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Abstract—Alzheimer’s disease (AD) is a progressive neurode-
generative brain disorder characterized by memory loss and
cognitive decline. Early detection and accurate prognosis of
AD is an important research topic, and numerous machine
learning methods have been proposed to solve this problem.
However, traditional machine learning models are facing chal-
lenges in effectively integrating longitudinal neuroimaging data
and biologically meaningful structure and knowledge to build
accurate and interpretable prognostic predictors. To bridge
this gap, we propose an interpretable graph neural network
(GNN) model for AD prognostic prediction based on longitudinal
neuroimaging data while embracing the valuable knowledge
of structural brain connectivity. In our empirical study, we
demonstrate that 1) the proposed model outperforms several
competing models (i.e., DNN, SVM) in terms of prognostic
prediction accuracy, and 2) our model can capture neuro-
anatomical contribution to the prognostic predictor and yield
biologically meaningful interpretation to facilitate better mech-
anistic understanding of the Alzheimer’s disease. Source code is
available at https://github.com/JaesikKim/temporal-GNN.

Index Terms—Alzheimer’s disease, Graph neural network,
Prognostic prediction, Brain imaging, Longitudinal data analysis

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive brain disorder characterized by memory loss and cognitive
decline. Today, about 5.8 million people have AD-related
dementia in the United States, and it is expected to exceed
13.8 million by 2050 [1]. Despite the advances in clinical
practice, it is challenging to accurately detect AD at an early
stage based on their clinical symptoms or neuropathology. For
example, it is important to identify biomarker detecting mild
cognitive impairment (MCI, a prodromal stage of AD) since
the phase of MCI increases risk of progressing to dementia.
The risk of AD development increases approximately twice
every five years between the ages of 65 and 85. Furthermore,
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AD treatments are most likely to be effective at early disease
stages, even before any outward signs of dementia. Thus,
early detection and accurate prognosis of AD has become
an important research topic, and numerous machine learning
methods have been proposed to solve this problem [2].

Recently, many researchers focused on discovering imaging
biomarkers from various neuroimaging modalities for early de-
tection and accurate prognosis of AD [3]. Although functional
and structural changes have been reported as biomarkers to
distinguish AD and cognitive normal (CN) subjects, the topic
on capturing MCI biomarkers is still underexplored. Moreover,
the main challenge in neuroimaging data with complex topo-
logical structures is how to effectively process its structural
information and incorporate valuable biological knowledge in
an interpretable manner. Conventional neuroimaging studies
employed graph Laplacian penalization strategies to incorpo-
rate this knowledge [4]–[6].

A graph-based neural network (GNN) approach has
emerged in the data science field to directly encode the graph
structure and apply it to the neural network-based predictive
model [7]–[10]. The GNNs have the advantage of reducing
model complexity by applying spectral graph convolution
compared with conventional graph-based approaches. More-
over, GNNExplainer [11], a promising interpretation method
specialized in explaining GNN has been published recently.
It showed better interpretation on real graph datasets than
gradient- or attention-based interpretation.

In AD prognostic research, several deep learning approaches
were introduced to predict AD progression using time series
data [12]. Due to the characteristics of the sequential data, they
applied recurrent neural networks (RNN), such as Long Short-
Term Memory (LSTM), and Gated Recurrent Unit (GRU),
which have been shown to achieve outstanding performances
in many healthcare applications with time series or sequential
data [13].

With these observations, in this work, we propose an



TABLE I
DEMOGRAPHIC INFORMATION

Demographic features Baseline 6-month 12-month 24-month
CN Number of subjects 261 262 271 266

Age (mean ± std.) 74.8 ± 5.6 75.2 ± 5.6 75.3 ± 6.0 76.3 ± 5.9
Gender (M/F) 143/118 142/120 154/117 143/123

Education (year) 15.6 ± 3.1 15.8 ± 3.2 15.9 ± 3.1 15.8 ± 3.0
MCI Number of subjects 446 424 383 312

