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ABSTRACT 
Imaging genomics is a rapidly evolving field that combines state-of-the-art bioimaging with 

genomic information to resolve phenotypic heterogeneity associated with genomic variation, 

improve risk prediction, discover prevention approaches, and enable precision diagnosis and 

treatment. Contemporary bioimaging methods provide exceptional resolution generating 

discrete and quantitative high-dimensional phenotypes for genomics investigation. Despite 

substantial progress in combining high-dimensional bioimaging and genomic data, methods for 

imaging genomics are evolving. Recognizing the potential impact of imaging genomics on the 

study of heart and lung disease, the National Heart, Lung, and Blood Institute convened a 

workshop to review cutting-edge approaches and methodologies in imaging genomics studies, 

and to establish research priorities for future investigation. This report summarizes the 

presentations and discussions at the workshop. In particular, we highlight the need for 

increased availability of imaging genomics data in diverse populations, dedicated focus on less 

common conditions, and centralization of efforts around specific disease areas. 
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A. INTRODUCTION 1 

The burden of heart and lung disease remains immense despite the substantial progress 2 

made by large scale population-based initiatives such as primary prevention statin therapy1 and 3 

smoking cessation2. Advancing the prevention of heart and lung diseases depends on 4 

identifying individuals at increased risk and targeting lifestyle modifications or medical therapies 5 

to reduce the progression or consequences of the condition. Multivariable risk prediction models 6 

provide accurate assessments at the population level, but individual-level risk prediction 7 

remains challenging;3 many events occur in individuals determined to be at low risk4. Methods 8 

that more precisely identify heart and lung disease risk and its biological determinants are 9 

needed to reduce these disorders.  10 

Genomics assesses how variation in the genetic code contributes to phenotypic 11 

heterogeneity. In heart and lung diseases, genetic mutations have been identified to contribute 12 

to numerous (usually rare) conditions, and ever-larger genome-wide association (GWA) studies 13 

seek to associate genetic variation (common and rare) with common clinical phenotypes. 14 

Actionable insights from genetic association studies depend on mapping genetic risk variants to 15 

specific clinical phenotypes or discrete pathophysiologic mechanisms to identify true causal 16 

variants. However, the identification of true causal genetic variants is challenging with traditional 17 

GWA studies when there is high correlation among variants in close proximity to each other 18 

(linkage disequilibrium) or because a large number of variants identified by GWA studies map to 19 

intergenic areas5. Moreover, common heart and lung diseases are heterogeneous conditions 20 

rendering GWA studies inherently less powerful both statistically and with regard to gaining 21 

potential mechanistic insights. Precise clinical phenotyping is crucial to disentangle genetic 22 

drivers of heart and lung diseases.  23 

Progress in bioimaging, assisted by computational advances and the use of artificial 24 

intelligence (AI) technologies, enables identification of more precise imaging features to serve 25 

as intermediate and/or advanced phenotypes for genetic analyses. The synergy between 26 

bioimaging and genomics lies in the fact that modern molecular and statistical genetics methods 27 

embrace quantitative phenotyping (i.e., description of traits on a continuous scale). 28 

Contemporary bioimaging methods provide phenotypic measurements with exceptional 29 

resolution (e.g., three-dimensional spatial sampling of 100-500 microns), and, therefore, are 30 

ideally suited as quantitative high-dimensional phenotypes. By combining state-of-the-art 31 

bioimaging techniques with genomic information, the emerging field of imaging genomics seeks 32 

to elucidate the genomic architecture of bioimaging traits. With higher resolution of both 33 

genomic interrogation and bioimaging phenotypes, imaging genomics has the potential to 34 
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resolve heterogeneity in the phenotypic expression associated with genomic variation, improve 1 

disease risk prediction, discover novel prevention approaches, and enable precision diagnosis 2 

and treatment (Figure 1).  3 

The National Heart, Lung, and Blood Institute convened a workshop in October 2019 in 4 

recognition of this rapidly evolving field with the aim of bringing together a multi-disciplinary 5 

group of experts to review the latest cutting-edge approaches and methodologies in imaging 6 

genomics studies in heart and lung diseases, and to establish research priorities for the next 7 

phase of imaging genomics investigations7. In the following report, we summarize the 8 

presentations and recommendations from the workshop to provide a resource to serve as a 9 

roadmap of for the next phase of imaging genomics investigations.  10 

 11 

B. IMAGING MODALITIES AND PHENOTYPES IN HEART AND LUNG DISEASES 12 

Imaging genomics analyses rely on robust, reproducible, and clinically relevant discrete 13 

and quantitative imaging traits. The more precisely these imaging traits reflect underlying 14 

molecular mechanisms explained by genomic variation, the higher the expected yield of imaging 15 

genomics findings may be. A detailed review of imaging techniques themselves is beyond the 16 

scope of this workshop report. In this section, we review common imaging modalities used in 17 

heart and lung diseases with a focus on imaging techniques that are being used, or may be 18 

used in future studies, as quantitative traits for imaging genomics analysis (Table 1). 19 

 20 

Imaging of the heart and vasculature 21 

Computed tomography (CT) 22 

 CT imaging can be performed rapidly with minimal radiation exposure and provides 23 

detailed assessment of cardiovascular structures with high spatial resolution8. Calcium burden 24 

in the coronary arteries (coronary artery calcium, CAC), great vessels, or cardiac valves can be 25 

detected by CT imaging without intravenous contrast (or by other imaging techniques such as 26 

chest X-ray9) and each of these traits is associated with risk of future cardiovascular events10,11. 27 

Accordingly, imaging investigations have evaluated the genomic determinants of vascular and 28 

valvular calcification. Initial GWA studies for CAC identified single nucleotide variants (SNVs) 29 

that were also associated with clinically apparent coronary artery disease12,13, lending support to 30 

the clinical (and pathogenetic) overlap of CAC and clinical atherosclerotic events. Translation of 31 

these findings to clinical risk prediction or identification of novel therapeutic targets has been 32 

limited by lack of linkage to disease-causing mechanisms5. Calcification of other arterial sites is 33 

also associated with cardiovascular risk. Recently, investigators identified SNVs within the 34 
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HDAC9 gene to associate with aortic calcification14. HDAC9 knockout mice displayed reduced 1 

aortic calcification indicating that HDAC9 may be an important regulator of vascular calcification. 2 

