traits, and outcome'*°.

F. RESEARCH OPPORTUNITIES AND PRIORITIES (Summarized in Table 2)
Increased availability of imaging genomics data in diverse populations

While consortia and large biobanks with imaging and genomic data are proliferating,
initial datasets mostly comprised white individuals of European descent. Multiethnic large
samples to capture the diversity and spectrum of phenotypic variation are required for the
benefits of imaging genomic findings to be shared equally across populations. TOPMed and the
Million Veterans Program'*’ have both sought to enroll racially diverse samples and efforts to
leverage and expand the available imaging phenotypes within these initiatives and in new
cohorts should maintain the important focus on establishing representative study samples with

diversity of race, ethnicity, age, and sex, among other factors.

Data harmonization and infrastructure

The unprecedented scale, complexity, and heterogeneity of multidimensional big
datasets available to the research community (including genetics, multi-omics, bioimaging,
electronic health record data) requires effective data integration and harmonization methods to
realize the full potential of these invaluable resources. Tools are being developed in
partnerships with NIH Data Commons'*® and NHLBI BioData Catalyst'*° to leverage cloud-
computing resources for sharing and analyzing TOPMed and imaging datasets within a secure
cloud environment. Unifying imaging biomarkers and genomic data requires the availability of
imaging data in formats that can be shared efficiently and securely. These efforts would,
therefore, benefit from efficient and scalable computational infrastructure to facilitate different
types of large-scale collaborations across cohorts (e.g., cloud computing for teams working with
one single centralized data repository) and federated learning for teams working with distributed

data sets.

Centralization of efforts around specific disease areas
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Translating imaging genomics findings from the initial discovery of SNV-imaging trait
associations to the use for clinical risk prediction or mechanistic insight requires coordinated
efforts across disciplines. This may require large, diverse datasets for the initial discovery of
genetic variants, replication in other populations, complementary molecular phenotyping through
gene expression, metabolite profiling, or proteomic investigations, and functional and
mechanistic studies harnessing robust model systems. Integration of these complex steps
would be facilitated by centralized “nodes” of interdisciplinary investigators centered around
disease areas or pathophysiologic processes (e.g., inflammation or fibrosis). These centralized
efforts will also facilitate the development of standards for imaging genomics methods and

related interpretations norms.

Methodological advances in imaging genomics

Despite the tremendous progress made in recent years in the field of imaging genomics
and the development of necessary tools for its implementation, substantial methodological
challenges remain. Statistical and computational tools to integrate these high-dimensional data
sources are available, but they are variable across different fields and standardized methods
and interpretation norms are not yet established. These analyses have been largely conducted
to discover statistical associations; leveraging longitudinal measures and more advanced
statistical techniques may enable causal inferences regarding the genetic etiologies of imaging

traits.

Dedicated focus on less common conditions

Most consortia for imaging genomics analyses have been formed to enhance statistical
power to evaluate common variants with relatively low effect sizes. While efforts to better
characterize and understand genetic underpinnings of common disease will undoubtedly
continue, consortia should also be formed to study genetic correlates of imaging traits in less
common diseases. In many cases, while the manifest disease itself may be relatively rare,
imaging features of its pathogenesis can be detected years earlier and in a broader population
(such as aortic calcification for aortic stenosis or ILAs for IPF). By centralizing efforts to study
less common diseases, investigators may identify pathophysiological mechanisms that are

applicable to other disease forms as well.

F. SUMMARY
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The emerging field of imaging genomics seeks to combine state-of-the-art imaging
techniques with genomic information to understand the genomic architecture of bioimaging
traits. Several common heart and lung diseases (e.g., atherosclerosis, COPD) are caused by a
combination of environmental and genetic factors, rendering imaging genomics an especially
powerful tool for improving the precision with which they are characterized across the lifecourse.
Measuring precise bioimaging phenotypes with relevance to clinical disease and elucidating
their genomic contributors can improve understanding of disease pathogenesis, identify relevant
biological pathways, lead to the discovery of novel therapeutic targets, and facilitate disease
prevention characterized by more precise risk prediction and screening and enhanced

opportunities for prevention of clinically meaningful events.
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FIGURE LEGENDS

Figure 1. Imaging genomics: learning problems, applications, and statistical and machine
learning considerations. Adapted from reference®. The key learning problems (or objectives)
of imaging genomics are displayed in panel (a). Panel (b) displays potential applications for
combining biomedical imaging and state-of-the-art genomics information for disease
characterization, diagnosis, and risk prediction. Considerations for machine learning and
statistical approaches to imaging genomics analyses are shown in panel (c).