Age (mean ± std.) 72.6 ± 7.4 73.1 ± 7.4 73.9 ± 7.3 74.6 ± 7.4
Gender (M/F) 263/183 247/177 224/159 193/119

Education (year) 15.9 ± 2.8 15.8 ± 2.9 16.0 ± 2.9 16.0 ± 2.8
AD Number of subjects 99 120 152 228

Age (mean ± std.) 74.8 ± 7.8 75.0 ± 7.7 75.1 ± 7.6 76.2 ± 7.4
Gender (M/F) 59/40 72/48 91/61 126/102

Education (year) 16.1 ± 2.7 16.0 ± 2.7 16.0 ± 2.7 15.9 ± 2.9

interpretable temporal graph neural network for prognostic
prediction of AD from longitudinal neuroimaging data while
embracing the valuable knowledge of structural brain connec-
tivity. Our main scientific contributions are three-folds: 1) An
innovative graph convolutional network (GCN) based RNN
model is proposed to aggregate longitudinal neuroimaging
measurements; 2) the proposed model is able to capture the
neuroanatomical contribution to the classifier based on the
node importance and edge importance of the graph at each
time point; and 3) empirical studies demonstrate the effec-
tiveness and benefits of our model for prognosis prediction
compared with several competing models.

II. METHODOLOGY

A. Dataset

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). We downloaded the longitudinal
neuroimaging data of 806 participants (i.e., 266 CN, 312
MCI, 228 AD) from the ADNI database. Table I shows the
participant demographic information. Of note, from baseline
to 24-month, there were 23 patients who reverted to a better
condition, including 21 with MCI→CN and 2 with AD→MCI.
The T1-MRI data at multiple time points, including baseline,
6-month, 12-month, and 24-month, were collected and the
regional measurements (i.e., average and standard deviation of
thickness, volume, and area) were extracted from 68 cortical
regions based on the Desikan-Killiany atlas using Freesurfer.

To incorporate relevant biological knowledge and thus avoid
over-fitting, a reference structural connectivity network was
computed using the diffusion magnetic resonance imaging
(dMRI) data from 291 healthy participants in an independent
database, the human connectome project (HCP, available at
https://www.humanconnectome.org/). The FSL software was
used to construct the structural connectivity networks of all
the participants and the distance-dependent consensus thresh-
olding method was applied to generate the average group-level
connectivity network, and this network was used as the graph
of the GNN model in our analyses [14].

B. Temporal Graph Neural Network Model for Prognosis

1) Data and Notations: Let G = (X,A) be a graph
of the brain for each subject, where X ∈ Rp×q is the
matrix containing node attribute information (i.e., node-based

regional features extracted from the longitudinal neuroimaging
data), A ∈ Rp×p represents an adjacency matrix of a graph
(i.e., node- or region-based brain connectivity), p is the number
of nodes in the brain, and q is the number of regional
imaging attributes associated with each node. For the node
attributes, we use the following four neuroimaging features
as initial attributes (q = 4): (1) volume and (2) area of
the corresponding cortical region, and (3) average and (4)
standard deviation of all the vertex-based thickness measures
in the cortical region. A is defined by the average group-level
structural connectivity network obtained from the HCP data, as
described in Section II-A. As mentioned earlier, in this work,
we focus on analyzing p = 68 cortical regions.

2) Proposed interpretable temporal graph neural network:
We propose an end-to-end interpretable temporal graph neural
network for prognostic prediction. The architecture of the pro-
posed model is shown in Figure 1. Overall, a graph at the time
point passes through the two GNN encoder blocks to encode
new node embedding, and then new node embeddings are fed
into the LSTM to aggregate temporal information. Finally,
fully connected layers with SoftMax activation function are
added after for predicting multi-class diagnosis at 24-month.

The the GNN encoder blocks are containing [GNN layer-
Dropout-ReLU]. We carefully compare and choose GNN
encoder layers among graph convolutional network (GCN)
[7], GraphSAGE [8], Graph attention networks (GAT) [9],
and Graph isomorphism network (GIN) [10]. To avoid over-
smoothing, a pre-linear layer is added before first GNN
encoder block and the skip-connection is connected between
two blocks. At the last part of the GNN encoder block, the
readout layer aggregates the node embeddings into the graph
embedding by using the global average pooling layer.

