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Abstract
We use the Decomposition Theorem to derive several generalizations of the Clemens–
Schmid sequence, relating asymptotic Hodge theory of a degeneration to the mixed
Hodge theory of its singular fiber(s).

Mathematics Subject Classification 14D06 · 14D07

1 Introduction

This paper initiates a series of articles on the relationship between the asymptotic
Hodge theory of a degeneration and the mixed Hodge theory of its singular fiber(s),
motivated by the study of compactifications of moduli spaces. In this first installment,
we concentrate on what may be derived from the Decomposition Theorem (DT) of
[8] in the setting of mixed Hodge modules [68], including several variants of the
Clemens–Schmid (C–S) exact sequence [14] (also see [32,39]) and basic results on
the vanishing cohomology. In a forthcoming sequel [41], referred to henceforth as
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Part II, we investigate the vanishing cohomology in further detail, and give several
applications to geometric degenerations.

The period map is the main tool for studying the moduli spaces of abelian varieties,
K3 surfaces [57,74], and related objects such as hyper-Kähler manifolds [34,43] and
cubic threefolds and fourfolds [2,52,58,80]. What these “classical” examples have in
common is a “strong global Torelli” property, to the effect that the period map embeds
each moduli space as an open subset of a locally symmetric variety. This facilitates the
comparison, or even an explicit birational correspondence, between Hodge-theoretic
(i.e. toroidal [6] andBaily-Borel) compactifications andgeometric ones (such asKSBA
orGIT compactifications); see for example the series of papers [53–56]. A program led
by Griffiths, with contributions of many people (including the authors), aims to extend
the use of period maps in studying moduli to the “non-classical” case, especially sur-
faces of general typewith pg ≥ 2 andCalabi–Yau threefolds, with the premise that this
strong connection between compactifications should remain. In particular, the geomet-
ric boundary (suitably blown up) carries variations of limiting mixed Hodge structures
(LMHS) on its strata, which in principle yield period maps to Hodge-theoretic bound-
ary components.1 The challenge is thus to compute these LMHS, and their associated
monodromies, as well as possible from the geometry of the (singular) fibers over the
geometric boundary.

There are two main parts to this challenge. The first is to compute the MHS on
the singular fibers and relate this to the invariant cycles in the LMHS. For the ideal

topological set-up, that of a semistable degeneration X f→ � over a disk (centered at
the origin) with singular fiber X0, a piece of the Clemens–Schmid sequence says that

Hk
X0

(X )
μ→ Hk(X0)

sp→ Hk
inv(Xt ) → 0 (1.1)

is an exact sequence of MHS, with im(μ) pure of weight k (and level ≤ k − 2).
While this is a very strong statement, the natural degenerations occurring (say) in
GIT (Geometric Invariant Theory [61]) or KSBA (Kollár–Shepherd-Barron–Alexeev
[4,50]) compactifications are rarely semistable, and difficult to put in this form via
semistable reduction. Indeed, the philosophy of the minimal model program (MMP)
is that, for sufficiently “mild” singularities on X and X0, we need not carry out
semistable reduction, as illustrated by papers from [73–75] to [43,52].

In accord with this principle, we have largely focused this paper on various gen-
eralizations of Clemens–Schmid, starting with the simple observation (cf. Theorem
5.3 and (6.2)) that (1.1) remains valid for smooth X and projective f , regardless of
unipotency of monodromy or singularities of X0. Specifically, we have:

Theorem 1.1 Let f : X → � be a flat projective family of varieties over the disk,
which is the restriction of an algebraic family over a curve, such that f smooth over
�∗. If X is smooth, then we have exact sequences of MHS

0 → Hk−2
lim (Xt )T (−1)

sp∨→ H2n−k+2(X0)(−n − 1)
gy→ Hk(X0)

sp→ Hk
lim(Xt )

T → 0 (1.2)

1 Suitable compactifications are known for locally symmetric subvarieties of Hodge-theoretic classifying
spaces, and are expected to exist (in horizontal directions) in general.
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for every k ∈ Z, where the outer terms are the coinvariants resp. invariants of the
monodromy operator T on the LMHS.

We are interested especially in versions of Clemens–Schmid for 1-parameter fam-
ilies arising in the study of KSBA compactifications. In this direction, we obtain the
following result (cf. Theorem 9.3 and Corollary 9.9), which in particular gives that the
frontier Hodge numbers (i.e. h p,q with p ·q = 0) are preserved for such degenerations.
Weaker versions of our result (cf. [73,78]) proved to be very useful for the study of
degenerations of K3 surfaces and hyper-Kähler manifolds (e.g. [43,54,74]).

Theorem 1.2 Let f : X → � be as in the first sentence of Theorem 1.1 (in particular,
X \X0 is smooth). Suppose that X is normal and Q-Gorenstein, and that the special
fiber X0 is reduced.

(i) If X0 is semi-log-canonical (slc), then

Gr0F H
k(X0) ∼= Gr0F H

k
lim(Xt ) ∼= Gr0F H

k
lim(Xt )

T ss
(∀k),

where T = T unT ss is the Jordan decomposition of the monodromy into unipotent
and (finite) semisimple parts.

(ii) If X0 is log-terminal, then additionally (∀k)

Wk−1Gr
0
F H

k
lim(Xt ) = {0}.

Remark 1.3 Under the assumption of X0 having du Bois singularities, the first isomor-
phism of item (i) above is due to Steenbrink [78]. Kollár–Kovács [40] (see also [45,
§6.2]) proved that slc singularities are du Bois, recovering our version above.

Under stronger assumptions (especially smoothness for the total space X ), we
are able to go deeper into the Hodge filtration (Theorem 9.11). We expect that this
result (which to our knowledge is new) will play an important role in the study of
degenerations of Calabi–Yau threefolds with canonical singularities, and respectively
surfaces of general type with pg = 2. (Several related questions about these two
geometric cases are currently under investigation by the authors and their collaborators
under the aegis of Griffiths’s program.)

Theorem 1.4 (= Theorem 9.11) Let f : X → � be as in Theorem 1.2. Assume that
the total spaceX is smooth and the special fiber X0 is log-terminal (or more generally,
has rational singularities). Then

Gr1F H
k(X0) ∼= Gr1F (H

k
lim(Xt ))

T ss
.

Remark 1.5 The general philosophy of Theorems 1.2 and 1.4 is that the milder the
singularities, the closer the relationship between the Hodge structure on the central
fiber X0 and the limit Hodge structure is. In Part II of our paper, we will give some
further versions based on the concept of k-log-canonicity of Mustata–Popa [63] (see
also [35] for some more recent developments). In the opposite direction, one can ask
what happens if X0 is not log canonical. This leads to questions on the Hodge structure
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of the “tail” (e.g. see [33] and [54, Sect. 6]) occurring in a KSBA stable replacement.
While some examples are discussed here, we revisit the topic in a more systematic
way in Part II.

Remark 1.6 Versions of Theorems 1.2 and 1.4 (under somewhat weaker, but less geo-
metric assumptions) are the subject of a forthcoming paper joint with Saito [42].

For singular total spaces, there are “clean” versions of Clemens–Schmid only for
semisimple perverse sheaves (5.2) (including intersection cohomology (5.7)). For us,
the importance of semisimplicity with respect to the perverse t-structure was driven
home by [9], and we explain in Example 7.1 how this typically fails for QX [dX ]
even when it is perverse. So the versions for usual cohomology with X singular are
necessarily more partial, as seen in the context of base-change and log-resolutions
(8.4), quotient singularities (8.8), and MMP-type singularities (results in §9). Finally,
in Theorem 10.3we arrive at an analogue of Clemens–Schmid for the simplest kinds of
multiparameter degenerations (smooth total space, snc discriminant divisor), including
for instance those termed semistable by [3].

The second main aspect to determining the LMHS of a 1-parameter degeneration
(without applying semistable reduction) is to tease out of the geometry of X0 those
aspects which are invisible to H∗(X0). Here the main tool (for X → �) is the exact
sequence

· · · → Hk(X0) → Hk
lim(Xt ) → Hk

van(Xt ) → Hk+1(X0) → · · · (1.3)

where Hk
van(Xt ) denotes H

k+dX −1 of the vanishing cycle sheaf pφ f QX [dX ] on X0,
promoted to a MHS by Saito’s realization of pφ f QX [dX ] as a mixed Hodge module
(MHM) in [67]. We shall refer to (1.3) as the vanishing cycle sequence. Basic results
on the vanishing cohomology Hk

van(Xt ) are proved in Propositions 5.5 and 6.3 and
Theorem 6.4 here; for instance, in the case of an isolated singularity, its underlying
Q-vector space is the reduced cohomology of the Milnor fiber [62]. These are but a
small taste of what will be the main topic in Part II of our study, in which tools such
as mixed spectra and the motivic Milnor fiber are used to compute H∗

van for various
singularities arising in GIT and MMP.

Of course, there is a vast literature on the subject of relating the cohomology and
singularity theory of X0 with the limit cohomology (e.g. [14,18,25,27,40,51,68,73,
77]).Our purpose in this series is to survey, adapt, and (where possible) improve this for
degenerations that occur naturally in the geometric context. Beyond relating geometric
and Hodge-theoretic compactifications of moduli, we anticipate applications to the
classification of singularities andKSBA (or semistable) replacements of singular fibers
occurring in GIT, as well as to limits of normal functions in the general context of
[16].

Structure of the paper

In Sects. 2 and 3, we start with a review of theDecomposition Theorem andmake some
preliminary considerations for our situation. The following three sections discuss the
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case of the Decomposition Theorem over a curve (with an eye towards one-parameter
degenerations). First, in Sect. 4, we introduce the vanishing and nearby cycles, and the
vanishing cycle triangle relating them (see (4.3)), followed by general forms of van-
ishing, limiting, and “phantom” cohomology. These preliminaries allow us to begin
Sect. 5with a very general formof theClemens–Schmid exact sequence,which is even-
tually specialized to the more recognizable form (Theorem 5.3) under the assumption
of smooth total space. The fact that there is a close connection between the Clemens–
Schmid sequence and the Decomposition Theorem is well known to experts (e.g.
Remark 5.1(ii)). In an “Appendix” to our paper, Saito proves a general (suitable)
equivalence between Clemens–Schmid sequence, the local invariant cycle Theorem,
and the Decomposition Theorem over a curve.

Some concrete geometric examples are then discussed in Sect. 6. These range
from the very classical, e.g. families of elliptic curves with various types of Kodaira
fibers (Example 6.1), to examples (Example 6.5) that we encountered in the study
of degenerations of K3 surfaces (see especially [54]), to the more exotic example of
Katz [37] of a family of surfaces (pg = 2) withG2 monodromy (whose treatment uses
the most general form of Clemens–Schmid). These examples serve both to illustrate
the C–S and vanishing-cycle exact sequences in well-known settings, and to show the
efficacy of the methods developed here in some less familiar situations. While our
examples are not new per se, we believe the discussion of Sect. 6 gives a deeper and
more conceptual understanding of them. In Part II, further tools are developed, which
will allow us to give further examples and applications.

While there is a suitable general theory (andwe only touch onMHMwork of Saito),
the focus of our paper is on specializing these results to concrete situations relevant for
geometric questions (esp. compactifications). We start this discussion with the case of
isolated singularities (Sect. 7), and their relationship to the failure of the DT for non-
semisimple perverse sheaves. We then discuss (Sect. 8) another common geometric
scenario—that of finite base changes and quotient singularities. While some of the
discussion here might seem very special from the perspective of the general theory,
in concrete geometric situations (including those considered in Part II) subtle issues
arise. We hope that our discussion clarifies some of those issues, and we expect that
further applications will be obtained in the future. Some examples (including some
that we encountered in our previous work) are included along the way.

The most novel aspects of our work occur in the last two sections. First, in Sect. 9,
we discuss the situation of one parameter degenerations of KSBA type. Among other
things, we obtain Theorems 1.2 and 1.4 discussed above. In the final Sect. 10, we start
a discussion of the Hodge theoretic behavior of degenerations over multi-dimensional
bases. To our knowledge, very little in this direction exists in the current literature. We
expect that the study of degenerations over multi-dimensional bases will play a more
prominent role in the future—especially due to the fast progress on multi-dimensional
semistable reduction theorems (Abramovich,Temkin andothers, e.g. [5], improvingon
Abramovich–Karu [3]).A concrete geometric examplewheremulti-dimensional bases
occur and our methods might be relevant, we mention the case of cubic threefolds.
In [15], a study of the degenerations of intermediate Jacobians in the classical set-
up of normal crossing discriminants is done; while in [59], it is essential to study
the degenerations of intermediate Jacobians without blowing up the discriminant to
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normal crossings. The method used for both of these studies is reduction to curves via
Mumford’s Prym construction for the intermediate Jacobian. It would be interesting
to study the degenerations of intermediate Jacobians directly in terms of cubics (see
[12] for a step in this direction).

2 Motivation:why the decomposition theorem?

For any projective map f : X → S of quasi-projective varieties over C and K• ∈
Db
c (X an), the equality of functors2

R�S ◦ R f∗ = R�X : Db
c (X an) → Db

c (San)

produces the Leray spectral sequence

E p,q
2 = H

p(S, Rq f∗K•) �⇒ H
p+q(X ,K•). (2.1)

The accompanying Leray filtration

Lρ
H

k(X ,K•) := im
{
H

k(S, τ≤k−ρR f∗K•) → H
k(S, R f∗K•)

}
(2.2)

(with GrρL ∼= Eρ,k−ρ∞ ) may be described in terms of kernels of restrictions to (special)
subvarieties of S [7]. Hence when K• has the structure of a MHM, L• is a filtration
by sub-MHS.

However, we would prefer to have more than just a filtration. Recall the following
classical result of Deligne [21]:

Theorem 2.1 IfX and S are smooth, f is smooth projective (of relative dimension n),
and K• = QX , then (2.1) degenerates at E2.

Proof See [64, Proposition 1.33]. ��
As an immediate corollary, this produces a noncanonical decomposition

Hk(X ,Q) ∼=
nc

⊕pH
p(S, Rk−p f∗Q) (2.3)

into MHS, which includes an easy case of the global invariant cycle theorem. Neither
the description of the graded pieces of L• nor its splitting in (2.3) may be valid when
X , S, or f is not smooth.

Example 2.2 Let Y → P
1 be an extremal (smooth, minimal) rational elliptic surface

with (zero-)section σ . By Noether’s formula,

h1,1Y = 10 + 10h2,0Y − 8h1,0Y − K 2
Y = 10;

2 As we continue to work in the analytic topology, the superscript “an” will be dropped for brevity.
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and we let Ŷ β→ Y be the blow-up at a nontorsion point p on a smooth fiber Y0, with
P = β−1(p) ∼= P

1. Contracting the proper transform Ŷ0 ofY0 yields an elliptic surface

X f→ P
1 with isolated Ẽ8 singularity q ∈ X0(∼= P) = f −1(0), since Ŷ 2

0 = −1.
First consider the Leray spectral sequence for π : Ŷ → X . This has E2-page

H2(Ŷ0)

H1(Ŷ0) d2

H0(X ) 0 H2(X ) 0 H4(X )

with d2 injective, and H2(Ŷ) ∼= H2(Ŷ0)⊕H2(X )/im(d2). (Note that H2(X )/im(d2)
and H2(Y) both have Hodge numbers (0, 10, 0).) So degeneration at E2 fails.