In addition, calcification in the aortic valve is easily obtained from CT, reproducible, and 3 

represents an earlier stage in aortic valve disease that predicts future clinical aortic stenosis11. 4 

GWA studies of aortic valve calcium linked SNVs in the apolipoprotein(a) gene to aortic valve 5 

calcification11 and to clinical manifestations of aortic stenosis15. Clinical trials are now testing the 6 

hypothesis that pharmacologic lowering of circulating apolipoprotein(a) levels leads to 7 

reductions in aortic stenosis16. As shared risk factors and disease co-occurrence challenge the 8 

separation of causal factors for atherosclerotic CVD and calcific aortic stenosis in observational 9 

studies, this interventional trial may be particularly informative.  10 

 CT imaging of the coronary arteries with intravenous contrast (CT angiography) can 11 

provide detailed assessment of coronary plaque burden, location, and morphology, and the 12 

degree of blood flow obstruction as well as integrative measures such as fractional flow reserve 13 

and plaque characterization8,17,18. Whereas the requirement for intravenous contrast and 14 

technical expertise required for image acquisition has limited the availability of coronary CT 15 

angiography in large community-based cohorts, smaller studies have associated coronary 16 

stenoses by CT angiography with family history of coronary heart disease19,20. Future studies of 17 

larger samples will be important to elucidate genetic markers of relevant atherosclerotic plaque 18 

characteristics.  19 

 20 

Echocardiography 21 

 Echocardiography provides detailed assessment of cardiac structure and function 22 

without exposure to contrast agents or radiation. As the clinical syndrome of heart failure 23 

progresses through stages of asymptomatic structural and functional cardiac remodeling, 24 

echocardiographic traits are important for imaging genomic studies of heart failure. Toward this 25 

end, GWA studies of echocardiographic traits have identified numerous SNVs, genes, and 26 

pathways linked with cardiac structural remodeling and heart failure risk21-25.  27 

Imaging genomics has been used to discover rare variants associated with 28 

cardiomyopathy phenotypes, such as dilated cardiomyopathy (DCM). DCM is defined as 29 

enlarged left ventricular dimensions with reduced left ventricular function. The most common 30 

underlying genetic cause of DCM is truncation variants in the TTN gene, which encodes the 31 

sarcomeric protein titin26. There is not one common variant underlying DCM but rather there are 32 

many individual TTN truncations that are each rare in the population. In aggregate, 1-2% of the 33 

general population carries TTN truncations, which are associated with subclinical 34 
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echocardiographic features, such as lower ejection fraction, and demonstrate ten-fold 1 

enrichment in DCM cases27,28. Importantly, not all TTN truncation carriers manifest with a 2 

cardiomyopathy phenotype. Taking a genotype-first approach, one study queried the electronic 3 

health record for diagnoses associated with TTN truncations and uncovered a higher 4 

prevalence of heart failure, atrial fibrillation, and paroxysmal non-sustained ventricular 5 

tachycardia in the absence of manifest DCM29. This ‘genotype-first’ view provides an estimate of 6 

the phenotypic expressivity of genetic variants and offers a broader assessment of the range of 7 

clinical diagnoses linked to a given genetic signature. In addition to TTN truncation variants, 8 

mutations in at least 50 genes lead to inherited cardiomyopathies, and each is associated with 9 

variable expressivity30.  10 

 Future genomic studies of echocardiographic traits may use additional 11 

echocardiographic measures, such as strain imaging31 or cardiac microstructure32, as well as 12 

enhanced clinical phenotyping.  13 

 14 

Cardiac magnetic resonance imaging (CMR) 15 

 CMR provides detailed structural and functional assessment of the heart and great 16 

vessels and can be performed efficiently in large community-based studies33. Indeed, CMR is 17 

being performed in the UK Biobank with a planned enrollment of 100,000 individuals34. In a 18 

report of the first ≈36,000 participants with CMR data, GWA identified 57 different genetic loci 19 

that were associated with cardiac structure and function35. A polygenic risk score derived from 20 

these loci was associated with dilated cardiomyopathy risk. Besides measuring heart structure 21 

and function, dedicated CMR imaging protocols can be used to evaluate specific cardiac 22 

features such as inducible myocardial ischemia36, inflammation and fibrosis37, and findings 23 

suggestive of specific underlying disease states38,39. The capability of CMR to accurately 24 

measure cardiac structure and function and complementary detailed imaging phenotypes 25 

makes it important for future imaging genomics studies. 26 

 27 

Molecular imaging of the heart 28 

 Molecular imaging leverages targeted tracers labeled with an imaging reporter to identify 29 

specific biological processes40. For the assessment of coronary plaque activity, tracers can be 30 

used to assess vascular inflammation (18F-fluorodeoxyglucose with PET imaging40,41 or ultra-31 

small superparamagnetic particles of iron oxide imaged with CMR42), or microvascular 32 

calcification (representing active inflammation and higher risk for plaque rupture and identified 33 

by the 18F-fluoride PET tracer43). PET imaging can also be used to assess myocardial 34 
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perfusion, metabolism44, and energetics45. Other imaging techniques such as magnetic 1 

resonance spectroscopy or imaging the cardiac sympathetic nervous system46, may provide 2 

insight into disease activity and status. These emerging imaging techniques allow linkage of 3 

genetic variation with discrete biochemical processes. However, the feasibility of conducting 4 

these studies at the scale necessary to facilitate genetic interrogation is yet unproven.  5 

   6 

Lung imaging phenotypes 7 

Chest CT 8 

Chest CT imaging provides excellent spatial resolution of lung architecture and 9 

diagnosis of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), 10 

emphysema, and interstitial lung disease (ILD). Qualitative chest CT assessments used in 11 

clinical practice are being expanded to allow phenotypic characterization of early disease states. 12 

Additionally, quantitative chest CT imaging approaches facilitate association with environmental 13 

exposures and genomic variation in large consortia, such as COPDGene47, SPIROMICS48, and 14 

the MESA Lung Study49.  15 

Initial imaging genomic assessments of COPD and emphysema used volumetric chest 16 

