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A B S T R A C T

The advances in technologies for acquiring brain imaging and high-throughput genetic
data allow the researcher to access a large amount of multi-modal data. Although the
sparse canonical correlation analysis is a powerful bi-multivariate association analy-
sis technique for feature selection, we are still facing major challenges in integrating
multi-modal imaging genetic data and yielding biologically meaningful interpretation
of imaging genetic findings. In this study, we propose a novel multi-task learning based
structured sparse canonical correlation analysis (MTS2CCA) to deliver interpretable
results and improve integration in imaging genetics studies. We perform comparative
studies with state-of-the-art competing methods on both simulation and real imaging
genetic data. On the simulation data, our proposed model has achieved the best per-
formance in terms of canonical correlation coefficients, estimation accuracy, and fea-
ture selection accuracy. On the real imaging genetic data, our proposed model has
revealed promising features of single-nucleotide polymorphisms and brain regions re-
lated to sleep. The identified features can be used to improve clinical score prediction
using promising imaging genetic biomarkers. An interesting future direction is to ap-
ply our model to additional neurological or psychiatric cohorts such as patients with
Alzheimer’s or Parkinson’s disease to demonstrate the generalizability of our method.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Brain imaging genetics is a data science field focused on
integrative analysis of neuroimaging and genetic data (Shen
and Thompson, 2020). One widely studied problem in brain
imaging genetics is to perform association analysis for iden-
tifying genetic variations, such as single nucleotide polymor-
phisms (SNPs) and copy number of variations (CNVs), which
are highly correlated with brain imaging phenotypes, such as

∗Corresponding author: Li.Shen@pennmedicine.upenn.edu (Li Shen).

cortical thickness, volume, and brain connectivity. These find-
ings can provide valuable insights into the genetic and neuro-
biological mechanisms of the brain and subsequently aid the
investigation of their impact on the normal and disordered brain
function and behavior.

The advances of technologies for acquiring brain imaging
and high-throughput genetic data allow the researchers to ac-
cess multi-modal and high dimensional data (Jack Jr et al.,
2008; Shen and Thompson, 2020). The multi-view represen-
tation learning models, such as canonical correlation analysis
(CCA) and parallel independent component analysis (PICA),
have been widely used for solving the imaging genetics asso-
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ciation problem (Chi et al., 2013; Witten et al., 2009; Pearlson
et al., 2015). These models have the advantage of explaining the
representation better and capturing more meaningful biomark-
ers compared with the penalized regression model. One pitfall
of the CCA model is the high risk for overfitting due to the high
dimensionality of the data. To overcome this challenge, vari-
ous kinds of regularization methods were applied to the CCA
model to simplify model complexity, incorporate biologically
meaningful structure, and reduce the risk for overfitting (Du
et al., 2014, 2019; Hardoon and Shawe-Taylor, 2011; Kim et al.,
2019).

Recently, many researchers have developed and applied sev-
eral regularization methods and constraints on the CCA model
to identify relevant biomarkers and associations and simplify
model complexity. For example, the sparse CCA (SCCA) was
proposed for detecting sparse bi-multivariate associations by
adopting l1 regularization (i.e., Lasso penalty) (Chi et al., 2013;
Witten et al., 2009; Hardoon and Shawe-Taylor, 2011). The
group Lasso regularization was employed to encourage group
structure information (Yan et al., 2014; Du et al., 2014). Graph-
constrained Elastic Net (GraphNet) regularization was applied
to the CCA model to incorporate prior biological knowledge
(i.e., brain network or correlation structure) (Kim et al., 2019;
Du et al., 2016). Some studies extended the fundamental SCCA
model to multi-view SCCA (mSCCA) to handle more than two
datasets, where SCCA was performed simultaneously for each
pair of datasets (Witten and Tibshirani, 2009).

The multi-task learning framework has also been introduced
into the CCA model to incorporate multi-modal brain imaging
(Du et al., 2019). Despite their success in a few brain imag-
ing genetics applications, these integrative models are still fac-
ing several limitations. First, most of them are applicable only
to the case of two views, such as association analysis between
single modal imaging and genetic data. Second, it remains a
challenge to obtain biologically interpretable findings because
markers are obtained from the canonical loadings that are com-
puted to maximize the correlation between two datasets.

In this paper, we propose multi-task learning based structured
sparse canonical correlation analysis (MTS2CCA) model to 1)
incorporate complementary multi-modal imaging information,
2) embrace rather than ignore meaningful biological structures
(e.g., linkage disequilibrium [LD] block, pathway, and brain
network) and 3) identify relevant biomarkers. Our scientific
contributions are summarized as follows.

1. To integrate complementary multi-modal imaging data, we
extend the multi-task learning based CCA model. We aim
to discover sparse and discriminative shared representation
across the multi-modal imaging data.

2. By employing the GraphNet penalty, we incorporate the
biologically meaningful structures with the multi-task
learning based CCA model. The estimated canonical load-
ings are constrained by biological structures, which im-
proves model interpretability.

3. We develop an efficient iteratively reweighted algorithm
via alternating optimization to solve the problem and prove
its convergence theoretically.

4. We perform experiments on both simulation and real data

to demonstrate the effectiveness and clinical benefits of the
proposed model over the competing algorithms.

The rest of this paper is organized as follows. In Section 2,
we describe our proposed model (i.e., MTS2CCA) and an ef-
ficient algorithm for solving the proposed model. In Sec-
tion 3, we present the experimental results on simulation and
real imaging genetics data and provide a brief discussion about
experimental results. In Section 4, we summarize and describe
the potential implications of the study.

2. Methodology

We use the boldface lowercase letter to denote a vector and
the boldface uppercase letter to denote a matrix. For matrix X,
its i-th row and j-th column are denoted by xi and x j respec-
tively, xi denotes the i-th elements in vector x, Xi denoted the
i-th matrix, and Xi, j denotes the (i, j)-th element of matrix X.

2.1. Sparse canonical correlation analysis (SCCA)
Let X ∈ Rn×p and Y ∈ Rn×q represent the data matrices,

where X denotes the genetic data with p variables and Y denotes
imaging data with q variables on n subjects. The fundamental
SCCA is defined as follows.

min
u,v
−u>X>Yv

s.t.||Xu||22 = 1, ||Yv||22 = 1, P (u) ≤ c1, P (v) ≤ c2,
(1)

where u and v are the canonical loading vectors and P(u) and
P(v) are the penalty functions. The goal is to find u and v that
maximize the correlation between the genetic feature represen-
tation, Xu, and the imaging feature representation, Yv, under
one or more constraints. Various kinds of regularization meth-
ods have been studied in the literature, such as Lasso, group
Lasso, and GraphNet penalty (Chi et al., 2013; Du et al., 2014;
Kim et al., 2019; Yan et al., 2014; Du et al., 2016).

2.2. Multi-task based Structured sparse canonical correlation
analysis (MTS2CCA)

In this section, we present an algorithm for performing multi-
task bi-multivariate imaging genetics association analysis. Let
X ∈ Rn×p and Yk ∈ R

n×q(k = 1, . . . ,K) represent the data ma-
trices, where X corresponds to the genetic data with p vari-
ables on n subjects, Yk corresponds to the imaging data with q
imaging measurements, and K denotes the number of imaging
modalities (i.e., tasks). Let U = [u1,u2, . . . ,uk] ∈ Rp×K and
V = [v1, v2, . . . , vk] ∈ Rq×K be the canonical weight matrices of
X and Y, respectively. We propose a multi-task learning based
structured sparse canonical correlation analysis (MTS2CCA)
model defined as follows.

min
uk ,vk

K∑
k=1

−u
>

k X
>

Ykvk

s.t.||Xu||22 = 1, ||Ykvk ||
2
2 = 1,Ψ (U) ≤ a1,Ψ (V) ≤ a2,

Ω (U) ≤ b1,Ω (V) ≤ b2,∀k,

(2)

where Ψ and Ω are the penalty functions to control sparsity and
incorporate meaningful biological structures (e.g., LD blocks



Mansu Kim et al. / Medical Image Analysis (2021) 3

and brain connectivity), as described in Sections 2.2.1 and
2.2.2. We propose MTS2CCA for the following reasons. First,
the multi-task framework is an efficient and robust approach to
learn different imaging modalities together (Nie et al., 2010).
By applying l2,1-norm regularization on both canonical weight
matrices (i.e., U and V), the model can learn multiple imag-
ing genetics association pairs simultaneously. This helps the
model identifying common genetic markers associated with
multi-modal imaging measurements in the same brain region.
Second, the GraphNet penalty encourages the related elements
in the canonical loading vector to be similar based on prior net-
work information (Grosenick et al., 2013; Kim et al., 2019; Du
et al., 2016). Thus, we employ the GraphNet penalty to incor-
porate the prior network information (e.g., LD blocks and brain
connectivity). This encourages the model to learn canonical
weights based on the network structure to identify meaningful
imaging and genetic biomarkers.