On the other hand, the Leray spectral sequence for f : X → P
1 takes the form

H0(R2 f∗Q) 0 Q(−2)

0 H1(R1 f∗Q) 0

Q 0 H2(R0 f∗Q)

with d2 zero. However, the resulting Leray filtration on H2(X ) is non-split in the
category of MHS. To see this, remark that:

• H2(R0 f∗Q) ∼= Q(−1) is generated by the class of a smooth fiber;
• H1(R1 f∗Q) ∼= H1(Y0) with Y0 a smooth elliptic curve; and
• H0(R0 f∗Q) ∼= Q(−1)⊕9 is generated by 8 components of fibers other than X0,
and one cocycle κ ∈ Cone(C•(Ŷ) → C•(Ŷ0)) given by (P − σ,℘), where ℘ is a
path on Ŷ0 from 0 to p.

Writing �1(Ŷ0) = C〈ω0〉, ∫
℘
ω0 = AJ(p − 0) gives the (nontorsion) extension class

of [κ] by H1(Y0) in H2(X ), and hence of Gr0L by Gr1L. Of course, Poincaré duality
also fails for H2(X ).

Aswe shall see, one gets better behavior on all fronts by using perverseLeray filtrations
and intersection complexes.

3 Perverse Leray

We begin by stating the Decomposition Theorem (DT) for a projective morphism
f : X → S of complex algebraic varieties (of relative dimension n = dX − dS ).
Let K• ∈ Db

c (X (an)) [resp. DbMHM(X )] be a complex of sheaves of abelian groups
[resp. mixedHodgemodules] which is constructible with respect to some stratification
S. Assume that K• is semisimple in the sense of being a direct sum of shifts of
(semi)simple perverse sheaves IC•

Z (L) [resp. polarizable Hodge modulesMHZ (L)].3

3 Here L [resp. L] is a (semi)simple local system [resp. polarizable VHS] on a Zariski open in Z . For
uniformity of notation we shall use the notation IC•

Z (L) to refer to both perverse sheaves and Hodge
modules.
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References for the following statement are [8, Theorem 6.2.5], [18, Theorem 2.1.1],
and [17] for the perverse sheaf version, resp. [68, Thms. 0.1-0.3] and [67, (4.5.4)] for
the MHM version.

Theorem 3.1 (Decomposition Theorem)

(a) Writing p R j f∗ for pH j R f∗, we have

R f∗K• �
nc

⊕ j (
p R j f∗K•)[− j] � ⊕ j,d IC

•
Zd

(V
j
d(K•)[d])[− j] (3.1)

as (up to shift) perverse sheaves [resp. polarizable Hodgemodules], for some local
systems [resp. polarizable VHS] V

j
d(K•) on Zd\Zd−1 (smooth of dimension d).

Moreover, the p R j f∗K• are semisimple perverse.
(b) If h is the class of a relatively ample line bundle on X and K• is perverse, then

multiplication by h j induces an isomorphism

pR− j f∗K•(− j)
�−→ p R j f∗K• (3.2)

for each j ≥ 0.

Remark 3.2 (i) If K• is a (pure) Hodge module of weight w, the p R j f∗K• [resp.
R f∗K•] is pure of weightw+ j [resp.w], and V

j
d(K•) underlies a VHS of weight

w + j − d.
(ii) In the key special case where K• = IC•

X (which is QX [dX ] if X is smooth), we

write V
j
d(K•) =: V

j
d . In view of [68], we still have (3.1) in this case when we

relax the hypotheses on f : X → S to: f proper, X Fujiki class C (dominated by
Kähler).

(iii) Although QX [dX ] is perverse as long as X has local complete intersection singu-
larities, it may not be semisimple (and the DT may not apply). See Example 7.1
below.

(iv) When restricting f to an open analytic subset of the base such as a polydisk�r (as
we shall do below), (3.1)–(3.2) still hold though theV

j
d(K•)maynot be semisimple

on �r . For this reason (only), one should not call the p R j f∗K• “semisimple” in
this setting. Instead we shall say that they decompose.

(v) Over a disk, a weak form of the DT (first � of (3.1)) holds without the semisim-
plicity constraint on K•; see the “Appendix” by Saito.

Remark 3.3 When X → S = PH0(X,O(L⊗m)) (L⊗m very ample) is the universal
hypersurface section of a smooth 2D-fold X, the perverse weak Lefschetz theorem
[10, Theorem 5.2] says that V

j
d = 0 unless j = 0 or d = dS . Moreover, V

j
dS is

constant ≡ H j+(2D−1)(X) if j �= 0, and V
0
dS−1 = 0 for m � 0. This plays a key rôle

in producing singularities in normal functions associated to D-dimensional cycles on
X.

Taking hypercohomology of (3.1) yields a decomposition

H
k(X ,K•) ∼= ⊕iH

i (S, p Rk−i f∗K•) ∼= ⊕i,d IHd+i (Zd ,V
k−i
d (K•)) (3.3)
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on the level of mixed Hodge structures. The perverse Leray filtration induced by

pL−αR f∗K• := ⊕ j≤α(
p R j f∗K•)[− j] (3.4)

is simply

pLβ
H

k(X ,K•) := H
k(S, pLβ−k R f∗K•) ∼= ⊕i≥βH

i (S, p Rk−i f∗K•). (3.5)

That is, under our hypotheses (of semisimplicity for K• and projectivity for f ), the
perverse Leray spectral sequence H

i (S, p R j f∗K•) �⇒ H
∗(X ,K•) converges at

E2, and the resulting (perverse Leray) filtration on H
∗(X ,K•) is split in the category

of MHS. This stands in marked contrast to the scenario in Example 2.2.

Example 3.4 For any varietyX, themorphismQX[dX] → IC•
X in DbMHM(X) induces

aMHSmap Hk(X) → IHk(X), and for a projective resolution of singularities X̃
π
� X

with compact exceptional divisor, Hk (X)
Wk−1

π∗
↪→ Hk(X̃) (by the same proof as [64, Theo-

rem 5.41]). Theorem 3.1 guarantees that IC•
X is a direct summand of Rπ∗QX̃[dX], so

that Hk (X)
Wk−1

↪→ IHk(X) ↪→ Hk(X̃). ForX compact, the first term becomesGrWk Hk(X),
and the first injection is [19, Theorem 3.2.1].

In particular, for π : Ŷ → X as in Example 2.2, we have GrW2 H2(X ) ∼= IH2(X ) ∼=
Q(−1)⊕10 and H2(Ŷ) ∼= Q(−1)⊕11. Writing f sm : f −1(U ) → U for the smooth
part of f and Hi := R f sm∗ Q, Theorem 3.1 applies to:

• K• = QŶ [2] and π �⇒ Rπ∗K• � p R0π∗K• � IC•
X ⊕ ıq∗ Q(−1) (cf. (7.1)–

(7.2)), so that pL•
π on H2(Ŷ) is trivial; and

• K• = IC•
X and f �⇒ R f∗K• � ⊕1

j=−1(
p R j f∗K•)[− j] with p R j f∗K• �

IC•
P1(H j+1[1]) ( j = ±1) and p R0 f∗K• � IC•

P1(H1[1]) ⊕ ⊕
σ∈P1\U IH2

ph,σ (cf.

(5.5)). The graded pieces of pL•
f on IH

2(X ) (cf. (5.4) and (5.9)) are then Gr−1
pL ∼=

H0(U ,H2) ∼= Q(−1) (class of a section), Gr1pL ∼= H2
c (U ,H0) ∼= Q(−1) (class

of a smooth fiber), and Gr0pL ∼= ⊕σ IH2
ph,σ

∼= Q(−1)⊕8 (from singular fibers;

IH1(P1,H1) vanishes).

Theorem 3.1 does not apply to K• = QX [2] and f ; see Example 7.1.

We now lookmore systematically at immediate consequences of theDT for families
over a curve and resolutions of isolated singularities.

4 Decomposition theorem over a curve (1): nearby and vanishing
cycles

Consider the scenario

XU
J

f s

X
f

X�
I ∪σ∈�Xσ

S\� U
j S �

ı

(4.1)
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where dS = 1 ( �⇒ dX = n+1),S is smooth,XU and S|XU are topologically locally
constant (e.g. equisingular) overU , and our semisimpleK• belongs to MHM(X ) (i.e.
its underlying complex is perverse). For each j , we have

p R j f∗K• = j∗V
j (K•)[1] ⊕

⊕
σ∈�

ıσ∗ W j
σ (K•), (4.2)

where V
j (K•) = R j−1 f s∗K•|XU are local systems/VMHS and W j

σ (K•) are vector
spaces/MHS. Note that by Xσ (and later, X0) we always mean the reduced special
fiber, since MHM live on a complex analytic space.4

Writing t for (the composition of f with) a local coordinate on a small disk�σ ⊂ S
about σ , the associated nearby and vanishing cycle functors sit in a dual pair of
distinguished vanishing cycle triangles5

I∗
σ

sp
ψt

can

φt

+1

δ

and I !
σ

δ∨
pφt

ṽar
pψt (−1),

+1

sp∨

(4.3)

and satisfy R�I !
σ = ı !σ R f∗, R�I∗

σ = ı∗σ R f∗, R�ψt = ψt R f∗, and R�φt = φt R f∗
[60]. Applied to K•, each morphism in the triangles yields a morphism of MHM,
with the exception of ṽar:6 here one needs to break ψtK• and φtK• into unipotent
and non-unipotent parts for the action of Tσ , whereupon ṽar

u : φu
t → ψu

t (−1) and
ṽar

n : φn
t → ψn

t induce MHM maps. Here ṽar
u [resp. ṽarn] is the morphism

Var in [66, 3.4.10] [resp. a canonical isomorphism], and (−)u = ker(T ss − I ) [resp.
(−)n = im(T ss − I )] is written (−)1 [resp. (−) �=1] in the notation of op. cit. (see also
[72, §§8-9]).

Next, setting V
�
lim(K•) := ψtj∗V

�(K•), we have the monodromy invariants
V

�
lim(K•)Tσ := ker(Tσ − I ) and coinvariants V

�
lim(K•)Tσ := coker(Tσ − I ). By

the DT, we compute

H �(Xσ ,K•) := H
�(Xσ , I∗

σ [−1]K•) ∼= H �−1(ı∗σ R f∗K•)
= ⊕ j H

�− j−1(ı∗σ p R j f∗K•)
∼= V

�
(lim)(K•)Tσ ⊕ W �−1

σ (K•)
(4.4)

4 Warning: the (“nonreduced”) components of Xσ along which a local coordinate t has order> 1 are philo-
sophically part of the singularity locus of Xσ , e.g. when considering support of pφtQX . See Proposition 5.5
below.
5 See [23] for the first and [66, 5.2.1] for the second in the form used here. Note that pφt := φt [−1] and
pψt := ψt [−1] send MHM(X ) to MHM(Xσ ).
6 The tilde reflects the fact that, while related, ṽar is not the standardvar in the theory of perverse sheaves,
because we do not have ṽar ◦ can = T − I (see below).
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for the special fiber cohomology and

H �
Xσ

(X ,K•) := H
�(Xσ , I !

σ [−1]K•) ∼= H �−1(ı !σ R f∗K•)
= V

�−2
(lim)(K•)Tσ (−1) ⊕ W �−1

σ (K•)
(4.5)

for the special fiber “homology”, where we used ı∗σ j∗V = H0(�σ , j∗V) = V
Tσ and

ı !σ j∗V = H2
c (�σ , j∗V)[−2] ∼= H1(�∗

σ ,V)[−2] = VTσ (−1)[−2]. We also write

H �
lim,σ (K•) := H

�(Xσ ,
pψtK•) ∼= H �−1(ψt R f∗K•)

= V
�
lim(K•)

(4.6)

for the limiting cohomology and

H �
van,σ (K•) := H

�(Xσ ,
pφtK•) ∼= H �−1(φt R f∗K•) (4.7)

for the vanishing cohomology. These spaces carry natural MHSs with morphisms
induced by the MHM-maps above; we can either break ṽar : H �

van,σ (K•) →
H �
lim,σ (K•) into unipotent and non-unipotent parts, or regard it as a map of Q-vector

spaces — one whose composition ṽar ◦ can ∈ EndQ(H �
lim,σ (K•)) with can yields

N(H�
lim)u ⊕ Id(H�

lim)n . While not a morphism of MHS (since N is a (−1,−1)morphism

on (H �
lim)

u), the kernel [resp. cokernel] of the latter (which is the same as the kernel
[resp. cokernel] of Tσ − I ) is a sub- [resp. quotient-] MHS of H �

lim,σ (K•).
It remains to better understand H �

van,σ (K•) and W j
σ (K•). For any (not necessarily

semisimple) perverse sheaf P• on S, sub- resp. quotient- objects of P• supported on
{σ } correspond to ker(ṽar) resp. coker(can) on pφtP• [72]. So for P• semisimple,

we have pφtP• = ker(ṽar)⊕ im(can), which (together with pψt
can→ pφt → ı∗σ

+1→
sp

and ṽar ◦ can = N ⊕ I ) yields identifications

{
im(can) ∼= coim(ṽar) ∼= pψtP•/ ker(Tσ − I )

ker(ṽar) ∼= coker(can) ∼= ker{sp : ı∗σ → pψtP•[1]}. (4.8)

If P• = p R j f∗K•, then im(can) ∼= V
j
lim(K•)/ ker(Tσ − I ) while sp maps

V
j
lim(K•)Tσ [1] ⊕ W j

σ (K•) → V
j
lim(K•)[1]; we conclude that

H �
van,σ (K•) = ⊕ j H

�− j (pφt
p R j f∗K•)

= V
�
lim(K•)

ker(Tσ − I )
⊕ W �

σ (K•).
(4.9)

Remark 4.1 To put this more simply, a perverse sheaf P on� decomposes (à la Remark
3.2(iv)) ⇐⇒ pφtP = ker(ṽar) ⊕ im(can) ⇐⇒ P takes the form ı∗W ⊕ j∗V[1]
⇐⇒ the corresponding quiver representation pψtP

can
�
ṽar

pφtP takes the formV
(η,0)
�

(N⊕I ,0)
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V
V T ⊕ W . The decomposition (4.9) is precisely this statement for P = (p R j f∗K•)|�,
which decomposes by Theorem 3.1.

Finally, consider the composition

H �
Xσ

(X ,K•) δ∨→ H �−1
van,σ (K•) δ→ H �(Xσ ,K•), (4.10)

in which both maps are the identity onW �−1
σ (K•) (and zero on the other summand). If

X�σ = f −1(�σ ) and p ∈ �σ \{σ }, then (4.10) is really just the map H �
Xσ

(X�σ ) →
H �(X�σ , X p) → H �(Xσ )withK•[−1]-coefficients; the composite is the same if the
middle term is replaced by H �(X ). Defining the phantom cohomology at σ by

H �
ph,σ (K•) := ker

{
sp : H �(Xσ ,K•) → H �

lim,σ (K•)
}
, (4.11)

we therefore have

H �
ph,σ (K•) = W �−1

σ (K•) = im(δ ◦ δ∨)

= im

(
H �
Xσ

(X ,K•)
Iσ∗→ H

�(X ,K•[−1]) I∗
σ→ H �(Xσ ,K•)

)
.

Denote gy := I∗
σ ◦ Iσ∗ in the sequel.