CT scans to generate measures of emphysema as defined by the percent of lung occupied by 17 

low attenuation areas (LAAs; regions with less than -910 or -950 Hounsfield Units [HU])50. Other 18 

quantitative chest CT measures can be used for imaging genomic analyses, including airway 19 

wall thickness and luminal diameter, small vessel pruning, large artery characteristics, gas 20 

trapping, bronchiectasis, and fibrosis, among others47. Subsequently, GWA studies have 21 

assessed quantitative measures of emphysema overall51,52 (including its patterns53,54 and 22 

distribution55) in conjunction with other airway phenotypic assessments48,56,57. While GWA 23 

studies of quantitative chest CT measures have made important discoveries, the largest COPD 24 

GWA studies have focused on spirometry, which is more readily available in large numbers of 25 

individuals. In the largest COPD GWA study to date (comprising more than 335,000 26 

participants) 82 independent loci were associated with COPD defined by spirometry58. Some of 27 

these loci are more strongly associated with measures of emphysema (e.g., FAM13A and 28 

HHIP), or airways measures (e.g. HTR4 and RASEF) separately, while others (e.g., EEFSEC 29 

and MFAP2) are associated broadly across phenotypes58. Increased sample sizes and wider 30 

availability of quantitative CT phenotypes will improve our understanding of the genetic 31 

architecture of COPD.      32 

 Qualitative and quantitative chest CT imaging assessments can also identify features 33 

associated with early forms of interstitial lung disease (ILD). Interstitial lung abnormalities (ILA; 34 
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recently formally defined by the Fleischner Society59) are qualitative chest CT assessments 1 

suggestive of underlying ILD or pulmonary fibrosis in individuals not previously suspected of 2 

having ILD. Efforts to identify ILD In its early stages may improve detection and prevention 3 

methods for diseases such as idiopathic pulmonary fibrosis (IPF), the most common and severe 4 

form of ILD with a mortality rate rivaling many malignancies60. ILAs therefore represent valuable 5 

phenotypes for imaging genomics analyses. Variants in the promoter region of the mucin 5B 6 

gene (MUC5B; a common variant that may explain as much as 30% of IPF risk61) have been 7 

consistently associated with ILAs62-64. A recent GWA study demonstrated four additional loci 8 

associated with both ILA and IPF (including those near genes DDP9, DSP, FAM13A, and 9 

IVD)64. This study also demonstrated novel genetic loci associated with ILAs but not with IPF 10 

suggesting that visually detected ILAs likely includes phenotypically heterogeneous subsets, 11 

some of which may not correlate with overt IPF64.  12 

Quantitative efforts to identify early stages of ILD and pulmonary fibrosis include 13 

assessments of high attenuation areas (HAAs; typically between -600 and -250 HUs), local 14 

histograms (referred to as “interstitial features”), and deep learning-based lung textural 15 

assessments of lung fibrosis65,66. These quantitative chest CT features can potentially detect, 16 

characterize, and grade early stages of pulmonary fibrosis. However, these measures are not 17 

interchangeable, demonstrate varying degrees of sensitivity and specificity when compared to 18 

visual assessment of pulmonary fibrosis66,67, and can be affected by technical differences 19 

between studies. 20 

    21 

Molecular imaging of pulmonary fibrosis 22 

Molecular probes targeting several components of pro-fibrotic pathways are under 23 

development for imaging fibrotic activity in IPF. By discovering early activity in pulmonary 24 

fibrosis before it is apparent by CT imaging, these molecular probes may identify earlier forms of 25 

the disease prior to overt lung fibrosis and can potentially be used to assess therapeutic 26 

responses to antifibrotic agents.  27 

Molecular probes have been developed for type I collagen, a primary component of 28 

fibrosis (68Ga-CBP8)68 and for collagen cross-linking (Gd-CHyd)69. In clinical studies, patients 29 

with IPF had increased lung uptake of 68Ga-CBP8, but it was also found in areas of normal 30 

appearing lung suggesting that 68Ga-CBP8 may be sensitive in detecting regions of active 31 

collagen deposition prior to manifest fibrosis evident on CT imaging70. Probes also target drivers 32 

of fibrosis, such as integrin αvβ6
71, and the C-X-C chemokine-receptor type 4 (CXCR4)72. 33 

Somatostatin receptor 2 is expressed on fibroblasts and increases in fibrosis73. Somatostatin 34 
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receptor expression in humans with pulmonary fibrosis can be assessed using 111In-octreotide 1 

scintigraphy (Octreoscan) and 68Ga-DOTANOC PET-CT74,75. Beyond fibrosis-specific pathways, 2 

broader processes such as vascular leak76, coagulation, and inflammation have been implicated 3 

in the development of pulmonary fibrosis and each can be assessed with specific molecular 4 

probes77-80. Similar to molecular imaging of the heart and vasculature, molecular imaging of the 5 

lungs is not yet being done at the scale necessary for GWA studies.  6 

 7 

C. ARTIFICIAL INTELLIGENCE FOR BIOIMAGING  8 

Terminology and methods 9 

AI is a general term describing disciplines that aim to mimic human intelligence81. Here, 10 

we focus on the relatively narrow functions of data interpretation and risk prediction, but AI 11 

technologies capable of accomplishing complex human tasks are also being developed and 12 

may have additional wide-ranging applications82. At the core of AI is machine learning (ML), 13 

which uses mathematical models to substitute for human thought and decision-making. ML 14 

algorithms take inputs (e.g., clinical characteristics) and map them to given outputs (e.g., 15 

mortality), optimizing the fit of the model to achieve optimal performance. ML models are not 16 

explicitly programmed to achieve a given task. Instead, they minimize the ‘cost’ of the model 17 

(the proportion of misclassified patients)81. This is regarded as the learning process of ML 18 

algorithms. Accordingly, ML algorithms gradually increase their accuracy as they ‘see’ and 19 

