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Abstract

We use the Decomposition Theorem to derive several generalizations of the Clemens—
Schmid sequence, relating asymptotic Hodge theory of a degeneration to the mixed
Hodge theory of its singular fiber(s).

Mathematics Subject Classification 14D06 - 14D07

1 Introduction

This paper initiates a series of articles on the relationship between the asymptotic
Hodge theory of a degeneration and the mixed Hodge theory of its singular fiber(s),
motivated by the study of compactifications of moduli spaces. In this first installment,
we concentrate on what may be derived from the Decomposition Theorem (DT) of
[8] in the setting of mixed Hodge modules [68], including several variants of the
Clemens—Schmid (C-S) exact sequence [14] (also see [32,39]) and basic results on
the vanishing cohomology. In a forthcoming sequel [41], referred to henceforth as
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Part II, we investigate the vanishing cohomology in further detail, and give several
applications to geometric degenerations.

The period map is the main tool for studying the moduli spaces of abelian varieties,
K3 surfaces [57,74], and related objects such as hyper-Kéhler manifolds [34,43] and
cubic threefolds and fourfolds [2,52,58,80]. What these “classical” examples have in
common is a “strong global Torelli” property, to the effect that the period map embeds
each moduli space as an open subset of a locally symmetric variety. This facilitates the
comparison, or even an explicit birational correspondence, between Hodge-theoretic
(i.e. toroidal [6] and Baily-Borel) compactifications and geometric ones (such as KSBA
or GIT compactifications); see for example the series of papers [53-56]. A program led
by Griffiths, with contributions of many people (including the authors), aims to extend
the use of period maps in studying moduli to the “non-classical” case, especially sur-
faces of general type with p, > 2 and Calabi—Yau threefolds, with the premise that this
strong connection between compactifications should remain. In particular, the geomet-
ric boundary (suitably blown up) carries variations of limiting mixed Hodge structures
(LMHS) on its strata, which in principle yield period maps to Hodge-theoretic bound-
ary components.! The challenge is thus to compute these LMHS, and their associated
monodromies, as well as possible from the geometry of the (singular) fibers over the
geometric boundary.

There are two main parts to this challenge. The first is to compute the MHS on
the singular fibers and relate this to the invariant cycles in the LMHS. For the ideal

topological set-up, that of a semistable degeneration X —f> A over a disk (centered at
the origin) with singular fiber X, a piece of the Clemens—Schmid sequence says that

HY () 5 HF(Xo) =5 HE (X)) — 0 (1.1)
is an exact sequence of MHS, with im(u) pure of weight k£ (and level < k — 2).
While this is a very strong statement, the natural degenerations occurring (say) in
GIT (Geometric Invariant Theory [61]) or KSBA (Kollar—-Shepherd-Barron—Alexeev
[4,50]) compactifications are rarely semistable, and difficult to put in this form via
semistable reduction. Indeed, the philosophy of the minimal model program (MMP)
is that, for sufficiently “mild” singularities on X and Xo, we need not carry out
semistable reduction, as illustrated by papers from [73-75] to [43,52].

In accord with this principle, we have largely focused this paper on various gen-
eralizations of Clemens—Schmid, starting with the simple observation (cf. Theorem
5.3 and (6.2)) that (1.1) remains valid for smooth X" and projective f, regardless of
unipotency of monodromy or singularities of X¢. Specifically, we have:

Theorem 1.1 Let f: X — A be a flat projective family of varieties over the disk,
which is the restriction of an algebraic family over a curve, such that f smooth over
A*.If X is smooth, then we have exact sequences of MHS

0— H2(X)71 (1) B Hyoio(Xo)(—n — 1) B HN(Xo) BB HE,(X)T -0 (1.2)

1 Suitable compactifications are known for locally symmetric subvarieties of Hodge-theoretic classifying
spaces, and are expected to exist (in horizontal directions) in general.



Hodge theory of degenerations, (I): consequences... Page30of48 71

for every k € 7, where the outer terms are the coinvariants resp. invariants of the
monodromy operator T on the LMHS.

We are interested especially in versions of Clemens—Schmid for 1-parameter fam-
ilies arising in the study of KSBA compactifications. In this direction, we obtain the
following result (cf. Theorem 9.3 and Corollary 9.9), which in particular gives that the
frontier Hodge numbers (i.e. h”-9 with p-q = 0) are preserved for such degenerations.
Weaker versions of our result (cf. [73,78]) proved to be very useful for the study of
degenerations of K3 surfaces and hyper-Kéhler manifolds (e.g. [43,54,74]).

Theorem 1.2 Let f : X — A be as in the first sentence of Theorem 1.1 (in particular,
X\ X is smooth). Suppose that X is normal and Q-Gorenstein, and that the special
fiber X is reduced.

(1) If Xo is semi-log-canonical (slc), then
Grh% H*(Xo) = G HE (X)) = GrhHE (X)) (vk),

where T = T""T* is the Jordan decomposition of the monodromy into unipotent
and (finite) semisimple parts.
(i) If Xo is log-terminal, then additionally (Vk)

Wi1Gr% HE (X)) = {0}

Remark 1.3 Under the assumption of X having du Bois singularities, the first isomor-
phism of item (i) above is due to Steenbrink [78]. Kollar—Kovdcs [40] (see also [45,
§6.2]) proved that slc singularities are du Bois, recovering our version above.

Under stronger assumptions (especially smoothness for the total space X'), we
are able to go deeper into the Hodge filtration (Theorem 9.11). We expect that this
result (which to our knowledge is new) will play an important role in the study of
degenerations of Calabi—Yau threefolds with canonical singularities, and respectively
surfaces of general type with p, = 2. (Several related questions about these two
geometric cases are currently under investigation by the authors and their collaborators
under the aegis of Griffiths’s program.)

Theorem 1.4 (= Theorem 9.11) Let f : X — A be as in Theorem 1.2. Assume that
the total space X is smooth and the special fiber X is log-terminal (or more generally,
has rational singularities). Then

Grh H*(X¢) = Grl.(HF (X)),

Remark 1.5 The general philosophy of Theorems 1.2 and 1.4 is that the milder the
singularities, the closer the relationship between the Hodge structure on the central
fiber Xo and the limit Hodge structure is. In Part II of our paper, we will give some
further versions based on the concept of k-log-canonicity of Mustata—Popa [63] (see
also [35] for some more recent developments). In the opposite direction, one can ask
what happens if X is not log canonical. This leads to questions on the Hodge structure
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of the “tail” (e.g. see [33] and [54, Sect. 6]) occurring in a KSBA stable replacement.
While some examples are discussed here, we revisit the topic in a more systematic
way in Part IL

Remark 1.6 Versions of Theorems 1.2 and 1.4 (under somewhat weaker, but less geo-
metric assumptions) are the subject of a forthcoming paper joint with Saito [42].