2.2.1. Common feature selection across different modalities
Generally, imaging measurements from different modalities

are extracted using a common coordinate space (e.g., Montreal
Neurological Institute [MNI] space) and a single brain atlas
(e.g., Automated Anatomical Label [AAL] atlas and Human
Connectome Project’s Multi-Modal Parcellation [HCP-MMP]
atlas). Although each imaging modality may capture a dis-
tinct brain phenotype, these multi-modal measures have close
relathionships due to structal-functional coupling. For exam-
ple, many studies reported that the structural network could pro-
vide the backbone of the functional network and the structural-
functional network coupling was associated with higher-order
cognitive processes (Baum et al., 2020; Mišić and Sporns, 2016;
Kim et al., 2021). Thus, we propose an algorithm that employs
the l2-norm on all the multi-modal measurements for each re-
gion to handle co-linearity, and then applies the l1-norm to se-
lect relevant regions. The formulation of l2,1-norm penalty is
defined as follows:

Ω(U) = ||U||2,1 =

p∑
i=1

√√√ K∑
k=1

(Ui,k)2,

Ω(V) = ||V||2,1 =

q∑
j=1

√√√ K∑
k=1

(V j,k)2.

(3)

Thus, in this work, we apply an l2,1-norm penalty on the
imaging canonical weight matrix (i.e., V) to select common
features considering multi-modal imaging measurements. We
also apply the penalty on the genetic canonical weight matrix
(i.e., U) to learn and select genetic components corresponding
to each imaging modality.

2.2.2. Network structure guided feature selection
The l2,1-norm penalty performs feature selection at the re-

gion level, meaning that all the multi-modal features for a
given region tend to be selected or deselected together. It is
not designed to model prior knowledge about the brain and
genome. To overcome this problem, we propose to use a Graph-
Net penalty to integrate the meaningful biological structures in

the brain and genome (Du et al., 2016; Kim et al., 2019; Yan
et al., 2014). Many researchers demonstrated that the SNPs and
brain imaging features could be modeled using meaningful net-
work structures in the brain and genome (Shen and Thompson,
2020; Hariri and Weinberger, 2003). These comprehensive net-
work data can help to improve the identification of meaningful
biomarkers in each modality. Thus, we introduce a GraphNet
penalty to embrace this information, defined as follows:

ψ (U) = ||U||gn =

K∑
k=1

u
>

k Luuk,

ψ (V) = ||V||gn =

K∑
k=1

v
>

k Lvk vk,

(4)

where the matrices Lu and Lvk are the graph Laplacians of the
network structure in the genome and multi-model brain imag-
ing, respectively. The graph Laplacian is defined as L = D–A,
where D is the degree matrix of the network A (e.g., LD matrix
and brain network). This regularization encourages the weights
or coefficients to be equal or similar for nodes when they have
high connectivity in the network.

In this work, we employ biologically meaningful structures
in the form of a graph or network. In the genomic domain,
we employ the LD measures computed from 1,000 genome
project datasets to create the genetic network, where the edges
are weighted by the r-squared values between two SNPs and
the nodes are the SNPs. In the neuroimaging domain, we em-
ploy group-level functional or structural connectivity computed
from the Human Connectome Project (HCP) dataset to form the
brain network. The group-level structural connectivity is com-
puted by applying the distance-dependent consensus thresholds
based group-representative network model (Betzel et al., 2019a)
and the averaged functional connectivity is used as group-level
functional connectivity. The detailed procedures for obtaining
individual functional and structural connectivity are presented
in Section 3.3.1. Our goal is to learn canonical weights based on
these networks to identify biologically meaningful biomarkers.

2.3. The Optimization algorithm for MTS2CCA

In this section, we propose an alternating iterative re-
weighted method to obtain U and V in Eq. 2. In order to solve
the Eq. 2, we modify the loss function to

min
U,V

K∑
k=1

||Xuk − Ykvk ||
2
2

s.t.||Xuk ||
2
2 = 1, ||Ykvk ||

2
2 = 1, ||U||gn ≤ a1, ||V||gn ≤ a2,

||U||2,1 ≤ b1, ||V||2,1 ≤ b2,∀i,

(5)

which is equivalent to the original problem in Eq. 2 due to
||Xuk ||

2
2 = 1 and ||Ykvk ||

2
2 = 1. Then, we can rewrite its La-

grangian as follows:

L (U,V) =

K∑
k=1

[||Xuk − Ykvk ||
2
2 + λ1u

>

k Luui + λ2v
>

k Lvk vk+

γ1||Xuk ||
2
2 + γ2||Ykvk ||

2
2] + β1||U||2,1 + β2||V||2,1

(6)
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where β1, β2, γ1, γ2, λ1, and λ2 are tuning parameters. The prob-
lem in Eq. 6 is difficult to solve since its non-convex loss func-
tion and non-smooth penalty functions. Fortunately, the non-
smooth penalties (i.e., l2,1 norms of U and V) can be approx-
imated as smooth penalty (defined as

∑p
i=1

√
ui>ui + ζ. Non-

convex loss function can be solved using alternatively iterative
re-weighted algorithm, since it is convex in U with V fixed, and
vk with those remaining vk′ (k , k′) and U fixed.

2.3.1. Updating U
We first solve U with V fixed by minimizing Eq. 7 as follows.

K∑
k=1

[||Xuk − Ykvk ||
2
2 + λ1u

>

k Luuk + γ1||Xuk ||
2
2] + β1||U||2,1. (7)

We take the derivative of L (U,V) with respect to U and let it
be 0. Then, we can rewrite the problem as follows:

2X
>

XU − 2X
>

Y + 2γ1X
>

XU + 2λ1LuU + 2β1 D1U = 0, (8)

where Y = [Y1v1 Y2v2 . . . Ykvk], 2D1U is the subgradient of
U2,1, and D1 is a diagonal matrix with i-th diagonal element
as (D1)i,i = 1/(2||ui||2)(i ∈ [1, p]). Note that D1 is constructed
based on the estimation of U at the previous iteration and is thus
known at the current iteration. Thus, we can derive

X
>

XU + γ1X
>

XU + λ1LuU + β1 D1U = XT Y, (9)

and further

U =
(
XT X + γ1XT X + λ1Lu + β1 D1

)−1
XT Y. (10)

2.3.2. Updating V
We solve individual vk by fixing those remaining vk′ (k , k′)

and U. We take the derivative ofL (U,V) with respect to vk and
let it be 0. Then, we can rewrite the problem as follows:

2Y
>

kYkvk − 2Yk
>

Xuk + 2γ2Y
>

kYkvk + 2λ2Lvk vk + 2β2 D2vk = 0.
(11)

We can derive

Y
>

kYkvk + γ2Y
>

kYkvk + λ2Lvk vk + β2 D2vk = Y
>

k Xuk, (12)

and further

vk = (Y
>

kYk + γ2Y
>

kYk + λ2Lvk + β2 D2)−1Y
>

k Xuk. (13)

where D2 denotes a diagonal matrix with j-th diagonal element
as (D2) j j = 1/(2||v j||2)( j ∈ [1, q]). Therefore, each vk can be
solved alternatively through an iterative algorithm. We present
the pseudo-code in Algorithm 1.

2.4. Convergence analysis
In this section, we prove that the objective function of Eq. 6 is

non-increasing in Algorithm 1. First, we consider the following
lemma:

Lemma 1:For any nonzero vectors a, b ∈ Rk, the following
inequality holds:

||a||2 −
||a||22
2||b||2

≤ ||b||2 −
||b||22

2||b||2
. (14)

Data: Normalized data X ∈ Rn×p,Yk ∈ R
n×q,

Lu = Du − Au, Lvk = Dvk − Avk (k = 1, . . . ,K),
and parameters β1, β2, γ1, γ2, λ1, andλ2.

