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A CONJECTURAL BOUND ON THE SECOND BETTI NUMBER FOR
HYPER-KAHLER MANIFOLDS

YOON-JOO KIM AND RADU LAZA

ABSTRACT. In previous work ([GKLR19]), we noted that the known cases of hyper-Kéahler manifolds satisfy
a natural condition on the LLV decomposition of the cohomology; informally, the Verbitsky component is
the dominant representation in the LLV decomposition. Assuming this condition holds for all hyper-K&hler
manifolds, we obtain an upper bound for the second Betti number in terms of the dimension.

1. INTRODUCTION

A fundamental open question in the theory of compact hyper-Kéahler manifold is the boundedness question:
are there finitely many diffeomorphism types of hyper-Kdhlers in a given dimension? In accordance with
the Torelli principle, Huybrechts [Huy03, Thm 4.3] proved that there are finitely many diffeomorphism
types of hyper-Kahler manifolds once the dimension and the (unnormalized) Beauville-Bogomolov lattice
(H*(X,Z),qx) are fixed. Thus, bounding the hyper-Kéhler manifolds is equivalent to bounding the second
Betti number by = b3(X), and then the Beauville-Bogomolov form (e.g., the discriminant). In dimension
2, a compact hyper-Kéahler manifold is always a K3 surface, thus bs = 22. In dimension 4, Beauville and
Guan [Gua0l] gave a sharp bound by < 23 (in fact, Guan showed 3 < by < 8 or by = 23). For some further
partial results on bounding b, see Remark 1.5. The purpose of this note is to give a conjectural bound on
ba(X) for an arbitrary compact hyper-Kéhler manifold X of dimension 2n. Our bound depends on a natural
conjectural condition satisfied by the Looijenga—Lunts—Verbitsky (LLV) decomposition of the cohomology
H*(X) for hyper-Kahler manifolds X.

To state our results, let us recall that Verbitsky [Ver95] and Looijenga—Lunts [LL97] noted that the
cohomology H*(X) of a hyper-Kéhler manifold admits a natural action by the Lie algebra g = so(bs + 2),
generalizing the usual hard Lefschetz theorem. As a g-module, the cohomology of a hyper-Kéhler manifold
X decomposes as

H%ﬂ:éB“ﬁm, (1.1)

where V), indicates an irreducible g-module of highest weight 1 = (o, -+ , pr), with r = {%J =rkg—1.

We refer to g as the LLV algebra of X, and to (1.1) as the LLV decomposition of H*(X) (see [GKLR19] for
further discussion). Motivated by the behavior of the LLV decomposition in the known cases of hyper-Kéahler
manifolds [GKLR19], we have made the following conjecture.

Conjecture ([GKLR19]). Let X be a compact hyper-Kdahler manifold of dimension 2n. Then the weights
w= (po,- -+, pr) occurring in the LLV decomposition (1.1) of H*(X) satisfy

o+ 1+ ] < (1.2)

The conjecture holds for all currently known examples of compact hyper-Kéahler manifolds (cf. [GKLR19,
§1]). Furthermore, the equality in (1.2) holds for the Verbitsky component, an irreducible g-submodule with
highest weight 1 = (n,0,---,0) that is always present in H*(X). This shows (1.2) is sharp. Beyond the
evidence given by the validity of (1.2) in the known cases, we have some partial arguments of motivic nature
(and depending on standard conjectures) showing that at least (1.2) is plausible. This will be discussed
elsewhere.

The purpose of this note is to show that conjecture (1.2) implies a general bound on bs(X).
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Main Theorem. Let X be a compact hyper-Kihler manifold of dimension 2n. If the condition (1.2) holds
for X, then

2149611433 ¢ _
by(X) < { 2 ZfHodd(X) 0 (1.3)

2k+1 if H*(X) # 0 for some odd k
Remark 1.4. A slightly weaker version of (1.3) is
bo(X) < max{mi VOGRS, 1} ,

which reads explicitly

n 112134567 > 8
bo(X) < || 22]23]|23[24(25|26|27|4n—1

In low dimensions, our bounds agree with the known results and seem fairly sharp. For instance, we know
K3l type hyper-Kéahler manifolds have by = 23 and OG10 manifolds have bs = 24. These examples almost
reach our maximum bound of b; for low dimensions. Similarly, Kum, type hyper-Kahler manifolds have
H3(X) # 0 and by = 7, showing also that the second inequality in (1.3) is sharp.