‘learn’ from more data.  20 

 21 

Application of AI for identification of anatomical structures and pathologies 22 

Deep learning (DL) is a type of ML that can use pixels or voxels from bioimaging data as 23 

inputs to neural network models, which iteratively relate inputs to outputs in flexible models 24 

allowing complex nonlinear functions83. DL is well-suited for automating time-intensive tasks in 25 

imaging interpretation84. To train such an algorithm, images are used as inputs, and labeled 26 

segmentations are needed as outputs. The DL algorithm can then learn to automatically 27 

segment radiological images to identify potential pathologies. For example, large contemporary 28 

datasets (such as UK Biobank) provide vast amounts of imaging data, which are mostly present 29 

in “unlabeled” formats without phenotypic measures or annotation. Several groups have recently 30 

developed DL models to derive clinically relevant phenotypic data from these images85-87. In 31 

addition, DL algorithms can identify diabetic retinopathy from retinal images with a higher risk of 32 

vision loss in individuals with diabetes88. There are several potential challenges in developing 33 

effective DL algorithms for phenotypic characterization, however. These models may not 34 
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translate well from one sample/dataset to another, as even slight differences in image 1 

acquisition and quality may negatively impact model performance89,90. Furthermore, DL 2 

algorithms are statistical models that do not understand the underlying meaning of the inputted 3 

information. It is therefore conceivable that decisions are being made not based upon disease-4 

related imaging abnormalities, but based on acquisition settings or other imaging features, such 5 

as markers on chest X-rays91. In addition, it is increasingly recognized that DL algorithms may 6 

perpetuate health inequities based on gender, race, ethnicity, or other factors if training data 7 

sets lack demographic diversity or if outcomes partially reflect underlying healthcare 8 

disparities92.  9 

 10 

Identification of abnormalities and novel imaging phenotypes 11 

AI-derived outcomes may provide novel bioimaging phenotypes that are not apparent to 12 

the human eye through unbiased assessments of imaging characteristics or imaging data. For 13 

example, DL algorithms can extract complex information from low cost and widely available 14 

images such as chest X-rays that can be used to predict incident lung cancer or cardiovascular, 15 

respiratory, or lung cancer mortality93,94. Radiomics is a feature-generative technique that 16 

derives new imaging measures based on mathematical properties of the imaging data including 17 

intensity distribution, texture, and shape95. Radiomic analysis of coronary plaques may 18 

potentially improve prediction of cardiovascular events via detailed description of high-risk 19 

properties of atherosclerotic lesions96,97. Analysis of radiomic features describing texture 20 

properties of the myocardium on CMR images may enable detection of subtle differences in the 21 

myocardial intensity values to better distinguish patients with subacute and chronic myocardial 22 

infarction98. Radiomics features may also help to differentiate pathologies with similar gross 23 

appearance to the human eye, such as hypertensive heart disease and hypertrophic 24 

cardiomyopathy99. It is important to note that potential association of radiomic features with 25 

disease entities does not imply causation90. Connecting biological processes with specific 26 

radiomic features is, therefore, only speculative at present.  27 

AI methods are being applied to CT images to develop novel disease classifications in 28 

COPD (Figure 2). For example, DL algorithms have been trained to classify emphysema on 29 

lung CT and scores derived from the DL algorithms can improve classification of emphysema 30 

and outcome prediction when compared to visual scoring101. Using these methods, investigators 31 

identified two distinct trajectories of emphysema progression: 1) airwaytissue type in which 32 

large airway abnormalities precede emphysema; and 2) tissueairway type in which small 33 

airway dysfunction and emphysema antedate large airway wall abnormalities102. Unsupervised 34 
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ML methods have also been applied to define novel emphysema sub-phenotypes based upon 1 

texture and anatomical location of emphysema on  lung CT scans100.  2 

Radiomics and DL-based imaging traits have been mostly evaluated in small pilot 3 

studies, thus far; larger scale observational studies103, clinical trials, or innovative study designs 4 

such as in silico trials, are necessary to assess their superiority over traditional imaging 5 

measures for clinical applications.  6 

 7 

D. EMERGING GENOMIC APPROACHES 8 

The GWA era has yielded many important mechanistic insights and information 9 

regarding genetic variants associated with higher disease risk. However, several barriers to 10 

clinical translation of genomic findings are present currently. First, there remains substantial 11 

unexplained heritability for many common complex diseases of multifactorial etiology. Second, 12 

the underlying mechanisms linking genetic variants with imaging traits, and ultimately with 13 

disease states, is currently lacking for many SNVs5. Third, variable expressivity (penetrance) of 14 

genetic variation needs to be better understood through analysis of gene-gene and gene-15 

environment interactions, and the variability of such interactions in the time domain over the 16 

lifecourse. Fourth, genetic determinants of bioimaging traits may vary based on racial/ethnic 17 

background and should be studied in diverse populations. Advances in the resolution of genetic 18 

sequencing and harnessing complementary multi-omic analyses have the potential to address 19 

these current challenges thereby broadening the impact of imaging genomics investigations.   20 

 21 

Whole genome sequencing  22 

The initial phases of GWA studies used genotyping arrays to directly ascertain 200,000–23 

1 million genetic variants and then leveraged reference panels to impute a larger number of 24 

variants11,12,14,22. However, historical reference panels have important limitations including 25 

inadequate coverage of rare or private variants, difficulty identifying causal variants due to 26 

linkage disequilibrium blocks, and the potential for bias when non-European populations are 27 

less well represented in the derivation samples.  28 

Whole genome sequencing (WGS) provides expanded coverage of the entire genome 29 

thereby overcoming the reliance on reference panels and imputation and enabling a balanced 30 

assessment across the genome. To harness WGS for genetic discovery, the National Heart, 31 

Lung, and Blood Institute initiated the large-scale WGS TOPMed (Trans-Omics for Precision 32 

Medicine) initiative (www.nhlbiwgs.org). TOPMed was established to advance genetic discovery 33 

by addressing some of the limitations of the European-ancestry centric, and array-based GWA 34 

http://www.nhlbiwgs.org/
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studies conducted previously. Over 80 existing studies with phenotypic data are part of 1 

TOPMed. Across these studies, TOPMed has generated WGS data on over 181,000 2 

participants, at an average sequencing depth of 38x. Ethnic and racial diversity is a priority in 3 

TOPMed with 40% participants of European ancestry, 31% of African ancestry, 15% of Hispanic 4 

ancestry, and 9% of Asian ancestry.  5 

Data on the first 53,831 participants with available sequencing data in TOPMed were 6 

recently reported104. In this subsample, 410 million genetic variants were identified, of which 7 

97% had a minor allele frequency below 1%. In fact, 46% appeared only in a single individual 8 