For singular total spaces, there are “clean” versions of Clemens—Schmid only for
semisimple perverse sheaves (5.2) (including intersection cohomology (5.7)). For us,
the importance of semisimplicity with respect to the perverse t-structure was driven
home by [9], and we explain in Example 7.1 how this typically fails for Qx[dx]
even when it is perverse. So the versions for usual cohomology with X" singular are
necessarily more partial, as seen in the context of base-change and log-resolutions
(8.4), quotient singularities (8.8), and MMP-type singularities (results in §9). Finally,
in Theorem 10.3 we arrive at an analogue of Clemens—Schmid for the simplest kinds of
multiparameter degenerations (smooth total space, snc discriminant divisor), including
for instance those termed semistable by [3].

The second main aspect to determining the LMHS of a 1-parameter degeneration
(without applying semistable reduction) is to tease out of the geometry of Xo those
aspects which are invisible to H*(X(). Here the main tool (for X — A) is the exact
sequence

. — HY(X0) — Hf (X)) = HX (X;) > H* ' (Xg) — - (1.3)
where H\’,‘an(X ;) denotes HKT4x—1 of the vanishing cycle sheaf ¢ s Qx[dx] on X,
promoted to a MHS by Saito’s realization of ”¢ rQy[dx] as a mixed Hodge module
(MHM) in [67]. We shall refer to (1.3) as the vanishing cycle sequence. Basic results
on the vanishing cohomology HE  (X,) are proved in Propositions 5.5 and 6.3 and
Theorem 6.4 here; for instance, in the case of an isolated singularity, its underlying
@-vector space is the reduced cohomology of the Milnor fiber [62]. These are but a
small taste of what will be the main topic in Part II of our study, in which tools such
as mixed spectra and the motivic Milnor fiber are used to compute H,, for various
singularities arising in GIT and MMP.

Of course, there is a vast literature on the subject of relating the cohomology and
singularity theory of X¢ with the limit cohomology (e.g. [14,18,25,27,40,51,68,73,
77]). Our purpose in this series is to survey, adapt, and (where possible) improve this for
degenerations that occur naturally in the geometric context. Beyond relating geometric
and Hodge-theoretic compactifications of moduli, we anticipate applications to the
classification of singularities and KSBA (or semistable) replacements of singular fibers

occurring in GIT, as well as to limits of normal functions in the general context of
[16].

Structure of the paper

In Sects. 2 and 3, we start with a review of the Decomposition Theorem and make some
preliminary considerations for our situation. The following three sections discuss the
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case of the Decomposition Theorem over a curve (with an eye towards one-parameter
degenerations). First, in Sect. 4, we introduce the vanishing and nearby cycles, and the
vanishing cycle triangle relating them (see (4.3)), followed by general forms of van-
ishing, limiting, and *“phantom” cohomology. These preliminaries allow us to begin
Sect. 5 with a very general form of the Clemens—Schmid exact sequence, which is even-
tually specialized to the more recognizable form (Theorem 5.3) under the assumption
of smooth total space. The fact that there is a close connection between the Clemens—
Schmid sequence and the Decomposition Theorem is well known to experts (e.g.
Remark 5.1(ii)). In an “Appendix” to our paper, Saito proves a general (suitable)
equivalence between Clemens—Schmid sequence, the local invariant cycle Theorem,
and the Decomposition Theorem over a curve.

Some concrete geometric examples are then discussed in Sect. 6. These range
from the very classical, e.g. families of elliptic curves with various types of Kodaira
fibers (Example 6.1), to examples (Example 6.5) that we encountered in the study
of degenerations of K3 surfaces (see especially [54]), to the more exotic example of
Katz [37] of a family of surfaces (p, = 2) with G, monodromy (whose treatment uses
the most general form of Clemens—Schmid). These examples serve both to illustrate
the C=S and vanishing-cycle exact sequences in well-known settings, and to show the
efficacy of the methods developed here in some less familiar situations. While our
examples are not new per se, we believe the discussion of Sect. 6 gives a deeper and
more conceptual understanding of them. In Part I1, further tools are developed, which
will allow us to give further examples and applications.

While there is a suitable general theory (and we only touch on MHM work of Saito),
the focus of our paper is on specializing these results to concrete situations relevant for
geometric questions (esp. compactifications). We start this discussion with the case of
isolated singularities (Sect. 7), and their relationship to the failure of the DT for non-
semisimple perverse sheaves. We then discuss (Sect. 8) another common geometric
scenario—that of finite base changes and quotient singularities. While some of the
discussion here might seem very special from the perspective of the general theory,
in concrete geometric situations (including those considered in Part II) subtle issues
arise. We hope that our discussion clarifies some of those issues, and we expect that
further applications will be obtained in the future. Some examples (including some
that we encountered in our previous work) are included along the way.

The most novel aspects of our work occur in the last two sections. First, in Sect. 9,
we discuss the situation of one parameter degenerations of KSBA type. Among other
things, we obtain Theorems 1.2 and 1.4 discussed above. In the final Sect. 10, we start
a discussion of the Hodge theoretic behavior of degenerations over multi-dimensional
bases. To our knowledge, very little in this direction exists in the current literature. We
expect that the study of degenerations over multi-dimensional bases will play a more
prominent role in the future—especially due to the fast progress on multi-dimensional
semistable reduction theorems (Abramovich, Temkin and others, e.g. [5], improving on
Abramovich—Karu [3]). A concrete geometric example where multi-dimensional bases
occur and our methods might be relevant, we mention the case of cubic threefolds.
In [15], a study of the degenerations of intermediate Jacobians in the classical set-
up of normal crossing discriminants is done; while in [59], it is essential to study
the degenerations of intermediate Jacobians without blowing up the discriminant to
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normal crossings. The method used for both of these studies is reduction to curves via
Mumford’s Prym construction for the intermediate Jacobian. It would be interesting
to study the degenerations of intermediate Jacobians directly in terms of cubics (see
[12] for a step in this direction).

2 Motivation: why the decomposition theorem?

For any projective map f : X — S of quasi-projective varieties over C and K°® €
Db (x), the equality of functors’

RTs o Rfy = RTy : Db(x™) — Db(S™)
produces the Leray spectral sequence
EPT =HP(S, R £,K*) = HIT(X,K®). 2.1

The accompanying Leray filtration
LPHF (X, K*) = im {Hk (S. tok_p REK®) — HE(S, Rf*IC‘)} 2.2)

(with Grz =E gg"”’ ) may be described in terms of kernels of restrictions to (special)
subvarieties of S [7]. Hence when IC® has the structure of a MHM, L* is a filtration
by sub-MHS.