Result: Canonical loading matrices U = [u1 u2 . . . uk]
and V = [v1 v2 . . . vk].

Initializing U ∈ Rp×k and V ∈ Rq×k;
while no convergence do

Update D1 = diag
(
1/(2||ui||2)

)
(i ∈ [1, p])

Solve U according to Eq. 10:
U =

(
X
>

X + γ1X
>

X + λ1Lu + β1 D1

)−1
X
>

Y
Normalize uk to ||Xuk ||

2
2 = 1

Update D2 = diag
(
1/(2||v j||2)

)
( j ∈ [1, q])

Solve vk(i = 1, . . . ,K) according to Eq. 13:
vk = (Y

>

kYk + γ2Y
>

kYk + λ2Lvk + β2 D2)−1Y
>

k Xuk

Normalize vk to ||Ykvk ||
2
2 = 1

end
Algorithm 1: The MTS2CCA algorithm

Proof : Obviously, arithmetic–geometric mean inequality
holds: (||a||2 + ||b||2)/2 ≥

√
||a||2||b||2. We can derive

||a||2 + ||b||2 − 2
√
||a||2||b||2 ≥ 0

=⇒ ||a||22 + ||b||22 − 2||a||2||b||2 ≥ 0

=⇒ 2||a||2||b||2 − ||a||22 ≤ ||b||
2
2

=⇒ ||a||2 −
||a||22

2||b||2
≤ ||b||2 −

||b||22
2||b||2

.

(15)

Theorem 1: Algorithm 1 monotonically decreases the objec-
tive of Eq. 6 in each iteration until the algorithm converges.

Proof : In order to prove theorem 1, we apply alternating it-
erative re-weighted method to solve minimization problem in
Eq. 6. In the t-th iteration, the update U can be computed by
minimizing the problem in Eq. 7 as follows:

U(t+1) = min
U

K∑
k=1

||Xuk − Ykv(t)
k ||

2
2 + λ1Tr

(
U
>

LuU
)

+γ1Tr
(
U
>

X
>

XU
)

+ β1Tr
(
U
>

D(t)
1 U

)
.

(16)

Since U(t+1) is the optimal solution of Eq. 7, the following in-
equality holds:

K∑
k=1

||Xu(t+1)
k − Ykv(t)

k ||
2
2 + λ1Tr

(
U(t+1)

>

LuU(t+1)
)

+γ1Tr
(
U(t+1)

>

X
>

XU(t+1)
)

+ β1Tr
(
U(t+1)

>

D(t)
1 U(t+1)

)
≤

K∑
k=1

||Xu(t)
k − Ykv(t)

k ||
2
2 + λ1Tr

(
U(t)

>

LuU(t)
)

+γ1Tr
(
U(t)

>

X
>

XU(t)
)

+ β1Tr
(
U(t)

>

D(t)
1 U(t)

)
.

(17)
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By substituting D(t)
1 by definition, following inequality holds:

K∑
k=1

||Xu(t+1)
k − Ykv(t)

k ||
2
2 + λ1Tr

(
U(t+1)

>

LuU(t+1)
)

+γ1Tr
(
U(t+1)

>

X
>

XU(t+1)
)

+ β1

p∑
`=1

||u`(t+1)
||22

2||u`(t)
||2

≤

K∑
k=1

||Xu(t)
k − Ykv(t)

k ||
2
2 + λ1Tr

(
U(t)

>

LuU(t)
)

+γ1Tr
(
U(t)

>

X
>

XU(t)
)

+ β1

p∑
`=1

||u`(t)
||22

2||u`(t)
||2
.

(18)

By substituting a and b in Eq. 15 with u`(t+1)
and u`(t)

respec-
tively, we can derive

p∑
`=1

||u`
(t+1)
||2 −

p∑
`=1

||u`(t+1)
||22

2||u`(t)
||2
≤

p∑
`=1

||u`
(t)
||2 −

p∑
`=1

||u`(t)
||22

2||u`(t)
||2
. (19)

By summing Eq. 18 and Eq. 19 on both sides, we obtain

K∑
k=1

||Xu(t+1)
k − Ykv(t)

k ||
2
2 + λ1Tr

(
U(t+1)

>

LuU(t+1)
)

+γ1Tr
(
U(t+1)

>

X
>

XU(t+1)
)

+ β1

p∑
`=1

||u`
(t+1)
||2

≤

K∑
k=1

||Xu(t)
k − Ykv(t)

k ||
2
2 + λ1Tr

(
U(t)

>

LuU(t)
)

+γ1Tr
(
U(t)

>

X
>

XU(t)
)

+ β1

p∑
`=1

||u`
(t)
||2.

(20)

We can rewrite
K∑

k=1

[||Xu(t+1)
k − Ykv(t)

k ||
2
2 + λ1u(t+1)

>

k Luu(t+1)
k +

γ1||Xu(t+1)
k ||22] + β1||U(t+1)||2,1 ≤

K∑
k=1

[||Xu(t)
k − Ykv(t)

k ||
2
2

+λ1u(t)
>

k Luu(t)
k + γ1||Xu(t)

k ||
2
2] + β1||U(t)||2,1.

(21)

The objective value of the problem in Eq. 7 monotonically de-
creases in each iteration regarding updating U. Similarly, we
can hold the following inequality.

K∑
k=1

[||Xu(t+1)
k − Ykv(t+1)

k ||22 + λ2v(t+1)
>

k Lvk v
(t+1)
k +

γ2||Ykv(t+1)
k ||22] + β2||V(t+1)||2,1 ≤

K∑
k=1

[||Xu(t+1)
k − Ykv(t)

k ||
2
2

+λ2v(t)
>

k Lvk v
(t)
k + γ2||Ykv(t)

k ||
2
2] + β2||V(t)||2,1.

(22)

From 21-22, it follows that Algorithm 1 monotonically de-
creases the objective of the problem in Eq. 6 in each iteration
and the objective function of problem 6 is bounded from below
(by e.g., zero), Algorithm 1 will converge to a local optimum
solution to problem 6. Moreover, according to (Bezdek and
Hathaway, 2002, 2003), the rate of convergence is linear.

3. Results and discussion

3.1. Benchmarks and experimental setups
We applied and compared our model with several state-of-

the-art CCA models to demonstrate the strengths of the pro-
posed model. Many researchers have successfully adopted
multi-modal brain imaging data into canonical correlation anal-
ysis. We carefully choose five related methods for compari-
son: 1) sparse canonical correlation analysis (SCCA) (Chi et al.,
2013), 2) multi-task learning based sparse canonical correlation
analysis (MTSCCA) (Xu et al., 2019), 3) multi-task learning
based group sparse canonical correlation analysis (MTGSCCA)
(Du et al., 2019), 4) joint-connectivity-based sparse canonical
correlation analysis (JCBSCCA) (Kim et al., 2019), and 5) ten-
sor based canonical correlation analysis (TCCA) (Min et al.,
2019).

• The standard SCCA is applied to discover the association
between two datasets. It learns only a single canonical
weight thus cannot fully estimate from different modalities
simultaneously.

• MTSCCA studies bi-multivariate association with l2,1-
norm to discover compact and discriminative representa-
tion for multiple modalities. The ;2,1-norm enables the
model to select variables in the canonical loadings and
learn a common canonical representation that keeps con-
sistent with the most canonical variables from each modal-
ity. However, it is limited to incorporate biological knowl-
edge or structure.

• MTGSCCA is an extension of the MTSCCA by combin-
ing group l2,1-norm and l2,1-norm to incorporate group in-
formation. Although group l2,1 regularization enables us to
take into consideration the group structure, it is challeng-
ing to incorporate weighted overlapped prior knowledge
based on group l2,1-norm.

• JCBSCCA employs GraphNet penalty and fused lasso to
incorporate prior knowledge and handle a multi-modal
dataset. However, the fused lasso is limited to incorpo-
rated three or more neuroimaging modalities and difficult
to optimize the objective function efficiently.

• TCCA enables the identification of a relationship between
two tensors with fewer parameters. However, it is limited
to handle multi-modal datasets and obtain optimal hyper-
parameters.

The single-task CCA models were performed with concate-
nated multi-modal imaging measurements (i.e., TCCA and
SCCA). The performances of these models were evaluated on
the simulation data in terms of the correlation, feature selec-
tion accuracy, and estimation accuracy. In addition, we applied
the proposed model to the real imaging genetics data to demon-
strate its clinical benefits and interpretability.