(‘singletons’). When this dataset was used as a reference panel for genotype imputation, the 9 

variants with minor allele frequencies as low as 0.01% were imputed with high quality (r2 >0.9) 10 

in individuals of both European and African ancestry allowing the inclusion of much rarer 11 

variants in GWA studies than was possible with previous reference panels. The inclusion of 12 

participants from multiple ancestry groups leads to a substantial reduction in the size of linkage 13 

disequilibrium blocks at most loci (i.e., trans-ancestry fine-mapping) enhancing the ability to 14 

identify causal variants within large blocks of the genome with relatively high linkage 15 

disequilibrium in certain populations105 (NHLBI TOPMed imputation server can be found at 16 

https://imputation.biodatacatalyst.nhlbi.nih.gov/). 17 

With resources available through TOPMed, WGS data can be combined with high 18 

quality complementary “omics” data (including epigenetics, transcripts, metabolites, and 19 

proteins) and detailed phenotypic information (available phenotypic data can be found at 20 

https://biodatacatalyst.nhlbi.nih.gov). Numerous studies included in TOPMed have heart and 21 

lung imaging phenotypes including CAC, echocardiograms, CT, and MRI. GWA studies 22 

leveraging WGS are now underway and are expected to identify variants that are not well 23 

covered by standard imputation approaches such as rare variants, variants on the X 24 

chromosome, and variants restricted to non-European populations, providing the potential for 25 

discovery of novel disease-causing variants.  26 

 27 

Trans-omic signatures of imaging traits 28 

High-dimensional molecular data (e.g., transcriptomics, proteomics, metabolomics) can 29 

provide complementary information to genetic studies for identifying mechanisms of disease 30 

related to imaging phenotypes. These tools can be used to better understand the downstream 31 

implications of genetic variants, to improve the precision of CVD phenotyping by defining 32 

endophenotypes that can be correlated with imaging traits, or to identify novel disease-33 

associated biological pathways for mechanistic investigations106. Importantly, molecular 34 

https://imputation.biodatacatalyst.nhlbi.nih.gov/
https://biodatacatalyst.nhlbi.nih.gov/
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signatures may reflect causal links between genetic variation and clinically relevant phenotypes 1 

(such as bioimaging traits), but they also might represent compensatory mechanisms or 2 

epiphenomena associated with both the genetic variant and the phenotype, but without a causal 3 

relation. Thus, an integrative trans-omic approach that assimilates data across profiling 4 

platforms will be the ideal approach to elucidate the potential roles of different molecular 5 

signatures in disease pathogenesis. Herein, we discuss investigations using proteomic and 6 

metabolomic data to examine molecular signatures of adverse cardiac structural remodeling 7 

traits as examples of how high-dimensional data derived from different profiling methods may be 8 

used to complement imaging genomics analyses107.  9 

 10 

High-throughput proteomic and metabolomic data and imaging phenotypes 11 

Numerous proteins have been associated with imaging signs of cardiac remodeling and 12 

with heart failure risk in prior studies assessing a limited set of candidate proteins108. 13 

Technological advances in high-throughput proteomic profiling platforms now enable deep and 14 

relatively unbiased profiling of more than 5000 of the ≈20,000 human proteins109, which can 15 

provide a broader view of the relations of the circulating proteome with cardiac imaging traits. 16 

For example, proteomic signatures of coronary flow reserve can be identified in peripheral 17 

blood110. Such a molecular signature can be used as a discrete disease phenotype for other 18 

analyses (such as genetic discovery) or to uncover biological pathways relevant to heart failure 19 

pathobiology. Proteomic profiling has also been used to evaluate how inflammatory pathways 20 

may mediate the association of general comorbidity and echocardiographic traits in patients with 21 

heart failure with preserved ejection fraction111. A discovery platform comprising ≈1300 plasma 22 

proteins was used to identify novel associations of proteins representing different biological 23 

pathways with echocardiographic traits112.  24 

Hundreds of small molecule metabolites can also be measured from the blood using 25 

nuclear magnetic resonance- or mass spectrometry-based techniques113. Heart failure and its 26 

imaging correlates represent attractive conditions for metabolomic analysis as the failing heart 27 

undergoes extensive metabolic remodeling with reduced fatty acid oxidation and a shift to using 28 

glucose as its primary fuel source114. The reduction in fatty acid oxidation is reflected by 29 

increased circulating levels of long-chain acylcarnitines115. In individuals with aortic stenosis, 30 

long-chain acylcarnitines are present in higher levels in blood in those with adverse cardiac 31 

remodeling phenotypes, such as severe left ventricular hypertrophy and reduced LV systolic 32 

function116. Within 24 hours after aortic valve replacement, a drop in circulating long-chain 33 

acylcarnitine concentrations can be observed, demonstrating changes in cardiac metabolism 34 
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that precede detectable changes in cardiac structure or function116. Additional metabolites, such 1 

as lipid ceramides117, kynurenine (a tryptophan derivative implicated in vasodilation), and 2 

aminoadipate are also associated with cardiac structure and function118. Metabolite profiling, 3 

therefore, can identify signatures in circulating blood that correspond to molecular abnormalities 4 

in the heart itself; these abnormal metabolite profiles relate to imaging measures of heart 5 

structure and function and may predict future heart failure. It can be a challenge, however, to 6 

decipher whether these molecular signatures are causal in the disease process. Leveraging 7 

longitudinal molecular data in carefully phenotyped individuals before the onset of manifest 8 

heart or lung disease will be an important tool to elucidate which molecular profiles or pathways 9 

might play causal roles.  10 

 11 

Correlating circulating protein and metabolite concentrations with genetic determinants 12 