However, we would prefer to have more than just a filtration. Recall the following
classical result of Deligne [21]:

Theorem 2.1 If X and S are smooth, f is smooth projective (of relative dimension n),
and K* = Qy, then (2.1) degenerates at E.

Proof See [64, Proposition 1.33]. O

As an immediate corollary, this produces a noncanonical decomposition
HYX, Q) Z @,HP(S. RV £,Q) 23)

into MHS, which includes an easy case of the global invariant cycle theorem. Neither
the description of the graded pieces of £® nor its splitting in (2.3) may be valid when
X, S, or f is not smooth.

Example2.2 Let Y — P! be an extremal (smooth, minimal) rational elliptic surface
with (zero-)section o. By Noether’s formula,

Ryt =10+ 1043 — 813" — K3, = 10;

2 As we continue to work in the analytic topology, the superscript “an” will be dropped for brevity.
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and we let —ﬂ> J be the blow-up at a nontorsion point p on a smooth fiber Yo, with
P = B~ (p) = P!. Contracting the proper transform Y of Y yields an elliptic surface

x L P! with isolated Eg singularity ¢ € Xo(= P) = f~1(0), since Y2 = —1.
First consider the Leray spectral sequence for 7 : Y — X. This has Es-page

H?(Yy)
H'(Yo) >
H'%) 0 T H>X) 0 H*WX
with d injective, and H2(Y) = H2(Yy) ® H2(X)/im(d>). (Note that H2(X) /im(d>)

and H%()) both have Hodge numbers (0, 10, 0).) So degeneration at E» fails.
On the other hand, the Leray spectral sequence for f: X — P! takes the form

HY(R? £,.Q) 0 Q(-2)
0 H'(R' £,Q) 0
Q 0 H*(R £,Q)

with da zero. However, the resulting Leray filtration on H?(X) is non-split in the
category of MHS. To see this, remark that:
o H*(R'f,.Q) = Q(—1)is generated by the class of a smooth fiber;
e H'(R' £.Q) = H'(Yy) with Yy a smooth elliptic curve; and
o HO(R£.Q) = Q(—1)® is generated by 8 components of fibers other than Xo,
and one cocycle k € Cone(C*()) — C'(f’o)) given by (P — o, ), where p is a
path on Y from 0 to p.
Writing Ql (1?0) = C(wy), f o @0 = AJ(p — 0) gives the (nontorsion) extension class
of [k] by H'(Yp) in H?(X), and hence of Gr}. by Gr}.. Of course, Poincaré duality
also fails for H2(X).

As we shall see, one gets better behavior on all fronts by using perverse Leray filtrations
and intersection complexes.

3 Perverse Leray

We begin by stating the Decomposition Theorem (DT) for a projective morphism
f X — S of complex algebraic varieties (of relative dimension n = dy — dg).
Let K°® € Df,’ (X@) [resp. DPMHM(X)] be a complex of sheaves of abelian groups
[resp. mixed Hodge modules] which is constructible with respect to some stratification
S. Assume that C® is semisimple in the sense of being a direct sum of shifts of
(semi)simple perverse sheaves IC’Z (L) [resp. polarizable Hodge modules MH z (£)] 3

3 Here LL [resp. L] is a (semi)simple local system [resp. polarizable VHS] on a Zariski open in Z. For
uniformity of notation we shall use the notation IC'Z (L) to refer to both perverse sheaves and Hodge
modules.
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References for the following statement are [8, Theorem 6.2.5], [18, Theorem 2.1.1],
and [17] for the perverse sheaf version, resp. [68, Thms. 0.1-0.3] and [67, (4.5.4)] for
the MHM version.

Theorem 3.1 (Decomposition Theorem)
(a) Writing PR f, for PHJ Rf,, we have

REK® = @;("RI fCM[=]] = ,41C,, (V/(KHDI-j]  (G.)

as (up to shift) perverse sheaves [resp. polarizable Hodge modules], for some local
systems [resp. polarizable VHS] Vi(IC') on Zy\Zqa—1 (smooth of dimension d).
Moreover, the PR’ [, K® are semisimple perverse.

(b) If h is the class of a relatively ample line bundle on X and KC® is perverse, then
multiplication by h’ induces an isomorphism

PR f,K*(—j) — PRI f.K* (3.2)

foreach j > 0.

Remark 3.2 (i) If K*® is a (pure) Hodge module of weight w, the R/ f,K* [resp.
Rf.K*]is pure of weight w + j [resp. w], and Vé (KC®) underlies a VHS of weight
w+j—d.

(ii) In the key special case where K* = IC, (which is Qx[dx] if X is smooth), we
write Vfl(lC') =: szl' In view of [68], we still have (3.1) in this case when we
relax the hypotheses on f : X — S to: f proper, X Fujiki class C (dominated by
Kihler).

(iii) Although Q. [dy]is perverse as long as X’ has local complete intersection singu-
larities, it may not be semisimple (and the DT may not apply). See Example 7.1
below.

(iv) When restricting f to an open analytic subset of the base such as a polydisk A" (as
we shall do below), (3.1)—(3.2) still hold though the VZZ (K*®) may not be semisimple
on A”. For this reason (only), one should not call the 7 R/ J+KC® “semisimple” in
this setting. Instead we shall say that they decompose.

(v) Over a disk, a weak form of the DT (first >~ of (3.1)) holds without the semisim-
plicity constraint on K®; see the “Appendix” by Saito.

Remark 3.3 When X — S = PHO(X, O(L®™")) (L®™ very ample) is the universal
hypersurface section of a smooth 2D-fold X, the perverse weak Lefschetz theorem
[10, Theorem 5.2] says that Vé = Ounless j = 0 or d = dg. Moreover, Vﬁs is
constant = H/tEP=D(X) if j # 0,and V)| = 0 form > 0. This plays a key role
in producing singularities in normal functions associated to D-dimensional cycles on
X.

Taking hypercohomology of (3.1) yields a decomposition

HA X, K®) = @HI(S, PR LK) = @ g THIT (24, VETI(K%)  (3.3)



Hodge theory of degenerations, (I): consequences... Page90f48 71

on the level of mixed Hodge structures. The perverse Leray filtration induced by
PLORAK® = @j<a"RI £ K[~ (34
is simply
PLPHF (X, K*) = HNS, PLPTFREK®) = @ixpH (S, PR £,K%). (3.5)

That is, under our hypotheses (of semisimplicity for X® and projectivity for f), the
perverse Leray spectral sequence H' (S, PR/ f,K*) = H*(X, K*) converges at
E», and the resulting (perverse Leray) filtration on H* (X, K°®) is split in the category
of MHS. This stands in marked contrast to the scenario in Example 2.2.