We apply nested five-fold cross valication strategy to exam-
ine the performance of the models. In the outer loop, the dataset
is split into five different folds. The model is trained and tested
in the cross-validate fashion where four of them are used as
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a b c d
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Ground truth of U

A F C
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Fig. 1: Ground truth signal vectors of simulation data. Sub-figure-(a) and
(b) present ground truth signals and association patterns in U and V, respec-
tively. In simulation data, we generate modality-common (variables a and A),
modality-specific (variables b and B, c and C, and d and D), and network-driven
association pattern (variable A and F).

the training set and one of them is used as the testing set. In
the inner loop, we train and tune hyper-parameters using cross-
validation fashion on the training set. All parameters (e.g.,
λ1, λ2, β1, β2, γ1, and γ2) are jointly tuned by five-fold cross val-
idation, defined as follows:

CV =
1
5

5∑
i=1

corr(Xiu−i,Yiv−i), (23)

where Xi and Yi denoted the i-th subset of the dataset (valida-
tion set); u−i and v−i denoted the estimated loading vectors from
the dataset except for the i-th subset (train set, X−i, and Y−i).
We tuned the parameters via a grid search with the following
finite set: [0.01, 0.1, 1, 10, 100]. The optimal parameters were
obtained by maximizing CV in Eq. 23 for training set in inner
loop. Once the optimal hyper-parameters were determined, we
trained the model with these parameters on the training set and
then applied it into the testing set in the outer loop to generate
the final results.

3.2. Simulation study

In this section, we present the comparison results on the sim-
ulation data to evaluate the potential power of the proposed
MTS2CCA model. We measure the training and testing canoni-
cal correlation coefficients (CCCs) to evaluate the generalizabil-
ity of the model. Additionally, we measure angle between esti-
mated loading vector and ground truth vector to evalute estima-
tion accuracy, and area under the curve (AUC) between ground
truth vector and estimated loading vector to evalute feaure se-
lection accuracy.

3.2.1. Simulation setup
We generate two sets of simulation data using a genera-

tive model described in (Min et al., 2019). Fig. 1 shows the
ground truth signal vectors U and V. The simulation data X
is generated with a true signal vector U, and the simulation
data Yk are generated with true signal vectors Vk. For each
data, we generate three different association patterns, such as
modality-common, modality-specific, and network driven as-
sociation patterns. For modality-common association, we set
the association between X and Yk(k = 1, 2, 3), where the blue
variables in Fig. 1-(a) and (b) (variables a and A) have a high
correlation. Modality-specific association patterns were gener-
ated between X and Yk(k = 1, 2, 3) pairs, where the red, yellow,
green variables U and V have associations (variables b and B, c
and C, d and D in Fig. 1). For network-driven association, we
set a association based on pre-defined network structure, where

the structure have a connectivity between sparse sets of variable
in Yk(k = 1, 2, 3). In Fig. 1, blue and purple variable in V have
a high correlation (variable A and F in Fig. 1).

To evaluate the performance of methods, we simulate low-
dimensional and high-dimensional problem, Data 1 and 2. In
Data 1, we generate the simulation data X and Yi with true sig-
nal vectors U and Vi respectively, where p = q = 100 and
n = 1, 000. Fig. 2-(a) shows the ground truth signals U and
Vi. In Data 2, we generate the simulation data X and Yi with
true signal vectors U and Vi respectively, where p = q = 300
and n = 100. Fig. 2-(b) shows the ground truth signals U and
Vi. The samples were generated with different true correlation
levels: true CCC between X and Y1 is 0.9, true CCC between
X and Y2 is 0.6, and true CCC between X and Y3 is 0.3.

3.2.2. Simulation results
We first compared the training and testing performances in

terms of CCC in Table 1. All methods generally performed well
when true CCC was high (X vs. Y1). The multi-task CCA mod-
els, including MTS2CCA, MTGSCCA, MTSCCA, and JCB-
SCCA, outperformed single task CCA models, when true CCC
was medium (X vs. Y2). When true CCC was extremely low
(X vs. Y3), the proposed model outperformed all the compet-
ing methods. Although we observed the SCCA showed the
highest training and testing CCC between X vs. Y1, the per-
formance differences with other competing methods were very
small. These results suggested that the multi-task learning strat-
egy had an improved ability to identify the associations among
three or more views of data, and worked especially better for a
low canonical correlation setup.

In addition, we compared the parameter sensitivity of mod-
els. We measured the CCC by varying the parameter from 0.01
to 100 with a scale factor of 10 and fixing the remaining param-
eters to 1 for simplicity. As shown in Fig. 3, for all methods
except TCCA, CCC curves appear stable and insensitive to β1,
which controls the sparsity for dataset X. However, CCC curves
drop from 100 or higher for β2, which controls the sparsity for
dataset Y. CCC curves are stable and insensitive to both β1 and
β2 in TCCA. For MTS2CCA and JCBSCCA, CCC curves ap-
pear to be stable and insensitive to λ1 and λ2, where it controls
the level of incorporating network information for both dataset
X and Y. For MTGSCCA, CCC curves drop while λ increases;
λ controls the level of incorporating group structure for dataset
X. These findings indicate that the CCA with GraphNet penalty
is more stable to incorporate prior knowledge than GroupLasso.
Both CCA with l2,1 regularizer and FusedLasso are sensitive for
multi-modal data integration setup.

The estimated uk and vk were plotted in Fig. 2. For
the MTS2CCA, MTGSCCA, and MTSCCA, the estimated uk

(k=1,2,3) were plotted in the first three rows of Fig. 2. For the
JCBSCCA, TCCA, and SCCA, The estimated u was plotted.
For all methods, three estimated vk (k=1,2,3) were plotted in
the last three rows of Fig. 2. To compare the estimation accu-
racy of the model, we measured the cosine similarity between
estimated canonical loading vector ũ and ground truth signal
u. The cosine similarity was defined as cos

(
u, ũ

)
= < u, ũ >

/ ||u||2||̃u||2. We observed that the proposed model showed the
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Fig. 2: The estimated canonical loading vectors on simulation data. The first column corresponds to the ground truth signal, where blue, red, yellow, and purple
signals represent different association patterns. The remaining columns present estimated canonical loading vectors of SCCA models: MTS2CCA, MTGSCCA,
MTSCCA, JCBSCCA, TCCA, and SCCA, respectively. For MTS2CCA, MTGSCCA, and MTSCCA, the first three rows present u1, u2, and u3, respectively. Only
u is presented for JCBSCCA, TCCA, and SCCA. The remaining rows present canonical loading vectors v1, v2, and v3.

Table 1: The canonical correlation coefficients on simulation data. The training and testing canonical correlation coefficients (mean ± std) of nested five-fold
cross-validation were reported. For each model, the canonical correlation coefficients of multi-modal associations were presented in separate rows.

Methods Training canonical correlation coefficients Testing canonical correlation coefficients
fold 1 fold 2 fold 3 fold 4 fold 5 mean ± std fold 1 fold 2 fold 3 fold 4 fold 5 mean ± std

MTS2CCA
X vs. Y1 0.906 0.906 0.913 0.912 0.909 0.909±0.003 0.890 0.893 0.861 0.851 0.892 0.877±0.020
X vs. Y2 0.621 0.639 0.623 0.605 0.642 0.626±0.015 0.505 0.381 0.487 0.471 0.457 0.461±0.048
X vs. Y3 0.414 0.392 0.383 0.402 0.422 0.403±0.016 0.227 0.167 0.100 0.040 0.105 0.128±0.071

MTGSCCA
X vs. Y1 0.907 0.905 0.903 0.905 0.904 0.905±0.001 0.902 0.848 0.854 0.856 0.883 0.869±0.023
X vs. Y2 0.625 0.653 0.626 0.608 0.627 0.628±0.016 0.474 0.374 0.501 0.544 0.412 0.461±0.068
X vs. Y3 0.389 0.396 0.399 0.430 0.406 0.404±0.016 0.181 0.142 0.040 0.005 0.169 0.107±0.079