5 Decomposition theorem over a curve (2): consequences

Continuing for themomentwithK• ∈ MHM(X ) semisimple (but otherwise arbitrary),
there are a couple of different ways to relate the special fiber cohomology and the
limiting cohomology. The immediate consequence of the first triangle of (4.3) is the
vanishing cycle sequence (of MHS)

· · · → H �(Xσ ,K•) sp→ H �
lim,σ (K•) can→ H �

van,σ (K•) δ→ H �+1(Xσ ,K•) → · · · ,
(5.1)

which is useful whenever one has methods to compute φtK•, a subject taken up in
Part II.

Also evident from the identifications in §4 is the Clemens–Schmid sequence

0 → H �−2
lim,σ (K•)Tσ (−1)

sp∨→ H �
Xσ

(X ,K•) gy→ H �(Xσ ,K•) sp→ H �
lim,σ (K•)Tσ → 0,

(5.2)

which does away with the vanishing cohomology. The local invariant cycle theorem
expressed by surjectivity of sp can be seen more briefly by just taking stalks on both
sides of (4.2).
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Remark 5.1 (i) A more elegant approach to (5.2) can be formulated in terms of the
octahedral axiom (cf. [66, Rm. 5.2.2] and also the “Appendix” below); though one
must still invoke the DT to get (4.2) (equiv. (5.2.2.3) in loc. cit.).

(ii) In general, if X is a complex analytic space, F : X → � is proper, and K ∈
DbMHM(X) is self-(Verdier-)dual, then (a) p R j F∗K decomposes (∀ j) and (b)
C–S (5.2) holds (∀�) are equivalent. (This follows at once from duality of can and
ṽar.) Also see Theorem A.4 in the “Appendix” below.

There are two amplifications that make (5.2) more useful: first, one can extend it to a
longer sequence of MHS by using the unipotent parts:

H �(Xσ ,K•) sp→ H �
lim,σ (K•)u Nσ→ H �

lim,σ (K•)u(−1)
sp∨→ H �+2

Xσ
(X ,K•)(−1).

(Notice that {ker(Nσ ) ⊂ H �
lim,σ (K•)u} = {ker(Tσ − I ) ⊂ H �

lim,σ (K•)} =
{ker(can) ⊂ H �

lim,σ (K•)}.) Second, the hard Lefschetz part of DT implies isomor-

phisms V
− j (K•) h j→ V

j (K•)( j) and W− j (K•) h j→ W j (K•)( j), hence

H−�
lim,σ (K•)

∼=→
h�

H �
lim,σ (K•)(�) and H−�+1

ph,σ (K•)
∼=→
h�

H �+1
ph,σ (K•)(�). (5.3)

In addition to these local results, we mention one consequence of a global flavor:
the generalized Shioda formula, which for S a complete curve reads

H
k(X ,K•) ∼= ⊕1

i=−1Gr
i
pLH

k(X ,K•) ∼= ⊕1
i=−1H

i (S, p Rk−i f∗K•)
∼= ⊕1

i=−1

{
H

i+1(S, j∗V
k−i (K•)) ⊕ H

i (S, ı∗Wk−i (K•))
}

= H0(U ,V
k+1(K•)) ⊕

{
IH1(S,V

k(K•)) ⊕
⊕
σ

Wσ (K•)
}

⊕H2
c (U ,V

k−1(K•)), (5.4)

where we remark that the last term ∼= H0(U ,V
k−1(K•))∨(−1). On the other hand, if

S is a quasi-projective curve, the last term is simply omitted. In either case,Hk(X ,K•)
surjects onto the first (i = −1) term, i.e. the global invariant cycle theorem holds.

Now we specialize to the case K• = IC•
X , noting (in light of Remark

3.2(ii)) that we can relax the hypotheses on f ,X ,S somewhat if we ignore the
hard Lefschetz statements. By considering that IC•

X |X sm = QX sm [n + 1] on
the smooth part of X (to get the degrees right), one arrives at identifications
H

k(X , IC•
X ) = IHk+n+1(X ), Hk(Xσ , IC•

X ) = Hk−1(ı∗σ R f∗IC•
X ) = IHk+n(X�),

and Hk
Xσ

(X , IC•
X ) = Hk−1(ı !σ R f∗IC•

X ) = IHk+n
c (X�). Accordingly we write

IHk+n
ph,σ := im

{
IHk+n

c (X�) → IHk+n(X�)
}

= Hk
ph,σ (IC

•
X ), (5.5)

and note that there are morphisms (of MHS) from Hk+n(X�) ∼= Hk+n(Xσ ) [resp.
Hk+n
c (X�) ∼= Hn−k+2(Xσ )(−n − 1), Hk+n

ph,σ := im{Hn−k+2(Xσ )(−n − 1)
gy→
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Hn+k(Xσ )}] to IHk+n(X�) [resp. IHk+n
c (X�), IHk+n

ph,σ ], which in general are neither

injective nor surjective. 7 As the restriction of IC•
X to a fiber X p over p ∈ U is IC•

X p
[1],

we also write V
k(IC•

X ) =: IHk+n
f , and

{
IHk+n

lim,σ := ψtj∗IHk+n
f = H

k(Xσ ,
pψt IC

•
X ) = Hk

lim,σ (IC
•
X )

IHk+n
van,σ := φtj∗IHk+n

f = H
k(Xσ ,

pφt IC
•
X ) = Hk

van,σ (IC
•
X ).

With this notation (and � = k − n), (5.1)–(5.4) become

· · · → IHk(X�)
sp→ IHk

lim,σ (Xt )
can→ IHk

van,σ (Xt )
δ→ IHk+1(X�) → · · · , (5.6)

0 → IHk−2
lim,σ (Xt )Tσ (−1)

sp∨
→ IHk

c(X�) → IHk(X�)
sp→ IHk

lim,σ (Xt )
Tσ → 0,

(5.7)

IHn−k
lim,σ

∼=→
hk

IHn+k
lim,σ (k), IHn−k+1

ph,σ

∼=→
hk

IHn+k+1
ph,σ (k), (5.8)

IHk(X ) ∼= H0(U ,IHk
f ) ⊕ {IH1(S,IHk−1

f ) ⊕
⊕
σ

IHk
ph,σ } ⊕ H2

c (U ,IHk−2
f ). (5.9)

Note that ker(can) = IHk
lim,σ (Xt )

Tσ , and (5.6) splits at all but the IHlim terms.

Remark 5.2 To compute IHk(X�) (say, for use in (5.7)) one needs to know I∗
σ IC

•
X ,

which was studied by Dimca and Saito in [26]. In general, I∗
σ IC

•
X [−1] is perverse, and

there is a map cσ : QXσ [n] → I∗
σ IC

•
X [−1] with kernel pH−1

QX [n+1] and cokernel
Wn

pH0
QX [n + 1]. If QX [n + 1] (hence QXσ [n]) is perverse (e.g. if X has local

complete intersection singularities) then the kernel vanishes and [cσ ] : Hk(Xσ ) →
IHk(X�) is injective on the top GrWk . (See also Example 3.4 and Remark 8.1.) If
I∗
σ IC

•
X [−1] = QXσ [n], then IC•

X = QX [n + 1] and one just uses (5.11) instead of
(5.7).

If X is smooth, then IC•
X = QX [n + 1] and we simply replace IH resp. IH f every-

where by H resp. H f , except for the parabolic cohomology group IH1(S,Hk−1
f ) in

(5.9). The rank of the latter may be computed by the Euler-Poincaré formula, which
reads

rk(IH1(S,V)) =
∑
σ∈�

rk(Vv/V
Tσ
v ) − χ(S) · rk(Vv) + h1(S) · rk(Vc), (5.10)

if V = Vc ⊕ Vv is the splitting into fixed (constant) and variable parts for the local
system underlying a PVHS. Next, for the two exact sequences of MHS we have:

Theorem 5.3 For X smooth, the Clemens–Schmid sequence reads

0 → Hk−2
lim,σ (Xt )Tσ (−1)

sp∨→ H2n−k+2(Xσ )(−n − 1)
gy→ Hk(Xσ )

sp→ Hk
lim,σ (Xt )

Tσ → 0. (5.11)

7 One also has maps from H∗(Xσ ) → IH∗(Xσ ), but IH∗(Xσ ) is different from IH∗(X�) (e.g., whenX�

is smooth and Xσ is not).
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while the vanishing cycle sequence is

0 → Hk
ph,σ → Hk(Xσ )

sp→ Hk
lim,σ (Xt )

can→ Hk
van,σ (Xt ) → Hk+1

ph,σ → 0. (5.12)

Proof These follow directly from (5.6)–(5.7) since Xσ is a deformation retract ofX�.
��

Remark 5.4 One can actually prove (5.11) without invoking Theorem 3.1 using the
equivalence of (a) and (b) in Remark 5.1 (with K = QX [n + 1]), together with C–S
for semistable degenerations. If

Y�
π̃

g

X�

f

�
π

�

is a semistable reduction (π(t) = tκ ), then (5.11) for g �⇒ Rg∗QY decomposes
π finite�⇒ R f∗Rπ̃∗QY = Rπ∗Rg∗QY decomposes. SinceQX is a direct factor of Rπ̃∗QY ,
this also decomposes, and so (5.11) holds for f . (In fact, this amounts to a direct proof
of the DT in this case.) We thank Saito for this remark; see also Remarks A.4(iii) in
his “Appendix”.

Finally, we record two important facts about the terms in the sequences (5.11)–
(5.12). For our purposes here sing(Xσ ) contains any “nonreduced” components of Xσ

(where ord(t) > 1).

Proposition 5.5 For X smooth and dsing := dim(sing(Xσ )) :
(i) Hk

ph,σ := ker(sp) = δ(Hk−1
van,σ (Xt )) = im(gy) is pure of weight k (and level

≤ k − 2) and a direct summand of Hk(Xσ ); and
(ii) Hk

van,σ (Xt ) (hence Hk+1
ph,σ ) is zero outside the range n − dsing ≤ k ≤ n + dsing.

Proof (i) The MHS H1 := H2n−k+2(Xσ )(−n − 1) has weights ≥ k, while H2 :=
Hk(Xσ ) has weights ≤ k. Therefore gy : H1 → H2 is split and factors through
GrWk H1, which (with complexification dual to GrW2n−k+2H

2n−k+2(Xσ )C =
Hn,n−k+2(Xσ ) ⊕ · · · ⊕ Hn−k+2,n(Xσ )) has level ≤ k − 2.

(ii) As pφtQX [n+1] is supported on sing(Xσ ), its perversity implies the existence of a
stratification Ŝ• (dim Ŝq = q) such that the cohomology sheavesH j (pφtQX [n +
1]|Ŝq\Ŝq−1

) vanish unless −dsing ≤ j ≤ −q. Hence in the hypercohomology
spectral sequence

Ei, j
2 = H

i (sing(Xσ ),H j (pφtQX [n + 1])) �⇒ Hi+ j+n
van,σ (Xt ),

all nonzero terms lie in {i ≥ 0, i + 2 j ≤ 0, j ≥ −dsing}, so Ei, j∞ = 0 outside
−dsing ≤ i + j ≤ dsing. ��
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Remark 5.6 More generally, part (ii) and (5.12) hold (for Hk
van only) if X has local

complete intersection singularities since then QX [n + 1] is still perverse. (Note that
dim(sing(X )) ≤ dsing.) This is because the derivation of (5.1) made no use of the
Decomposition Theorem.

Corollary 5.7 IfX is smooth, thenGr0F H
k(Xσ ) ∼= Gr0F H

k
lim(Xt )

Tσ andWk−1Hk(Xσ ) ∼=
Wk−1Hk

lim(Xσ )
Tσ .

6 Decomposition theorem over a curve (3): examples

If X is smooth and Xσ has only isolated singularities (dsing = 0), then by Proposition
5.5(ii) the vanishing cycle sequence becomes

0 → Hn(Xσ )
sp→ Hn

lim,σ (Xt )
can→ Hn

van,σ (Xt )
δ→ Hn+1(Xσ )

sp→ Hn+1
lim,σ (Xt ) → 0 (6.1)

with Hk(Xσ )
∼=→ Hk

lim,σ (Xt ) in all other degrees (k �= n, n+1). In particular, Tσ = I

on Hk
lim,σ (Xt ) for k �= n, while Clemens–Schmid reduces to

{
0 →Hn−1

lim,σ (Xt ) → Hn+1(Xσ )(−n−1) → Hn+1(Xσ ) → Hn+1
lim,σ (Xt ) → 0

and Hn(Xσ ) ∼= Hn
lim,σ (Xt )

Tσ .
(6.2)

These sequences are also valid when n = 1 and the curve Xσ has nonreduced com-
ponents: certainly H−1(Xσ )(−2)

gy→ H1(Xσ ) is zero and (assuming f connected)
Tσ = I on H2

lim and H0
lim, which gives (6.2) hence (6.1).

We illustrate (6.1)–(6.2) for two simple examples, then relate Hvan to “tails” appear-
ing in the semistable reduction process.

Example 6.1 Let X f→ P
1 be a smooth minimal elliptic surface with section, and

singular fibers of types 2I1, I∗6, II, and IV∗ (e.g., obtained from base-change and
quadratic twist of the elliptic modular surface for �1(3)). These have mσ = 1, 11,
1, resp. 7 components, with H2

ph,σ
∼= Q(−1)⊕(mσ −1); and deg(H1,0

f ,e) = 1
12 (2 · 1 +

12 + 2 + 8) = 2 �⇒ X K3. (Here H1,0
f ,e is Deligne’s canonical extension of

H1,0
f := R1 f sm∗ �1

X to P
1; see [30, §III] for the contributions of the Kodaira singular

fiber types to its degree.) In (5.9), the end terms are generated by the class of the
(zero-) section and a fiber, while IH1(P1,H1

f ) has rank 4 hence Hodge numbers
(1, 2, 1). (This rank comes either from Euler-Poincaré or from subtracting the Picard
rank ρ = 2 + ∑

(mσ − 1) = 18 from 22.)
The Hodge-Deligne diagrams for the first three terms of (6.1) (n = 1) are well-

known for each of these four degenerations.Wedisplay them in Fig. 1,writing numbers
for h p,q �= 1, eigenvalues �= 1 of T ss

σ in braces, and N := log(T un
σ ).
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Fig. 1 Hodge–Deligne diagrams for Example 6.1

Fig. 2 Hodge–Deligne diagrams for Example 6.2

Example 6.2 LetX�
f→ �be a family of K3 surfaces acquiring a single Ẽ8 singularity:

locally, f ∼ x2 + y3 + z6 + λxyz. Then all Hk
ph,0 are zero, and the first three terms

of (6.1) (n = 2) are displayed in Fig. 2.

If X� is the (singular) base-change by t �→ t6, then these terms are unchanged
except that the action of T ss trivializes – which means that (5.11) now fails. (As we
shall see explicitly in Example 7.1, QX�

[3] is not semisimple.) Of course (5.6)–(5.7)
still apply: in particular, IH2(X�) ∼= H2(X0) ⊕ Q(−1)⊕8 and IH2

ph,0 = {0}.