Example 3.4 For any variety X, the morphism Qx[dx] — IC5 in DPMHM(X) induces
aMHS map H*(X) — IH*(X), and for a projective resolution of singularities 25 x

with compact exceptional divisor, I;‘fkﬁ) I gk (i) (by the same proof as [64, Theo-

rem 5.41]). Theorem 3.1 guarantees that IC}, is a direct summand of R, Qz[dx], so

that % < IH* (%) — HF (%). For X compact, the first term becomes Gr,ZV H* (%),
and the first injection is A[19, Theorem 3.2.1].

In particular, for 7 : ) — A& as in Example 2.2, we have GrXVHz(X) > H2(X) =
Q(—1)®10 and H2(3>) = Q(—=1®'", Writing f5™: f~1(U) — U for the smooth
partof f and H' := Rf:™Q, Theorem 3.1 applies to:

o K*=Qypl2land7n = Rm,L* PROTK® =~ ICS, @ 11 Q(—1) (cf. (7.1)-
(7.2)), so that 7L on HZOA)) is trivial; and _ _

o K*=1Cyand f = RAK® = @|_ (PRI f,L)[—j] with PR f.KC* =~
IC3, (H/H1[1]) (j = 1) and PR f,K* ~ ICh, (H'[1]) & B, cp1\y I, (cf.
(5.5)). The graded pieces of 1’[,} on IH2(X) (cf. (5.4) and (5.9)) are then Gr;lll =
HO(U, H?) = Q(—1) (class of a section), Gr} . = H2(U, H") = Q(—1) (class
of a smooth fiber), and Gr§) . = @UIH}%M7 = Q(—1)®? (from singular fibers;
IH! (P!, H") vanishes).

Theorem 3.1 does not apply to £®* = Qx[2] and f; see Example 7.1.

We now look more systematically at immediate consequences of the DT for families
over a curve and resolutions of isolated singularities.

4 Decomposition theorem over a curve (1): nearby and vanishing
cycles

Consider the scenario

Xy e v <L oxy —— U, en X, @.1)

N

S\Z 7(](;_5_’%32
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whereds = 1 (= dyx =n+1),Sissmooth, Xy and S|, are topologically locally
constant (e.g. equisingular) over U, and our semisimple K® belongs to MHM(X) (i.e.
its underlying complex is perverse). For each j, we have

PRIfK® = 1 VI @ @D 1 WiKK), 4.2)

oED

where V/(K*) = R/™! fiK*®| x, are local systems/VMHS and W (K®) are vector
spaces/MHS. Note that by X, (and later, Xo) we always mean the reduced special
fiber, since MHM live on a complex analytic space.*

Writing ¢ for (the composition of f with) alocal coordinate on a small disk A, C S
about o, the associated nearby and vanishing cycle functors sit in a dual pair of
distinguished vanishing cycle triangles®

sp

T Y; and T P, (4.3)

+1 +1
S can Sp\/ ;a—r/

b1 Py (=1),

and satisfy RT'Z, = 1\ Rfy, RUZ} = 1} Rfi, RUY; = ¥ Rf., and RT¢, = ¢, R
[60]. Applied to K°®, each morphism in the triangles yields a morphism of MHM,
with the exception of var:® here one needs to break v, K® and ¢, K® into unipotent
and non-unipotent parts for the action of 7,,, whereupon var" : ¢/ — Y¥/'(—1) and
var' : ¢! — ¥ induce MHM maps. Here var" [resp. var | is the morphism
Var in [66, 3.4.10] [resp. a canonical isomorphism], and (—)* = ker(T** — I) [resp.
()" =1im(T* — I)] is written (—)1 [resp. (—)«1] in the notation of op. cit. (see also
(72, §§8-9)).

Next, setting Vfim(lc) = Y, 75 V{(K®), we have the monodromy invariants
Vﬁm(IC')T“ := ker(T, — I) and coinvariants Vﬁm(lC')Ta := coker(Ty, — I). By
the DT, we compute

HYX,, K®) := H (X, T} [-11K*) = H 710 RK®)
=@ H T QPRI £.K%) (4.4)
= Vi (K7 @ Wy (K*)

4 Warning: the (“nonreduced”) components of X along which a local coordinate ¢ has order > 1 are philo-
sophically part of the singularity locus of X, e.g. when considering support of 7 ¢; Q » . See Proposition 5.5
below.

5 See [23] for the first and [66, 5.2.1] for the second in the form used here. Note that P ¢; := ¢;[—1] and
Py := s [—1] send MHM(X) to MHM(X ).

6 The tilde reflects the fact that, while related, var is not the standard var in the theory of perverse sheaves,
because we do not have var o can = T — I (see below).
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for the special fiber cohomology and

Hy (X,K®) :=H"(Xo, I, [-11K%) = H "' (1, R£.K®)

4.5
= V32 (K7, (1) @ W) 4.5)

for the special fiber “homology”, where we used 1 7,V = HAq, V) = Vo and
it 1V = HX(Ay, x:V)[-21 = H' (A%, V)[-2] = V7, (—=1)[—2]. We also write

Hlfm,g<l€'> = H%Xm Py ) = HE V(W REK)

(4.6)
(K%

11m

for the limiting cohomology and
Hip o (K®) = H (X0, P$,K*) = H (i RAK®) (4.7)

for the vanishing cohomology. These spaces carry natural MHSs with morphisms
induced by the MHM-maps above; we can either break var : K —

Hlfm ,(K*) into unipotent and non-unipotent parts, or regard it as a map of Q-vector

van o

spaces — one whose composition var o can € End@(Hl‘fm’(I (K*)) with can yields
N(H(fm)” ® Id(H(fm)”' While not a morphism of MHS (since N is a (—1, —1) morphism
on (Hhm) ), the kernel [resp. cokernel] of the latter (which is the same as the kernel
[resp. cokernel] of T, — I) is a sub- [resp. quotient-] MHS of H, hm - ().

It remains to better understand Hfan - (K*) and W (K*). For any (not necessarily

semisimple) perverse sheaf 7® on S, sub- resp. quotient- objects of 7P* supported on
{0} correspond to ker(var) resp. coker(can) on ”¢,P*® [72]. So for P* semisimple,

we have 7¢, P* = ker(var) @ im(can), which (together with Py, = P¢p, — 1k H
sp

and var o can = N @ ) yields identifications

im(can) = coim(var) = Py, P*/ker(T, — I)
N R 4.8)
ker(var) = coker(can) = ker{sp : 15 — "y, P°*[11}.