For the LSTM layer, we explore a variety of models,
including the vanilla LSTM model as well as the LSTM
models with attention [15] and self-attention [16] mechanisms,
to improve aggregating temporal information. These LSTM
models have been broadly used in natural language processing
and signal processing domains. Then, the two fully connected
layers with SoftMax activation function are added after the
LSTM layer for predicting multi-class diagnosis at 24-month.

In this study, we include covariates (i.e., age, gender, educa-
tion, and MRI field strength) in the last fully connected layer.
Finally, the sparse categorical cross-entropy loss function is
applied. All the parameters in the model are optimized using
the AdamW optimizer.

3) Model intepretation: We apply GNNExplainer to iden-
tify relevant nodes that contribute to the prediction of the
prognostic outcome. GNNExplainer is a state-of-the-art in-
terpretable model that provides interpretation of GNN-based
model [11]. The GNNExplainer generates a subgraph structure
and a subset of node features that have a decisive role in
the prediction by maximizing the mutual information between
the prediction and distribution of possible subgraph structures.
The resulting subgraph and node feature can be interpreted
in two main perspectives: 1) node importance, 2) feature
importance. Node importance can be measured by computing
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Fig. 1. The proposed interpretable GNN model for prognosis prediction.

degree centrality (DC) in the subgraph. Feature importance
can be measured by computing feature node mask.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

In our study, we converted weighted group-level connectiv-
ity graph into unweighted graph by thresholding it by 0.05
and used it as topology of GNN layer, since GraphSAGE and
GIN do not support weighted graphs. For prediction task, we
trained models (e.g., GNN, DNN, and SVM) on 60% of the
data (i.e., train set), validated on 20% of data (i.e., validation
set), and applied it on 20% of data (i.e., test set) to evaluate
prediction accuracy. We repeated 300 times to evaluate the
stability of the model and measured the performance in the
form of mean ± standard deviation (std).

For benchmark algorithms, the DNN model with single
hidden layer and linear SVM were used with adjusting co-
variates. The neural network models were trained on the
NVIDIA 2080TI GPU (with cuda ver. 10.2). For DNN and
GNN training, we utilized earlystopping algorithm to avoid
overfitting. The proposed model was implemented as described
in Section II-B. The learning rate was 5e-4, the hidden
dimension size in both GNN and RNN layer was 16, dropout
rate was 0.5, and the hidden dimension size in the fully
connected layer was 8. Our model was implemented in pytorch
(ver. 1.9.0) and pytorch-geometric (ver. 1.7.2) [17].

B. Neural network module comparisons

We conducted comparative experiments to select GNN and
RNN layer types in our model. For GNN layer, we employed
and compared four representative GNN layer types, including
GCN, GraphSAGE, GAT, and GIN while RNN layer type was
vanilla LSTM, in order to achieve the best prediction accuracy.
We compared the prediction performance of four GNN layers
through 300 empirical trials. Although the four models did not
show significant differences, the GCN layer obtained the best
accuracy of 53.5 ± 3.8 (53.4 ± 3.9 of GraphSAGE, 53.0 ± 4.0
of GAT, and 53.0 ± 4.0 of GIN).

For the RNN layer, we employed and compared four
RNN layers, including Vanilla LSTM, attention LSTM, self-
attention LSTM (h=1), and self-attention LSTM (h=3) while
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Fig. 2. Interpretation results of the proposed model by using GNNExplainer
according to true label and predicted label of CN, MCI, and AD, respectively.
(A) Visualization of node importance. For each figure, the most important 10
region of interests (ROIs) are colored in red representing high contribution
to the classification. (B) Visualization of feature importance. Each plot shows
importance of attributes depending on the time point.