MTSCCA
X vs. Y1 0.909 0.897 0.900 0.910 0.901 0.903±0.006 0.855 0.887 0.871 0.850 0.887 0.870±0.018
X vs. Y2 0.628 0.628 0.618 0.628 0.613 0.623±0.007 0.474 0.487 0.455 0.468 0.481 0.473±0.012
X vs. Y3 0.377 0.393 0.383 0.411 0.422 0.397±0.019 0.116 0.060 0.144 0.161 0.066 0.110±0.045

JCBSCCA
X vs. Y1 0.765 0.754 0.806 0.764 0.798 0.777±0.023 0.781 0.685 0.774 0.731 0.792 0.753±0.044
X vs. Y2 0.539 0.528 0.542 0.515 0.525 0.530±0.011 0.389 0.397 0.415 0.411 0.371 0.397±0.018
X vs. Y3 0.320 0.293 0.207 0.266 0.252 0.268±0.043 -0.004 0.009 0.038 0.069 0.066 0.036±0.033

TCCA
X vs. Y1 0.903 0.883 0.904 0.900 0.893 0.897±0.009 0.845 0.861 0.857 0.817 0.879 0.852±0.023
X vs. Y2 0.130 0.149 0.117 0.144 0.179 0.144±0.023 0.086 -0.007 0.042 0.035 0.223 0.076±0.089
X vs. Y3 0.130 0.121 -0.001 0.081 0.151 0.097±0.060 -0.041 -0.071 -0.043 -0.151 -0.069 0.075±0.045

SCCA
X vs. Y1 0.917 0.910 0.919 0.914 0.909 0.914±0.004 0.853 0.898 0.866 0.893 0.901 0.882±0.021
X vs. Y2 0.117 0.118 0.120 0.048 0.113 0.103±0.031 0.037 0.031 0.047 -0.022 0.090 0.037±0.040
X vs. Y3 0.031 0.099 0.036 0.026 0.102 0.059±0.038 0.016 -0.149 0.123 -0.070 0.007 -0.015±0.102

best estimation accuracy for all canonical loading weights com-
pared with competing methods, as shown in Table 3. Specifi-
cally, we observed that the proposed model and JCBSCCA per-
formed better than MTGSCCA and MTSCCA in terms of an-
gle of V. In Fig. 2, the proposed model and JCBSCCA showed
the ability to identify the correct location of the network asso-
ciation signals. This demonstrated that the GraphNet penalty
could help with association discovery from predefined network
structure.

In addition, we evaluated the feature selection accuracy of
the various CCA models by calculating the area under the
curve (AUC). The results showed that the multi-task CCA mod-
els performed better than single-task CCA models for detect-
ing the signals. Specifically, the multi-task CCA model was

robust to the low correlation level, while SCCA and TCCA
were not. The multi-task CCA models with GraphNet penalty
(e.g., MTS2CCA and JCBSCCA) performed slightly better

Table 2: The feature selection accuracy on simulation data. The AUC between
estimated loading vector and ground truth was reported. The best values are
shown in bold text.

MTS2CCA MTGSCCA MTSCCA JCBSCCA TCCA SCCA

u1 1.000 1.000 1.000 1.000 1.000 1.000
u2 1.000 1.000 1.000 1.000 0.981 0.642
u3 1.000 1.000 1.000 0.991 0.850 0.519
v1 1.000 0.812 0.816 1.000 0.767 0.811
v2 0.980 0.775 0.761 0.969 0.455 0.436
v3 0.931 0.730 0.757 0.848 0.431 0.525
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Fig. 3: Parameter sensitivitiy of CCA models. We measured the CCC by vary-
ing the parameter from 0.01 to 100 with a scale factor of 10 and fixing the
remaining parameters to 1 for simplicity.

Table 3: The estimation accuracy on simulation data. The cosine similarity
between estimated loading vector and ground truth is presented in each row.
The best values are shown in bold text.

MTS2CCA MTGSCCA MTSCCA JCBSCCA TCCA SCCA

u1 0.999 0.999 0.999 0.990 0.997 0.999
u2 0.991 0.991 0.991 0.983 0.726 0.136
u3 0.966 0.962 0.963 0.819 0.549 0.071
v1 0.990 0.782 0.768 0.919 0.394 0.741
v2 0.968 0.708 0.685 0.986 0.032 0.042
v3 0.610 0.449 0.449 0.174 0.034 0.032

Table 4: The computation time and memory usage comparison on simulation
data. The computation time (mean ± std seconds) was measured during the
model training. The memory usage (mean ± std mega bytes) is measured during
the model training.

MTS2CCA MTGSCCA MTSCCA JCBSCCA TCCA SCCA

Time 0.042 ± 0.019 0.045 ± 0.026 0.041 ± 0.018 0.115 ± 0.253 5.782 ± 1.769 0.041 ± 0.025
Memory 4.68 ± 0.69 4.67 ± 0.17 4.67 ± 0.11 4.66 ± 0.18 14.60 ± 7.74 3.77 ± 0.68

than those without GrapnNet penalty, especially on detecting
network-driven association signals as shown in Fig 2. This in-
dicated that owing to the multi-task learning framework and
GraphNet regularization, the feature selection accuracy for bi-
multivariate association can be improved.

The computation time and memory consumption for each
method are shown in Table 4 and 5, respectively. We measured
the computation time using a machine with a single 3.6-GHz
octa-core Intel i9 CPU and 32-GB memory. There was no sig-
nificant difference between these methods, except TCCA. In ad-
dition, SCCA consumes the least memory usage (3.77MB) and
TCCA consumes the most memory usage (14.60MB). Except
TCCA and SCCA, there is no significant difference in memory
usage between the methods. Despite complex constraints in the
model, the empirical study on the simulation data demonstrated
the effectiveness and efficiency of the proposed algorithm.

3.3. Results on real imaging genetics data
We present our results on real imaging genetics data,

where the proposed model has been applied and compared
with six state-of-the-art CCA models, including MTGSCCA,
MTSCCA, JCBSCCA, TCCA, and SCCA. The multi-modal
neuroimaging data and genotyping data were obtained from the
HCP database. We evaluated the CCA model performances and

Table 5: Demographic information.

Participant characteristics
Number of Subjects 291

Gender(M/F) 144/147
Age (year, mean±std) 28.63 ± 3.67

Education (year, mean±std) 15.15 ± 1.62

their predictive powers using the identified imaging and genetic
feature representations for the studied outcome of interest. In
addition, we performed neurosynth meta-analysis and gene en-
richment analysis to functionally annotate the selected brain re-
gions and genetic variants and provide biological interpretation.

3.3.1. Dataset
In this study, we collected the neuroimaging data, including

resting-state functional magnetic resonance imaging (rs-fMRI)
and diffusion-weighted MRI (dMRI), and the genotyping data
of 291 participants from the HCP database (Van Essen et al.,
2013). This HCP subset includes participants who are genet-
ically unrelated and non-Hispanic and have full demographic
information. Table 5 shows the participant characteristics.

Brain connectivity toolbox (BCT) was employed to extract
connectivity measurement (i.e., degree centrality) from func-
tional and structural connectivity (Rubinov and Sporns, 2010).
For each subject, preprocessed rs-fMRI and dMRI data were
obtained from the HCP database. For rs-MRI data, the func-
tional connectivity matrix was calculated by Pearson’s correla-
tion analysis between the two different brain regions. The HCP-
MMP atlas, which is the most detailed cortical in-vivo parcel-
lations with 360 regions, was used as nodes of the connectivity
(Glasser et al., 2016). For dMRI data, the FSL software was
used to construct the structural connectivity (Smith et al., 2004).
The HCP database provided the preprocessed dMRI, which es-
timated the fiber orientation using FSL’s multi-shell spherical
deconvolution toolbox (bedpostx) (Jbabdi et al., 2012). We per-
formed probtrackX to estimate fiber streamlines and mapped
onto the 360 regions of HCP-MMP to build the structural con-
nectivity matrix (Behrens et al., 2003). The degree centrality
was then obtained by applying BCT on each connectivity ma-
trix. We applied the distance-dependent consensus thresholding
method to generate the average group-level connectivity net-
work, and this network was used as the GraphNet constraint of
the neuroimaging data in our model (Betzel et al., 2019b).