71 Page 18 of 48 M. Kerr et al.

On the other hand, performing a weighted blow-up of f + t6 = 0 at the origin

yields the semistable/slc model Y�
t→ �, with Y0 = X̃0 ∪ E and X̃0 ∩ E =: E . Here

E = { f = 0} ⊂ P[1 : 2 : 3] is an elliptic curve and the “tail” E = { f + t6 = 0} ⊂
P[1 : 1 : 2 : 3] a del Pezzo surface of degree 1 (ρ = 9). As we have seen in Example
2.2, the extension class of H2(X̃0) by H1(E) in

0 → H1(E) → H2(Y0) → H2(X̃0) ⊕ H2(E) → H2(E) → 0

(i.e. in H2(X0)) can be nontorsion. However, that of ker(H2(E) → H2(E)) by H1(E)

is torsion due to the eigenspace decomposition under the original T ss and the fact that
we have not altered H1

lim in (6.2). This will change if we take a more general pullback
of the form

t6 + a5t
5z + t4(a4z

2 + b4y) + · · · + x2 + y3 + z6 + λxyz = 0,

as then t �→ ζ6t no longer induces an automorphism of H2(E, E).
We briefly explain how the relation between the “tail” (E, E) and the vanishing

cohomology generalizes for isolated singularities. Consider the scenario

� �
(·)κ

�

Y

F

π
X

ρ X

f

X̃0 ∪ E Y0

Ĩ
π0

X0

I

X0

X̃0 ∩ E E {p}

ı p

(6.3)

where X ,Y, X̃0 are smooth, X0 = ( f ) is reduced and irreducible, p ∈ sing(X0) =
sing(X) is isolated, ρ is cyclic base-change and F is semistable ( �⇒ Y0 SNCD).
First we look at the case of E, E irreducible and smooth:

Proposition 6.3 As a mixed Hodge structure, Hk
van(Xt ) is the reduced cohomology

H̃k(E\E), and this vanishes for k �= n.

Proof Applying pφt to the distinguished triangle in Db
c (X)

Cone(α)[−1] → QX[n + 1] α→ Rπ∗QY [n + 1] +1→
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yields a triangle in Db
c (X0) with terms:

• pφtCone(α)[−1] = I∗Cone(α)[−1] = Cone(I∗
QX[n] → Rπ0∗Ĩ∗

QY [n])
= Cone(QX0 [n] → Rπ0∗QY0 [n])
= (ı p)∗Cone(Q[n] → R�QE [n])

using the fact that pψt (α) is an isomorphism;

• pφtQX[n + 1] = pφtQX [n + 1]

since the base-change doesn’t affect the first vanishing cycle triangle; and

• pφt Rπ∗QY [n + 1] = Rπ0∗ pφtQY [n + 1] = Rπ0∗QE (−1)[n − 1]
= ı p∗R�QE (−1)[n − 1],

where we used the fact that pφt of the constant sheaf isQ(−1)[−2] at a node (Example
6.1). It is immediate that pφtQX [n + 1] is (ı p)∗ of

Cone(R�QE (−1)[−2] ⊕ Q → R�QE )[n] � Cone(Q → R�QE\E )[n]
� ⊕k H̃

k(E\E)[n − k];

which being perverse must vanish outside degree 0. ��

In the more general case where E is a union of smooth {Ei }ei=1, H
k
van(Xt ) is still

0 for k �= n by Proposition 5.5(ii), but Hn
van(Xt ) is not as straightforward as in

Proposition 6.3. To see what one can say, write E0 := X̃0, EI := ∩i∈IEi , E∗
i :=

Ei\(∪ j∈{0,...,e}\{i}E j ),

E [k] := � I ⊂ {1, . . . , e}
|I | = k + 1

EI ⊂ � I ⊂ {0, . . . , e}
|I | = k + 1

EI =: Y [k]
0

I[k]−→ Y0,

and μ := dim(Hn
van(Xt )) for the Milnor number.

Theorem 6.4 (i) The associated graded GrW• Hn
van(Xt ) is a subquotient of

n⊕
k=0

{
Hn−k(E [k]) ⊕

(
Hn−k(Y [k]

0 ) ⊗ H̃∗(Pk)
)}

.

(ii) μ = (−1)n
{−1 + ∑e

i=1 χ(E∗
i )

}
.
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Proof We shall see in Part II that for a semistable fiber at t = 0, pφtQY [n + 1] ∈
Perv(Y0) has terms in degrees (k − n =) 1 − n thru 0 with

(pφtQY )k+1 = I[k]∗ (⊕k
�=1QY [k]

0
(−�)) = I[k]∗ QY [k]

0
⊗ H̃∗(Pk).

The rest of the proof of Proposition 6.3 is unchanged, and so pφtQX [n + 1] is (ı p)∗
of the MHS (Hn

van(Xt ) =)

H
n{Cone(Q ⊕ R� pφtQY → R�QE )}
= H

n{R̃�QE → R�QY [1]
0

⊗ H̃∗(P1) → · · · → R�QY [n]
0

⊗ H̃∗(Pn)}
= H

n{R̃�QE [0] → R�QE [1] ⊕ (R�QY [1]
0

⊗ H̃∗(P1)) →
· · · → R�QE [n] ⊕ (R�QY [n]

0
⊗ H̃∗(Pn))},

giving (i). This also shows that χ(H∗
van(Xt )) + 1 (= (−1)nμ + 1) is given by

n∑
k=0

(−1)k{(χ(Pk) − 1)χ(Y [k]
0 ) + χ(E [k])}

=
e∑

i=1

χ(Ei ) +
n∑

k=1

(−1)k(kχ(Y [k]
0 ) + χ(E [k]))

=
e∑

i=1

χ(E∗
i ),

which yields (ii). ��

While Hn
van(Xt ) in our setting (6.3) can in general have weights from 0 to 2n, Theorem

6.4(i) makes it clear that the graded pieces are directly related to strata of the tail, while
(ii) is a close cousin of the theorem of A’Campo [1]. The proof of (i) actually yields a
more precise computation of GrW• H∗

van related to the “motivic Milnor fiber” of [25],
and which we shall use systematically in Part II.

Example 6.5 (see also [54, Sect. 6]) Suppose X0 has a Dolgachev singularity of type
E12, viz. f ∼ x2+y3+z7 locally. Taking κ = 42 yields (forX) t42+x2+y3+z7 = 0,
whose weighted blow-up produces a singular fiber X ′

0 ∪ E ′ with X ′
0 ∩ E ′ ∼= P

1 "
p1, p2, p6 and X ′

0, E ′ having Ak singularities at pk . After a toric resolution, we arrive
at the SSR Y , with E1 = Ẽ ′ a K3 surface and E2, . . . , E10 toric Fanos; E1 meets X̃0
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and each Ei=2,...,10 in a P
1, and H2(E∗

1 ) has Hodge numbers (1, 10, 1).

2

0

1

5,...,10 3,4

The other E∗
i are allG2

m orGm ×A
1, so have χ = 0, which yieldsμ = χ(E∗

i )−1 =
12; indeed, H2

van(Xt ) is just H2(E∗
1 ) = H2

tr(E1) in this case. The moral is that toric
components of E arising from resolving canonical singularities (here the threefold
A1 + A2 + A6 singularities) won’t complicate the result much beyond the case of E
smooth. A general reason for this is given by Proposition 8.3 below.

We conclude by sketching a geometric application of the more general form (5.2)
of Clemens–Schmid, where K• is not IC•

X . (Full details will appear elsewhere.)

Example 6.6 Let K• := IC•
X (L̃) , where:

• X f→ P
1
t is the minimal smooth compactification of the elliptic curve family

w2 = t z(z − 1)(z + 1) + t2 with � = {0,± 2
3
√
3
,∞};

• L is the rank two local system on P
1
z\{0,±1,∞} arising from relative H1 of the

rational elliptic surface E → P
1
z with fibers I2 at ±1 and I4 at 0,∞; and

• L̃ := π∗
L is the pullback local system on Y := X \π−1(0,±1,∞)

j
↪→ X , where

X π��� P
1
z is given by π(t, w, z) := z.

Taking � = 0 in (5.2), one checks that for σ ∈ �, gy = 0 and so

H0(Xσ , IC
•
X (L̃))

sp−→∼= H0
lim,σ (IC

•
X (L̃))Tσ ∼= H2

tr(St )
Tσ
lim,σ (6.4)

where St := ˜Xt ×P1
z
E is a family of (smooth) surfaces over P

1
t \� introduced by Katz

[37].
For t /∈ �, H2(St ) = IH1(Xt , L̃) has rank 7 by Euler-Poincaré (5.10), with Hodge

numbers (2, 3, 2). Viewed as a weight-2 VHS on P
1\�, it has geometric monodromy

group G2, as shown by an arithmetic argument in op. cit. and by a direct calculation
of the monodromies in [28], both quite painstaking. However, we can use (6.4) to
quickly deduce the Hodge-Deligne diagrams for H2

tr(St )lim,σ (Fig. 3); in particular, at
σ = 0 and ∞ this is much easier than using a smooth compactification of the family
of surfaces.
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Fig. 3 Hodge–Deligne diagrams for Example 6.6

σ = ± 2
3
√
3

: Xσ has Kodaira type I1, with node pσ ∈ Yσ
jσ

↪→ Xσ , and I∗
σK• =

jσ∗ (L̃|Yσ )[1]. The LHS of (6.4) is thus H1(Xσ , j
σ∗ L̃|Yσ ), which is an extension of

H1(X̃σ , ρ
∗jσ∗ L̃|Yσ ) (weight 2 and rank 3 by (5.10)) by H1(Epσ ), where ρ : X̃σ → Xσ

is the normalization and Epσ is the fiber of E over π(pσ ).
σ = 0 : X0 = ∪4

i=0Pi has type I
∗
0, 5 P

1’s with P0 meeting each Pi in a single node
pi . The divisor Z = X \Y contains {Pi }4i=1, and has additional components meeting
{Pi }4i=2 at {qi }4i=2. So H−1I∗

0K• is j0∗ L̃|P0\{pi }4i=1
on P0 and Q(0) on the {Pi }4i=1,

while H0I∗
0K• is ıqi∗ Q(−1) on the {Pi }4i=2. Conclude that H1(X0,H−1I∗

0K•) = 0
by Mayer-Vietoris and (5.10), so that LHS(6.4) ∼= H0(X0,H0I∗

0K•) ∼= Q(−1)⊕3.
(The key observation here was that the pullback of a unipotent degeneration of weight
1 rank 2 HS by (x, y) �→ xy has local IH1 ∼= Q(−1), cf. (10.3)–(10.4).)
σ = ∞ : X∞ = ∪3

i=1Qi has type IV, 5 concurrent P
1’s meeting at p∞. One finds

Qi∩Z = {pi0, pi1, pi−1, p∞} for i = 1, 2,while Z contains Q3 and another component

meeting it in a node q. Therefore H−1I∗∞K• is j∞∗ L̃|Qi∩Y on Q1, Q2, and Q(0) on
Q3; whereas H0H∗∞K• is just ıq∗ Q(−1) on Q3. One gets a sequence

0 → H1(X∞,H−1I∗∞K•) → LHS(6.4) → H0(X∞,H0I∗∞K•) d2→ H2(X∞,H−1I∗∞K•) → 0 (6.5)

with d2 an isomorphism and first term Q(0).
To get ker(N ) (instead of ker(Tσ − I )) at 0 and ∞, one performs a base-change

by t �→ t2 [resp. t3] followed by a proper modification to replace X0 [resp. X∞] by a
smooth elliptic curve. The computations then proceed as above.

7 Decomposition theorem for an isolated singularity

Let X̃
π→ X be the resolution of an isolated singularity p

ı
↪→ Xwith exceptional divisor

E (not assumed smooth or normal-crossings). With d := dim(X), (3.1) specializes to

Rπ∗QX̃[d] � IC•
X ⊕ ı∗

(
⊕i V

i [−i]
)
, (7.1)
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where the stalk cohomologies of the intersection complex H j (ı∗IC•
X) [resp.H

− j (ı !IC•
X)]

vanish for j > 0. Writing NE for the preimage of a ball about p, we apply H j ◦ ı∗
[resp. H− j ◦ ı !] to (7.1) to find

V i ∼=
{
Hd+i (NE ), i > 0
Hd+i
c (NE ), i ≤ 0

∼=
{

Hd+i (E), i > 0
Hd−i (E)(−d), i ≤ 0.

(7.2)

The hard Lefschetz property V− j (− j) ∼= V j (as Q-MHS) therefore reads
Hd+ j (E)(−d− j) ∼= Hd+ j (E), which implies that the V i are all pure.

Example 7.1 Specialize the scenario (6.3) to f a family of elliptic curves with cuspidal
(type II) fiber X0, and κ = 6. The local equation of X at p is then x2 + y3 + t6 + · · · ,
i.e. an Ẽ8 (simple elliptic) singularity, with X̃0 ∼= P

1 and E a CM elliptic curve. We
have Rπ∗QY [2] � IC•

X ⊕ ı∗Q(−1) and a short-exact sequence

0 → ı∗H1(E) → QX[2] → IC•
X → 0 (7.3)

in Perv(X), which we claim is not split. (Hence, as remarked in Example 3.4, the DT
for f does not apply to K• = QX[2].)

Indeed, were (7.3) split, QX[2] would be semisimple hence (as in §4)

pφtQX[2] = im(can) ⊕ ker(ṽar) = im(pψtQX[2]) ⊕ ker(T 6 − I ),

where everything is supported on p. But T 6 acts trivially (since the eigenvalues of
T are ζ±1

6 , cf. Example 6.1), while can is onto, a contradiction. (Alternatively, one
could take the long-exact hypercohomology sequence of (7.3) and observe that the
connecting homomorphism δ : IH1(X) = H

−1(IC•
X) → H1(E) is an isomorphism in

view of (5.7).)
More generally, the argument shows that sequences like (7.3) are non-split if the

order of a nontrivial eigenvalue of Tss divides the base-change exponent κ . In particular,
this applies to the sequence 0 → ı∗H2(E\E) → QX[3] → IC•

X → 0 implicit in
Example 6.2. Since the DT then applies only to IC•

X (not QX[n + 1]), we have only
(5.7) (and not (5.11)) for X.

As an immediate consequence of (7.1)–(7.2), we find that

Hk(X̃) � Hk(E) for k ≥ d. (7.4)

Now suppose that X = X0 appears as the singular fiber in a family X → � with

n = d andX smooth (andwrite E ⊂ X̃0
π
� X0 for the exceptional divisor). For k < n,

the Clemens–Schmid and vanishing cycle sequences give Hk(X0) ∼= Hk
lim(Xt )

T =
Hk
lim(Xt ), which is pure since T acts by the identity. So for 1 < k < n, in the exact

sequence

→ Hk−1(X0)
π∗→ Hk−1(X̃0)

ı∗E→ Hk−1(E) τ→ Hk(X0) →,
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purity of Hk(X0) �⇒ τ = 0 �⇒ ı∗E surjective; therefore

Hk(X̃0) � Hk(E) for k ≤ n − 2 and k ≥ n. (7.5)

Of course, our assumption implies that p is a hypersurface singularity, so that QX0 [d]
is perverse; (7.5) can then also be derived from the resulting exact sequence 0 →
ı∗W → QX0 [n] → IC•

X0
→ 0 (in fact, we only need an isolated l.c.i. singularity

here). The Clemens–Schmid and vanishing cycle sequences’ real strength is in using
the smooth fibers’ cohomology to further constrain those of X0 and E .