Remark 1.5. Sawon [Saw15] and Kurnosov [Kurl5] have previously obtained the same bounds for 3 < n <5,
and also predicted the general formula (1.3) when H;,(X) = 0. However, their results were based on the
assumption that an irreducible module V,, is determined by the shape of its Hodge diamond. In general, the
shape of the Hodge diamond of V,, is controlled only by the first two coefficients po, 1 (see [GKLR19, §2.2]).

A few words about the proof of our conjectural bound. First, in [GKLR19, §1], we have already obtained
that the condition (1.2) has consequences on the odd cohomology (specifically, if ba > 4n then there should
be no odd cohomology). A slight generalization of the argument in loc. cit. then gives the second inequality
n (1.3). The main content of this note is the control of the even cohomology under the assumption (1.2).
Essentially, our argument is a representation theoretic refinement of Beauville’s argument that by < 23 for
hyper-Kéahler fourfolds. Namely, the starting point is Salamon’s relation [Sal96], a linear relation satisfied
by the Betti numbers of hyper-Ké&hler manifolds. Inspired by the shape of it, we define a numerical function
s(W) for a g-module W and verify its basic properties, most importantly s(W; & W) < max{s(W7), s(Wa)}.
In this setting, Salamon’s relation reads s(H*(X)) = §. Now the punchline is an explicit formula for s(V},)
for irreducible g-modules V,, (Theorem 3.5), which is obtained by applying the Weyl character formula.
Combining it with (1.2), we conclude

n_ s(H* (X)) < S(V(n)07...70)) = %7

which in turn gives the first inequality in (1.3).

2. COHOMOLOGY OF COMPACT HYPER-KAHLER MANIFOLDS

We briefly review some relevant results on the cohomology of hyper-Kéhler manifolds. Let X be a compact
hyper-Kéhler manifold of dimension 2n and H*(X) = H*(X,C). Let g C gl(H*(X)) be the Lie algebra
generated by all the Lefschetz and dual Lefschetz operators associated to elements in H?(X) (cf. [Ver95],
[LL97]). We call this the Looijenga—Lunts—Verbitsky (LLV) algebra of X. Let

(V7Q) = (Hz(X)7QX) eU

be the Mukai completion of H?(X) equipped with the Beauville-Bogomolov form, and set r = {@J

Then g is isomorphic to the special orthogonal Lie algebra so(V, q) = so(bs 4+ 2,C) of rank r + 1. The coho-
mology H*(X) of a hyper-Kéhler manifold X admits a g-module structure, generalizing the hard Lefschetz
theorem. We refer to the g-module irreducible decomposition (1.1) of H*(X) as the LLV decomposition of
the cohomology (see [GKLR19, §3] for some examples).
Fix a Cartan and a Borel subalgebra of g. Representation theory of so(V,q) depends on the parity of
dimV = by 4+ 2. If by = 2r is even, then we can fix a suitable basis g, - - - , €, of the dual Cartan subalgebra
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such that the 2r 4+ 2 associated weights of the standard module V' are +¢q, -+ , £&,. Similarly, if bo = 2r+1
is odd, then we can choose €; such that V' has the 2r + 3 associated weights 0, +¢q, - - - , +&,. (Note that the
index of the basis starts from 0.) Any dominant integral weight p can be expressed in this basis as

T
= (o, ) = Y picie
i=0

Here if by = 2r is even, then pu; satisfy the condition pg > -+ > ppr—1 > |ur| > 0 and p; are either all integers
or all half-integers. If bo = 2r 4+ 1 is odd, then gy > --- > pu, > 0 and p; are again either all integers or all
half-integers. It will be important whether ; are integers or half-integers, so we define:

Definition 2.1. Let g = (ug,-- - , tr) be a dominant integral weight of g = so(V q).
(i) If all p; are integers, we say p is even. If all pu; are half-integers (i.e., p; € %Z \ Z), we say u is odd.
(ii) An irreducible g-module V,, of highest weight p is called even (resp. odd) if u is even (resp. odd).
(iii) A g-module W is called even (resp. odd) if all of its irreducible components V,, are even (resp. odd).