Circulating protein and metabolite concentrations are partly heritable, with a relatively 13 

large amount of their variation explained by genetic factors119-121. Protein or metabolite levels 14 

that are related to imaging traits can be associated, therefore, with genetic variation (i.e., protein 15 

quantitative trait loci [pQTLs] or metabolomic quantitative trait loci [mQTLs]) to discover new 16 

genetic markers of disease risk120. The statistical technique of Mendelian randomization can 17 

provide data in support of a causal role for a protein or metabolite in disease pathogenesis by 18 

leveraging the random allocation of pQTLs/mQTLs among individuals122. Genetic determinants 19 

of protein/metabolite levels can also be used to “replicate” findings from proteomic and 20 

metabolomic analyses in external cohorts by using their quantitative trait loci as proxies for the 21 

level of the molecule itself112,123. This approach was recently used to replicate relations of novel 22 

proteins with echocardiographic traits from one community-based sample in a large, 23 

international, genetic consortium112. Alternatively, metabolomic and proteomic profiles can be 24 

used to better understand the molecular mediators of the associations of genetic variants with 25 

clinical traits107,124. 26 

  27 

E. METHODOLOGICAL DEVELOPMENTS IN IMAGING GENOMICS 28 

Imaging genomics involves analysis of high-dimensional data sources and, therefore, 29 

poses challenges for standard data analysis and computing techniques. In the following section, 30 

we provide an overview of methodological developments in computational strategies and 31 

bioinformatics approaches aimed at harnessing massive datasets for imaging genomics 32 

analysis.  33 

 34 
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Computational strategies for heritability and genetic association studies 1 

The standard statistical genetics model for both heritability and association studies 2 

becomes computationally impractical when applied in large-scale imaging genetic studies. 3 

Through algorithmic and hardware acceleration approaches, the computational burden can be 4 

reduced from 1010-12 to 101-2 hours.  5 

 6 

Algorithmic acceleration of the standard genetic model 7 

For imaging genomics studies, a relevant model needs to be evaluated for every 8 

imaging trait and every genetic polymorphism. A typical voxel-wise MRI/CT analysis may 9 

involve several hundred thousand traits each detailing regional information. These analyses 10 

require maximizations of likelihood for each of the voxel-wise traits and can each take between 11 

10-50 iterations. Therefore, a GWA of 1,000,000 SNVs and 100,000 voxels would require 1011 12 

maximizations of likelihood. Each iteration of the likelihood algorithm requires the inversion of 13 

the covariance matrix, which is a substantial computational effort that grows as N2-3 with 14 

increasing sample size (N) and becomes impractical for large-scale imaging genomics efforts.  15 

Algorithmic acceleration of the standard genetic model can provide substantial 16 

improvements in the efficiency of conducting large-scale imaging genomics analyses125-127. This 17 

is accomplished by reducing the computational effort associated with the inversion of the 18 

covariance matrix for each likelihood calculation. The eigen value decomposition approach 19 

performs an orthogonal transformation to diagonalize the covariance matrix, thereby making the 20 

matrix inversion computationally trivial128. To reduce the iterative burden of maximum likelihood 21 

estimates, a two-step ordinary linear squares followed by a weighted linear squares 22 

approximation (Fast and Powerful Heritability Inference [FPHI]) can be used to solve the 23 

maximum likelihood estimation non-iteratively125. The FPHI model can then be expanded to a 24 

Fast and Powerful Genome-wide Association (FGPA) for genotype association analysis of the 25 

full model including measured SNVs126. Additional computational performance can be achieved 26 

by testing the statistical significance of association using the Wald test (FPGA-Wald). Hence, 27 

the algorithmic approximation of standard genetic models using FPHI, FPGA and FPGA-Wald, 28 

provides significant improvement in computational efficiency versus classical approaches, 29 

reducing the computational complexity from N2-3 to N1. Detailed discussion of these acceleration 30 

approaches is included in the Supplemental Material.  31 

 32 

Hardware acceleration of imaging genomics computations 33 



 16 

Even with the algorithmic approximations discussed above, the computational burden of 1 

large-scale imaging genomics studies is immense and calls for efficient implementation using 2 

modern hardware. Computational clusters are built of nodes equipped with central processing 3 

and graphics processing units (CPU/GPU) offering multiple computational cores (typically 2-64 4 

for CPUs and 1000-8000 for GPU). The CPU and GPU version of FPHI and FPGA can be 5 

implemented using linear algebra software libraries that optimize the code for parallel scientific 6 

computing in a CPU and GPU environment (OpenMP; https://www.openmp.org). FPHI and 7 

FPGA algorithms are coded using cuBLAS (https://developer.nvidia.com/cublas) linear algebra 8 

libraries for GPU computing. More information is available in the Supplemental Material. All 9 

algorithmic, software, and hardware approaches discussed above are implemented in the solar-10 

eclipse software (http://www.solar-eclipse-genetics.org/) and are freely available for download, 11 

use, and distribution.   12 

 13 

Bioinformatics strategies for imaging genomics studies 14 

Given the high dimensionality of both imaging and genomics data, massive univariate 15 

analysis methods (i.e., single imaging trait vs. single variants) face a huge burden for multiple 16 

statistical testing correction, which results in reduced detection power. Various bioinformatics 17 

strategies can be used to reduce the multiple hypothesis testing burden and to improve the 18 

interpretability and mechanistic insight gained from imaging genomics investigations.  19 

 20 

Meta- and mega-analysis 21 

Meta- and mega-analyses can be used to boost the statistical power of imaging 22 

genomics analyses by creating massive datasets. In meta-analysis, summary data from many 23 

collaborating cohorts can be combined after overcoming logistical and regulatory challenges in 24 

merging participant-level data22. In mega-analysis, participant-level data on many individuals are 25 

centrally analyzed.  26 

 27 

Polygenic and multivariate analysis 28 

Another strategy to improve detection power is to leverage associations involving 29 

multiple imaging or genomic markers, thereby reducing the effective number of tests performed. 30 

By combining SNVs or imaging traits into statistically or biologically related groups, these 31 

techniques may also help deconvolute mechanistic complexity and lead to better understanding 32 

of disease subtypes. 33 

https://www.openmp.org/
https://developer.nvidia.com/cublas
http://www.solar-eclipse-genetics.org/


 17 

Polygenic risk scores (PRS) can capture the accumulated effect from a set of trait-1 

related SNVs129. While each SNV may not have a statistically significant effect on the trait, the 2 

collective effect captured by the PRS may explain a considerable portion of the trait variance. 3 

By examining a PRS instead of many individual SNVs, the burden for multiple hypothesis 4 

testing correction is reduced. Other methods can be used to investigate associations involving 5 

multiple genomic markers, such as multiple regression to examine the joint effect of several 6 

SNVs (chosen based on prior knowledge) on each imaging trait130. Gene-based GWA can 7 

estimate the aggregate effect of all the SNVs within each gene on each imaging trait131. 8 