If P* = ”R/f*IC" then 1m(can) = V{lm(lC")/ker(Tg — I) while sp maps

th KH[1] @ Wi (K — th (KC*)[1]; we conclude that

(K*) =@®;H" 7 ("¢, R £, C*)

_ hm( °) e 4.9)
" ker(T, — 1) ® Wo (K5,

van o

Remark 4.1 To put this more simply, a perverse sheaf P on A decomposes (a la Remark

3.2(iv)) <= P¢,P = ker(var) @ im(can) <= P takes the form 1, W & 7, V[1]
can (n 0)

<= the corresponding quiver representation ”y,P = P¢,PtakestheformV &
var (N®I,0)
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% @ W. The decomposition (4.9) is precisely this statement for P = (P R/ £,K*)|a,
which decomposes by Theorem 3.1.

Finally, consider the composition

HE (0K S HG (%) S HU (X, K, (4.10)

van,o

in which both maps are the identity on Wf_l (K*) (and zero on the other summand). If
Xa, = f‘l(Ag) and p € Ay \{o}, then (4.10) is really just the map H)‘;a (Xa,) =
H* (Xa,, Xp) = HY(X,) with K*[—1]-coefficients; the composite is the same if the
middle term is replaced by H¢(X). Defining the phantom cohomology at o by

Hjp o 0C*) = ker [sp 1 H' (Xq, ) > Hiy ()], @.11)

we therefore have

HY o (K% = Wi '(K*) =im(8 08Y)

I*
=im (H,‘;U @, k) B HX K1) 3 HYX, IC')) :
Denote gy := Z} o Z? in the sequel.

5 Decomposition theorem over a curve (2): consequences

Continuing for the moment with C®* € MHM (&X") semisimple (but otherwise arbitrary),
there are a couple of different ways to relate the special fiber cohomology and the
limiting cohomology. The immediate consequence of the first triangle of (4.3) is the
vanishing cycle sequence (of MHS)

can
le’l o

K S HAF (X, ) = -
(5.1)

= H' (X, K*) 2 Hf, (K S

which is useful whenever one has methods to compute ¢,/C®, a subject taken up in
Part II.
Also evident from the identifications in §4 is the Clemens—Schmid sequence

0= HE2 (K07, (-1 B HY (XK B H (X K 2 H, (K9 -0,
(5.2)

which does away with the vanishing cohomology. The local invariant cycle theorem
expressed by surjectivity of sp can be seen more briefly by just taking stalks on both
sides of (4.2).
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Remark 5.1 (i) A more elegant approach to (5.2) can be formulated in terms of the
octahedral axiom (cf. [66, Rm. 5.2.2] and also the “Appendix” below); though one
must still invoke the DT to get (4.2) (equiv. (5.2.2.3) in loc. cit.).

(ii) In general, if X is a complex analytic space, F : X — A is proper, and K €
DPMHM(X) is self-(Verdier-)dual, then (a) ? R/ F,K decomposes (Vj) and (b)
C-S (5.2) holds (V¥¢) are equivalent. (This follows at once from duality of can and
var.) Also see Theorem A.4 in the “Appendix” below.

There are two amplifications that make (5.2) more useful: first, one can extend it to a
longer sequence of MHS by using the unipotent parts:

H (X, K% 22 HE K" HE (0 (—1) B B2, K (1),

(Notice that {ker(Ny,) C Hj (K"} = {ker(T, — I) C Hf (K"} =
{ker(can) C Hf_(K*)}.) Second, the hard Lefschetz part of DT implies isomor-

lim,o
phisms V=7 (K*) /5 Wi (c*)(j) and W7 (k) 5 Wi (Kc*)(j), hence

Hit (K% ;:Z Hi o (C°)(0) and Hy X (KC) ;:Z Hy L (0. (53)

In addition to these local results, we mention one consequence of a global flavor:
the generalized Shioda formula, which for S a complete curve reads

HA X, K®) = @)__,Gr), HNX, K = @] __ | H (S, PR £,K*)
= ol [HH(S, 1V () @ B (S, 1 W )

= H'(U, V"' (k) @ {IHI(S, VE(E®) © D W (IC')}
OH2(U, VELH(K®)), (5.4)

where we remark that the last term = HO(U, VAK=1(K*))V (=1). On the other hand, if
S is a quasi-projective curve, the last term is simply omitted. In either case, H¥ (X', KC*)
surjects onto the first (i = —1) term, i.e. the global invariant cycle theorem holds.

Now we specialize to the case K* = IC%, noting (in light of Remark
3.2(ii)) that we can relax the hypotheses on f, X', S somewhat if we ignore the
hard Lefschetz statements. By considering that IC%|xsm = Qusm[n + 1] on
the smooth part of X (to get the degrees right), one arrives at identifications
HE (X, ICS,) = LX), HY(X,,ICY,) = HY1ERAICS) = THE(Xy),
and Hy (X,1C%) = H*"' (1) RfICY,) = HET"(X,). Accordingly we write

IHE;"; ‘= im {IHI;*'”(XA) — IHk"'”(XA)} = H;fh,a(IC:Y)a (5.5)
and note that there are morphisms (of MHS) from H*t"(X,) = H*" (X, ) [resp.

HIM(Xp) 2 Hygaa(Xo)(—n — 1), HE = im{H,_2(Xo)(—n — 1) &
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H" K (X )} to THE (X)) [resp. THE (X)), IH’;;{ "], which in general are neither
injective nor surjective. ’ As the restriction of IC% toafiber X, over p € U is IC;(P [1],

we also write VK acs,) = H]}J“", and

IHk+n = wt]*IH.];j_n Hk(XGv p%IC ) Hl]m O‘(IC )

lim,o
HY = ¢ THYT = HE (X, P¢iICY) = Hyy, 5 (IC%,).
With this notation (and £ = k — n), (5.1)—(5.4) become
= TN (Xp) = Hf, a<Xz> B o (X > T () — - (5.6)
0 — IH} 2 (X)), (— n= IHk(XA) — ) Z L (xnT —0,
(5.7
H)K i HEEE k), THY ke % TR ), (5.8)

H* () = HOU, THY) @ (IH' (S, TH!,” )@@Itha}@Hz(U THI).  (5.9)

Note that ker(can) = IHﬁm,a (X,)T, and (5.6) splits at all but the THy;;, terms.

