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Abstract 

In cyber-physical systems (CPS) of additive manufacturing (AM), cyber-attacks may significantly alter 

the design of the AM part, compromising its mechanical properties and functionalities. In-situ process 

authentication may assure that the AM part is fabricated as intended. Most cyber-physical attacks towards 

AM processes can be manifested as printing path alterations, and an in-situ optical imaging system can 

detect alteration in printing path. This will prevent catastrophic geometric changes and mechanical property 

compromises in the AM parts, ultimately improving the AM process security. In this paper, a novel process 

authentication methodology is proposed based on image texture analysis of the layer-wise in-situ videos. 

The layer-wise distribution of the segmented textures’ geometric features is characterized as the layer-wise 

texture descriptor tensor (LTDT). Given the high dimensionality and sparsity of the extracted LTDTs, the 

multilinear principal component analysis (MPCA) algorithm is used for dimension reduction. 

Subsequently, the Hotelling 𝑇2 control charting technique is adopted for alteration detection based on the 
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extracted low-dimensional layer-wise features. Case studies based on a fused filament fabrication (FFF) 

process were conducted to evaluate and validate the proposed framework. The proposed method can 

achieve over 95% of accuracy, which illustrates that the proposed method can accurately detect process 

alterations due to printing path changes. In addition, the proposed method significantly outperforms the 

benchmark method. The computation time for both the proposed and benchmark method is also compared. 

 

Keywords: Additive manufacturing; cyber-physical security; image processing; process authentication; 

texture analysis; tensor decomposition; video-based monitoring  

 

1 Introduction 

1.1 Motivation and challenges  

The increased interconnectedness in the cyber-physical systems (CPS) has greatly enhanced the 

automation and productivity for modern manufacturing systems [1], in which cyber-physical security is of 

utmost importance for both quality and safety assurance. Malicious attacks can significantly affect a 

manufacturing system, altering machine parameters and product design, ultimately resulting in 

compromised products [2]. For example, the cyber-physical attack in the German steel mill in 2014 resulted 

in loss of control for the regulation of crucial parameters, leading to a massive blast of a furnace and even 

deaths of two workers [3]. Such catastrophic incidences of cyber-physical attacks show an urgent need in 

protecting manufacturing systems, identifying cyber threats, and detecting cyber-physical attacks as soon 

as they occur. In the area of additive manufacturing (AM), the CPS provides unique opportunities for cost-

effective production planning and control and enables new methods of collaboration [4], [5], where all the 

AM machines can be operated and controlled remotely without human operator intervention [4]. The digital 

threads not only facilitate effective digital file sharing for design iteration, but also create significant risks 

of malicious cyber-physical attacks, which are considered as a growing concern in AM systems. Malicious 

alterations in the design files and process parameters could significantly affect final part’s geometry, 

structural stability, mechanical performance, and functionality. What’s worse, the layer-by-layer fashion of 
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the AM processes dramatically expands the victim space for potential alteration, leading to significantly 

changed structural compromises which are very challenging to detect [6]. For example, internal structure 

changes, such as infill percentage, infill pattern, and unintended void addition, cannot be easily detected in 

the traditional Geometric Dimensioning and Tolerancing (GD&T) framework unless X-ray inspection is 

used, which is costly and very time-consuming [7].  

The AM process in a typical CPS is comprised of design (i.e., CAD design and STL file generation), 

slicing (i.e., G-codes generation), manufacturing (i.e., AM fabrication), and inspection [4], [6]. Figure 1 

illustrates the major steps of AM processes in a typical CPS, with red arrows illustrating the 

data/information transfer and green arrows showing the material flow. In general, cyber-physical attacks 

may target on all the phases which involve data or information transfer, and typical attacks include inserting 

additional undesirable features in the original CAD design [8], altering slicing parameters in generating the 

g-code [9], and injecting fake process data to mislead quality control decision making [10]. It is worth 

noting that most of the above-mentioned process alterations which involve AM process changes can be 

manifested by the change in the printing path of the AM processes. For instance, adding undesirable features 

lead to interruptions in the printing path, and altering slicing parameters (such as layer thickness and 

extrusion width) changes the geometry of the printing path.  

 

Figure 1: Material and information flow in the CPS of AM  
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Various types of sensors, including thermal couples, infrared (IR) imaging, accelerometers, 

microphones, power meters, can be potentially used to detect printing path alteration in AM processes [6], 

[11]–[13]. However, the anomaly detection results are generally difficult to interpret since those process 

variables are indirect measures of printing path changes. In addition, in-situ AM process authentication can 

be facilitated through optical imaging during the AM build. For example, in Figure 2, the images in the top 

row provide the slicing results of a square-shaped cross-sectional layer using different infill orientation 

angles, and the images in the bottom row illustrate their corresponding distribution of the texture orientation 

angles. It is observed that the layer-wise texture geometric feature distribution is largely determined by the 

printing path of the layer, and thus can be used as an informative and interpretable feature to detect printing 

path alteration. It is also noteworthy that the in-situ optical imaging can be used for process authentication 

for most AM processes as long as the AM printing path plays a critical role in the structural properties of 

the completed part [14], with a few exceptions including stereolithography and laminated-object 

manufacturing processes. 

 

Figure 2: Different geometric feature distributions due to printing path alterations. 

The texture of each layer can be observed by an optical camera which captures streamline videos during 
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the printing process. The advantages of the optical cameras include their cost-effectiveness and enhanced 

interpretability compared to other sensing technologies (such as acoustic emission and acceleration) [15], 

[16]. However, capturing a layer-wise image after fabricating each layer like the ones in the first row of 

Figure 2 may introduce significant interruptions in the fabrication, resulting in extended printing time. In 

addition, capturing a top-view image after the fabrication of every layer requires a careful trade-off between 

the field of view and the spatial resolution of the image. For parts that have layers with significantly 

different dimensions, the focus and magnification of the camera need to be adjusted multiple times during 

one build. This not only further complicates the data collection process, but also is prone to additional 

human errors. On the contrary, layer-wise real-time video captures detailed information with the unified 

imaging and focus conditions for the microscope camera, which extends opportunities for process 

authentication of highly diversified part designs [17].  

Therefore, an optical microscope attached to the extruder of the 3D printer can be used as an alternative 

solution to continuously capture streamline videos without process interruptions [18]. Nevertheless, there 

are several challenges in information extraction from the streamline videos captured by the optical camera. 