Commonly used techniques for multi-trait analysis include: 1) combining single-trait results (e.g., 9 

selecting the SNV with the minimum p-value132); 2) applying univariate analysis on a small 10 

number of extracted trait features (e.g., the average trait or first few components from principal 11 

components analysis133); and 3) classical multivariate analysis methods such as multivariate 12 

analysis of variance (MANOVA134) and generalized least squares regression135.  13 

 14 

Pathway and network enrichment analysis 15 

Enrichment analysis organizes data into sets based on functional pathways and 16 

networks, thereby providing natural connections to biological mechanisms. There are two 17 

standard types of methods for enrichment analysis: 1) threshold-based methods (e.g., 18 

hypergeometric test or Fisher's exact test) are designed to identify pathways or networks over-19 

represented by GWA hits; and 2) rank-based methods (e.g., GSEA-SNP136), which employ a 20 

Kolmogorov-Smirnov-like running sum to quantify the degree to which a gene set is over-21 

represented at the top of the gene list ranked by the GWA results. Similarly, network-based 22 

GWA studies can identify functional modules from biological networks that are enriched for top 23 

GWA findings137. Most existing methods analyze tissue-free networks without reflecting 24 

phenotypic specificity, but novel tissue-specific functional interaction networks are being 25 

developed138. 26 

 27 

Regularized regression and correlation analyses 28 

Regularized regression models139,140 and bi-multivariate correlation models, such as 29 

sparse canonical correlation analysis (SCCA)141,142, can be used to examine multi-SNV-multi-30 

trait associations. These models often include a sparsity-inducing regularization term to identify 31 

a smaller number of relevant imaging and genomic markers and to minimize overfitting139,140. 32 

Regularized regression and SCCA models benefit from relative ease of interpretation.  33 

 34 
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Outcome prediction and joint association learning and outcome prediction 1 

 Another challenge in imaging genomics is integration of imaging and genomics data for 2 

improved prediction of clinical outcomes. The most straightforward methods are to concatenate 3 

imaging and genomic data together, and then apply conventional predictive models143. 4 

Advanced ML and DL methods are also being developed to co-relate genetic and imaging 5 

markers with relevant outcomes144,145. ML models can also be used for joint exploration of the 6 

associations among genomics, imaging traits, and outcome146. 7 

 8 

F. RESEARCH OPPORTUNITIES AND PRIORITIES (Summarized in Table 2) 9 

Increased availability of imaging genomics data in diverse populations 10 

 While consortia and large biobanks with imaging and genomic data are proliferating, 11 

initial datasets mostly comprised white individuals of European descent. Multiethnic large 12 

samples to capture the diversity and spectrum of phenotypic variation are required for the 13 

benefits of imaging genomic findings to be shared equally across populations. TOPMed and the 14 

Million Veterans Program147 have both sought to enroll racially diverse samples and efforts to 15 

leverage and expand the available imaging phenotypes within these initiatives and in new 16 

cohorts should maintain the important focus on establishing representative study samples with 17 

diversity of race, ethnicity, age, and sex, among other factors.  18 

 19 

Data harmonization and infrastructure 20 

The unprecedented scale, complexity, and heterogeneity of multidimensional big 21 

datasets available to the research community (including genetics, multi-omics, bioimaging, 22 

electronic health record data) requires effective data integration and harmonization methods to 23 

realize the full potential of these invaluable resources. Tools are being developed in 24 

partnerships with NIH Data Commons148 and NHLBI BioData Catalyst149 to leverage cloud-25 

computing resources for sharing and analyzing TOPMed and imaging datasets within a secure 26 

cloud environment. Unifying imaging biomarkers and genomic data requires the availability of 27 

imaging data in formats that can be shared efficiently and securely. These efforts would, 28 

therefore, benefit from efficient and scalable computational infrastructure to facilitate different 29 

types of large-scale collaborations across cohorts (e.g., cloud computing for teams working with 30 

one single centralized data repository) and federated learning for teams working with distributed 31 

data sets.  32 

 33 

Centralization of efforts around specific disease areas 34 
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 Translating imaging genomics findings from the initial discovery of SNV-imaging trait 1 

associations to the use for clinical risk prediction or mechanistic insight requires coordinated 2 

efforts across disciplines. This may require large, diverse datasets for the initial discovery of 3 

genetic variants, replication in other populations, complementary molecular phenotyping through 4 

gene expression, metabolite profiling, or proteomic investigations, and functional and 5 

mechanistic studies harnessing robust model systems. Integration of these complex steps 6 

would be facilitated by centralized “nodes” of interdisciplinary investigators centered around 7 

disease areas or pathophysiologic processes (e.g., inflammation or fibrosis). These centralized 8 

efforts will also facilitate the development of standards for imaging genomics methods and 9 

related interpretations norms.  10 

 11 

Methodological advances in imaging genomics 12 

 Despite the tremendous progress made in recent years in the field of imaging genomics 13 

and the development of necessary tools for its implementation, substantial methodological 14 

challenges remain. Statistical and computational tools to integrate these high-dimensional data 15 

sources are available, but they are variable across different fields and standardized methods 16 

and interpretation norms are not yet established. These analyses have been largely conducted 17 

to discover statistical associations; leveraging longitudinal measures and more advanced 18 

statistical techniques may enable causal inferences regarding the genetic etiologies of imaging 19 

traits.  20 

  21 

Dedicated focus on less common conditions 22 

 Most consortia for imaging genomics analyses have been formed to enhance statistical 23 

power to evaluate common variants with relatively low effect sizes. While efforts to better 24 

characterize and understand genetic underpinnings of common disease will undoubtedly 25 

continue, consortia should also be formed to study genetic correlates of imaging traits in less 26 

common diseases. In many cases, while the manifest disease itself may be relatively rare, 27 

imaging features of its pathogenesis can be detected years earlier and in a broader population 28 

(such as aortic calcification for aortic stenosis or ILAs for IPF). By centralizing efforts to study 29 

less common diseases, investigators may identify pathophysiological mechanisms that are 30 

applicable to other disease forms as well.  31 

 32 

F. SUMMARY 33 
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The emerging field of imaging genomics seeks to combine state-of-the-art imaging 1 

techniques with genomic information to understand the genomic architecture of bioimaging 2 

traits. Several common heart and lung diseases (e.g., atherosclerosis, COPD) are caused by a 3 

combination of environmental and genetic factors, rendering imaging genomics an especially 4 

powerful tool for improving the precision with which they are characterized across the lifecourse. 5 