The genotyping data released by HCP was obtained from
the dbGAP website, under phs001364.v1.p1 (Mailman et al.,
2007). Illumina Multi-Ethic Global Array (MEGA) SNP-array
was used for genotyping 1,580,642 SNPs data for all subjects.
The quality of genotyping data was controlled using the fol-
lowing condition: SNPs with a minor allele frequency < 1%,
Hardy–Weinberg equilibrium < 10−6, or genotype missing rate
> 5% were excluded. The associations between mental ability
measures (e.g., DSM-5 depression score and anxiety score) and
SNPs were assessed by performing GWAS using the PLINK
software (Purcell et al., 2007), where we employed a linear re-
gression model adjusting sex, age, and education as covariates.
We obtained 981 candidate SNPs significantly related to mental
ability measurements (p-value < 0.0005). These findings were
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used for the subsequent analyses. In addition, we computed LD
matrix based on 1,000 genome project and used it as Graph-
Net constraints of genotyping data in our model (Clarke et al.,
2017).

3.3.2. Multi-task imaging genetics associations
We evaluate the proposed model in terms of CCC for the

multi-task imaging genetics association, including the associ-
ation between the SNPs and fMRI (SNP-fMRI) and the associ-
ation between the SNPs and dMRI (SNP-dMRI). Tables 6 and
7 show training and testing CCCs of multi-task imaging ge-
netic associations computed from various state-of-the-art CCA
models. For SNP-fMRI association, MTS2CCA, MTGSCCA,
MTSCCA, and JCBSCCA showed excellent training CCCs
and relatively good testing CCCs compared with TCCA and
SCCA. For SNP-dMRI association, MTS2CCA, MTGSCCA,
MTSCCA, JCBSCCA, and SCCA showed excellent training
CCCs and relatively good testing CCCs compared with TCCA.
Overall, we observed that MTS2CCA showed the highest test-
ing CCCs on both SNP-dMRI (0.689 ± 0.011 of training and
0.236 ± 0.060 of testing CCCs) and SNP-fMRI tasks (0.738
± 0.017 of training and 0.295 ± 0.105 of testing CCCs). For
single-task CCA model, we compared the model using con-
catenated multi-modal imaging measurements (i.e., TCCA and
SCCA) to pair-wise model (i.e., TCCA-p and SCCA-p). We
observed overfitted CCCs both SCCA and TCCA in pair-wise
analysis. Specifically, we observed that SCCA was overfitted
both SNP-fMRI association (i.e., 0.976 ± 0.037 of training and
0.120 ± 0.175 of testing CCCs) and SNP-dMRI association
(0.855 ± 0.045 of training and 0.122 ± 0.135 of testing CCCs).
For TCCA, we observed overfitted CCCs on both SNP-fMRI
association (i.e., 0.986 ± 0.013 of training and 0.201 ± 0.100
of testing CCCs) and SNP-dMRI association (0.949 ± 0.041
of training and -0.048 ± 0.060 of testing CCCs). This indi-
cated that the multi-task learning strategy and graphnet con-
straint showed the ability to improve multi-task bi-multivariate
association on real imaging genetics applications.

3.3.3. Multi-task imaging genetics integration and its clinical
benefits

We applied the proposed model to integrate imaging genetic
data and evaluated its clinical benefits by predicting behavioral
score using the imaging and genetics feature representations
learned from the model. As mental disorders, such as depres-
sion and anxiety, are associated with sleep disturbances, we
show the clinical benefits of the model by predicting the Pitts-
burgh sleep quality index (PSQI) scores. The multivariate lin-
ear regression model was used for predicting the PSQI score,
where the imaging genetics feature representations were con-
sidered as the predictors, PSQI score was considered as the re-
sponse variable, and sex, age, and education were considered as
covariates. In addition, we compared our model with state-of-
arts regression-based model (i.e., the deep collaborative learn-
ing (DCL) model) to demonstrate generalized ability of model
without target phenotypes (Hu et al., 2019). The nested five-
fold cross-validation was employed to examine the prediction
performance. The prediction performance of the model was

evaluated using root-mean-square error (RMSE) and Pearson’s
correlation coefficient (CC) between the actual and predicted
scores.

As shown in Table 8, the proposed model outperformed three
multi-task CCA models as well as single-task CCA models, in
terms of RMSE and CC. The prediction model using feature
representation from the proposed model yielded the highest CC
of 0.292±0.092 and the lowest RMSE of 2.654±0.307 between
the actual and predicted PSQI scores. The model with fea-
ture representation from DCL yielded the second-highest CC
of 0.274±0.083 with the RMSE of 2.874±0.491, and the model
with MTGSCCA took the third place (i.e., CC of 0.214±0.111
with the RMSE of 2.719±0.328). In addition, the prediction
model using all genetics and imaging data (i.e., 981 SNPs, 360
ROIs from fMRI and dMRI) yielded 13.97±1.46 of RMSE and
-0.01±0.10 of CC, the model using genetic data (981 SNPs)
alone obtained 11.38±1.68 of RMSE and -0.09±0.14, the model
using dMRI (360 ROIs from dMRI) alone obtained 16.37±5.12
of RMSE and 0.02±0.18 of CC, and the model using fMRI (360
ROIs from fMRI) alone obtained 13.97±1.46 of RMSE and -
0.01±010 of CC.

3.3.4. Interpretation of selected imaging markers
The estimated imaging canonical loading vectors for each

modality (i.e., fMRI and dMRI) from the CCA models are
shown in Fig. 4. In our analysis, the identified biomarkers
based on nested five-fold cross validation were slightly differ-
ent in different cross validation trials. In order to select sta-
ble markers, we averaged the loading vectors across the five
folds. Specifically, we have trained and tuned the hyperparam-
eters with four folds of datasets (i.e., training and validation
sets) and applied it on the remaining fold (i.e., testing set) to
identify biomarkers. The cross validation process is then re-
peated 5 times, with each of the 5 partitions used exactly once
as the testing data. The five results from these cross validation
trials can then be averaged to produce a single estimation. Fi-
nally, we ignored weights less than 0.00005 to make estimation
stable.

We found that 231 out of 360 regions are overlapped be-
tween identified ROIs from fMRI and dMRI. In addition, 21
regions are identified from dMRI and 17 regions are iden-
tified from fMRI. Table 9 shows the top ten most signif-
icant ROIs from dMRI and fMRI. Among these top find-
ings, there are in total 16 ROIs associated with SNPs; and
7 out of 23 ROIs (i.e., L 47l ROI, L 47m ROI, L 9m ROI,
R 10v ROI, R 23d ROI, R 47m ROI, R a24 ROI) are subre-
gions of the posterior-multimodal network. Four ROIs (i.e.,
L DVT ROI, L LO3 ROI, L V3B ROI, R LO2 ROI) are sub-
regions of the visual network, two ROIs (i.e., L a24pr ROI and
R FOP3 ROI) are subregions of the cingulo-opercular network,
and R PHT ROI, RIFJa ROI, and R OFC ROI are subregion
of language, default mode, and frontoparietal network, respec-
tively.

For both fMRI and dMRI, corpus callosum and prefrontal
cortex are top markers contributing to the association for all
models. To biologically interpret the complicated activation
patterns, we also conducted a Neurosynth meta-analysis to de-
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Table 6: The canonical correlation coefficients between fMRI and SNP. The training and testing canonical correlation coefficients (mean ± std) of five-fold cross-
validation were reported. The best values are shown in bold text.

Methods Training canonical correlation coefficients Testing canonical correlation coefficients
fold 1 fold 2 fold 3 fold 4 fold 5 mean±std fold 1 fold 2 fold 3 fold 4 fold 5 mean±std

MTS2CCA 0.718 0.745 0.762 0.735 0.729 0.738±0.017 0.327 0.110 0.367 0.354 0.320 0.295±0.105
MTGSCCA 0.907 0.821 0.842 0.960 0.895 0.874±0.054 0.315 0.022 0.319 0.317 0.240 0.243±0.128
MTSCCA 0.884 0.895 0.959 0.949 0.901 0.901±0.034 0.256 0.014 0.323 0.294 0.238 0.225±0.122
JCBSCCA 0.662 0.587 0.674 0.631 0.658 0.658±0.035 0.270 -0.121 0.356 0.253 0.267 0.205±0.187

TCCA 0.381 0.572 0.584 0.171 0.431 0.428±0.168 0.155 -0.159 -0.049 -0.187 -0.085 -0.065±0.135
SCCA 0.362 0.445 0.503 0.430 0.439 0.436±0.050 -0.051 0.019 0.025 0.130 0.050 0.034±0.065

Table 7: The canonical correlation coefficients between dMRI and SNP. The training and testing canonical correlation coefficients (mean±std) of five-fold cross-
validation were reported. The best values are shown in bold text.