First, the streamline video data are highly noisy since a large portion of the pixels demonstrate low 

resolution due to the inevitable vibration of the microscope attached to the extruder during the printing 

process. Secondly, the field of view (FoV) of the camera is changing since the camera is attached to the 

moving extruder, resulting in unstable lighting conditions, and thus varying image contrast over time and 

space due to dynamic light conditions. Third, the streamline videos are in high dimension and large volume 

[17]. In summary, the in-situ streamline video data are high-volume but low-quality. Therefore, how to 

extract low-dimensional informative layer-wise features from the streamline video with low signal-to-noise 

ratio (SNR) is an open challenge for effective AM process authentication. 

1.2 Technical contributions of this paper 

In this paper, a new AM process authentication method is proposed to extract critical features from the 

high-volume, low-quality streamline videos collected from the camera attached to the printing head. The 

overall framework of the proposed methodology has three major phases: 1) Image-level texture feature 
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extraction, which applies adaptive image filtering to retain the segmented regions (SRs) that demonstrate 

high contrast and are relevant to the printing path; 2) Layer-wise feature extraction based on the geometric 

feature distribution of SRs, which constructs the layer-wise texture descriptor tensor (LTDT) to characterize 

the layer-wise texture distribution; and 3) Dimension reduction for the LTDTs based on multilinear 

principal component analysis (MPCA) [17], which extracts low-dimensional features from the LTDTs to 

develop a Hotelling 𝑇2 control chart for alteration detection. The effectiveness of the proposed method is 

evaluated by comparing with the benchmark method, which leverages the gray-level cooccurrence matrix 

(GLCM) to extract multivariate textural features [18] and the autoencoder technique to compress the high 

dimensional features. 

The rest of the paper is organized as follows. The relevant research is reviewed, and the research gaps 

are summarized in Section 2. Section 3 introduces the proposed methodology in detail. A case study based 

on the fused filament fabrication (FFF) process is demonstrated and the effectiveness of the proposed 

method is validated in Section 4. The conclusion and future work are summarized in Section 5. 

2 Literature review 

To achieve AM process authentication, traditional quality control methodologies can be leveraged, 

including post-process quality inspection and in-situ process monitoring, which are summarized in Section 

2.1. Moreover, the state-of-the-art studies on AM process security are summarized in Section 2.2.  

2.1 Relevant quality assurance methods for authentication 

The quality assurance methods for AM processes can be briefly categorized as post-process quality 

inspection (section 2.1.1) and in-situ monitoring and anomaly detection (section 2.1.2).  

2.1.1 Post-process quality inspection 

In general, AM post-process quality inspection methods fall into two major categories: destructive and 

non-destructive testing (NDT) techniques. In the destructive methods, AM built parts are destroyed during 

either testing or sample preparation for material qualification. The most widely practiced destructive testing 

of AM fabricated parts includes tensile strengths (i.e., Young’s modulus, yield strength, ultimate tensile 

strength, and elongation), ductility test, and fatigue cycle performance [19]. In addition, material 
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qualification/certification methods can be applied to evaluate the material properties (i.e., morphology, 

crystallography, and crack growth) of the AM parts [19], [20].  

NDT techniques include visual inspection, eddy current and electromagnetic testing, liquid penetrant 

testing, ultrasonic testing, and  X-ray radiography and computed tomography (CT) [20]–[24]. The advanced 

visual inspection techniques use optical metrological techniques in the geometry assessment of AM final 

parts [25], [26]. Moreover, the eddy current and electromagnetic techniques involve in detecting changes 

in dielectric and electronic properties of electrically conductive materials, and is therefore useful for 

detecting variations in capacitance due to presence of crack, porosity, and associated defects in AM-built 

parts [24], [27]. Regarding material characterization and inspection,  ultrasonic techniques are widely used 

for the purpose of material testing and evaluation [23]. In addition, piezoelectric impedance-based 

measurements can be used as another NDE of AM part’s dimensional alterations, positional changes, and 

internal porosity [28], [29]. With its higher resolution and accuracy compared to the forementioned NDT 

methods, X-ray Computed tomography (CT) is regarded as one of the most reliable part certification 

methods, especially used in internal structure certification (i.e., porosity, crack growth, etc.) [7][30]. 

However, several practical challenges will limit the broader application of the X-ray CT techniques in AM 

part authentication. Firstly, the size of the X-ray CT machine chamber enforces a strict constraint in the 

dimension of the inspected parts. Therefore, it becomes infeasible to assess large-scale AM parts [28].  

Secondly, X-ray CT scanning is a time-consuming procedure and the equipment is also rather costly that 

limits its broad industrial applications [7]. Thirdly, as a post-manufacturing quality inspection method, the 

X-ray CT scans only detect the alteration after the entire part is completely fabricated, which will 

significantly extend the lead time for AM part delivery once there is a part alteration detected.   

2.1.2 In-situ monitoring and anomaly detection  

 In-situ monitoring systems can be used in AM part/process authentication by fusing heterogeneous 

sensing data. ASTM technical committee (F42) approved a complete list of AM process terminology 

regarding process monitoring and quality control of AM [31]. Based on multiple review studies, 

heterogenous sensing technologies have been extensively implemented in real-time process monitoring and 
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control for metal-based AM processes, including acoustic emission, vibration, power consumption, 

temperature, and images [32]–[34].  

The advanced sensing technologies generate high volume of data with various formats, including time 

series signals/curves, images, and point clouds. Univariate/multivariate time series are usually integrated 

for AM process monitoring and anomaly detection by leveraging various data fusion techniques, such as 

physics-based regression modeling [35], generative adversarial networks [36], and the Bayesian Dirichlet 

process (DP) mixture model [37].  

Image streams include both optical and thermal image streams, which have been widely leveraged for 

in-situ defect detection. Due to the high volume and low signal-to-noise ratio in the image stream data, 

various dimension reduction methods are needed for data compression, including principal component 

analysis (PCA) [34], manifold learning [38], Deep Neural Networks (DNNs) based feature extraction [39], 

and the image series modeling based feature extraction [40]. In the laser-based AM process, in-situ process 

porosity can be detected through correlating the pyrometer images and porosity occurrence using a 

convolutional neural network (CNN) based data fusion technique [41]. In addition, a real-time layer-wise 

porosity prediction technique was also proposed by obtaining melt pool images, reducing the dimension of 

captured melt pool images with tensor decomposition, and incorporating an SVM classifier for predicting 

layer-wise quality [42]. In addition, in laser powder bed fusion (LPBF) AM, a computer vision algorithm 

is applied to detect anomalies during the powder spreading phase, and an unsupervised machine learning 

algorithm is used to classify those anomalies [43]. Moreover, a closed-loop proportional-integral-derivative 

(PID) feedback control scheme has been integrated for printing defect mitigation based on image data [18]. 