8 Cyclic base-change and quotients

We return to a scenario analogous to (6.3), but where the singularities need not be
isolated. Begin with a flat projective family f : X ′ → � with �′ := sing(X ′

0) ⊇
sing(X ′) ( �⇒ f −1(�∗) = X ′\X ′

0 smooth), and recall that for us X ′
0 = ∪Di is the

reduction of the divisor ( f ) = ∑
κi Di , κi ∈ Z≥0. For lack of a less self-contradictory

terminology, we shall say that X ′ has reduced special fiber if all κi = 1; this implies
in particular that X ′

0 is Cartier.
Let g : X ′′ → � be a second familywith a finite surjectivemorphismρ : X ′′ → X ′

over a cyclic quotient t �→ tκ ; and fix log resolutions Y ′,Y ′′ of (X ′, X ′
0), (X ′′, X ′′

0)

to have a diagram

Y ′
0 ⊂ Y ′ π ′ X ′

f

X ′′ρ

g

Y ′′ ⊃ Y ′′
0

π ′′

� �
(·)κ

(8.1)

Writing X , Y , etc. when we want to make a statement independent of the decoration,
we assume that the log resolutions π are isomorphisms off X0 and write Y0 = X̃0 ∪E .
Denote the monodromies by T ′ := T0 = T ss

0 eN0 and T ′′ = T κ
0 .

8.1 Cyclic base-change

An important special case of (8.1) is where:

• ρ is the base-change, so that X ′
0 = X ′′

0 =: X0;
• Y ′′ is the semi-stable reduction of X ′ (so κ must satisfy (T ss

0 )κ = I ); and
• X ′ (hence X ′′) has reduced special divisor.

In this case the SNCD Y0 = X̃0 ∪ E , with X̃0 � X0 birational. When X (= X ′ or
X ′′) is not smooth (though we continue to assume X \X0 smooth), we would first like
to “quantify” the failure of the local invariant cycle theorem for X .
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Begin with the diagram of split short-exact sequences

0 0

IHk
ph(X ) Hk(X0)

γ̃ ∗ γ ∗ Hk
ph(Y0)

IHk(X ) Hk(Y0)

Hk
lim(Yt )

T

0 0

where �
α← E β→ Y0

γ→ X0 and γ̃ ∗ is induced by QX [n + 1] → IC•
X . By the

decomposition theorem for Y � X , the curved arrows are split injections as well.
Clearly then

Hk
ph(X0) := (γ̃ ∗)−1

(
IHk

ph(X )
)

= (γ∗)−1
(
Hk
ph(Y0)

)

and

H
k
(X0) := Hk(X0)/H

k
ph(X0) ∼= im

{
Hk(X0)

sp→ Hk
lim(Xt )

T
}

(8.2)

are independent of choices (of whether X = X ′ or X ′′, and of Y).

Remark 8.1 Since IHk
ph(X ) = IHk(X ) ∩ Hk

ph(Y0) ⊂ Hk(Y0),

IHk(X ) ∼= IHk
ph(X ) ⊕ Hk

lim(Xt )
T

↪→ ↪→ ‖
Hk(Y0) ∼= Hk

ph(Y0) ⊕ Hk
lim(Xt )

T

exhibits the MHS IHk(X ) as a “lower bound” on the cohomology of any resolution.

On the other hand, the monodromy invariants Hk
lim(Xt )

T are certainly not independent
of the choice of X , and so the cokernel of sp in (8.2) cannot be. In view of the exact
sequence

→ Hk(X0) → Hk(Y0) ⊕ Hk(�)
β∗−α∗
−→ Hk(E) δ→ Hk+1(X0) →

we compute

coker
(
Hk(X0) → Hk

lim(Xt )
T
)

= coker

(
H

k
(X0)

γ ∗→ H
k
(Y0)

)

= ker

{
Hk (E)

α∗Hk (�)+β∗Hk
ph(Y0)

δ→ Hk+1(X0)

}
=: Hk

(E). (8.3)
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Accordingly, the replacement for Clemens–Schmid in this general context becomes

0 → H
k
(X0) → Hk

lim(Xt )
T → H

k
(E) → 0. (8.4)

Specializing a bit more, suppose the pre-base-change family X ′ is smooth: then

IHk(X ′) = Hk(X0) itself is the “lower bound” for Hk(Y ′
0), and H

k
(E ′) = {0}. Since

Y ′′ � X ′ is a propermorphism between equidimensional smoothmanifolds (cf. [81]),
we have (Hk(X ′′) = Hk(X0) =) Hk(X ′) ↪→ Hk(Y ′′) which yields

Hk(X0) ↪→ IHk(X ′′) ↪→ Hk(Y ′′
0 )‖ ‖ ‖

Hk
ph(X0) ↪→ IHk

ph(X ′′) ↪→ Hk
ph(Y

′′
0 )

⊕ ⊕ ⊕
Hk
lim(Xt )

T0 ↪→ Hk
lim(Xt )

T κ
0 = Hk

lim(Xt )
T κ
0

(8.5)

(where (·)T κ
0 = ker(N0)) and

H
k
(E ′′) = Hk

lim(Xt )
T κ
0 /Hk

lim(Xt )
T0 . (8.6)

So while (by Corrollary 5.7) Gr0F and Wk−1 of Hk(X0) and Hk
lim(Xt )

T0 agree, this is
false in general if we replace T0 by T κ

0 .

8.2 Cyclic quotient singularities

Rather than obtaining X ′′ from X ′, we may wish to define X ′ := X ′′/G, where
G = 〈g〉 ∼= Z/κZ acts nontrivially on X0. In this case, X ′ will essentially never
be smooth or have reduced special fiber. Nevertheless, it is always true (no need to
assume X ′′ smooth; cf. [11, Th. III.7.2]) that

H∗(X ′
0) = H∗(X ′)

∼=→
ρ∗ H∗(X ′′)G = H∗(X ′′

0)
G . (8.7)

We have g∗ ∈ Aut(H∗(X ′′
0)), T

′ ∈ Aut(H∗
lim(X

′
t )), T

′′ ∈ Aut(H∗
lim(X

′′
t )), and

H∗
lim(X

′
t ) = H∗

lim(X
′′
t ) =: H∗

lim. One may perhaps know g∗ and T ′′, and wish to
determine T ′: for instance, if the quotient has been used to form a singularity of
higher index (on X ′

0) from one of index 1 (on X ′′
0 ). To that end we have the following

Proposition 8.2 T ′ extends the action of g∗ on im{H∗(X ′′
0) → H∗

lim} =: H̄∗(X ′′
0) to

all of H∗
lim. In particular, we have H

∗
(X ′

0) = (H∗
lim)

T ′ ∩ H
∗
(X ′′

0), and so the local
invariant cycle theorem holds for X ′ if it holds for X ′′.

Proof If we analytically continue a basis {Ci } ⊂ H∗(X ′′
t ) to H∗(X ′′

ζκ t
), then writing

g(Ci ) (call this g̃∗) in terms of these translates is just g∗ on the “global” cycles and
corresponds to clockwise monodromy “downstairs” (in tκ ). The local-system mon-
odromy T ′ on cohomology is the transpose of the latter (cf. [27]): so T ′ = t g̃∗ = g̃∗,
and g̃∗|H∗

(X ′′
0 )

= g∗. ��
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Now suppose X ′′ is smooth. Since Clemens–Schmid (5.11) holds for X ′′, taking G-
invariant parts exactly gives

0 → Hk−2
lim (X ′

t )T0 (−1)
sp∨
→ H2n−k+2(X

′
0)(−n − 1)

ρ∗◦gy◦ρ∗
−→ Hk (X ′

0)
sp→ Hk

lim(X ′
t )
T0 → 0, (8.8)

since ((H∗
lim)

T κ
0 )G = (H∗

lim)
T0 . (As quotient singularities, those ofX ′ are rational [44],

but the results of Sect. 9 for rational singularities are weaker than this.) Further, it is
often possible to deduce T ′ from g∗ and T ′′ in this case. The action of T ′′ = (T ss

0 )κeκN0

on H∗
lim extends to one of sl2 × 〈(T ss

0 )κ 〉, compatibly with the Deligne bigrading
H∗
lim,C

= ⊕p,q(H∗
lim)

p,q . Accordingly, it suffices to determine the choice of κ th root T ′

of T ′′ on ker(N0) ⊂ H∗
lim. That of T

′′ (resp. T ′) decomposes ker(N0) ∼= ⊕k∈NW
⊕mk
k

(resp. ⊕�∈NV
⊕n�
� ) over Q, where det{(λI − (T ss

0 )κ)|Wk } (resp. det{(λI − T ss
0 )|V�

})
is the kth (resp. �th) cyclotomic polynomial, and so the issue is to compute the {n�}
given {mk}. The point here is that since H∗

(X ′′
0) = (H∗

lim)
T ′′ = W⊕m1

1 , g∗ determines
the n� for all �|κ , and one can sometimes deduce the others from the formula V� =
W⊕{φ(�)/φ(�/(�,κ))}

�/(�,κ) . For instance, if κ|k then the only possibility is W⊕mk
k = V⊕mk/κ

κk .
Conversely, this puts constraints on the set of Z/κZ by which one can even consider
taking cyclic quotients.

8.3 Relative quotients

A more general quotient scenario is where G
θ
� Z/κZ; in §1.7.2, θ was an isomor-

phism. Now we consider the opposite extreme, where κ = 1. More precisely, let

X ′ f→ � be flat, projective, and smooth over �∗, with X ′
0 = Da ∪ Db generically a

reduced NCD along Dab = Da ∪ Db. Suppose that each x ∈ X ′
0 has a neighborhood

V arising as a finite group quotient

Ṽa ∪ Ṽb = s−1(0) Ṽ /G

ρ

s

V

t= f |V

t−1(0) = Va ∪ Vb

�

of a semistable degeneration Ṽ/�. Then the vanishing cycles of f behave exactly as
in a SSD:

Proposition 8.3 In this situation, pφ f QX ′ ∼= QDab (−1)[−2].
Proof Working locally, since t is G-invariant

pφtQV = pφt (Rρ∗QṼ )
G = (pφt Rρ∗QṼ )

G = (Rρ∗ pφtQṼ )
G

= (Rρ∗QṼab
(−1)[−2])G = QVab (−1)[−2],

where Vab denotes Va ∩ Vb etc. ��
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Remark 8.4 The above scenario arises frequently via weighted blow-ups: typically one
has

X ′

f

b

Blw(An+2) = P�̃w

β

X A
n+2
x0,...,xn+1

x0 �→t

p

A
1
t

whereX has a singularity at 0 arising fromcyclic base-change,w = (1, w1, . . . , wn+1)

and �̃w = fan{e0, e1, . . . , en+1, e0 + ∑n+1
i=1 wi ei }. (In particular, Proposition 8.3

explains Example 6.5, which will be generalized in Part II.) The exceptional divisor
of β is WP(w) ∼= P�w , with�w = fan{e1, . . . , en+1,− ∑n+1

i=1 wi ei } the image of �̃w

under the projection e0 �→ − ∑
wi ei ; the proper transform of t−1(0) is P�0(

∼= A
n+1)

where �0 = fan{e1, . . . , en+1}. Assuming that X ′ meets P�w with multiplicity 1 (so
Da = X ′ ∩ P�w and Db = X ′ ∩ P�0 ), it will suffice to exhibit P�̃w

locally as a finite

quotient of A
n+2 not branched along P�w or P�0 .

Writing σi := R>0〈e0, . . . , êi , . . . , en+1, e0 + ∑n+1
i=1 wi ei 〉 and Ni := Z〈e0, . . . ,

êi , . . . , en+1, e0 + ∑n+1
i=1 wi ei 〉, set Ui := Spec(C[xσi∩Z

n+2 ]) and Ũi := Spec

(C[xσi∩Ni ]) ∼= A
n+2
u0,...,un+1

(where ui = x
1
wi
i , and u j = x j u

−w j
i for j �= i). The natu-

ral, generically wi : 1 morphism Ũi
τi� Ui is the quotient by Z/wiZ " 1 �→ {ui �→

ζwi ui , u j �→ ζ
−w j
wi u j ( j �= i)}. Since w0 = 1 we get t = x0 = x0

ui
ui = u0ui (as a

function) so that τi is not branched along P�w or P�0 , and s|Ũi
= t |Ui ◦ τi = p ◦β ◦ τi

(as a mapping) is a SSD as desired. Note that this exhibits the singularity type in Ui

(at the origin) as 1
wi

(1,−1,−w1, . . . , ŵi , . . . ,−wn+1); while if the proper transform
ofX ′ passes through a point with uk = 0 for k �= j , the quotient yields a point of type

1
gcd(wi ,w j )

(1,−1,−w1, . . . , ŵi , . . . , ŵ j , . . . ,−wn+1) on X ′.

Example 8.5 So in Example 6.5, w = (1, 6, 14, 21) yields points of type 1
2 (1,−1, 1),

1
3 (1,−1, 1), 1

7 (1,−1, 1) on X ′, which become 1
2 (1,−1), 1

3 (1,−1), 1
7 (1,−1) (i.e.

A1, A2, A6) on Da and Db.

9 Singularities of theminimal model program

Let X be a projective variety with resolution X̃
ε→ X , and extend this8 to a cubical

hyperresolution ε• : X• → X [64].

Definition 9.1 (i) X has rational singularities ⇐⇒ OX
�→ Rε∗OX̃ .

8 Note that typically X̃ is only a connected component of X0.
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(ii) X has du Bois singularities ⇐⇒ OX
�→ Rε•∗OX• .

In general we have Gr0F H
k(X) ∼= H

k(X , Rε•∗OX•), so that if X is du Bois then
Gr0F H

k(X) ∼= Hk(OX ). This last isomorphism clearly also holds if X has rational
singularities: sinceOX → Rε∗OX̃ always factors through Rε•∗OX• , we get a diagram

Hk(OX̃ )

Hk(X ,C) Hk(OX )

X has RS �⇒ ∼=

(∗)

(∗)
H

k(X , Rε•∗OX•
0
)

∼=Gr0F H
k(X ,C)

forcing (∗) to be injective and surjective. With more work [47], one can show that
rational singularities are in fact du Bois.

Now consider a flat projective family f : X → �, withX \X0 smooth andY π→ X
a log-resolution of (X , X0) (i.e. Y smooth, Y0 = π−1(X0) SNCD) restricting to
an isomorphism Y\Y0 ∼= X \X0. We shall assume that π extends to a morphism
π̄ : Ȳ → X̄ of projective varieties (Ȳ smooth, ∼= off X0), and that f is also extendable
to an algebraic morphism (from X̄ to a curve).

Proposition 9.2 If X has rational singularities, then sp induces isomorphisms

Gr0F H
k(X0) ∼= Gr0F H

k
lim(Xt )

T ss
0

for all k.

Proof WehaveGr0F H
k
lim(Xt )

T ss
0 ∼= Gr0F H

k
lim(Xt )

T0
∼=←
sp

Gr0F H
k(Y0), sinceY is smooth

and level(Hk
ph(Y0)) ≤ k − 2. Taking Gr0F of the Mayer-Vietoris sequence (cf. [64,

Theorem 5.35])

→ Hk(X̄ ) → Hk(Ȳ) ⊕ Hk(X0) → Hk(Y0) →

and using that X̄ is (rational �⇒ ) du Bois yields

→ Hk(OX̄ ) → Hk(OȲ ) ⊕ Gr0F H
k(X0) → Gr0F H

k(Y0) → .