By [GKLR19, Prop 2.35], the even (odd) cohomology H,.,(X) is always an even (resp. odd) g-module.
When p is even and has multiple 0’s at the end of its coordinate expression (uo, -+ , tir), we will simply
omit the last 0’s. For example, the notation (m) = (m,0,---,0) refers to the integral weight meg. In
geometric situation for hyper-Kihler manifolds, the subalgebra of H*(X) generated by H?(X) becomes
an irreducible g-submodule of H*(X), which we call the Verbitsky component of H*(X). As a g-module,
Verbitsky component is isomorphic to V/,) and it always occurs with multiplicity 1 in the LLV decomposition.
Let h be the degree operator on H*(X), the operator acting as multiplication by k& on H?*"**(X). For
a suitable choice of a Cartan and a Borel subalgebra, we can assume h = ¢y (e.g., [GKLR19, (2.28)]). By

definition, the degree decomposition of the cohomology

H*(X)Z é H2n+k(X)
k=—2n

is the h-eigenspace decomposition. In general, an arbitrary g-module admits the h-eigenspace decomposition

W =P W, (2.2)
kEZ
where W), denotes the eigenspace of W with eigenvalue k. The eigenvalues k are always integers by the
following reason. Let W () be the weight subspace of W associated to a weight 8 = 6peo + - - - + 0,.¢,.. Then
h =&y acts on W(f) by (gy,6) = 26, which is an integer since 6 € 27 for any weight 6.
Consider the LLV decomposition of the cohomology

H*(X)= @u Vo, (1.1 (restated))

If V,, is contained in the odd cohomology, then u is odd by the above discussion. Hence all ; are half-integers,
and in particular we have u; > % (possibly except for the last |u,| > %, if by is even). If we specifically assume
H*(X) # 0 for odd k < 2n, then there exists at least one irreducible component V,, with (V},)x—2, # 0. This
means h = ¢y acts on some part of V, by k — 2n, so V,, has an associated weight 0 = 0peg + - - - + 0,.¢, with

0o = % — n. This forces ug > n — % Summarizing, we have

k 1
/,LOZTL_§7 Mla"'uu’l‘—17|u7‘|2§7

which gives the following.

Corollary 2.3. Let X be a compact hyper-Kdihler manifold of dimension 2n. Assume H*(X) # 0 for some
odd integer k < 2n. Then there exists a weight p in (1.1) with puo + -+ + pr—1 + || > n — % + 5. O

Finally, let us recall Salamon’s relation. Let by = b (X) be the k-th Betti number of X. Salamon [Sal96]
proved that the Betti numbers of hyper-Ké&hler manifolds X satisfy a linear relation:
2n
> (=1)*(6k% — 2n)bap 1k = nban.
k=1
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One can manipulate the identity into the following form

2n
Z (= 1) k2bon s = ge(X), (2.4)
k=—2n
where e(X) = ii_Qn(—l)kb2n+k is the topological Euler characteristic of X.

3. PROOF OF MAIN THEOREM
Inspired by Salamon’s relation (2.4), we define a constant s(W) associated to an arbitrary g-module W.

Definition 3.1. Let W be a g-module and W = @, W}, its h-eigenspace decomposition in (2.2). Assume
Y (=1)*dim W, # 0 (N.B. This is automatic if W is either even or odd). Then we define a constant
s(W) € Q associated to W by

 Ypez(=DFE? dim Wy
Y e (CDFdim Wy
In particular, if e(X) # 0, Salamon’s relation (2.4) reads

s(W)

s(H*(X)) = 2. (3.2)

The case of odd cohomology will be easily handled by Corollary 2.3. Thus, we can focus on the case of
vanishing odd cohomology (in particular, e(X) # 0). The main content then is to bound the value s(H* (X))
in terms of be and the LLV decomposition (1.1). Once this is done, assuming our conjecture (1.2), Salamon’s
relation (3.2) leads to the desired inequality (1.3) between be and n. Let us start from some straightforward
properties of the constant s(W).

Proposition 3.3. Let {W,}icr be a finite set of g-modules with well-defined s(W;).
(i) If all W; are simultaneously even or odd, then min;{s(W;)} < s(, W;) < max;{s(W;)}.
(i) s(&,; Wi) =22, s(Ws).