GNN layer type was GCN, in terms of their prediction
accuracies. Although there was no significant performance
difference, we noted that vanilla LSTM showed the best
performance of 53.5 ± 3.8 (52.7 ± 3.8 of attention LSTM,
53.1 ± 3.9 of self-attention LSTM(h=1), and 52.9 ± 3.8 of
self-attention LSTM (h=3)). This seems different from the
observation that attention and self-attention are more effective
in the natural language process domain.

With this observation, we determined to implement our
temporal GNN model so that its GNN layer employed GCN
and its RNN layer employed the Vanila LSTM layer. Below
we focus on reporting the performance of this implementation.

C. Prognostic prediction task

For prognostic prediction task, our model obtained the best
performance (53.5 ± 4.5%), and outperformed the competing
methods (DNN: 51.7 ± 3.6% and SVM: 51.3 ± 3.6%). Our
model has the advantage to predict the AD and MCI diagnosis
at 24-month, even though there is a huge alternation of
diagnosis between 12 and 24 months, as shown in Table I.



TABLE II
TOP 5 OVERALL IMPORTANT ROIS IN PROPOSED MODEL. THE IMPORTANCE LEVEL IS REPORTED AS DC OF SUBGRAPH USING GNNEXPLAINER.

True Label / Predicted Label CN / CN CN / MCI CN / AD MCI / CN MCI / MCI MCI / AD AD / CN AD / MCI AD / AD Average DC
Right Superior Frontal 0.880 0.997 0.785 0.943 0.977 0.775 0.586 0.931 0.757 0.848

Right Precentral 0.675 0.731 0.377 0.721 0.694 0.566 0.550 0.680 0.563 0.617
Left Superior Frontal 0.290 0.889 0.583 0.287 0.930 0.562 0.276 0.810 0.571 0.578

Right Insula 0.650 0.679 0.610 0.459 0.670 0.455 0.470 0.580 0.399 0.553
Right Superior Parietal 0.541 0.697 0.493 0.550 0.713 0.491 0.189 0.653 0.466 0.533

In addition, we also tested more complicated DNN models.
However, we observed that a single layer of DNN performed
more consistently than its deeper counterparts.

Of note, our prognostic prediction task is much more
challenging due to classifying three diagnostic groups instead
of two and predicting the diagnostic status in the future instead
of the current diagnosis. It is encouraging that our model
outperforms the state-of-the-art DNN and SVM models on this
challenging prediction task. Given the modest performance, it
warrants further study to explore additional advanced models
for improving the prognostic prediction for early detection.

D. Interpretation of results

First, we measure the contribution of brain regions to
prognostic prediction based on GNNExplainer. GNNExplainer
extracts a subgraph that is important to predict prognosis of
AD. Figure 2-A visualizes node importance maps based on
degree centrality (DC) of subgraph depending on true label
and predicted label, and Table II presents the top 5 overall
important regions. Overall, superior frontal, precentral, insula,
and superior parietal consistently contributed to the CN, MCI,
and AD classification. These regions have been reported to be
associated with process of AD in several studies [18], [19].

Next, we examine which time point(s) (e.g., baseline, 6-
month, and 12-month) and attribute(s) are the most important
for prognostic prediction. Figure 2-B shows the importance of
four attributes (average and standard deviation of thicknesses,
volume, and area) for each time point, depending on true and
predicted labels. We observed that there was no trend of lower
or higher importance at any one time point. Likewise, four
attributes have similar importance. Rather, the model is inter-
preted as evenly processing information at three time points
for the prognostic prediction. We note that the prediction is not
based on strong information at a single time point, but rather
on detecting the pattern of change across three time points.

IV. CONCLUSION

In this study, we have proposed an interpretable GNN model
for prognostic prediction of Alzheimer’s disease and mild cog-
nitive impairment. Our model yielded promising interpretable
results and improved prognostic prediction performance. We
tested and compared our model with several competing models
on the ADNI dataset. We demonstrated that our model not only
outperforms the competing models on prognostic prediction
accuracy, but also can capture neuro-anatomical contribution
to the prognostic predictor and yield biologically meaningful
interpretation to facilitate better mechanistic understanding of
the Alzheimer’s disease.
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