Abbreviations: GWA, genome-wide association; WGS, whole genome sequencing; Dz, disease;

surv, survival; dysf, dysfunction; mod, moderate

Figure 2. Novel imaging-based sub-phenotypes of COPD and emphysema. (Reproduced

190 ) Spatially-informed lung texture patterns (sLTPs) were

with permission from reference
derived using unsupervised clustering on chest CT scans from 317 participants in the MESA
COPD study based on the texture and spatial location of hundreds of regions-of-interest per
scan. Panel (a) shows two examples of lung CTs and colorized maps of their different sLTPs.
Panel (b) displays characteristics of the 12 lung texture patterns based on axial cuts from nine
random regions of interest (top of each box), the average lung texture pattern calculated from
the images (middle of each box), and the spatial density plots (bottom of each box). These lung
texture patterns are reproducible and relate to measures of symptom and disease severity.
Abbreviations: sLTP=spatially-informed lung texture patterns; S=superior; I=inferior;

P=posterior; A=anterior
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Table 1. Bioimaging modalities for heart and lung diseases

Imaging modality

Characteristics

Examples of applications in heart and lung diseases

Computed -Fast, relatively low radiation dose Heart:
tomography (CT) -Excellent spatial resolution -Coronary artery and aortic valve calcium (no contrast required)
-High throughput, widely available -Coronary artery angiography (with contrast)

Lungs:
-Qualitative disease characterization (i.e., emphysema, ILD)
-Quantitative lung measures (e.g., airway wall thickness, interstitial
abnormalities, small vessel pruning)

Magnetic -Provides simultaneous assessment of heart Heart:

resonance imaging
(MRI)

structure and function

-Evaluation of lung parenchyma with traditional
methods is challenging due to low signal intensity
-Takes longer than CT, but can be performed
efficiently in large cohorts

-No radiation required

-Cardiac structure and function (e.g., chamber sizes, ejection fraction)
-Fibrosis, iron deposition, presence of scar through specialized
sequences

Lung:

-Pulmonary vascular characteristics

-Methods in development for lung parenchyma evaluation including
different signal sequences and inhalation of gas mixtures serving as
contrast agents

Ultrasound -Easily obtained and readily available Heart:

(echocardiography) | -Radiation free -Cardiac chamber size measurement
-Excellent characterization of heart structure and -Cardiac function, including quantitative measures such as strain
function imaging

Molecular imaging | -Precise biological characterization Heart:

-Can measure disease activity, not just organ
structure/function

-May allow disease identification prior to overt
manifestations

-Relatively low throughput, challenges with
obtaining images at large scale

-Higher radiation dose necessary

-Largely preclinical

-Atherosclerotic plaque activity with 18F-FDG PET imaging
-Microvascular calcification with 18F-fluoride PET tracer
-Assessment of myocardial perfusion and metabolism with PET
Lung:

-Different probes can identify steps in development of lung fibrosis
including collagen deposition and cross-linking, fibrosis development,
fibroblast activity, and inflammation

Abbreviations: ILD, interstitial lung disease; FDG, fluorodeoxyglucose; PET, positron emission tomography
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Table 2. Research priorities in imaging genomics

Research Priorities

Methods development in imaging, genomics, and their statistical integration

Infrastructure for data analyses and data sharing

Multiethnic large samples to capture diversity and spectrum of phenotypic and
genomic variation of common conditions

Analysis of longitudinal imaging data in relation to longitudinal molecular data

Methods development for testing effect modification and causal inference
adapted to imaging genomics

Consortia focused on less common heritable conditions

Defining standards for imaging genomics methods and interpretation norms
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Other topics
* Biological interpretation

Scalability

* Dimensionality reduction
* Interaction
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