Furthermore, Cheng et al. [44] investigated surface patterns by leveraging the image intensity information, 

where the surface defects are categorized into random defects and assignable defects due to specific process 

parameter shifts.  

3D point clouds data characterizes the surface topology of AM parts for anomaly detection. For 

example, the deep forest machine learning methods have been used for in-situ layer-wise process shift 

detection [45], [46]. A high-speed CMOS (complementary metal-oxide-semiconductor) camera has been 
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used for real-time process monitoring for the layer-wise laser melting process [47]. Moreover, various 

optical sensors, including a structured-light scanner [45] and a 3D digital image correlation (DIC) camera 

[48], have been used to collect 3D point clouds of printed parts for anomaly detection. In summary, the 

state-of-the-art process monitoring and anomaly detection methods usually focus on detecting process 

changes/shifts due to unstable fabrication. However, malicious attack induced process alterations, in 

general, do not lead to unstable processes, and thus cannot be easily detected by traditional process 

monitoring methods. 

2.2 AM process security 

Cyber-physical attacks in AM may occur in the designing, slicing, and manufacturing phases, and 

numerous studies have focused on the cyber-physical security of AM processes [49]. The literature on AM 

process security has been summarized through two aspects: 1) AM attack models; and 2) AM attack 

detection, which are introduced in subsections 2.2.1 and 2.2.2, respectively. 

2.2.1 AM attack models  

There are plenty of AM attack models that have been investigated in the literature. Bridges et al. [50] 

summarizes the vulnerabilities in the entire AM process chain. Potential attacks to AM processes can target 

the digital files during all the phases in the AM processes. Firstly, quite a few studies attempted to alter the 

STL files in the design phase. For example, additional features, such as internal voids, can be inserted into 

the STL file of the AM part, leading to compromised mechanical properties and catastrophic failures in the 

final product [2], [4], [48]. Moreover, embedded defects can also be included by jetting a different material, 

leading to nonhomogeneous material properties in the final AM build [51]. Secondly, the slicing operations 

can be altered by AM attacks, generating an altered g-code file. The implemented alterations cover the 

whole set of slicing parameters, including printing direction [9], layer thickness [6], [44], infill path and/or 

infill percentage [9]. In addition, AM attacks can also be directly applied to modify the g-code files [48–

50]. For example, Moore et al. [52] applied an attack on a firmware linked to the 3D printer to alter the g-

codes by implementing the printing command in an altered order. Thirdly, AM attacks can also aim to alter 
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AM process parameters, such as printing speed and fan cooling [11], extruding temperature, which can 

significantly affect the final part quality and reliability [10], [38].  

2.2.2 Real-time AM attack detection  

Side-channel analysis and monitoring have been widely used to detect AM part/process alteration by 

leveraging in-situ process measurements, such as acoustic emission, vibration, power consumption signals, 

and videos [13], [44], [45]. With the help of the above-mentioned techniques, a baseline of the signals is 

firstly established by AM parts which are verified to be normal, and then compared with a potentially altered 

part for alteration detection [9]. It is worth noting that even though some sensors used for side-channel 

analysis are also widely used in process anomaly detection, the purposes of using those sensors are no 

longer assuring process quality but focusing on authenticating the process to its design intent. For example, 

Belikovetsky et al. [53] conducted a side-channel authentication procedure to detect atomic modification 

(e.g., insertion, deletion, and modification of g-code commands) by analyzing the digital audio signatures 

in real time. Yu et al. [54] incorporated machine learning methods with the multi-modal side-channels for 

system state estimation for process authentication. Shi et al. [55] leveraged the autoencoder method to 

compress the multi-stream acceleration signals to detect AM part/process alteration. Most of the side-

channel monitoring studies are purely data-driven methods and thus heavily rely on a sufficiently large 

benchmark (or training) dataset which have already been verified to be unaltered.  However, the uniqueness 

of AM processes in producing in high variety and low quantity makes it challenging to collect such a big 

dataset to train the detection models.  

 

3 Proposed methodology 

In this section, subsection 3.1 firstly introduces the layer-wise texture descriptor tensor (LTDT), and 

subsection 3.2 describes the procedure of constructing the LTDT using the in-situ layer-wise video. 

Subsequently, subsection 3.3 introduces the dimension reduction for the LTDTs using multilinear principal 

component analysis (MPCA) and real-time monitoring based on the Hotelling 𝑇2 control charting 

technique. The overall proposed methodology is illustrated in Figure 3. 
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Figure 3: An overview of AM process authentication based on in-situ video analysis. 

3.1 Layer-wise texture descriptor tensor 

In CPS, most attacks aim to change the AM parts’ internal structures, including infill pattern, infill 

percentage, and other structural features, since they are difficult to detect by traditional process monitoring 

methods without additional process interruptions. All the features of the internal structures are determined 

by the layer-wise AM printing path, which can be captured by the textures observed from the in-situ videos. 

The layer-wise texture distribution contains critical information for the AM printing paths, and thus can be 

extracted to authenticate AM processes. Therefore, a novel layer-wise texture descriptor tensor is proposed 

in this section to characterize the distribution of the geometric features of the segmented texture.  

Definition 1: Layer-wise texture descriptor tensor (LTDT). An 𝑅-th order LTDT of the 𝑙-th layer, 

denoted as 𝒵𝑙 ∈ ℕ0
𝐷1×…×𝐷𝑅, is constructed with each mode representing the 𝑟-th geometric feature of the 

segmented textures obtained from the layer-wise imaging (𝑟 = 1, 2, … , 𝑅), where ℕ0 denotes the non-

negative integer lattice in the Euclidean space ℝ. The LTDT contains the multivariate geometric feature 

distribution of the textures in the layer-wise image(s).  

It is worth noting that the LTDTs extracted from the same printing path design are assumed to be 

independently and identically distributed (i.i.d.) for the following reasons. First, the distribution of the 
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LTDTs can be uniquely determined by the layer-wise printing path, as illustrated in Figure 2, and therefore, 

given the same printing path, the LTDTs should come from the same distribution. Second, the correlation 

between the consecutive layers can be regarded negligible if the microscopic camera is focused on the 

proximity of the printing nozzle. In this case, the observed printed texture in the area of interest will be 

mainly affected by the printing path of the current layer, instead of its previous layer. 

3.2 Proposed procedure for LTDT construction 

Without losing generality, this paper introduces the proposed approach for constructing the LTDT when 

𝑅 = 3. However, the proposed method can be naturally extended to cases with 𝑅 > 3.  