NowOX̄
�→ Rπ̄∗OȲ �⇒ Hk(OX̄ )

∼=→ Hk(OȲ ) �⇒ Gr0F H
k(X0) ∼= Gr0F H

k(Y0)
gives the result. ��
We next make use of an “inversion of adjunction” result of Schwede [71], that when
a Cartier divisor (with smooth complement) is du Bois, the ambient variety has only
rational singularities. However, this requires us to place an additional constraint on X
to ensure that X0 is Cartier and remains so after base-change.
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Theorem 9.3 If X0 has du Bois singularities, and X has reduced special fiber (i.e.
( f ) = X0), then

Gr0F H
k(X0) ∼= Gr0F H

k
lim(Xt )

T ss
0 ∼= Gr0F H

k
lim(Xt ) (∀k). (9.1)

Proof Obviously X has rational singularities by [op. cit.], but this also applies to any
finite base-change. So taking X ′ = X in the setting of Sect. 8.1, Proposition 9.2
applies in addition to X ′′, whose T ′′ = T κ

0 is unipotent. ��
Remark 9.4 If X is smooth, then (regardless of whether ( f ) = X0) one can show that

X0 is du Bois iff OX0

�→ Rπ0∗OY0 [71].

Example 9.5 To see the necessity of the ( f ) = X0 requirement in Theorem 9.3, con-
sider a smooth X with elliptic fibers over�∗ and X0 a Kodaira type IV∗ (“E6”) fiber.
Then ( f ) = 3D1 +2(D2 + D3)+ (D4 + D5 + D6) �= ∑

i Di = X0; and sure enough,
the conclusion of Theorem 9.3 fails (cf. Example 6.1).

Example 9.6 Assume � = {p} is an isolated quasi-homogeneous singularity of type
( f ∼) F = x2 + y3 + z6 + λxyz (Ẽ8) resp. G = x5 + y5 + z2 (N16). In the
first case, X0 is du Bois. As we can see from Example 6.2, the discrepancy between
H2(X0) ∼= H2

lim(Xt )
T0 and H2

lim(Xt )
T 6
0 = ker(N0) consists of 8 (1, 1) classes, and

neither differ from H2
lim(Xt ) on Gr0F . Any base-change F + t M defines a rational

3-fold singularity, since (as one deduces from the absence of integral interior points
in the convex hull of {(2, 0, 0), (0, 3, 0), (0, 0, 6), (0, 0, 0)}) the exceptional divisor
E of the weighted blow-up has �2(E) = {0}.

In the second case (where T0 = T ss
0 ), H2(E) has Hodge numbers (1, 14, 1), so that

Gr0F of H2(X0) ∼= H2
lim(Xt )

T0 and H2
lim(Xt ) differ by 1. The point is that (while X is

smooth) X0 is not du Bois and neither is (say) G + t10; so in particular, X ′′ will not
have rational singularities.

Returning to our resolution X̃
ε→ X , assume now9

• X is normal (smooth in codim. 1, and satisfies S2)
• X is Q-Gorenstein (KX is Q-Cartier)

and write KX̃ = ε∗KX + ∑
i mi Ei (Ei exceptional prime divisors).

Definition 9.7 X has terminal (resp. canonical, log-terminal, log-canonical) singu-
larities ⇐⇒ all mi are > 0 (resp. ≥ 0, > −1, ≥ −1).

A larger class of singularities is obtained by dropping the “smooth in codimension 1”
part of normality:

Definition 9.8 Assume X satisfies S2 and is Q-Gorenstein, and has only normal-
crossing singularities in codimension 1. Let X̂ → X be the normalization and D̂

the conductor (inverse image of the normal-crossing locus); let Ŷ
π̂→ X̂ be a log-

resolution of (X̂ , D̂). Then X has semi-log-canonical (slc) singularities ⇐⇒ the
mi ≥ −1 in KŶ + π̂−1∗ D̂ = π̂∗(KX̂ + D̂) + ∑

i mi Êi (Êi exceptional).

9 Serre’s condition S2 is “algebraic Hartogs”: given any Z
j⊂ X of codim.≥ 2, j∗OX\Z = OX ; so it easily

follows that normality is equivalent to ε∗OX̃ = OX .
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We have two related “inversion of adjunction” results here [36,44]: if a Cartier divisor
with smooth complement in a normal, Q-Gorenstein variety is log-terminal (resp.
slc), then the ambient variety has only terminal (resp. canonical) singularities. In
addition, we know that log-terminal (resp. slc) singularities are rational (resp. du
Bois) [40,46,47]. Thus we arrive at the following

Corollary 9.9 Assume our family f : X → � has normal, Q-Gorenstein total space,
and reduced special fiber X0.

(i) If X0 is slc, then (9.1) holds.
(ii) If X0 is log-terminal, (9.1) holds and Wk−1Gr0F H

k
lim(Xt ) = {0}.

Proof For (ii), Gr0F H
k(X0) ∼= Hk(OX0) (since X0 is du Bois) and Gr0F H

k(X̃0) ∼=
Hk(OX̃0

), where Hk(X̃0) is pure of weight k. Since X0 has rational singularities,

Hk(OX0)
∼= Hk(OX̃0

). ��
We can think of (i) in terms of Hodge-Deligne numbers as saying that

hk(X0)
p,q = hklim(Xt )

p,q for p · q = 0,

and (ii) as saying that moreover both are zero for (p, q) = (r , 0) or (0, r) with r �= k.
In the log-terminal case, we have

Gr1F H
k
lim(Xt ) = Gr1F H

k
lim(Xt )

T un
(9.2)

by (ii), which might kindle hopes that perhaps this equals Gr1F H
k(X0). Unfortunately,

nothing quite this strong is true at any level of generality one can specify in terms of
the singularity types described above: for n = 3, the nicest such scenario would be
where X is smooth and X0 has Gorenstein terminal ( ⇐⇒ isolated compound du
Val) singularities.

Example 9.10 Such a singularity is given locally by f ∼ x2+ y2+zw4+z2w2+z4w,
whose contribution to H3

lim(X0) has nontrivial (1, 1) and (1, 2) parts, with neither part
T ss-invariant hence neither appearing in H3(X0). This assertion will be justified in
Part II.

In any case, here is something one can say:

Theorem 9.11 If X0 is log-terminal (or more generally, has rational singularities),10

and X is smooth, then Gr1F H
k(X0) ∼= Gr1F (H

k
lim(Xt ))

T ss
.

Proof Begin by observing that under the duality functorD onMHMwehaveDQX [n+
1] = QX [n + 1](n + 1) hence (on X0)

D
pφu

f QX [n + 1] = pφu
f QX [n + 1](n + 1) (9.3)

10 We emphasize that we do not assume isolated singularities here.
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by [67, (2.6.2)]. Since H
j−n(X0,

pφu
f QX [n + 1]) = H j

van(Xt )
T ss

by definition, and

H
j−n(X0,D

pφu
f QX [n + 1]) ∼= H

n− j (X0,
pφu

f QX [n + 1])∨

= (H2n− j
van (Xt )

T ss
)∨,

taking the direct image of (9.3) by X0 → pt induces (∀ j ∈ Z) a perfect pairing

H j
van(Xt )

T ss × H2n− j
van (Xt )

T ss → Q(−n − 1). (9.4)

In particular, FnH2n− j
van (Xt )

T ss
is dual to H j

van(Xt )
T ss

/F2 in (9.4).
Now recall that X0 has (not necessarily isolated) rational singularities, and X is

smooth. By a result of Saito [69, Theorems 0.4–0.6], we therefore have

(
Fn(pφu

f QX [n + 1]) ⊆
)
Fn(pφ f QX [n + 1]) = {0}, (9.5)

where QX [n + 1] is interpreted as a MHM and Fn is F−n in op. cit. Again taking
Hn− j of the direct image, we conclude (∀ j ∈ Z) that FnH2n− j

van (Xt )
T ss = {0} hence

H j
van(Xt )

T ss = F2H j
van(Xt )

T ss
. Taking Gr1F of the T ss-invariant part of the vanishing

cycle sequence (1.3), the result follows. ��

Remark 9.12 (i) The main issue dealt with in Theorem 9.11 is the vanishing of the
(1, k−1) part of Hk

ph(X0). Indeed, one reduces to this statement as follows: taking

T ss-invariants of (9.2) gives Gr1F H
k
lim(Xt )

T ss ∼= Gr1F H
k
lim(Xt )

T ; while applying
C–S for X smooth (Theorem 5.3) yields Gr1F H

k
lim(Xt )

T ∼= sp(Gr1F H
k(X0)), and

ker{sp : Hk(X0) → Hk
lim(Xt )} = δ(Hk−1

van (Xt )) has pureweight k by Proposition
5.5.

(ii) According toSaito [70], for X0 duBois [resp. rational], the conclusions ofTheorem
9.3 and Corrollary 9.9(i) [resp. Corrollary 9.9(ii) and Theorem 9.11] hold if we
assume X is smooth Kähler, f is proper, and X0 is reduced — in particular, one
need not assume that f extends to an algebraic morphism (or that X extends to a
projective variety).

(iii) The result of Theorem 9.3 also holds for X a complex analytic space (neither
smooth nor extendable-to-algebraic) provided we assume thatX \X0 is smooth, f
is projective and X0 is a reduced and irreducible divisor with rational singularities
[42].

One can say quite a bit more with the aid of spectra, especially in the case of isolated
singularities. For example, in Part II we will show that when X is smooth and X0 has
isolated k-log-canonical singularities in the sense of [63], one has Gr jF H

k(X0) ∼=
Gr jF H

k
lim(Xt ) for j = 0, . . . , k.
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10 Decomposition theorem over a polydisk

We conclude by elaborating the consequences of Theorem 3.1 for the simplest multi-
parameter setting of all. Let f : X → �r be a projective map of relative dimension
n, equisingular11 over (�∗)r and each “coordinate (�∗)k”; and take K• = IC•

X . For
notation we shall use:

• s1, . . . , sr for the disk coordinates;
• U{I } [resp. S{I }] for the coordinate (�∗)r−|I | [resp.�r−|I |] where si = 0 (∀i ∈ I );
• �r ←↩

ıc
Sc := ∪|I |=cS{I } ←↩

jc
∪|I |=cU{I } =: Uc; and

• ∪|I |=c{ f ◦{I }} := f ◦
c : X ◦

c → Uc resp. Xc →
fc

Sc for restrictions of f .

In (3.1), Zd(=r−c) is replaced by Sc, and the pure weight-( j + n + c) VHS V
j
r−c

over Uc is rewritten H j+n+c
c (restricting to H j+n+c

{I } on each U{I } with |I | = c). For

c = 0, we writeH j+n := H j+n
0 , with fibers IH j+n(Xs) (s ∈ (�∗)r ) and monodromies

T1, . . . , Tr . For c = 1, the H j+n+1
{i} are the phantom IH’s of fibers of f ◦{i}.

Remark 10.1 When X is smooth, K• = QX [n + r ], and the H j+n+c
c are (pure) sub-

VMHS of R j+n+c( f ◦
c )∗QX ◦

c
, withH j+n ∼= R j+n( f ◦

0 )∗QX ◦
0
.

With this indexing by codimension, the terms of (3.1) become

p R j f∗IC•
X � ⊕cı

c∗j c!∗H
j+n+c
c [r − c], (10.1)

so that

IHm(X ) ∼= H
m−n−r (�r , R f∗IC•

X )

∼= ⊕ j,cIH
m−n−c− j (Sc,H

j+n+c
c )

∼= ⊕c,�IH
�(Sc,Hm−�

c )

(10.2)

where � := m − ( j + n + c). There are two things to note here: first, that12

IH�(Sc,Hm−�
c ) = ⊕|I |=cIH�(S{I },Hm−�

{I } ) = ⊕|I |=cIH�(Hm−�
{I } )0 are really just sums

of local IH groups at 0. These are naturally endowed with mixed Hodge structures
by setting H∗{I },lim := (

∏
j /∈I ψs j )H

∗{I } (or just H∗
lim := ψs1 · · ·ψsrH∗ for c = 0) and

defining Koszul complexes K •(H∗{I }) by

H∗{I },lim → ⊕ j /∈I N jH∗{I },lim(−1) → ⊕ j1< j2 /∈I N j1N j2H
∗{I },lim(−2) → · · · ;(10.3)

then (as MHSs)

IH�(H∗{I })0 ∼= H �(K •(H∗{I }))GI (10.4)

11 More precisely, we assume that the restrictions of Ri f∗IC•
X Q to U{I } are local systems (∀i, I ).

12 For simplicity, we write this as IH�(Hm−�
c )0 below; this notation means the stalk cohomology

H�−r+cı∗0 ıc∗jc!∗(H
m−�
c [r − c]), not the (costalk) cohomology with support at 0.
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where GI is the (finite) group generated by the {T ss
j } j /∈I [13,38]. We shall

write H∗{I },inv := IH0(H∗{I })0 for the {Tj } j /∈I -invariants in H∗{I },lim, and H∗
c,inv =

⊕|I |=cH∗{I },inv. Obviously, (10.4) vanishes for � > max{r − |I | − 1, 0}.
Second, the hard Lefschetz isomorphisms (3.2) take the form

H− j+n+c
c (− j)

∼=→ H j+n+c
c ,

so that H∗
c is centered about ∗ = n + c. Since it is zero for ∗ > 2n, it is also zero for

∗ < 2c. Taking stock of these vanishings, (10.2) becomes

IHm(X ) ∼= ⊕min(r ,)m
2 *)

c=0 ⊕max(0,r−c−1)
�=0 IH�(Sc,Hm−�

c ). (10.5)

Now we introduce two filtrations: the coniveau filtration (by codimension of sup-
port) is just

N αIHm(X ) := ⊕min(r ,)m
2 *)

c=α ⊕max(0,r−c−1)
�=0 IH�(Sc,Hm−�

c ); (10.6)

while the shifted perverse Leray filtrationL α := pLα−r is given (cf. (3.4)–(3.5)) by

L αIHm(X ) := ⊕min(r ,)m
2 *)

c=0 ⊕max(r−c−1,0)
�=max(α−c,0) IH

�(Sc,Hm−�
c ). (10.7)

The following is essentially a special case of [20]:

Proposition 10.2 L α is the kernel of restriction to f −1(A), where A ⊂ �r is a
general affine13 slice of codimension α − 1; and N • ⊆ L •.
Proof The restrictions

IH�(Sc,Hm−�
c ) → IH�(Sc ∩ Aα−1,Hm−�

c ) (10.8)

are either injective or zero. Here the target is computed by a Čech-Koszul double
complex, which has the N j1 · · · N j�H

m−�
c,lim(−�) terms required if and only if Sc+� ∩

Aα−1 is nonempty. So (10.8) is zero ⇐⇒ � ≥ α − c (as required).
The inclusion N α ⊆ L α is now geometrically obvious, though it also follows

directly from (10.6)–(10.7) by c ≥ α �⇒ α − c ≥ 0 �⇒ max(α − c, 0) ≥ 0. ��
Taken together, these filtrations endow every term in the double sum (10.5) with
geometric meaning: from (10.6) and (10.7) we have GrαL = ⊕α

�=0IH
�(Hm−�

α−� )0 and

GrβN IHm(X ) = ⊕max(r−β−1,0)
�=0 IH�(Hm−�

β )0, whereupon

IH�(Hm−�
c )0 = Gr�+c

L GrcN IHm(X ). (10.9)

Recalling that X1 = f −1({s1 · · · sr = 0}), we also obtain a generalization of (part of)
the Clemens–Schmid sequence:

13 More precisely, we mean the intersection of α − 1 hypersurfaces of the form L(s) = K, where L is a
linear form and K a sufficiently small nonzero constant.
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Theorem 10.3 The sequence of MHS

IHm
X1

(X ) −→ IHm(X )

⊕r−1
�=1IH

�(Hm−�)0

sp−→ IHm
lim(Xs)

T1,...,Tr −→ 0 (10.10)

is exact.