Methods Training canonical correlation coefficients Testing canonical correlation coefficients
fold 1 fold 2 fold 3 fold 4 fold 5 mean ± std fold 1 fold 2 fold 3 fold 4 fold 5 mean ± std

MTS2CCA 0.686 0.698 0.686 0.701 0.672 0.689±0.011 0.238 0.200 0.277 0.157 0.307 0.236±0.060
MTGSCCA 0.795 0.815 0.953 0.857 0.838 0.852±0.061 0.220 0.225 0.204 0.146 0.324 0.224±0.064
MTSCCA 0.857 0.878 0.953 0.928 0.879 0.899±0.040 0.216 0.198 0.210 0.113 0.281 0.204±0.060
JCBCCA 0.653 0.554 0.607 0.629 0.606 0.610±0.037 0.200 0.222 0.296 0.178 0.229 0.225±0.044

TCCA 0.840 0.677 0.646 0.918 0.776 0.771±0.113 0.091 0.049 0.083 0.018 0.057 0.060±0.029
SCCA 0.620 0.574 0.663 0.600 0.536 0.599±0.042 0.158 0.363 0.186 0.144 0.266 0.223±0.091

code the results (Gorgolewski et al., 2015; Yarkoni et al., 2011).
Neurosynth is a platform designed to identify the topics asso-
ciated with the brain activation maps. The top five Neurosynth
topics and their CCs between the estimated canonical loading
vector and the topic loading are shown in Tables 10 and 11.
The topics related to anatomical terminology were excluded.

For fMRI, we found that the anterior cingulate cortex, ante-
rior insula cortex, inferior frontal cortex, and parahippocampal
gyrus were top regions contributing to maximizing the canoni-
cal correlation, as shown in Fig. 4. We observed that cognitive
control, pain, demands, deficit hyperactivity, and remembering
were top-five Neurosynth topics related to our findings with the
highest CC, as shown in Table 10. For the dMRI, we found
that the medial prefrontal cortex, dorsomedial prefrontal cor-
tex, ventromedial prefrontal cortex, and cingulate cortex were
regions contributing to maximizing the canonical correlation.

Table 8: The comparison of prediction performance. The prediction perfor-
mance was reported in terms of the root-mean-squared error (RMSE) and cor-
relation coefficients (r) between actual and predicted scores. The values were
reported as format of mean ± standard deviation (std).

Methods fold1 fold2 fold3 fold4 fold5 Mean ± std

MTS2CCA r 0.183 0.350 0.417 0.260 0.252 0.292±0.092
RMSE 3.105 2.490 2.828 2.492 2.355 2.654±0.307

MTGSCCA r 0.044 0.243 0.352 0.196 0.237 0.214±0.111
RMSE 3.193 2.575 2.913 2.527 2.388 2.719±0.328

MTSCCA r -0.088 0.256 0.350 0.176 0.174 0.174±0.163
RMSE 3.322 2.567 2.913 2.536 2.484 2.764±0.355

JCBSCCA r 0.102 0.166 0.354 0.270 0.165 0.212±0.100
RMSE 3.122 2.616 2.982 2.481 2.454 2.731±0.303

TCCA r 0.307 0.290 0.079 0.091 0.217 0.197±0.108
RMSE 3.043 2.593 3.099 2.568 2.369 2.734±0.320

SCCA r -0.151 0.155 0.130 0.210 0.037 0.076±0.141
RMSE 3.304 2.621 3.153 2.524 2.557 2.832±0.368

DCL r 0.166 0.369 0.334 0.285 0.217 0.274±0.083
RMSE 3.471 2.615 3.317 2.623 2.344 2.874±0.491

Table 9: Top 10 regions from fMRI and dMRI associated with SNPs. The
canonical weight of fMRI and dMRI are reported. The network is annotated
to the each ROI according to the Cole-Anticevic Brain-side Network (Ji et al.,
2019).

ROI Network fMRI dMRI ROI Network fMRI dMRI
L DVT ROI Visual1 0.005 0.004 R OFC ROI Frontoparietal 0.004
L LO3 ROI Visual2 0.007 L 47l ROI Posterior-Multimodal 0.005
L V3B ROI Visual2 0.004 L 47m ROI Posterior-Multimodal 0.008
R LO2 ROI Visual2 0.003 L 9m ROI Posterior-Multimodal 0.007
L a24pr ROI Cingulo-Opercular 0.008 0.004 R 10v ROI Posterior-Multimodal 0.004
R FOP3 ROI Cingulo-Opercular 0.004 R 23d ROI Posterior-Multimodal 0.005
R PHT ROI Language 0.004 R 47m ROI Posterior-Multimodal 0.004
R IFJa ROI Default 0.026 0.011 R a24 ROI Posterior-Multimodal 0.006 0.006

These regions were associated with the topics, including so-
cial, moral, evolution, mental states, and mentalizing, and they
showed the second-highest CC, as shown in Table 11. The
metabolism in the medial prefrontal and the anterior cingulate
cortex is affected by sleep deprivation and depression (Wu et al.,
2001). Many human and animal studies have demonstrated that
the cingulate and insular cortex are highly associated with pain-
related perception, such as psychological and social pain, which
affect insomnia (Talbot et al., 1991; Rainville et al., 1997; Narita
et al., 2011). These results indicated that the proposed model
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Fig. 4: The identified imaging biomarkers. Sub-figures (a) and (b) visualized
averaged canonical loading maps for fMRI and dMRI, respectively.
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Table 10: Neurosynth meta analysis of identified fMRI features map. Top five
Neurosynth topics and its correlation coefficient (r) were reported.

Rank Topic r
1 Cognitive control 0.116
2 Pain 0.061
3 Demands 0.056
4 Deficit hyperactivity 0.047
5 Remembering 0.043

(a) MTS2CCA

Rank Topic r
1 Deficit hyperactivity 0.078
2 Attention deficit 0.075
3 Cognitive control 0.068
4 Education 0.066
5 Pain 0.060

(b) MTGSCCA

Rank Topic r
1 Deficit hyperactivity 0.079
2 Attention deficit 0.076
3 Education 0.067
4 Pain 0.063
5 Remembering 0.062

(c) MTSCCA

Rank Topic r
1 Response inhibition 0.095
2 Cognitive control 0.085
3 Hand 0.060
4 Pain 0.057
5 Inhibition 0.050

(d) JCBSCCA

Rank Topic r
1 Sentence 0.085
2 Words 0.083
3 Lexical 0.083
4 Verb 0.075
5 Syntactic 0.073

(e) TCCA

Rank Topic r
1 Cognitive control 0.069
2 Tactile 0.057
3 Morphology 0.055
4 Genes 0.055
5 Mentalizing 0.052

(f) SCCA

Table 11: Neurosynth meta analysis of identified dMRI features map. Top five
Neurosynth topics and its correlation coefficient (r) were reported.

Rank Topic r
1 Social 0.193
2 Moral 0.158
3 Evaluation 0.126
4 Mental states 0.119
5 Mentalizing 0.109

(a) MTS2CCA

Rank Topic r
1 Social 0.129
2 Moral 0.096
3 Sentences 0.086
4 Comprehension 0.083
5 Linguistic 0.083

(b) MTGSCCA

Rank Topic r
1 Social 0.135
2 Sentences 0.108
3 Comprehension 0.107
4 Sentence 0.099
4 Language 0.096

(c) MTSCCA

Rank Topic r
1 Naturalistic 0.094
2 Videos 0.087
3 Social 0.075
4 Vision 0.073
4 Button 0.0

(d) JCBSCCA

Rank Topic r
1 Demands 0.078
2 Phonological 0.068
3 Sighted 0.067
4 Intensity 0.067
4 Word 0.066

(e) TCCA

Rank Topic r
1 Social 0.229
2 Moral 0.204
3 Mental states 0.173
4 Evaluation 0.156
4 Mentalizing 0.149

(f) SCCA

could identify biologically meaningful imaging biomarkers re-
lated to sleep.