Remark 5.2 To compute IH*(XA) (say, for use in (5.7)) one needs to know Z71C%,
which was studied by Dimca and Saito in [26]. In general, Z* ICS( [—1]is perverse, and
there is amap ¢, : Qx, [n] — Z7ICS,[—1] with kernel PH=1Qx[n + 1] and cokernel
W,?H°Qux[n + 1]. If Qx[n + 1] (hence Qx, [n]) is perverse (e.g. if X has local
complete intersection singularities) then the kernel vanishes and [c¢,]: H k (Xy) —
IHF(XA) is injective on the top GrZV. (See also Example 3.4 and Remark 8.1.) If
Z;1C% [—1] = Qx, [n], then IC%, = Qx[n + 1] and one just uses (5.11) instead of
5.7).

If X is smooth, then IC%, = Qx[n + 1] and we simply replace IH resp. ZH  every-

where by H resp. H y, except for the parabolic cohomology group H!(S, Hl‘fl) in
(5.9). The rank of the latter may be computed by the Euler-Poincaré formula, which
reads

tk(H' (S, V) = >tk (Vy/VI7) = 4 (S) - tk(Vy) + h'(S) - k(Ve), (5.10)

geX

if V.=V, @V, is the splitting into fixed (constant) and variable parts for the local
system underlying a PVHS. Next, for the two exact sequences of MHS we have:

Theorem 5.3 For X smooth, the Clemens—Schmid sequence reads

0— B2 X0z, (<) B Hygn(Xo)(=n — ) Z B X0) = Al , (X0 — 0. (5.11)

7 One also has maps from H* (X4 ) — IH*(X4), but IH* (X ) is different from IH*(Xz) (e.g., when X'p
is smooth and X is not).
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while the vanishing cycle sequence is

0— HE

o = HY(Xo) S HE X)) S

Hiyn o (X)) > HiF — 0. (5.12)
Proof These follow directly from (5.6)—(5.7) since X, is a deformation retract of X'a.
O

Remark 5.4 One can actually prove (5.11) without invoking Theorem 3.1 using the
equivalence of (a) and (b) in Remark 5.1 (with K = Qx[n + 1]), together with C—-S
for semistable degenerations. If

Ya —— Xa

llf

A——A
T

is a semistable reduction (7 (¢) = ¢*), then (5.11) for g = Rg.Qy decomposes

JT finite

RfR7.Qy = Rm,Rg+Qy decomposes. Since Qy is adirect factor of R7,.Qy,
thls also decomposes, and so (5.11) holds for f. (In fact, this amounts to a direct proof
of the DT in this case.) We thank Saito for this remark; see also Remarks A.4(iii) in
his “Appendix”.

Finally, we record two important facts about the terms in the sequences (5.11)—
(5.12). For our purposes here sing(X, ) contains any “nonreduced” components of X,
(where ord(t) > 1).

Proposition 5.5 For X smooth and dgjng := dim(sing(X,)):
(1) H;’:h,o = ker(sp) = 8(HX-! (X,)) = im(qgy) is pure of weight k (and level

van,o

< k 2)and a dlrect summand of H* (Xs), and
(i) H Van o (Xt) (hence H ) is zero outside the range n — dying < k < n + dsing.

Proof (i) The MHS H; := Hy;—;+2(Xs)(—n — 1) has weights > k, while Hy :=
H*(X,) has weights < k. Therefore gy: H; — H is split and factors through
GrZVH1, which (with complexification dual to Gr%—k +2Hz’l_k"‘2(X¢,)(c =
H"" k42X Y@ - @ H" *21(X,)) has level < k — 2.

(i) As?¢;Qx[n+1]issupported onsing(X, ), its perversity implies the existence of a
stratification S, (dim Sq = ¢) such that the cohomology sheaves H/ (P ¢, Qx[n +

“S,,\S,Fl) vanish unless —dsing < j < —q. Hence in the hypercohomology

spectral sequence
Ey! =M (sing(Xo), H/ "¢ Quln + 1) = HH (X)),

all nonzero terms liein {i > 0, i +2j < 0, j > —djing}, 50 ELJ — 0 outside
_dsing <i +J = dsing- O
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Remark 5.6 More generally, part (ii) and (5.12) hold (for Hfan only) if & has local
complete intersection singularities since then Qy[n + 1] is still perverse. (Note that
dim(sing(X)) < dsing.) This is because the derivation of (5.1) made no use of the
Decomposition Theorem.

Corollary 5.7 If X is smooth, then Gr'% H* (X 5) = G HF (X)T> and Wy_1 H* (X ;) =
Wit HE (X6) e

6 Decomposition theorem over a curve (3): examples

If X is smooth and X,; has only isolated singularities (dsing = 0), then by Proposition
5.5(ii) the vanishing cycle sequence becomes

can

0— H"(Xo) = H\, (X)) T HL, (X)) S (X)X HT (X)) -0 (6.1)

van,o lim,o

with H*(X4) = Hl]i‘m’a (X;) in all other degrees (k # n, n + 1). In particular, T, = 1
on Hllfm,a (X;) for k # n, while Clemens—Schmid reduces to

lim,o lim,o (6.2)

0—>H'""' (X)) > Hyi1(Xo)(—n—1) > H'""\(X,) > H' (X,) = 0
and H"(Xq) = Hl! o (X)™.

These sequences are also valid when n = 1 and the curve X, has nonreduced com-

ponents: certainly H_1(Xy)(—2) HH 1(Xg) is zero and (assuming f connected)
T, = I on H{ and Hy_, which gives (6.2) hence (6.1).

We illustrate (6.1)—(6.2) for two simple examples, then relate Hy,y, to “tails” appear-
ing in the semistable reduction process.

Example 6.1 Let X —f> P! be a smooth minimal elliptic surface with section, and
singular fibers of types 2I;, I¢, II, and IV* (e.g., obtained from base-change and
quadratic twist of the elliptic modular surface for I'1(3)). These have m, = 1, 11,
1, resp. 7 components, with Hpﬁw = Q(—1)®me=D: and deg(H;’g) =502 1+

124+2+8 =2 = X K3. (Here Hlf’g is Deligne’s canonical extension of

'H;’O = R! f:le\, to IP!; see [30, §II1] for the contributions of the Kodaira singular
fiber types to its degree.) In (5.9), the end terms are generated by the class of the
(zero-) section and a fiber, while IHl(Pl,H;) has rank 4 hence Hodge numbers
(1,2, 1). (This rank comes either from Euler-Poincaré or from subtracting the Picard
rank p =2+ Y (my — 1) = 18 from 22.)