Proof. Tt is enough to prove the proposition for two g-modules W and W’. Assume without loss of generality
s(W) < s(W’), and let us consider the case when W and W' are even (the odd case is similar). In this case,
all eigenvalues k of W are even, so we have

Y R dim Wy = s(W)dimW, > k*dim Wy = s(W’') dim W',
k k

Adding the two equalities and using s(W) < s(W’) gives us the first item.
For the second item, we compute

S (DR dim(W @ W), = > (-1)FE* | > dim W dim W]

k k i+j=k
= (=1 (i + 2ij + j2) dim W; dim W,
4,J

=<Z(—1)ii2dimWi> e(W) + | Y (=1)752 dim W} | e(W)

+2 (Z(—l)iidimWi> > (~1)75 dim W}
i J
Here we used the notation e(W) = >_,(—=1)*dim W; and e(W’) = Zj(—l)j dim W for simplicity. Notice
that > .(—=1)%dimW; = 0, since by Weyl symmetry we always have dimW; = dimW_;. This proves
S (—DRE2 dim(W @ W)y, = (30,(—1)%% dim W;)e(W') + (32;(=1)752 dim W))e(W). Dividing both hand
sides by e(W @ W') = ¢(W)e(W’) gives us the result. O
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Remark 3.4. In fact, we can associate to an arbitrary g-module W the following formal power series

SW) = (-1)Fdim Wy, - exp(kt) € Qft]].
k
One can easily show
SWoW')=SW)+SW'), SWeW')=SW).S(W,
so that S defines a ring homomorphism from the representation ring K (g) of g
S K(g) — Q[[t]]-

By Weyl symmetry, we have dim Wy, = dim W_y, giving that all the odd degree terms of S(W') vanish. Thus,
we can write

1 .
S(W) = sg + sat? + s4t* +--- € QJ[t]], 5= 4 Z(—l)kkl dim W
Tk
From this perspective, our constant s(WW) is the ratio between the first two coefficients
2
s(W) =22
S0

of the formal power series S(W).

A more interesting result is the explicit computation of s(W) for irreducible g-modules W = V,,. Recall
that the Lie algebra g was isomorphic to so(by +2,C) and r = |2 |, so that g has rank r + 1 and a dominant
integral weight p can be written as a tuple (po, - -, ir)-

Theorem 3.5. With notations as above, let V,, be an irreducible g-module of highest weight . If u, > 0,
then
(Z;:() /Li) ba + (Z::()(,ui — i)2 — i2)

(ba +1)(ba +2)
If by is even and p, < 0, then s(V,) = s(Vy) where ' = (po, -+, for—1, —fir)-

s(V,)=8-

We postpone the proof of Theorem 3.5 to the following section. For now let us conclude the proof of
our Main Theorem using this result. First, we note the following consequence of Theorem 3.5. Recall from

Section 2 that the notation (m) = (m,0,--- ,0) refers to the integral weight mey.
Corollary 3.6. (1) s(Vimy) = % form € Zxy.

(ii) If p is even, then s(V,) < s(Vim)) for m = po + -+ + pr—1 + |pr].
(iii) s(Vimy) < 8(Viny) for m <n.

Proof. The first item is immediate from letting © = mep in Theorem 3.5. The third item follows from
it directly. For the second item, using s(V},) = s(V,/) in Theorem 3.5, we may assume p, > 0. Let us
temporarily define a function A(u) of a dominant integral weight p by

T

Alp) = (i —)*.

i=0
Again using Theorem 3.5, one finds that the second item is equivalent to the inequality A(u) < A(meg). For
it, one first proves an inequality

(i =)+ (g =) < (i +1 =9+ (u; —1-4)* for 0<i<j<r (3.7)

which easily follows from p; > p;. The desired A(p) < A(meg) follows from inductively applying the
inequality (3.7) to modify the dominant integral weight p until it reaches meg. O

Proof of Main Theorem. Assume H*(X) # 0 for some odd integer k. By Corollary 2.3, there exists at least
one component V,, C HZy,(X) with po + -+ ftr—1 + |ptr| > n— £ + Z. Thus, under the condition (1.2), we
get r < k and hence by = (2r or 2r + 1) < 2k + 1.
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Now assume H*;,(X) = 0. Among the irreducible components V,, of the LLV decomposition (1.1), we
always have the Verbitsky component, which as a g-module is isomorphic to V(. Thus, if we assume the
condition (1.2) holds for X, then combining Corollary 3.6 with Proposition 3.3 gives us

8n(bs + n)
(b2 +1)(b2 +2)

On the other hand, we have Salamon’s relation s(H*(X)) = % in (3.2). We conclude

s(H*(X)) <max{s(V},) : p appearing in (1.1)} = s(V(,,)) =

fixyy = o Bnlbatn)
) = 3 = G Dt 1 2)

giving the desired bound on by in Main Theorem. 0

4. COMPUTATION OF s(W) FOR IRREDUCIBLE g-MODULES

In this section, we prove Theorem 3.5 by using standard representation theoretic methods.