3.2.1 Image-level texture extraction and characterization 

Each image frame in the video captured is firstly cropped to obtain the region of interest (ROI), which 

only retains the printed layer surface in the ROIs. Subsequently, adaptive image thresholding methods are 

used to adaptively segment the texture in the ROIs based on the local intensity in the neighbourhood of 

each pixel [56]. The locally adaptive algorithm automatically adjusts for varying background intensity 

levels due to spatially and temporally varying lighting conditions. As a result, it automatically discards the 

low contrast areas in the ROIs, which significantly reduces the data volume. The image pixels are 

segmented into two groups of regions: one group (labelled as “zero”) represents the background, and the 

other (labelled as “one”) represents segmented texture, which characterize the printing paths.  

Definition 2: Segmented region (SR). A segmented region is defined as a continuous region in the 

images that is labelled as “one” resulted from the adaptive image thresholding. The 𝑘-th SR captured from 

the 𝑙-th layer is denoted as 𝑆𝑅𝑘
𝑙 , where 𝑘 = 1,2, … , 𝐾𝑙 and 𝐾𝑙 denotes the number of SRs in the 𝑙-th layer. 

For 𝑆𝑅𝑘
𝑙  (𝑘 = 1,2, … , 𝐾𝑙), four geometric features are calculated by approximating its shape using the 

ellipse that has the same second moment, as listed below.  

1) The orientation of 𝑆𝑅𝑘
𝑙  is defined as the angle between the major axis of the SR’s approximating 

ellipse and the horizontal axis, as illustrated in Figure 4. It approximates the printing path direction. The 

orientation of 𝑆𝑅𝑘
𝑙  is denoted as 𝑜𝑘

𝑙 , where −90° < 𝑜𝑘
𝑙 ≤ 90° (𝑘 = 1,2, … , 𝐾𝑙), where 𝐾𝑙 denotes the 
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number of SRs in the 𝑙-th layer. 

2) The major axis length of 𝑆𝑅𝑘
𝑙  is defined as the length of the major axis of the approximating ellipse 

of the SR. It approximates the observed length of the printing path. The major axis length of 𝑆𝑅𝑘
𝑙  is denoted 

as 𝑚𝑘
𝑙  (𝑘 = 1,2, … , 𝐾𝑙). The unit of 𝑚𝑘

𝑙  can be the number of pixels in the captured image.  

3) The minor axis length of 𝑆𝑅𝑘
𝑙  describes the length of the minor axis of estimating the ellipse of 

𝑆𝑅𝑘
𝑙 . It approximates the width of the printing path, and 𝑛𝑘

𝑙  (𝑘 = 1,2, … , 𝐾𝑙) is used to denote the minor 

axis length of 𝑆𝑅𝑘
𝑙 . The unit of 𝑛𝑘

𝑙  can be the number of pixels in the captured image. 

4) The eccentricity of 𝑆𝑅𝑘
𝑙  describes the shape of 𝑆𝑅𝑘

𝑙 . It is defined as the ratio of the distance between 

the foci and major axis length of the ellipse with the same second moment as 𝑆𝑅𝑘
𝑙 , and denoted as 𝑒𝑐𝑘

𝑙  (𝑘 =

1,2, … , 𝐾𝑙) with 0 < 𝑒𝑐𝑘
𝑙 < 1. The smaller the  𝑒𝑐𝑘

𝑙  value gets, the closer 𝑆𝑅𝑘
𝑙  is to a circle. It is worth noting 

that the texture resulted from the printing path should demonstrate a large eccentricity value.  

The reason for selecting those features is that their distribution over the entire layer provides critical 

information for the printing path of various AM processes. An illustration example of the geometric features 

of an SR is shown in Figure 4, where one SR is included as the white continuous region (labelled as “one”) 

on the black background (labelled as “zero”), the approximating ellipse is denoted as the golden ellipse, 

and the other relevant features, i.e., orientation, major and minor axis length of the SR, are also illustrated.  
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Figure 4: Illustration of the extracted geometric features where the white region represents an SR 

segmented from the ROI. 

In the proposed framework, the eccentricity is used to remove the irrelevant SRs which have a small 

eccentricity value, which are probably irrelevant to the printing path. This is based on the premise that the 

printing paths related SRs are generally long segments with a large length-to-diameter (L/D) ratio. The 

threshold for this region filtering can be determined based on the nominal printing path. For example, for 

parts with infill patterns resulting in long printing paths like the rectilinear pattern, the filtering threshold 

should be set higher. In general, a larger threshold value for eccentricity will result in fewer filtered SRs. 

3.2.2 Layer-wise geometric feature distribution characterization 

To construct the LTDT, the distribution of SRs’ geometric features is characterized using a rasterization 

algorithm. A set of regions are retained in the 𝑙-th layer after filtering, denoted as {(𝑜𝑘
𝑙 , 𝑚𝑘

𝑙 , 𝑛𝑘
𝑙 )|𝑒𝑐𝑘

𝑙 ≥ 𝑇𝑒𝑐}, 

where 𝑜𝑘
𝑙 , 𝑚𝑘

𝑙 , 𝑛𝑘
𝑙 , and 𝑒𝑐𝑘

𝑙  represents the orientation, major and minor axis length, and eccentricity of 𝑆𝑅𝑘
𝑙 , 

respectively, and 𝑇𝑒𝑐 represents the threshold value of the eccentricity in the region filtering. Given a 

predefined bin size, i.e., (𝑠𝑂 , 𝑠𝑀 , 𝑠𝑁), and ranges of these three features, i.e., (𝑙𝑂 , 𝑢𝑂), (𝑙𝑀 , 𝑢𝑀) and  

(𝑙𝑁 , 𝑢𝑁), the observed number of SRs in each bin can be calculated, where 𝑙𝑂, 𝑙𝑀, and 𝑙𝑁 represent the 

lower bounds of the ranges and 𝑢𝑂, 𝑢𝑀, and 𝑢𝑁 represent the upper bounds of the ranges, respectively. 
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Without losing generality, The rasterization algorithm to generate the LTDTs is illustrated in Figure 5.  

 

 

Figure 5: Rasterization to generate the LTDTs where the number of points in each raster is used as the 

corresponding element in the tensor. 