The Hodge-Deligne diagrams for the first three terms of (6.1) (n = 1) are well-
known for each of these four degenerations. We display them in Fig. 1, writing numbers
for hP-4 # 1, eigenvalues # 1 of T;* in braces, and N := log(T;").
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q
I ' (node) i i
/N
p

=1y =1y
IS

j ® 10
/\I N
L = {_1H {_1}

I (cusp) g ® g q®
{C ¢ 1%
S L e~ - SEELY LA
IV* (E ) (] Cle oi
6 {3 {C 3
L e~ S

Fig.1 Hodge-Deligne diagrams for Example 6.1

<{c6}+2{c3}+2{—1}>
N RAEHHEY /s

® 10

Fig.2 Hodge-Deligne diagrams for Example 6.2

Example 6.2 Let Xp —f> A be afamily of K 3 surfaces acquiring a single Eg singularity:
locally, f ~ x? + y> + z° + Axyz. Then all th,o are zero, and the first three terms
of (6.1) (n = 2) are displayed in Fig. 2.

If X4 is the (singular) base-change by > 9, then these terms are unchanged
except that the action of 7% trivializes — which means that (5.11) now fails. (As we
shall see explicitly in Example 7.1, Qx, [3] is not semisimple.) Of course (5.6)—(5.7)
still apply: in particular, IH2(X) = H?(Xo) ® Q(—1)®8 and Ith‘O = {0}.
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On the other hand, performing a weighted blow-up of f + t® = 0 at the origin
yields the semistable/slc model Y N A, with Yo = XoU € and Xo N E =: E. Here
E = {f =0} C P[1 :2:3]is an elliptic curve and the “tail” £ = {f +1® = 0} C
P[1:1:2: 3] adel Pezzo surface of degree 1 (p = 9). As we have seen in Example
2.2, the extension class of H2(Xo) by HY(E) in

0—> HY(E) —> H*(Yy) —» H*(Xo) ® H*(€) - H*(E) —> 0

(i.e.in H?(Xg)) can be nontorsion. However, that of ker(H2(§) — HZ2(E)) by H'(E)
is torsion due to the eigenspace decomposition under the original T** and the fact that
we have not altered Hﬁm in (6.2). This will change if we take a more general pullback
of the form

10 +asPz 4+ t*(as? +bay) + -+ x>+ ¥ + 2 + Axyz =0,

as then t — gt no longer induces an automorphism of H 2(5 , E).
We briefly explain how the relation between the “tail” (£, E) and the vanishing
cohomology generalizes for isolated singularities. Consider the scenario

(6.3)

5(005

where X, ), )2'0 are smooth, Xo = (f) is reduced and irreducible, p € sing(Xo) =
sing(X) is isolated, p is cyclic base-change and F is semistable ( = Yy SNCD).
First we look at the case of £, E irreducible and smooth:

Proposition 6.3 As a mixed Hodge structure, Hfan(X,) is the reduced cohomology
H*(E\E), and this vanishes for k # n.

Proof Applying ”¢; to the distinguished triangle in Df (%)

Cone(@)[~1] = Qxln + 11> R, Qyln + 11 5



Hodge theory of degenerations, (I): consequences... Page 190f48 71

yields a triangle in Df(Xo) with terms:

o ?¢p,Cone(a)[—1] = Z*Cone(a)[—1] = Cone(Z*Qx[n] — Rno*f*(@y[n])
= Cone(Qx,[n] = Rmo«Qy,lnl)
= (1p)xCone(Q[n] — RIT'Q¢[n])

using the fact that ”, () is an isomorphism;

o "¢ Qxln + 11 = ¢, Qx[n + 1]

since the base-change doesn’t affect the first vanishing cycle triangle; and

o "¢ R Qyln + 1] = R ¢ Qyln + 1] = Rmo Qe (—1)[n — 1]
= 1p«RTQe(=D[n — 1],

where we used the fact that 7 ¢, of the constant sheaf is Q(—1)[—2] at a node (Example
6.1). It is immediate that ¢, Q[ 4 1] is (1))« of

Cone(RT'Qg(—1)[-2] ® Q — RI'Qg)[n] ~ Cone(Q — RI'Qg\g)[n]
~ @ HM(E\E)[n — kl;

which being perverse must vanish outside degree 0. O

In the more general case where £ is a union of smooth {Ei}le, Hé‘an(X,) is still
0 for k # n by Proposition 5.5(ii), but H, (X;) is not as straightforward as in
Proposition 6.3. To see what one can say, write & := Xo, &1 = Nieri, &=
EN\WUjeo,...eni1€j)s

71K
gkl =Uicp,. .. a1 CUicp,.. o =: Y(gk]—> Yo,

[I|=k+1 [ =k+1

and u := dim(H},, (X;)) for the Milnor number.

Theorem 6.4 (i) The associated graded Gr¥ H" _(X,) is a subquotient of

° van
n

{H”’k(f,‘[k]) ® (H"*k(yg"]) ® I?*(IP”‘))} .
k=0

(i) p= (D" {~1+ X0, x(ED)}.
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Proof We shall see in Part II that for a semistable fiber at t = 0, P¢,Qy[n + 1] €
Perv(Yy) has terms in degrees (k — n =) 1 — n thru O with

e Q) ! = ZEN@_ Qi (—0) = ZQm ® H*(PY).

The rest of the proof of Proposition 6.3 is unchanged, and so 7¢;Qx[n + 1]is (1)«
of the MHS (H],,(X;) =)

H"{Cone(Q & RT' ?¢;Qy — RI'Q¢)}
= H"{RT Q¢ — RTQ, 1 ® H*PY > - — RTQym ® H*(P")}

= H"{RT Qg1 — RT Qg @ (RF@Yéu ® H*(P")) —

-+ = RTQgm & (RT Qi ® H*(P"))},

giving (i). This also shows that x (H;,(X;)) + 1 (= (=1)"u + 1) is given by

D EDHG®) = Dx v + x €y
k=0

=Y x(E) + D (=D ex (¥ + x (™)

i=1 k=1

=Y x(E,
i=1

which yields (ii). o

While H)', (X,) in our setting (6.3) can in general have weights from 0 to 2n, Theorem
6.4(i) makes it clear that the graded pieces are directly related to strata of the tail, while
(ii) is a close cousin of the theorem of A’Campo [1]. The proof of (i) actually yields a
more precise computation of Gr)¥ H  related to the “motivic Milnor fiber” of [25],
and which we shall use systematically in Part II.