Let us first fix the notation. Here, we simply write b = by(X). Let (V] q) be a quadratic space of dimension
b+2 and g = s0(V, q) be the associated simple Lie algebra of type B,1 / D,11. We fix a Cartan and a Borel
subalgebra of g so that the positive and simple roots are well defined. We also use the following notation:

2 is the Weyl group of g;

R, is the set of positive roots of g;

For w € 20, ¢(w) is the length of w. That is, ¢(w) is the minimum length of the decomposition of
w into a product of simple reflexions w = s4, - - - s, Where all «; are simple roots of g;

p is the half sum of all the positive roots

pzé Z a. (4.1)

aER

Throughout, we consider an irreducible representation W = V,, of highest weight u.
Our proof is inspired by the proof of Weyl dimension formula (following [Kir08, §8.5]). The Weyl dimension
formula is a closed formula computing dim V,,, which can be derived from the Weyl character formula.

Theorem 4.2 (Weyl character formula). The formal character of the irreducible g-module V,, of highest
weight 1 can be computed from a formal power series expansion of the rational function

Zwem(_l)l(w)ew-(wp)
HaER+ (ea/Q _ efa/z) .

Due to its importance to our proof of Theorem 3.5, let us review first the proof of Weyl dimension formula.
To start, recall the g-module V, has a weight decomposition V), = @y, Viu(0), where A is the weight lattice
of g, 6 runs through the weights of g, and V,,(#) indicates the weight 8 subspace of V,,. The formal character
of V,, is an element in the group algebra Q[A] encoding dimensions of the weight subspaces V,,(9):

ch(V,) => dimV,(0) -’ € Q[A].
6

ch(V,) =

Let us introduce a ring homomorphism “projection to p-direction”
pr, : Q[A] — Q[g*], e? s g4 P9

where (,) is the Killing form of g and p is defined in (4.1). Set f(q) = fu(q) € Q[gT!] to be the image of the
formal character ch(V),) by the homomorphism pr ,:

f(q) = pr,(ch(V,)) = Z dim V,,(0) g0, (4.3)
0

Since dimV,, = >~ , dim V},(¢), the dimension of V,, can be recovered from f(q) by

dimV, = £(1). (4.4)
6



On the other hand, if we apply pr, to the Weyl character formula above, then using Weyl denominator
identity (e.g., [Kir08, Thm 8.39]), the Weyl character formula is translated into

= 11

aER

q 2(ptpsa) _ q—2(u+p,a)

2(p a) _ q —2(p,a) (45)
The Weyl dimension formula is obtained by computing f(1) = lim, 1 f(g) with the aid of (4.5).

Now let us begin the proof of Theorem 3.5. First, notice that for irreducible modules V,,, we can ignore
the sign terms (—1)* in the definition of s(V},) (i.e., V, is either even or odd). Thus, we have

Yo k2 dim(V,, )k
V,) =="-m—-—-—"—.
s(Vi) dim V,
The following lemma expresses s(V},) in terms of f(g), imitating (4.4) above.
Lemma 4.6. Let f = f(q) be as in (4.3). Then s(V,,) = m(log H’Q).
Proof. Consider the derivates of f

= Z 4(p,0) dim V,,(9) g*»O 1, Z 4(p, 0 — 1) dim V,,(0) ¢*»9 =2,
0

The Weyl symmetry gives us dim V, (9) = dim V,,(—0). From it, we obtain f/(1) =0 and
= 162 p,0)? dim V,(9).

Let us now specialize the discussion to g = so(V, q) and use the precise value of p. For special orthogonal
Lie algebras, one can compute all the positive roots explicitly in terms of our preferred basis €; and hence
obtain the half sum of all the positive roots

_ {rao—l—(r—l)al—i—---—i—sT_l when b= 2r is even @7

(r+3)eo+(r—3)e1+-+ 3er when b=2r+1isodd
Assume b = 2r is even. Letting 6 = >_._ 6;e;, we have (p,0) = >_._ (r —)0;. This gives us