As a result, the LTDT is represented as a 3rd-order tensor 𝒵𝑙 ∈ ℕ0
𝐷𝑂×𝐷𝑀×𝐷𝑁 , where 𝐷𝑂 = ⌈

𝑢𝑂−𝑙𝑂

𝑠𝑂
⌉ , 

𝐷𝑀 = ⌈
𝑢𝑀−𝑙𝑀

𝑠𝑀
⌉, and 𝐷𝑁 = ⌈

𝑢𝑁−𝑙𝑁

𝑠𝑁
⌉. In addition, each element in 𝒵𝑙 can be calculated in Eq. (1), 

𝒵𝑙(𝑜, 𝑚, 𝑛) = ∑ [(

𝑙𝑂 + (𝑜 − 1)𝑠𝑂

𝑙𝑀 + (𝑚 − 1)𝑠𝑀

𝑙𝑁 + (𝑛 − 1)𝑠𝑁

) ≤ (

𝑜𝑘
𝑙

𝑚𝑘
𝑙

𝑛𝑘
𝑙

) < (

𝑙𝑂 + 𝑜𝑠𝑂

𝑙𝑀 + 𝑚𝑠𝑀

𝑙𝑁 + 𝑛𝑠𝑁

)]

𝐾𝑙

𝑘=1

 (1) 

where [∙] refers to the Iverson bracket, i.e., 

[𝑄] = {
1, if 𝑄 is true  
0, if 𝑄 is false
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where 1 ≤ 𝑜 ≤ 𝐷𝑂,  1 ≤ 𝑚 ≤ 𝐷𝑀 and 1 ≤ 𝑛 ≤ 𝐷𝑁, and 𝐾𝑙 represents the total number of SRs in the 𝑙-th 

layer. 

Due to the sparsity and high dimensionality of  𝒵𝑙, it is necessary to further extract the key information 

from 𝒵𝑙 for monitoring. Given its effectiveness in reducing the dimensionality of high-dimensional tensors 

[39, 44, 58], MPCA is used in dimension reduction of the LTDTs for process alteration detection.  

3.3 Dimension reduction from geometric feature distribution 

The LTDT, denoted as 𝒵𝑙 ∈ ℕ0
𝐷𝑂×𝐷𝑀×𝐷𝑁 , is a 3rd-order tensor with the following properties: 1) all the 

elements in the tensor are non-negative integers and the distribution of those elements is right skewed; 2) 

the LTDTs are of high dimension and the elements in the tensor are highly correlated; and 3) The LTDTs 

are sparse tensors, which means there are a lot of zeros in the tensor. Therefore, dimension reduction 

methods are needed to compress the LTDTs and extract critical features for effective process authentication.  

To avoid numerical issues in tensor decomposition, a log-link function is used to transfer the original 

elements in the LTDTs to reduce its skewness. In addition, to retain the same lower bound (i.e., zero) and 

sparsity of the tensor after transformation, each element in 𝒵𝑙 is shifted by 1, as illustrated in Eq. (2). 

 𝒳𝑙 = log (𝒵𝑙 + 1) (2) 

Based on the standard multilinear algebra, the tensor 𝒳𝑙 can be expressed as in Eq. (3), 

 𝒳𝑙 = 𝒢𝑙 ×1 𝐔𝑂 ×2 𝐔𝑀 ×3 𝐔𝑁 (3) 

where 𝒢𝑙 = 𝒳𝑙 ×1 𝐔𝑂
𝑇 ×2 𝐔𝑀

𝑇 ×3 𝐔𝑁
𝑇, and 𝐔𝑂, 𝐔𝑀 and 𝐔𝑁 are orthogonal projection matrices 

corresponding to the mode of the orientation, major and minor axis length, respectively. 𝒢𝑙 represents the 

core tensor with reduced dimension 𝑑𝑂 × 𝑑𝑀 × 𝑑𝑁, where 0 < 𝑑𝑂 < 𝐷𝑂, 0 < 𝑑𝑀 < 𝐷𝑀 and 0 < 𝑑𝑁 <

𝐷𝑁, and 𝒢𝑙 can be used as the extracted features.  

Since the LTDTs are usually high-dimensional and sparse, tensor decomposition can be used to extract 

low dimensional features for alteration detection. Multilinear principal component analysis (MPCA) 

determines a multilinear projection that captures most variations in the original LTDTs. The objective of 

MPCA is to find the projection matrices, i.e., 𝐔𝑂, 𝐔𝑀 and 𝐔𝑁, which maximize the total tensor scatter in 
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𝒢𝑙, denoted by ψ𝒢, as illustrated in Eq. (4), 

 {𝐔𝑂, 𝐔𝑀 , 𝐔𝑁 } = arg max
𝐔𝑂,𝐔𝑀,𝐔𝑁

ψ𝒢 (4) 

To solve the optimization problem in Eq. (4), the problem is decomposed into a series of projection 

subproblems, where the projection matrices are iteratively updated. Figure 6 illustrates the pseudocode for 

implementing the MPCA algorithm, which is adapted from [58], [57].  

Figure 6: The MPCA algorithm for projection matrix estimation. 

Given training data set with several verified healthy layers, the projection matrices can be estimated 

Input: A set of nominal layers’ geometric features distribution {𝒵𝑙 ∈ ℝ𝐷𝑂×𝐷𝑀×𝐷𝑁 , 𝑙 = 1,2, … , 𝐿𝑡𝑟} 

Output: Low dimensional features 𝒢𝑙 and projection matrices 𝐔̃𝑂 ∈ ℝ𝐷𝑂×𝑑𝑂 , 𝐔̃𝑀 ∈ ℝ𝐷𝑀×𝑑𝑀 and 𝐔̃𝑁 ∈ ℝ𝐷𝑁×𝑑𝑁  

Algorithm: 

Step 1 (Element-wise Transferring and Centering): 

1.1 Transfer the original tensor as {𝒳𝑙 = log (𝒵𝑙 + 1)} 

1.2 Center the benchmark samples as {𝒳𝑙 = 𝒳𝑙 − 𝒳, 𝑙 = 1,2, … , 𝐿𝑡𝑟}, where 𝒳 =
1

𝐿𝑡𝑟
∑ 𝒳𝑙

𝐿𝑡𝑟
𝑙=1 . 

Step 2 (Initialization): 

2.1 Calculate the eigen-decomposition of 𝚽(𝑗)∗ = ∑ 𝑿̃𝑙(𝑗)𝑿̃𝑙(𝑗)
𝑇𝐿𝑡𝑟

𝑙=1  (𝑗 = 1,2,3) and set 𝐔̃𝑂, 𝐔̃𝑀 and 𝐔̃𝑁 to consist 

of the eigenvectors corresponding to the most significant 𝑑𝑂, 𝑑𝑀 and 𝑑𝑁  eigenvalues, respectively. Here 𝑿̃𝑙(𝑗) 

represents the unfolded matrix of 𝒳𝑙 along the 𝑗-th mode. 