3.3.5. Interpretation of selected genetic markers
Besides the selected imaging biomarkers, the model se-

lected informative genetic variants associated with each imag-
ing modality, except for JCBSCCA, TCCA, and SCCA. To se-
lect stable markers, we averaged trained canonical loading vec-
tors from the five-folds and the variables with a weight less
than 0.00005 were ignored to make results stable, as described
in the section 3.3.4. We observed that MTS2CCA selected
262 and 285 SNPs associated with fMRI and dMRI, respec-
tively. The full list of identified genetic variants from the CCA
models, including MTS2CCA, MTGSCCA, MTSCCA, JCB-

(a) fMRI

(b) dMRI

4

0

1

3

2

5

Fig. 5: The genetic-gene expression association results. The heatmap showed
the correlation between the 10,027 gene expression map and the imaging canon-
ical loading map. Sub-figures (a) and (b) corresponded to the genetic-gene ex-
pression association of fMRI and dMRI canonical loading maps, respectively.
The y-axis presented the different CCA models, including MTS2CCA, MT-
GSCCA, MTSCCA, JCBSCCA, TCCA, and SCCA, and the x-axis presented
10,027 genes. The randomly selected gene symbols were labeled due to limited
space. A value in the heatmap is color-coded according to the -log10 of the
P-value.

Table 12: The identified overlapped genes of MTS2CCA. The gene overlapped
between identified genetic variants of MTS2CCA, and the gene-expression cor-
relation results were reported. The correlation coefficients r between the AHBA
gene expression map and identified imaging feature map was presented.

Gene symbol r Gene symbol r

fMRI FARP1 -0.120

dMRI

DLGAP1 0.183
TNFRSF21 0.156 KDM4C -0.123

dMRI

RPL18A 0.123 FBXO25 0.135
RPS6KA2 -0.118 KIAA1217 0.174

RXRA -0.119 SPSB1 -0.131
SLC12A2 -0.122 PRICKLE2 0.142

SRPK2 0.136 JAZF1 0.126
TUSC3 0.141 TIMM23 0.159
NRIP1 0.131

Table 13: Gene enrichment analysis of the overlapped gene for fMRI using
MTS2CCA. P-value was computed from the Fisher exact test. Combined score
was computed by taking the log of the p-value from the Fisher exact test and
multiplying that by the z-score of the deviation from the expected rank.

Rank Pathway name p-value q-value Odd ratio Combined score

1 Cytokine-cytokine receptor interaction 0.029 1 34.01 120.21

Table 14: Gene enrichment analysis of the overlapped gene for dMRI using
MTS2CCA.

Rank Pathway name p-value q-value Odd ratio Combined score

1 Thyroid cancer 0.027 1 36.04 129.63
2 N-Glycan biosynthesis 0.037 1 26.67 88.01
3 Vibrio cholerae infection 0.037 1 26.67 88.01
4 Non-small cell lung cancer 0.048 1 20.20 61.18
5 Long-term potentiation 0.049 1 19.90 59.98
6 Adipocytokine signaling pathway 0.050 1 19.32 57.68
7 Bile secretion 0.052 1 18.52 54.51
8 PPAR signaling pathway 0.054 1 18.02 53.56
9 Salivary secretion 0.065 1 14.81 40.40

10 Small cell lung cancer 0.067 1 14.31 38.64

SCCA, TCCA, and SCCA, are shown in Supplementary Table
S1. Except for TCCA, all methods obtained similar sparsity
(i.e., 262 and 285 SNPs for MTS2CCA, 332 and 345 SNPs for
MTGSCCA, 363 and 387 SNPs for MTSCCA, 217 SNPs for
JCBSCCA, and 310 SNPs for SCCA).

To help interpret our results, we identify genes whose ex-
pression levels are spatially correlated to genetic effects map
through computing their Pearson’s correlation coefficients. In
detail, our analysis generate genetic and imaging canonical
loading vectors (i.e., U and V). The imaging canonical load-
ing vector, called genetic effect map, denoted genetic effects on
brain imaging traits (e.g. fMRI and dMRI). The preprocessed
gene expression data of 10, 027 genes were collected from the
Allen Human Brain Atlas (AHBA) (Hawrylycz et al., 2012; Ar-
natkeviciūtė et al., 2019). We identify genes whose expression
levels are spatially correlated to genetic effects map through
computing their Pearson’s correlation coefficients. Then, we
explore the overlapping gene between identified genetic vari-
ants of the CCA model (i.e. genetic canonical loading) and sig-
nificant gene whose expression levels are spatially correlated to
genetic effects map.

In Fig. 5, we observed that 1,576 genes were correlated
(p < 0.05) with imaging canonical loading map obtained from
MTS2CCA, and there were 17 overlapped genes. The detailed
list of overlapped genes is shown in Table 12. For the com-
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peting models, we observed that 16 out of 1,815 genes were
overlapped using MTGSCCA, 15 out of 1,556 genes were over-
lapped using the MTSCCA, 9 out of 987 genes were overlapped
using JCBSCCA, 40 out of 4,560 genes were overlapped using
TCCA, and 9 out of 1,028 genes were overlapped using SCCA.

Gene enrichment analysis was conducted using overlapped
genes using Enrichr (Chen et al., 2013; Kuleshov et al., 2016)
based on the KEGG2019 human database. The lists of the en-
riched pathway are summarized in Tables 13 and 14. Several
studies found that poor sleep quality and short sleep duration
were associated with high risk for several types of cancer (e.g.,
thyroid, prostate, and breast) (Phipps et al., 2016; Mogavero
et al., 2020). An electroencephalographic study demonstrated
the decrease of associative synaptic long-term potentiation after
sleep deprivation in human (Kuhn et al., 2016). A microarray
study demonstrated that the dysregulation of adipocytokine sig-
naling pathway was related to the depressive-like behaviors in
rat and correlated with the depressive and anxiety symptoms in
human (Wilhelm et al., 2013). These studies collectively sup-
port our findings that the identified brain regions are associated
with executive functions and further provide the rationale for
constructing structural-enriched functional networks.

This study has several limitations. The first one is the sam-
ple size (i.e., 291 participants). We collected neuroimaging
and genotyping data from the HCP database, and included only
genetically unrelated non-Hispanic participants with full de-
mographic information. In GWAS analysis, our sample size
(i.e., 291 samples) is much smaller than the number of SNPs
(e.g., 1,580,642 SNPs), leading to an overfitting risk for ma-
chine learning models. Hence, to reduce false discoveries, the
candidate SNPs should be further confirmed with independent
replications and meta analysis summary statistics from differ-
ent cohorts. Another issue is that we use Pearson’s correlation
analysis to interpret genetic results. However, its expressive
power may be limited to capture the underlying association be-
tween genetic effect map and gene expression patterns. One
interesting direction could be to explore different and improved
mapping strategies. Expanding to a model, like fully connected
neural network, has the potential to capture complex associa-
tions. Another interesting direction could be confirmed with
densely parcelled atlas and voxel-level and possibly with candi-
date gene expression, instead of 10K genes, related with clinical
outcomes.

4. Conclusions

The advances in technologies for acquiring brain imaging
and high-throughput genetic data allow the researchers to ac-
cess a large amount of multi-modal data. Although the sparse
canonical correlation analysis is a powerful bi-multivariate as-
sociation analysis technique for feature selection, we are still
facing major challenges in integrating multi-modal imaging ge-
netic data and yielding biologically meaningful interpretation
of imaging genetic findings.

In this study, we have proposed a novel multi-task learn-
ing based structured sparse canonical correlation analysis
(MTS2CCA) to deliver interpretable results and improve in-

tegration in imaging genetics studies. We have tested our al-
gorithm on both simulation and real imaging genetics data.
For the simulation data, we demonstrated that the proposed
model outperformed several state-of-the-art competing meth-
ods in terms of identification of stronger canonical correlations,
estimation accuracy, and feature selection accuracy. In addition,
MTS2CCA has succeeded in identifying an association pattern
generated from predefined network structures.

For real data, we have demonstrated the clinical benefits of
the proposed model using the SNP, dMRI, and fMRI data from
a real imaging genetics cohort. MTS2CCA outperformed all
the competing models with higher canonical correlation coeffi-
cient and better predictive performance estimating PSQI scores.
Identified imaging markers of MTS2CCA were associated with
cognitive function, depression, and sleep deprivation. Ad-
ditionally, identified genetic markers of MTS2CCA were re-
lated to sleep quality and sleep duration. These promising re-
sults demonstrated that the proposed multi-task learning based
SCCA framework could provide a powerful tool for analyzing
brain imaging genetics data and yielding biologically meaning-
ful findings.
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