Proof Actually more is true: IHm(X ) is the direct sum of N 1IHm(X ) = image
{IHm

X1
(X ) → IHm(X )} and Gr0N IHm(X ) = ⊕r−1

�=0IH
r−1(Hm−�)0, with IH0(Hm)0 =

Hm
inv = (Hm

lim)
T1,...,Tr . ��

For the remainder of the section, we assume that X is smooth, so that (10.10)
becomes14

Hm
X1

(X )
ı∗X0 ı

X1∗
−→ Hm(X0)

⊕r−1
�=1IH

�(Hm−�)0

sp−→ Hm
inv(Xs) −→ 0. (10.11)

(Note that we are not assuming unipotent monodromies.) It is instructive to write out
the decomposition (10.5) in detail for small r :

• (r = 1) Hm(X0) ∼= Hm
inv ⊕ Hm

1︸︷︷︸
L 1

• (r = 2) Hm(X0) ∼= Hm
inv ⊕ IH1(Hm−1)0 ⊕ Hm

1,inv ⊕
L 2︷︸︸︷
Hm
2︸ ︷︷ ︸

L 1

• (r = 3) Hm(X0) ∼= Hm
inv ⊕

{
IH1(Hm−1)0

⊕Hm
1,inv

}
⊕

L 2︷ ︸︸ ︷{
IH2(Hm−2)0⊕

IH1(Hm−1
1 )0 ⊕ Hm

2,inv

}
⊕ Hm

3︸︷︷︸
L 3︸ ︷︷ ︸

L 1

in which H∗
c = 0 for ∗ ≤ 2c − 1 (and H∗

1 is the phantom cohomology in codimension
1). By Proposition 10.2,L 1 is the kernel of the restriction to a nearby fiber Xs (i.e. of
sp),L 2 of the restriction to a nearby affine line (meeting all coordinate hyperplanes),
and so on.

Finally, here are a few examples which illustrate the r = 2 scenario (and which all
happen to have unipotent monodromy):

Example 10.4 Let C → �2 be a family of curves with smooth total space. Then
H1(C0) = H1

inv and H2(C0) = H2
inv(

∼= Q(−1)) ⊕ IH1
0(H1) ⊕ H2

1,inv. The simplest

example with IH1-term nonzero is when C is a family of elliptic curves with I1-fibers
on {0}×�∗ ∪�∗ ×{0} (with equal monodromies N1 = N2) and I2-fiber at 0 (cf. [48]);
then H2

1 = 0 and H2(C0) ∼= Q(−1)⊕2. For instance, if we base-change a 1-variable I1

14 Alternatively one can move the denominator of the middle term to the right-hand term as a direct
summand.
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degeneration by (s1, s2) �→ s1s2, the nonvanishing of IH1(H1) simply indicates that
without blowing up, we have a singular total space.

Example 10.5 Abramovich and Karu [3] defined a notion of semistable degenerations
in more than one parameter; these are characterized by having (i) smooth total space
(so that (10.11) applies) and (ii) local structure of a fiber product of SSDs along the
coordinate hyperplanes. (In particular, they have unipotent monodromies.) An easy

case is that of an “exterior product” of 1-variable SSDs: for instance, let E g→ �

be a semistable degeneration of elliptic curves with Ik singular fiber, so that X :=
E×E g×g−→ �×� has fibers Es1 ×Es2 . (Locally this takes the form s1 = xy, s2 = zw.)

Regardless of k, we have IH1(H∗) = 0. For k = 1, the H{i} and H∗{12} all
vanish, so that Hm(X0) = Hm

inv in all degrees. However, when k = 2, we have
H∗{i},inv = H∗−2

lim (Es)(−1), and H∗{12} = H∗−4(pt.)(−2); the reader may check that
Hm
inv ⊕ Hm{1},inv ⊕ Hm{2},inv ⊕ Hm{12} correctly computes Hm(E0 × E0).

Example 10.6 Mirror symmetry allows for the computation of (unipotent) mon-
odromies Ti = eNi of families of CY toric hypersurfaces Xs ⊂ P in the “large complex
structure limit”. In particular, [49, §8.3] and [31] study two distinct 2-parameter fam-
ilies of h2,1 = 2 CY 3-folds over (�∗)2 with Hodge-Tate LMHS H3

lim at the origin.
The notation 〈IV1 | IV2 | III0〉 for the first family and 〈III0 | IV2 | III0〉 for the second
indicates the LMHS types corresponding to N1 (on {0} × �∗), N1 + N2 (at {0}), and
N2 (on �∗ × {0}). These types are described by their Hodge-Deligne diagrams:

N
N

N

N

N

N

N

N

N

N

III IV IV0 2 1

p p p

qqq

Both variations have H3
inv

∼= Q(0) and H4
inv

∼= H2(P)(−1) for their respective
toric varieties, and of course IH1(H∗)0 = 0 for ∗ �= 3. Let us assume we have smooth
compactifications of both families with all H∗

1,inv and H
∗
2 zero. Then H3(X0) = Q(0)

and H4(X0) = H2(P)(−1) ⊕ IH1(H3)0 in both cases; so the key to the topology
of X0 in each case (provided we want a smooth total space) lies in the cohomology
of the complex H3

lim → N1H3
lim(−1) ⊕ N2H3

lim(−1) → N1N2H3
lim(−2). From the

LMHS types one immediately deduces that (writing ranks ofmaps over the arrows) this

complex takes the form C
6 5→ C

3 ⊕C
4 2→ C

2 in the first case (so that IH1(H3) = 0),

and C
6 5→ C

4 ⊕ C
4 2→ C

2 in the second (so that IH1(H3) = Q(−2)).
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Appendix: Decomposition theorem over Stein curves by Morihiko
Saito

In this Appendix we prove the following (see Theorem A.4 below):

Theorem A Let f : X → C be a proper surjective morphism of a connected complex
manifold X to a connected non-compact curve C. The decomposition theorem for
R f∗QX is equivalent to the Clemens-Schmid exact sequence (or the local invariant
cycle theorem) for every singular fiber of f .

We also show that the weak decomposition always holds if C is a connected non-
compact smooth curve, see Corollary A.3 below. Note that the last hypothesis implies
that C is Stein by Behnke–Stein, see for instance [29, Corollary 26.8]. We have the
following.

Corollary A For f : X → C as above, the decomposition theorem holds for R f∗QX ,
if there is an embedded resolution ρ : X̃ → X such that the inverse image X̃c :=
ρ−1(Xc) of any singular fiber Xc := f −1(c) is a divisor with simple normal crossings
(not necessarily reduced ) and there is a cohomology class ηc ∈ H2(X̃ c,C) whose
restriction to any irreducible component of X̃ c is a Kähler class.

Note that the local invariant cycle theorem holds under the above hypotheses as is
well-known, see also Remark A.4 (ii) below.

This work is partially supported by JSPS Kakenhi 15K04816.
A.1. t-structure on complexmanifolds (see [8]). Let X be a complexmanifold, and A
be any subfield of C. Let Db

c (X , A) be the bounded derived category of A-complexes
with constructible cohomology sheaves. For k ∈ Z, we have the full subcategories

Db
c (X , A)≤k ⊂ Db

c (X , A),

defined by the following condition for K • ∈ Db
c (X , A) :

dim SuppH j K • ≤ k − j (∀ j ∈ Z). (A.1.1)

Put

Db
c (X , A)≥k := D

−1(Db
c (X , A)≤−k)

(= {
K • ∈ Db

c (X , A) | DK • ∈ Db
c (X , A)≤−k}),

Db
c (X , A)[k] := Db

c (X , A)≤k ∩ Db
c (X , A)≥k . (A.1.2)

Here, taking an injective resolution AX
∼−→ I•, we can define DK • by

DK • = τ≤kHomA(K
•
, I•

(dim X)[2 dim X ]) (k � 0), (A.1.3)

where τ≤k is a classical truncation.
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By [8], the Db
c (X , A)[k] are abelian full subcategories of Db

c (X , A), and there are
truncation functors

pτ≤k : Db
c (X , A) → Db

c (X , A)≤k,

(similarly for pτ≥k) together with the cohomological functors

pHk : Db
c (X , A) → Db

c (X , A)[0],

and also the distinguished triangles for K • ∈ Db
c (X , A) :

pτ≤k−1K
• → pτ≤k K

• → (pHk K •
)[−k] +1→ .

A.2. Curve case.Assume dim X = 1, that is, X is a smooth curve C . It is well-known
that Db

c (C, A)[k] ⊂ Db
c (C, A) is defined by the following conditions:

dim SuppHk K • = 0,

H0{c}Hk−1K • = 0 (∀ c ∈ C),

H j K • = 0 (∀ j /∈ {k, k − 1}). (A.2.1)

This can be shown using the functor i !c for ic : {c} ↪→ C together with duality.
The following proposition and lemma are also well-known:

Proposition A.2 For any K • ∈ Db
c (C, A)[k], there is a unique finite increasing filtra-

tion G on K • satisfying

GrG0 K • = ( j∗L)[1−k],
dim SuppGrGi K • = 0 if |i | = 1,

GrGi K • = 0 if |i | > 1. (A.2.2)

where L is an A-local system on a Zariski-open subset C ′ j ′
↪→ C which is obtained

by restricting Hk−1K • to C ′ (note that |C\C ′| may be infinite). Moreover GrG−1K
•

(resp. GrG1 K •) is the maximal subobject (resp. quotient object) of K • supported on a
discrete subset of C.

Proof Set

G1K
• := K •

, G0K
• := τ≤k−1K

•
,

where τ≤k−1 is the truncation in the classical sense. By (A.2.1) we have the canonical
isomorphisms

G0K
• = (Hk−1K •

)[1−k], GrG1 K • = (Hk K •
)[−k], (A.2.3)
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together with the short exact sequence of sheaves

0 → Hk−1K • ι→ j∗L → Coker ι → 0, (A.2.4)

inducing a short exact sequence in Db
c (C, A)[k] :

0 → (Coker ι)[−k] → (Hk−1K •
)[1−k] → ( j∗L)[1−k] → 0. (A.2.5)

So we get (A.2.2), setting G−1K
• := (Coker ι)[−k], G−2K

• := 0. The last assertion
follows from Lemma A.2 below. This finishes the proof of Proposition A.2.

Lemma A.2 In the notation of PropositionA.2, the shifted direct image sheaf ( j∗L)[1]
is canonically isomorphic to the intermediate direct image j!∗(L[1]) in Db

c (C, A)[0]
(see [8]).

Proof We have the following short exact sequences in Db
c (C, A)[0] :

0 → (Coker ι′) → ( j!L)[1] → ( j∗L)[1] → 0,

0 → ( j∗L)[1] → (R j∗L)[1] → R1 j∗L → 0, (A.2.6)

where ι′ : j!L ↪→ j∗L is a canonical inclusion. (These two short exact sequences are
dual of each other if L in the second sequence is replaced by its dual.) Lemma A.2
then follows.

Lemma A.2 and Proposition A.2 imply the following.

Corollary A.2 Any simple object of Db
c (C, A)[k] is either Ac[−k] with Ac a sheaf

supported at a point c ∈ C or ( j∗L)[1−k] with L a simple A-local system on a

Zariski-open subset C ′ j
↪→ C.

(Note, however, that the intermediate direct image j!∗ and the direct image j∗ are
not exact functors.)

Remark A.2 The intermediated direct image j!∗(L[1]) is also written as ICC L , and is
called the intersection complex (with local system coefficients).

A.3. Vanishing of higher extension groups. In the case of non-compact curves, we
have the following.

Proposition A.3 If C is a connected non-compact smooth curve, and K •, K ′• ∈
Db
c (C, A)[k], we have

ExtiDb(C,A)(K
•
, K ′•

) = 0 (i ≥ 2). (A.3.1)

Proof Since the assertion is independent of k ∈ Z, we may assume k = 1. Set

E• := RHomA(K
•
, K ′•

) ∈ Db
c (C, A).
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We first reduce the assertion (A.3.1) to

E • ∈ Db
c (C, A)≤1, (A.3.2)

using the well-known isomorphism

ExtiDb(C,A)(K
•
, K ′•

) = Hi (C,RHomA(K
•
, K ′•

)
)

= Hi (C, E •
), (A.3.3)

together with the Riemann-Hilbert correspondence and also Cartan’s Theorem B.
(Here some finiteness condition would be needed if we use the duality for the direct
images of objects of Db

c (C, A) by the morphism C → pt.)
By scalar extension A ↪→ C we may assume A = C. Let M be the regular

holonomic left DC -module M corresponding to pH j E • ( j ≤ 1). It has a global good
filtration F , and we have the following quasi-isomorphism for k � 0 :

C
(
d : FkM → Fk+1M ⊗OC �1

C

) ∼−→ DR(M) = pH j E •
.

Recall that any connected non-compact smooth curve is Stein as a consequence of the
theory of Behnke-Stein, see for instance [29, Corollary 26.8]. We then get by Cartan’s
Theorem B

Hi (C, pH j E •
) = 0 (i > 0).

Here one problem is that it is not quite clear whether k exists globally, since C is
non-compact. For this we can use Proposition A.2 so that the assertion is reduced to
the intersection complex case. Then the Deligne extension [22] gives the filtration F
with the above k rather explicitly. (Note that Cartan’s Theorem B does not necessarily
hold for quasi-coherent sheaves, see for instance [66, Remark 2.3.8 (2)].) The assertion
(A.3.1) is thus reduced to (A.3.2).

Let C ′ ⊂ C be a Zariski-open subset such that K •|C ′ , K ′•|C ′ are local systems.
Since the assertion (A.3.2) is local, we may assume that (C,C ′) = (�,�∗) so that
E•|�∗ is a local system. The assertion is then reduced to that

(H j E •
)0 = Ext j

Db(�,C)
(K •

, K ′•
) = 0 ( j ≥ 2). (A.3.4)

Using the Riemann-Hilbert correspondence, the latter assertion is equivalent to that

Ext jD�,0
(M,M ′) = 0 ( j ≥ 2), (A.3.5)

for any regular holonomic D�,0-modules M,M ′. This is further reduced to the case
where M,M ′ are simple regular holonomic D�,0-modules (using the standard long
exact sequences of extension groups). So we may assume that M,M ′ are of the form
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D�,0/D�,0P with

P = ∂t , t, t∂t − α (α ∈ C\Z), (A.3.6)

where t is a coordinate of �. This implies a free resolution

0 → D�,0
· P−→ D�,0 → M → 0,

and shows (A.3.5). (Here it is alsopossible to use the isomorphismRHomA(K
•, K ′•) =

δ!(DK • � K ′•) with δ : X ↪→ X × X the diagonal, although the argument is more
complicated.) This finishes the proof of Proposition A.3.

From Proposition A.3 we can deduce the following.