2.2 Calculate {𝒢𝑙 = 𝒳̃𝑙 ×1 𝐔̃𝑂
𝑇

×2 𝐔̃𝑀
𝑇

×3 𝐔̃𝑁
𝑇
, 𝑙 = 1,2,3 … , 𝐿𝑡𝑟}, 

2.3 Calculate ψ𝒢0
= ∑ ‖𝒢𝑙‖𝐹

2𝐿𝑡𝑟
𝑙=1  

Step 3 (Optimization): 

For 𝑝 = 1: 𝑃 

Update 𝐔̃𝑂: Set the matrix 𝐔̃𝑂 to consist of the 𝑑𝑂 eigenvectors of the matrix 𝚽(1) = ∑ 𝑿̃𝑙(1) ∙ 𝐔̃𝑂 ∙
𝐿𝑡𝑟
𝑙=1

𝐔̃𝑂
𝑇

∙ 𝑿̃𝑙(1)
𝑇 , corresponding to the largest 𝑑𝑂 eigenvalues. 

Update 𝐔̃𝑀: Set the matrix 𝐔̃𝑀 to consist of the 𝑑𝑀 eigenvectors of the matrix 𝚽(2) =

∑ 𝑿̃𝑙(2) ∙ 𝐔̃𝑀 ∙ 𝐔̃𝑀
𝑇

∙ 𝑿̃𝑙(2)
𝑇𝐿𝑡𝑟

𝑙=1 , corresponding to the largest 𝑑𝑀 eigenvalues. 

Update 𝐔̃𝑁: Set the matrix 𝐔̃𝑁 to consist of the 𝑑𝑁 eigenvectors of the matrix 𝚽(3) = ∑ 𝑿̃𝑙(3) ∙ 𝐔̃𝑁 ∙
𝐿𝑡𝑟
𝑙=1

𝐔̃𝑁
𝑇

∙ 𝑿̃𝑙(3)
𝑇 , corresponding to the largest 𝑑𝑁 eigenvalues. 

Calculate {𝒢𝑙, 𝑙 = 1,2,3 … , 𝐿𝑡𝑟} and ψ𝒢𝑝
. 

If ψ𝒢𝑝
− ψ𝒢𝑝−1

< 𝜀, break and output projection matrices, 𝐔̃𝑂, 𝐔̃𝑀 and 𝐔̃𝑁. 

Step 4 (Projection): For any newly collected layer, the low-dimensional features are calculated as {𝒢𝑙 =

(𝒳𝑙 − 𝒳̅) ×1 𝐔̃𝑂
𝑇

×2 𝐔̃𝑀
𝑇

×3 𝐔̃𝑁
𝑇
, 𝑙 = 1,2,3 … , 𝐿𝑡𝑟}. 
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based on the algorithm in Figure 6, and low-dimensional features can be extracted to describe the major 

variability in the LTDTs. Subsequently, the Hotelling 𝑇2 control charting scheme can be applied to the 

extracted multivariate features [59]. Based on the features extracted from the training set, the covariance 

matrix (denoted as 𝑆𝒢) can be estimated. When a new part is fabricated and the streamline video data 

collected, the Hotelling 𝑇2 monitoring statistics of the 𝑙-th layer is calculated in Eq. (5), 

 𝑇𝑙
2 = vec(𝒢𝑙)𝑇(𝑆𝒢)

−1
vec(𝒢𝑙) (5) 

where vec(∙) denotes the function to vectorize the resulting low dimensional tensor, and 𝒢𝑙 denotes the low-

dimensional features extracted based on the projection matrices obtained from the training data. The upper 

control limit (UCL) of the control chart can be determined as the empirical 100 × (1 − 𝛼)% quantile of 

the monitoring statistics based on the Phase I data, where 𝛼 is the pre-determined Type I error rate.  

The alarm rule of the proposed process authentication is that whenever the monitoring statistic 𝑇𝑙
2 

exceeds the pre-determined UCL, the printing path of the 𝑙-th layer of the tested build is altered, and the 

printing process should be terminated for further investigation.  

 

4 Case study  

This section investigates the performance of the proposed methodology based on a fused filament 

fabrication (FFF) process which is equipped with a microscope camera to capture streamline videos. The 

experimental setup and data collection are described in Sec. 4.1, and the results are summarized and 

discussed in Sec. 4.2. 

4.1 Experimental setup and data collection 

An FFF-based 3D printer (Prusa i3 MK3S) was used for data collection. A Teslong Portable MS 100 

USB microscope was attached to the extruder head and focused on the nozzle tip while continuously 

capturing streamline videos from the fabricated surface. The camera’s frame rate is 25 Hz, and the resulting 

resolution of each frame is 480 × 640. Figure 7a) and b) illustrate the experimental setup with the real-

time video shown on the screen of the laptop. In addition, Figure 7 c) shows five example frames captured 
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from the fabrication of one layer with solid infill of the rectilinear pattern; and Figure 7 d) shows example 

image frames captured from the fabrication of one layer with a square shaped hollow feature included. It 

can be observed that the image contrast varies significantly within the same image and among multiple 

images.  

 

Figure 7: Demonstration of the experimental setup (a and b) and representative sample images (c and d). 

This case study intends to simulate two scenarios of the cyber-physical attacks, i.e., varying the infill 

orientation (Group B) and altering the STL files (Group C). As illustrated in Figure 8, both cyber-attack 

scenarios considered result in changes the printing path, and thus alter the entire AM chain starting from 

the slicing phase. Three different groups of parts were fabricated, in which Group A is the nominal part, 

and Group B and C are altered parts with printing path rotated and undesired feature added, respectively. 

Table 1 summarizes the part dimension and infill orientation of the three groups. The feedstock material 

used was the filament of polylactic acid (PLA) with a cross-sectional diameter of 1.75 mm. The printing 

parameters used for all the parts are summarized in  

Table 2, which remain the same and therefore excluded from the analysis in this study. Four parts in 

total were fabricated, among which two parts belong to Group A, and the other two are from Group B and 

C, respectively. Figure 9 illustrates the cross sections of the three printed parts which belong to Group A, 
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B, and C, respectively.  

 

Figure 8: Cyber-attack scenarios simulated in the case study, where B and C denote the corresponding 

locations where the attacks are applied, and the shaded phases (i.e., slicing and manufacturing) denote the 

phases with altered information. 

 

Figure 9: Illustration of three groups of parts. 

Table 1: Model dimensions and infill parameters. 

Part Group 
A  

(Nominal) 

B  

(Altered) 

C 

(Altered) 

Dimensions 

(L × W × H) (mm) 
30 × 30 × 10 

Undesired feature 

(L× W × H) (mm) 
NA NA 10 × 10 × 5 

Infill orientation 

(degree) 
45 90 45 

Build time (second) 3,761 3,812 3,550 

 

Table 2: Printing parameters shared by all the three groups. 