162 Z r—i)%07 42 Z r—1i)(r—7)0;0; | dimV, ().
=0 0<i<j<r
Again by Weyl symmetry, we have dim V,,(¢) = dim V,,(w.0) for any w € 20. Note that the Weyl group 20
in this case is isomorphic to an order 2 subgroup of &, X (Z/2)X(T+1), consisting of the elements with
even number of 1 € Z/2. The symmetric group part &,11 acts on a weight § = (6o, -+ ,6,) by permuting
coordinates, and (Z/2)*("*+1) part acts on it by flipping the signs of 6;’s. With these symmetries in mind,
one deduces
(1) >y 07 dim V() = >, 67 dim V,,(f); and
This finally leads us to the identity

f1(1)=16-(r* + (r — 1) + Z@zdlmv
_ 16. r(r—i—l)é??“—l—l <§> dim(V,, )y = b(b+1é(b+2 Zdelm V).

k
Combining it with f(1) = dim V), and f’(1) = 0, we have (log f)"(1) = L ((11)) = b(bﬂé(bH)S(V#), as claimed.

Next, assume b = 2r + 1 is odd. Similar argument gives us the computation

iy = 1)(2r—;—1)(2r+3) S 2 (V) - b(b+1()5(b+2) S 2 iV,

k

Hence the same result follows, regardless of the parity of b. |
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The next step is to use the Weyl character formula (4.5) and compute the value (log f)”(1).

Lemma 4.8. Let f = f(q) be as in (4.3). If p, > 0, then (log f)"(1) = 3b [(Ci_gpi) b+ (Xi_o 2 — 2ips)].

Proof. From the g-polynomial version of the Weyl character formula (4.5), we derive

2(ptp,0) _ 4—2(ptp,a) 2(p,a) _ g—2(p,)
q q q q
log f(q) = 1og< —1 )—1og< — >
aER q q

Here ¢ — 1 on the denominators are inserted to make each log terms well-defined in the neighborhood of
q = 1. Notice that (log f)”(1) is twice the coefficient of the term (¢ — 1)? in the Taylor series of log f. For a

general positive integer a, the Taylor series expansion of log (qaqiq; a) at g=11s

q“ —q“ 1 1 2 2
log [ —2— ) =log(2a) — =(g — 1) + —(4a®> + 5) (g — 1)* + - - -
og( 1 ) 0g(2a) — 5(¢ = 1) + 5 (4a” +5)(¢ = 1)" +---,

which has a degree 2 coefficient 5 (4a +5). Since 2(u+ p, ) and 2(p, @) are both positive integers for any
a € Ry (N.B. Here we used the fact ur > 0), we conclude

(log £)'(1) = 2 Z 21—4(16(u+p, @)? +5)—i(16(p, @) +5)
acRy

4
=3 Z (1 + py)* — (p, ).
aER

Recalling (4.7), let us get into an explicit computation for g = so(V,q). Assume b = 2r is even. The
positive roots are Ry = {e; £¢;:0<i<j<r}. We get

Z (M+ pva)z - (p7 a)2

aER

= > (= )+ 20— )G — 1)+ (s + ) + 2 + 1) (2r — i — )
0<i<j<r

= D 207 1) +Ar(ui + ) — (i + )]

=b KZM> b+ <Zu 2%)

kA T
=20 |20 pt ) (uF — i)
i=0 i=0
This proves the result in this case.

Similarly for b = 2r + 1 odd, the positive roots are Ry = {g; : 0 <i <r}U{e;xe; : 0<i<j<r},
giving:

Z (M +0p, a)2 - (p7 a)2

aER

= ) (i — )+ 200 — )G — 1) + (i + )+ 200+ ) @r 1 — i — )
0<i<j<r

;4 2p(r + 5 — )

i=0
= ) 207 + pd) + (47 + 2) (i + ) — (i + )] + Zuz (2r + 1) — 2ip
0<i<j<r i=0
=@2r+1)|@2r+1) Z,ul-i-z 2 _ i, 1 =b <ZW> b+ (ZME —2%)] :
i=0 i=0
This completes the proof of the lemma. O



Proof of Theorem 8.5. Combining Lemma 4.6 and 4.8, the theorem follows for the case u,- > 0. Now assume
by = 2r is even and p, < 0. In this case, p does not have the e,-coordinate by (4.7). Hence, the Weyl
character formula (Theorem 4.2) implies that the weights associated to V,, and V,,» are bijective via the action
(6o, ,0r-1,0) — (60, ,0,_1,—0,). By definition, the constant s(WW) captures only the h-eigenspaces,
i.e., only the p-coordinates of the weights associated to W. This means s(V,) = s(V,»). O
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