Theorem A.3 (Weak Decomposition theorem). Let C be a connected non-compact
smooth curve. For any K • ∈ Db

c (C, A), we have a non-canonical isomorphism

K • ∼=
⊕

j∈Z
(pH j K •

)[− j] in Db
c (C, A), (A.3.7)

Proof This follows fromPropositionA.3 by using the distinguished triangles in (A.1.4)
by induction on k. ��
Corollary A.3 Let f : X → C be a proper morphism of complex manifolds with C
a connected non-compact smooth curve. Let X ′ ⊂ X be a Zariski-open subset. Set
f ′ := f |X ′ , pR j f ′∗ := pH jR f ′∗, and dX := dim X. Then we have a non-canonical
isomorphism

R f ′∗(AX ′ [dX ]) ∼=
⊕

j∈Z

(pR j f ′∗(AX ′ [dX ]))[− j] in Db
c (C, A). (A.3.8)

Remark A.3 (i) It is quite unclear whether R f ′∗AX ′ belongs to Db
c (C, A) unless we

assume that f ′ : X ′ → C can be extended to a propermorphism of complexmanifolds
f : X → C with X\X ′ a closed analytic subset of X .
(ii) If f : X → Y is a smooth projective morphism of complex manifolds, we have

the weak decomposition (see [21]):

R f∗(AX [dX ]) ∼=
⊕

j∈Z

(pR j f∗(AX [dX ]))[− j] in Db
c (Y , A), (A.3.9)

using the Leray spectral sequence together with the hard Lefschetz property

� j : pR− j f∗(AX [dX ]) ∼−→ pR j f∗(AX [dX ])( j) ( j > 0), (A.3.10)

since pR j f∗(AX [dX ]) = (RdX−dY f∗AX )[dY ] in the f smooth case.
(iii) In the f non-smooth case, we need a “spectral object” in the sense of Verdier

[79] in order to extend the above argument, see also [66, Lemma 5.2.8]. Note that the
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proof of the decomposition theorem in [8, Theorem 6.2.5] is completely different from
this. It uses mod p reduction, and the coefficients are C, not Q.

(iv) The decomposition theorem in the derived category of mixed Hodge modules
was not proved in [66] (it follows from [67, (4.5.4)]). We can deduce from [66]
only the decompositions of the underlying Q-complex and the underlying complex
of filtered D-modules together with some compatibility between the decomposition
isomorphisms, using Deligne’s argument on the “uniqueness” in [24]. We have to use
[66, Lemma 5.2.8 and Proposition 2.1.12] to apply Deligne’s argument respectively
to theQ-complex and the complex of filteredD-modules (by passing from the derived
category of filtered D-modules to that of the abelian category of graded B-modules),
see also [68, 2.4–5].

A.4. Clemens–Schmid sequence. For K • ∈ Db
c (�, A), we have the following dia-

gram for the octahedral axiom of derived categories (see also [66, Remark 5.2.2]) :

i∗0K
• ←− i !0K

• i∗0K
• ←− i !0K

•

↖ c ↙ ↘ d ↗+1

↓+1d pϕ1K
•
d ↑+1 ↓+1c C(N ) c ↑+1

can↗ c ↘Var ↙+1 d ↖
pψ1K

• N−→pψ1K
•(−1)pψ1K

• N−→ pψ1K
•(−1)

Here c and d mean respectively commutative and distinguished, and i0 : {0} ↪→ � is
the inclusion. We denote respectively by pψ1, pϕ1 the unipotent monodromy part of
the shifted nearby and vanishing cycle functors pψ := ψ[−1], pϕ := ϕ[−1] for the
coordinate t of �.

In the above diagram, the following two distinguished triangles are respectively
called the vanishing cycle triangle (see [23]) and the dual vanishing cycle triangle :

pψ1K
• can−→ pϕ1K

• → i∗0K
• +1→,

i !0K
• → pϕ1K

• Var−→ pψ1K
•
(−1)

+1→ . (A.4.1)

These are dual of each other if K • in the second triangle is replaced by DK •, see for
instance [66, Lemma 5.2.4].

The Clemens–Schmid sequence is associated to the outermost part of the above
diagram as follows:

→ H j−1i !0K
• → H j−1i∗0K

• → H j pψ1K
• N→ H j pψ1K

•
(−1)

→ H j+1i !0K
• → H j+1i∗0K

• → · · · (A.4.2)

There are two sequences depending on the parity of j ∈ Z, see also [14]. Note that
this sequence is essentially self-dual, more precisely, its dual sequence is isomorphic
to the Clemens–Schmid sequence for DK •. This follows from the duality between the
two distinguished triangles in (A.4.1).

For K • ∈ Db
c (�, A), we say that the Clemens–Schmid exact sequence holds if the

above two sequences are exact at every term.
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We say that the local invariant cycle property holds if the above sequence is exact
at the third term, that is, if we have the exactness of

H j i∗0K
• → H jψ1K

• N→ H jψ1K
•
(−1) (∀ j ∈ Z). (A.4.3)

We say that the strong decomposition holds for K • ∈ Db
c (C, A) with C a smooth

curve if there is a non-canonical isomorphism

K • ∼=
⊕

j∈Z
ICC L

j [− j] ⊕
⊕

c∈C, j∈Z
E j
c [− j] in Db

c (C, A), (A.4.4)

where the L j are local systems defined on a Zariski-open subset of C , and the E j
c are

sheaves (in the classical sense) supported at c ∈ C .
If the weak decomposition holds (that is, if the isomorphism (A.3.7) holds), then the

strong decomposition is equivalent to the following canonical isomorphisms called
the cohomological decompositions :

pH j K • = ICC L
j ⊕

⊕
c∈C E j

c in Db
c (C, A)[0] (∀ j ∈ Z).

These isomorphisms are canonical by strict support decomposition (see [66, 5.1.3]),
and (A.4.5) is equivalent to the following direct sum decompositions at every c ∈ C :

Im can ⊕ Ker Var = pϕt,1
pH j K •

(∀ j ∈ Z), (A.4.5)

where t is a local coordinate of (C, c).
By Theorem A.3, the weak decomposition holds for any complex K • ∈ Db

c (C, A)
if C is connected and non-compact.

We have the following.

Theorem A.4 Let C be a connected non-compact smooth curve. Let K • ∈ Db
c (C, A)

with a self-duality isomorphism DK • ∼= K •[m] for some m ∈ Z. Then the following
three conditions are equivalent to each other :
(a) The strong decomposition holds.
(b) The Clemens–Schmid exact sequence holds at any c ∈ C.
(c) The local invariant cycle property holds at any c ∈ C.

Proof We first prove (a) ⇒ (b). Restricting to each direct factor of K •, it is enough to
consider the case K • = j∗L with L a local system, where the self-duality assumption
DK • ∼= K •[m] is forgotten for the moment. (Indeed, in the case K • = Ec, we can
use the functorial isomorphisms i !c ◦ (ic)∗ = i∗c ◦ (ic)∗ = id with ic : {c} ↪→ C the
inclusion.) We have to show the exact sequence

0 → i∗0 j∗L → ψ1L
N→ ψ1L(−1) → H2i !0 j∗L → 0, (A.4.6)

where ψ1 j∗L is denoted by ψ1L . We have the exactness at the second term by def-
inition. This implies the exactness at the third term, if we remember the self-duality
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conditionDK • ∼= K •[m] (which implies thatD( j∗L) ∼= ( j∗L ′)[2] for some direct fac-
tor ( j∗L ′)[m′] ⊂ K •) together with the self-duality of the Clemens–Schmid sequence
explained after (A.4.2). So the implication (a) ⇒ (b) follows.

Assume now condition (c) (since the implication (b) ⇒ (c) is trivial). Let � ⊂ C
be a sufficiently small neighborhood of c with coordinate t . Condition (c) implies that

Ker can = Ker N in pψt,1
pH j K •

( j ∈ Z),

using the long exact sequence associated to the vanishing cycle triangle in (A.4.1),
since

Var ◦ can = N on pψt,1
pH j K •

.

Considering the coimages and images of can and N , it induces the isomorphism

Var : Im can ∼−→ Im N , hence

Im can ∩ Ker Var = 0. (A.4.7)

We then get the direct sum decomposition (A.4.6) using the self-duality isomorphism

D
pH j K • = pH− j

DK • ∼= pHm− j K •
( j ∈ Z),

since can and Var are dual of each other (up to a sign) as is explained after (A.4.1),
see also Remark A.4 (i) below. So condition (a) follows. This finishes the proof of
Theorem A.4. ��
Remark A.4 (i) It is well-known that any indecomposable regular holonomic D0-
module M (with D0 := D�,0) is isomorphic to one of the following:

(A) D0/D0(∂t t)i (K = R j∗ j∗K ) i ≥ 1,
(B) D0/D0(t∂t )i (K = j! j∗K ) i ≥ 1,
(C) D0/D0(∂t t)i−1∂t (K = j∗ j∗K ) i ≥ 1,
(D) D0/D0t(∂t t)i i ≥ 0,
(E) D0/D0(∂t t−α)i (K = j! j∗K = R j∗ j∗K ) i ≥ 1,

where α ∈ C\Z, K := DR(M)[−1] ∈ Db
c (C, A)[1], and i is the rank of the local

system K |�∗ . Note that their duals are respectively (B), (A), (C), (D), (E) (with α

changed). We can prove the assertion, for instance, calculating the extension groups of
simple regular holonomic D0-modules in (A.3.6). The local invariant cycle property
implies that indecomposable D0-modules of type (A), (C), (D) (with i = 0), (E)
are allowed, and the self-duality excludes the type (A). Here we use the short exact
sequences

0 → D0/D0P
· Q−→ D0/D0PQ → D0/D0Q → 0.
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This implies that O�,0 is a D0-submodule of an indecomposable regular holonomic
D0-moduleM only for type (A), (C). (This classification argument is used in a detailed
version of [65].)

(ii) The local invariant cycle theorem holds for a proper morphism of complex
manifolds f : X → � if there is an embedded resolution ρ : (X̃ , X̃0) → (X , X0)

such that X̃0 is a divisor with simple normal crossings (not necessarily reduced) and
there is a cohomology class ηc ∈ H2(X̃0,C) whose restriction to any irreducible
component of X̃ c is represented by a Kähler form. This follows for instance from the
arguments in [66, 4.2.2 and 4.2.4] (see also arXiv:math/0006162). It is known that
the argument in [76] is insufficient, see for instance [32] where the singular fiber is
assumed reduced. (It does not seem very clear whether one can prove the semi-stable
reduction theorem in the analytic case using the same argument as in the algebraic
case.)

(iii) The reduction of the decomposition theorem using a base change is trivial if
X is smooth. Indeed, assume there is a commutative diagram

X
π←− Y

↓ f ↓ g

C
π ′←− D

where X ,Y are connected complex manifolds, C, D are curves, f , g are proper
surjective morphisms, π ′ is a finite morphism, and π is a proper and generically
finite étale morphism. Then the canonical morphism AX → Rπ∗AY splits by com-
posing it with its dual, using the self-duality of AX [dX ], AY [dY ] together with
HomDb(X ,A)(AX , AX ) = A. Moreover, it is known that intersection complexes with
local system coefficients are stable under the direct images by finite morphisms, see
[8]. So the decomposition theorem for g implies that for f . (Here C can be singular.)

References

1. A’Campo, N.: La fonction zêta d’une monodromie. Comment. Math. Helv. 50, 233–248 (1975)
2. Allcock, D., Carlson, J.A. and Toledo, D: The moduli space of cubic threefolds as a ball quotient.

Mem. Am. Math. Soc. 209(985), xii+70 (2011)
3. Abramovich, D., Karu, K.: Weak semistable reduction in characteristic 0. Invent. Math. 139(2), 241–

273 (2000)
4. Alexeev, V.: Log Canonical Singularities and Complete Moduli of Stable Pairs (1996).

arXiv:alg-geom/9608013
5. Adiprasito,K., Liu,G. andTemkin,M.: SemistableReduction inCharacteristic 0. Sém.Lothar.Combin.

82B, Art. 25, 10 (2020)
6. Ash, A., Mumford, D., Rapoport, M., and Tai, Y.S.: Smooth Compactifications of Locally Symmetric

Varieties , 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge (2010)
(With the collaboration of Peter Scholze)

7. Arapura, D.: The Leray spectral sequence is motivic. Invent. Math. 160(3), 567–589 (2005)
8. Beı̆linson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100(2), 5–171 (1982)
9. Brosnan, P.,Chow,T.Y.:Unit interval orders and the dot action on the cohomologyof regular semisimple

Hessenberg varieties. Adv. Math. 329, 955–1001 (2018)
10. Brosnan, P., Fang, H., Nie, Z., and Pearlstein, G.: Singularities of admissible normal functions, Invent.

Math. 177(3), 599–629 (2009). With an appendix by Najmuddin Fakhruddin

http://arxiv.org/abs/alg-geom/9608013


71 Page 46 of 48 M. Kerr et al.

11. Bredon, G.E.: Introduction to Compact Transformation Groups,Pure and Applied Mathematics, Vol.
46. Academic Press, New York (1972)

12. Brosnan, P.: Perverse obstructions to flat regular compactifications.Math. Z. 290(1–2), 103–110 (2018)
13. Cattani, E., Kaplan, A., Schmid, W.: L2 and intersection cohomologies for a polarizable variation of

Hodge structure. Invent. Math. 87(2), 217–252 (1987)
14. Clemens, C.H.: Degeneration of Kähler manifolds. Duke Math. J. 44(2), 215–290 (1977)
15. Casalaina-Martin, S., Grushevsky, S., Hulek, K. and Laza, R.: Complete moduli of cubic threefolds

and their intermediate Jacobians, Proc. Lond. Math. Soc. (3) 122(2), 259–316 (2021)
16. del Ángel R.P., Doran, C., Kerr, M, Lewis, J, Iyer, J., Müller-Stach, S., and Patel, D.: Specialization of

cycles and the K -theory elevator. Commun. Number Theory Phys. 13(2), 299–349 (2019)
17. de Cataldo, M.A.: Decomposition theorem for semisimples. J. Singul. 14, 194–197 (2016)
18. de Cataldo, M.A., and Migliorini, L.: The Hodge theory of algebraic maps. Ann. Sci. École Norm.

Sup. (4), 38(5), 693–750 (2005)
19. de Cataldo,M.A. andMigliorini, L.: Hodge-theoretic aspects of the decomposition theorem, Algebraic

geometry—Seattle 2005. Part 2, Proceedings of the Symposium on Pure Math., vol. 80, Amer. Math.
Soc., Providence, RI, pp. 489–504 (2009). MR 2483945

20. de Cataldo, M.A. and Migliorini, L.: The perverse filtration and the Lefschetz hyperplane theorem.
Ann. of Math. (2) 171(3), 2089–2113 (2010)

21. Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes
Études Sci. Publ. Math. No. 35, 259–278 (1968)

22. Deligne, P.: Equations différentielles à points singuliers réguliers, Lect. Notes in Math. 163, Springer,
Berlin (1970)

23. Deligne, P: Le formalismedes cycles évanescents, Lect.Notes inMath., vol. 340 (SGA7 II), pp. 82–115.
Springer, Berlin (1973)

24. Deligne, P., Décompositions dans la catégorie dérivée, Motives. Proc. Sympos. Pure Math., 55, Part 1,
Amer. Math. Soc. Providence, RI, Seattle, WA, vol. 1994, 115–128 (1991)

25. Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geom. 7(3), 505–537 (1998)
26. Dimca, A., Saito, M.: Vanishing cycle sheaves of one-parameter smoothings and quasi-semistable

degenerations. J. Alg. Geom. 21, 247–271 (2012)
27. Dimca, A.., and Saito, M.: Some remarks on limit mixed Hodge structures and spectrum. An. Ştiinţ.
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