Parameter Value Parameter Value 

Infill (%) 100 Printing speed (mm/s) 20 

Extrusion width (mm) 0.5 Nozzle temperature (°C) 200 
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First layer thickness (mm) 0.4 Bed temperature (°C) 65 

Layer thickness (mm) 0.3 Number of layers 33 

 

4.2 Results and discussion 

4.2.1 Benchmark method selection 

The image-based monitoring and control method for the FFF process proposed in Liu et al. [18] was 

adopted as the benchmark method for alteration detection, because it is the most recent study on anomaly 

detection by leveraging texture analysis of real-time optical images. In the benchmark method, a variety of 

textural statistics were extracted based on the gray-level co-occurrence matrix (GLCM), and the 

multivariate statistics are compressed using the autoencoder technique [60], which has been demonstrated 

as an effective data compression method in [61]. This method is mainly focused on the defect detection and 

its effectiveness has been validated in [18] through the comparison between the conventional machine 

learning approaches. It is worth noting that the benchmark method is proposed for image-wise anomaly 

detection. Therefore, to achieve layer-wise alteration detection, the arithmetic mean of the image-wise 

monitoring statistics across each entire layer was used as the layer-wise monitoring statistic. 

Another potential benchmark method is proposed by Bui and Apley [62], which proposed a stochastic 

textured surface modelling approach for high-dimensional images. Although this method has demonstrated 

its effectiveness and great potential in textile applications, the method is not applicable to the problem in 

this paper, because their modelling approach requires to establish a benchmark textured surface for 

monitoring and anomaly detection. In the streamline video captured from the 3D printing process, it will 

be quite cumbersome to find the unique benchmark textured surface for all the images due to dynamic 

nature of the ROIs captured. Therefore, this method is not adopted as a second benchmark method to 

compare with the proposed approach. 

4.2.2 Model settings and parameter estimation for both methods 

For both methods, image pre-processing was implemented. For the proposed method, the ROI was 

cropped by removing the region above the nozzle tip, resulting in the ROIs of size 315 × 637. For the 

benchmark method, the ROI cropping suggested in [18], resulting in the ROIs of size 80 × 80. All the 33 
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layers of each part except for the first layer were used since the textural information in the first layer is not 

comparable with any of the subsequent layers.  

For the proposed method, each layer-wise video constructed the LTDTs with the dimension of 

181 × 140 × 15, which is a high-dimensional tensor. To examine the sparsity of the LTDTs, the 

proportions of the zero elements in Part 1 is illustrated in Figure 10. It can be observed that the constructed 

LTDT tensors are very sparse tensors with over 94% of the elements that are zero.  

 

Figure 10: Histogram of proportion of zero elements in the 32 layers of Part 1 of Group A. 

For both methods, all the layers of the first part in Group A were used as the training data set for 

necessary parameter estimation. This includes projection matrices estimation in MPCA and covariance 

matrix estimation for the 𝑇2 monitoring statistics for the proposed method, and the training of autoencoder 

for the benchmark method. Furthermore, randomly selected 75% layers of the second part in Group A were 

used as Phase I data for control limit determination. The remaining 25% layers of the second part of Group 

A and all the layers of Group B and C were used as the Phase II data to evaluate the performance. The 

random split between Phase I and Phase II data was repeated for 100 times, and the average performance 

was summarized. It is also worth noting that, for the proposed method, the parameter estimation and UCL 

determination for the odd and even number of layers need to be separated, because the texture distributions 

of the odd and even number of layers in Group A are different. In Phase II, whenever the monitoring statistic 

exceeds the pre-determined UCL, the control chart will signal and that corresponding layer is detected as 
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an altered layer; otherwise, the layer is regarded as unaltered. A test run example is illustrated in Figure 11. 

 

Figure 11: Examples of control charts for odd number and even number of layers. 

4.2.3 Results comparison and discussion 

The performance metrics used to evaluate the proposed and benchmark methods include precision, 

recall, Fscore, and overall accuracy, which are defined below based on the elements in the confusion matrix.  

Recall =
TP

TP + FN
 (6) 

Precision =
TP

TP + FP
 (7) 

Fscore = 2 ×
Precision × Recall

Precision + Recall
 (8) 

Accuracy =
TP + TN

TP + TN + FP + FN
 (9) 

where true positive (TP) denotes the number of altered layers which are predicted accurately as altered, 

whereas true negative (TN) represents the unaltered layers which are accurately predicted as unaltered. In 

addition, false-negative (FN) denotes inaccurate prediction of altered layers as unaltered, while false 

positive (FP) represents inaccurate prediction of the layers which are unaltered but predicted as altered. 

Fscore is the harmonic mean of precision and recall, and the overall accuracy is the percentage of accurately 

classified layers within all the evaluated Phase II layers. To assess the feasibility for real-time analysis, the 

computational efficiency of the proposed and benchmark methods is also evaluated and compared.  
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There are two tuning parameters used in the proposed method: 1) the threshold value of eccentricity 

used in the SR filtering, denoted as 𝑇𝑒𝑐; and 2) the number of MPCs retained in the monitoring statistics, 

denoted as 𝑑𝑝𝑐. To test the robustness of the proposed method, both tuning parameters are varied, and the 

performance of the proposed method is summarized in Table 3. It can be observed that the proposed method 

outperforms the benchmark method within the wide range of the tuning parameters for all the performance 

metrics evaluated. In addition, the average rates of each entry in the confusion matrix have been summarized 

in Table 4 in the Appendix.  

Even though the proposed method demonstrates good performance in all the combinations of tuning 

parameters tested, some trends are still visible in Table 3. Based on the Fscore values, the best performing 

rows within each given 𝑇𝑒𝑐 value have been bolded in Table 3. It can be observed that when the 𝑇𝑒𝑐 value 

is small to medium (i.e., 0.85, and 0.9), the proposed method performs best using relatively large 𝑑𝑝𝑐 values 

(i.e., 10). When the 𝑇𝑒𝑐 value is medium to large (i.e., 0.95 and 0.98), the proposed method performs best 

using relatively small 𝑑𝑝𝑐 values (i.e., 5). The reason behind this observation is that smaller (larger) 𝑇𝑒𝑐 

values, in general, lead to more SRs retained and less sparse LTDTs. Therefore, more (fewer) MPCs are 

potentially needed to capture the major variations in the extracted LTDTs for effective alteration detection.  