Measuring precise bioimaging phenotypes with relevance to clinical disease and elucidating 6 

their genomic contributors can improve understanding of disease pathogenesis, identify relevant 7 

biological pathways, lead to the discovery of novel therapeutic targets, and facilitate disease 8 

prevention characterized by more precise risk prediction and screening and enhanced 9 

opportunities for prevention of clinically meaningful events. 10 
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FIGURE LEGENDS 
 
Figure 1. Imaging genomics: learning problems, applications, and statistical and machine 
learning considerations. Adapted from reference6. The key learning problems (or objectives) 

of imaging genomics are displayed in panel (a). Panel (b) displays potential applications for 

combining biomedical imaging and state-of-the-art genomics information for disease 

characterization, diagnosis, and risk prediction. Considerations for machine learning and 

statistical approaches to imaging genomics analyses are shown in panel (c).  

Abbreviations: GWA, genome-wide association; WGS, whole genome sequencing; Dz, disease; 

surv, survival; dysf, dysfunction; mod, moderate 

 

Figure 2. Novel imaging-based sub-phenotypes of COPD and emphysema. (Reproduced 

with permission from reference100.) Spatially-informed lung texture patterns (sLTPs) were 

derived using unsupervised clustering on chest CT scans from 317 participants in the MESA 

COPD study based on the texture and spatial location of hundreds of regions-of-interest per 

scan. Panel (a) shows two examples of lung CTs and colorized maps of their different sLTPs. 

Panel (b) displays characteristics of the 12 lung texture patterns based on axial cuts from nine 

random regions of interest (top of each box), the average lung texture pattern calculated from 

the images (middle of each box), and the spatial density plots (bottom of each box). These lung 

texture patterns are reproducible and relate to measures of symptom and disease severity.  

Abbreviations: sLTP=spatially-informed lung texture patterns; S=superior; I=inferior; 

P=posterior; A=anterior  
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Table 1. Bioimaging modalities for heart and lung diseases 
 
Imaging modality Characteristics Examples of applications in heart and lung diseases 
Computed 
tomography (CT) 

-Fast, relatively low radiation dose 
-Excellent spatial resolution 
-High throughput, widely available 
 

Heart: 
-Coronary artery and aortic valve calcium (no contrast required)  
-Coronary artery angiography (with contrast) 
Lungs:  
-Qualitative disease characterization (i.e., emphysema, ILD) 
-Quantitative lung measures (e.g., airway wall thickness, interstitial 
abnormalities, small vessel pruning)  

Magnetic 
resonance imaging 
(MRI) 

-Provides simultaneous assessment of heart 
structure and function 
-Evaluation of lung parenchyma with traditional 
methods is challenging due to low signal intensity 
-Takes longer than CT, but can be performed 
efficiently in large cohorts 
-No radiation required 

Heart: 
-Cardiac structure and function (e.g., chamber sizes, ejection fraction) 
-Fibrosis, iron deposition, presence of scar through specialized 
sequences 
Lung: 
-Pulmonary vascular characteristics 
-Methods in development for lung parenchyma evaluation including 
different signal sequences and inhalation of gas mixtures serving as 
contrast agents 

Ultrasound 
(echocardiography) 

-Easily obtained and readily available 
-Radiation free 
-Excellent characterization of heart structure and 
function 

Heart: 
-Cardiac chamber size measurement 
-Cardiac function, including quantitative measures such as strain 
imaging 

Molecular imaging  -Precise biological characterization 
-Can measure disease activity, not just organ 
structure/function 
-May allow disease identification prior to overt 
manifestations  
-Relatively low throughput, challenges with 
obtaining images at large scale 
-Higher radiation dose necessary 
-Largely preclinical 

Heart:  
-Atherosclerotic plaque activity with 18F-FDG PET imaging 
-Microvascular calcification with 18F-fluoride PET tracer 
-Assessment of myocardial perfusion and metabolism with PET 
Lung: 
-Different probes can identify steps in development of lung fibrosis 
including collagen deposition and cross-linking, fibrosis development, 
fibroblast activity, and inflammation 

Abbreviations: ILD, interstitial lung disease; FDG, fluorodeoxyglucose; PET, positron emission tomography



 36 

Table 2. Research priorities in imaging genomics 
 
Research Priorities 
Methods development in imaging, genomics, and their statistical integration 
Infrastructure for data analyses and data sharing 
Multiethnic large samples to capture diversity and spectrum of phenotypic and 
genomic variation of common conditions 
Analysis of longitudinal imaging data in relation to longitudinal molecular data 
Methods development for testing effect modification and causal inference 
adapted to imaging genomics 
Consortia focused on less common heritable conditions 
Defining standards for imaging genomics methods and interpretation norms 
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Heritability estimation of imaging 
phenotypes

Integrating imaging and 
genomics for outcome prediction

Associating genetic variation with 
imaging phenotypes

• Biological insight and disease
mechanisms

• Risk prediction
• Functional analysis

(a) Learning Problems in
Imaging Genomics

(c) Statistical &
M achine

Learning
Considerations

Increasing power
• Quantitative traits
• Multiple comparison
• Meta/mega analysis
• Multivariate models

Machine learning
• Novel phenotypes
• Optimizing model

performance/flexibility
• Validation, diverse samples

Other topics
• Biological interpretation
• Scalability
• Dimensionality reduction
• Interaction

Clinical outcome
• Diagnosis
• Progression
• Impairment score

Biomedical imaging
• Discrete phenotypes, quantitative

traits, voxels, regions of interest
• Multimodal, longitudinal studies,

diverse, multi-ethnic

Genomics
• Single nucleotide variants,

linkage disequilibrium blocks
• Genes, pathways, networks
• PRS, WGS

(b) Biomedical
Application

Considerations

Genetic variation

Disease classificationRisk prediction

Normal Mild dysf

Mod dysf Sev dysf

TimeD
z

fr
ee

 s
u

rv



38 

Figure 2. 