The major reason for the inferior performance of the benchmark method is that their method works 

under the underlying premise that the GLCM based features can fully characterize the textured surfaces 

captured. However, in the real-world AM fabrication, the lighting condition and image contrast are varying 

significantly over time due to the high printing speed, making the GLCM features limited in characterizing 

these complex stochastic textured surfaces.  

 

Table 3: Results summary of the proposed and benchmark methods 

𝑇𝑒𝑐 𝑑𝑝𝑐 Accuracy Precision Recall Fscore 

0.85 

2 95.8% 95.5% 98.4% 96.9% 

5 86.1% 87.9% 91.8% 89.8% 

8 95.0% 93.1% 100.0% 96.4% 

10 97.8% 96.8% 100.0% 98.4% 
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12 84.3% 91.3% 84.6% 87.8% 

0.9 

2 92.6% 93.0% 96.3% 94.6% 

5 89.4% 87.7% 97.9% 92.5% 

8 94.3% 92.2% 100.0% 95.9% 

10 96.4% 94.9% 100.0% 97.4% 

12 93.5% 91.2% 100.0% 95.4% 

0.95 

2 90.8% 87.8% 100.0% 93.5% 

5 95.0% 96.0% 96.8% 96.3% 

8 86.5% 95.4% 83.9% 89.3% 

10 82.7% 90.0% 83.4% 86.5% 

12 84.4% 90.3% 86.0% 88.0% 

0.98 

2 84.2% 96.2% 79.8% 87.1% 

5 93.0% 90.6% 100.0% 95.0% 

8 90.7% 93.7% 92.4% 93.0% 

10 88.1% 91.8% 90.4% 91.0% 

12 84.3% 91.2% 84.7% 87.8% 

Benchmark 72.5% 84.0% 62.0% 71.0% 

 

To evaluate the computational efficiency of the proposed method, the computation time distribution is 

illustrated as boxplots in Figure 12. To better illustrate the variability of the distributions under different 

scenarios, the computation time distributions are plotted in the log scale. Since the different 𝑑𝑝𝑐 values 

ranging from 2 to 12 do not significantly affect the computation time, the computation time is only 

compared based on different 𝑇𝑒𝑐 values (Intel® Core™ Processor i7-7700 CPU @ 3.60GHz). It can be 

observed that even though the proposed method is less efficient compared with the benchmark method, 

both are significantly shorter than the layer-wise build time. Within different tuning parameters used in the 

proposed method, it is also observed that when the 𝑇𝑒𝑐 value is small, the variation of computation time is 

higher than when the 𝑇𝑒𝑐 value is medium or large. Furthermore, the average computation time decreases 

slightly as the 𝑇𝑒𝑐 increases, because the number of retained SRs will decrease given a higher threshold 

value of  𝑇𝑒𝑐. In addition, it is also worth noting that given the same camera, the layer-wise computation 

time of the proposed method is determined by the size of the video, which is proportional to the layer-wise 

build time. For the proposed method, the computation time stays between 25.0% and 28.3% of the layer-

wise build time, depending on the tuning parameter used.   
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Figure 12: Average layer-wise computation time (second) comparison in the log scale. 

 

5 Conclusion and future work 

Cyber-manufacturing systems accelerate the communication, prototyping, and sharing of digital files 

to optimize productivity in different categories of AM process. The layer-by-layer fashion of fused filament 

fabrication AM process significantly makes a large variety of process/part alterations possible and therefore 

extensively enlarge the vulnerability space. Most cyber-physical attacks focus on altering the printing path, 

so that the internal structure of the product can be changed. This will lead to deteriorated mechanical 

properties and compromised product functionality for mission-critical structures. What’s worse, it may even 

cause catastrophic accidents for the operators for functional AM components. This paper proposes a new 

real-time AM process authentication based on layer-wise streamline video data. By integrating adaptive 

image thresholding, the multivariate distribution of texture geometric features is extracted. In addition, a 

novel layer-wise AM process descriptor, i.e., the layer-wise texture descriptor tensor (LTDT), is constructed 

for process authentication. MPCA is used to extract low-dimensional features from those high-dimensional 

and sparse LTDTs. To evaluate the effectiveness of the proposed methodology, a case study based on an 

FFF process is used. The proposed method outperforms the benchmark method in terms of alteration 
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detection accuracy, while the computational efficiency remains satisfactory for real-time alteration 

detection. 

This study can be potentially extended in the following four directions. First, the sensitivity of the 

alteration detection will be further quantified for major part alteration categories, such as undesired feature 

added and rotated printing orientation. Second, under the proposed framework, AM parts with diversified 

geometric features, including different shapes, infill patterns, and infill percentages, will be considered, and 

their performance will be evaluated. Third, a machine learning scheme can be used to categorize different 

types of printing path alterations for fault diagnosis and impact assessment of the cyber-physical attacks. 

Last but not the least, the proposed framework will be adapted to other AM processes with printing path 

being critical to the structural properties, such as direct laser deposition, and selected laser melting 

processes. 
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7 Appendix: Average Rates of Confusion Matrix Entries in the Case Study 

In Table 4, the average rates of the confusion matrix entries of the case study are summarized for both 

the proposed method with various tuning parameters and the benchmark method. 

Table 4: Average rates of confusion matrix entries in the case study 

𝑇𝑒𝑐 𝑑𝑝𝑐 TP Rate TN Rate FP Rate FN Rate 

0.85 

2 65.6% 30.2% 3.2% 1.1% 

5 61.2% 24.9% 8.5% 5.4% 

8 66.7% 28.4% 5.0% 0.0% 

10 66.7% 31.1% 2.2% 0.0% 

12 56.4% 27.9% 5.5% 10.3% 
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0.9 

2 64.2% 28.4% 4.9% 2.5% 

5 65.3% 24.1% 9.2% 1.4% 

8 66.7% 27.6% 5.7% 0.0% 

10 66.7% 29.8% 3.6% 0.0% 

12 66.7% 26.8% 6.5% 0.0% 

0.95 

2 66.7% 24.1% 9.3% 0.0% 

5 64.5% 30.5% 2.8% 2.2% 

8 55.9% 30.6% 2.7% 10.8% 

10 55.6% 27.1% 6.3% 11.1% 

12 57.3% 27.0% 6.3% 9.3% 

0.98 

2 53.2% 31.1% 2.3% 13.5% 

5 66.7% 26.3% 7.0% 0.0% 

8 61.6% 29.1% 4.2% 5.1% 

10 60.3% 27.9% 5.5% 6.4% 

12 56.5% 27.8% 5.5% 10.2% 

Benchmark 34% 33.8% 38.6% 20.7% 
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