Example 6.5 (see also [54, Sect. 6]) Suppose X has a Dolgachev singularity of type
Ei2,viz. f ~ x2+y3+z locally. Taking k = 42 yields (for X) r*2+x2+y3+z7 =0,
whose weighted blow-up produces a singular fiber X, U £ with X; N & = P! 5
P1, P2, Pe and X 6, &' having Ay singularities at py. After a toric resolution, we arrive
at the SSR Y, with £ = £ a K3 surface and &, ..., Ep toric Fanos; £ meets 5(0
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and each &;—p

.....

o

The other £ are all an or G, x A!, sohave x = 0, which yields = ¥ EH-1=

12; indeed, H2,(X,) is just H*(£}) = HZ(&) in this case. The moral is that toric
components of &£ arising from resolving canonical singularities (here the threefold
Al 4+ Ay + Ag singularities) won’t complicate the result much beyond the case of £

smooth. A general reason for this is given by Proposition 8.3 below.

We conclude by sketching a geometric application of the more general form (5.2)
of Clemens—Schmid, where K* is not IC%,. (Full details will appear elsewhere.)

Example 6.6 Let C* := ICS, (L) , where:
o X —f> IP’t1 is the minimal smooth compactification of the elliptic curve family

2 _ 2 i _ 2 .
w =tz(z—D(Ez+1)+1 WlthE—{O,i3ﬁ,OO},

e LU is the rank two local system on IP’%\{O, +1, oo} arising from relative H' of the
rational elliptic surface & — IP’% with fibers I» at =1 and I4 at 0, oo; and

o L:= 7*Lis the pullback local system on ) := X\7w~1(0, £1, co0) fi> X, where
x -5 P! is given by 7 (t, w, 2) := z.

Taking £ = 0 in (5.2), one checks that for 0 € £, gy = 0 and so

H%(X,,1C% (L)) S—f> HY, AC% @) = HA(SH (6.4)

lim,o

where S; := X, Xpl £ is a family of (smooth) surfaces over ]P’tl \ X introduced by Katz
[37].

Fort ¢ ¥, H2(S;) = IH!(X,, L) has rank 7 by Euler-Poincaré (5.10), with Hodge
numbers (2, 3, 2). Viewed as a weight-2 VHS on P!\ &, it has geometric monodromy
group G, as shown by an arithmetic argument in op. cit. and by a direct calculation
of the monodromies in [28], both quite painstaking. However, we can use (6.4) to
quickly deduce the Hodge-Deligne diagrams for Ht%(S,)nm,g (Fig. 3); in particular, at
o = 0 and oo this is much easier than using a smooth compactification of the family
of surfaces.
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Fig.3 Hodge—Deligne diagrams for Example 6.6

33

79 (L|y,)[1]. The LHS of (6.4) is thus H'(X,, j7Ll|y,), which is an extension of
H](f((,, p*‘]:iwn) (weight 2 and rank 3 by (5.10)) by Hl(Ep{,),wherep: f(o — X,
is the normalization and E,, is the fiber of £ over 7 (py ).

oc=0:Xy = U?:()Pi has type I¥, 5 P!’s with Py meeting each P; in a single node
pi. The divisor Z = X'\ Y contains {Pi}?: 1> and has additional components meeting
(P4, at {gi}t,. So H™'TEKe is jOL| Po\(pi1?, On Po and Q(0) on the (P,
while HOZFK* is 17 Q(—1) on the {P;}}_,. Conclude that H'(Xo, H™'ZK®) = 0
by Mayer-Vietoris and (5.10), so that LHS(6.4) = H%(Xo, H'Z;K*) = Q(—1)®.
(The key observation here was that the pullback of a unipotent degeneration of weight
1 rank 2 HS by (x, y) + xy has local IH! = Q(—1), cf. (10.3)~(10.4).)

0= : X = U?:] Q; has type IV, 5 concurrent P!’s meeting at pso. One finds
0o,NZ = {pé, p’i, pi_l, Poo} fori = 1,2, while Z contains Q3 and another component

o =+-2_ : X, has Kodaira type Ij, with node p, € Y, EIN Xy, and ZXK® =

meeting it in a node g. Therefore H’II;‘OIC' is ]fO]I:|Ql.my on Q1, Q», and Q(0) on
Q3; whereas HOHf;OIC' is just 12Q(—1) on Q3. One gets a sequence

0= H'(Xoo. H7ITEK®) — LHS(6.4) — H'(Xoo, HTEK®) B H2(X oo, H'TEK®) — 0 (6.5)

with d> an isomorphism and first term Q(0).

To get ker(N) (instead of ker(7, — I)) at 0 and oo, one performs a base-change
by r — 2 [resp. 3] followed by a proper modification to replace X [resp. Xo] by a
smooth elliptic curve. The computations then proceed as above.

7 Decomposition theorem for an isolated singularity

Let X = X be the resolution of an isolated singularity p < Xwith exceptional divisor
& (not assumed smooth or normal-crossings). With d := dim(X), (3.1) specializes to

R7.Qgld] = 1Cy @1, (@ V/[-i1), (7.1)
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where the stalk cohomologies of the intersection complex H/ (*IC%) [resp. H™ JG'1Cs ]
vanish for j > 0. Writing Nz for the preimage of a ball about p, we apply H/ o 1*
[resp. H /o 1'1t0 (7.1) to find
vie [HTWe). i>0 L[ HYE), >0 72)
T HIT W), i <0 T | Hami(E)(=d), i <0. '

The hard Lefschetz property V=i(— j) = Vi (as‘ Q-MHS) therefore reads
Hyyj(&)(—=d—)) = H?*J (&), which implies that the V? are all pure.

Example 7.1 Specialize the scenario (6.3) to f a family of elliptic curves with cuspidal
(type IT) fiber Xo, and ¥ = 6. The local equation of X at p is then x24y3 4154,
i.e. an Eg (simple elliptic) singularity, with Xo = P! and £ a CM elliptic curve. We
have Rm,Qy[2] >~ ICS & 1+Q(—1) and a short-exact sequence

0 — 1,H' () - Qx[2] — IC% — 0 (7.3)

in Perv(X), which we claim is not split. (Hence, as remarked in Example 3.4, the DT
for f does not apply to X°* = Qx[2].)
Indeed, were (7.3) split, Qx[2] would be semisimple hence (as in §4)

P Qx[2] = im(can) ® ker(var) = im(” v, Qx[2]) ® ker(T® — 1),

where everything is supported on p. But T acts trivially (since the eigenvalues of
T are ;“gtl, cf. Example 6.1), while can is onto, a contradiction. (Alternatively, one
could take the long-exact hypercohomology sequence of (7.3) and observe that the
connecting homomorphism § : IH' (X) = H™'(IC}) — H'(€) is an isomorphism in
view of (5.7).)

More generally, the argument shows that sequences like (7.3) are non-split if the
order of a nontrivial eigenvalue of Ty divides the base-change exponent « . In particular,
this applies to the sequence 0 — 1, H>(E\E) — Qx[3] — IC5 — 0 implicit in
Example 6.2. Since the DT then applies only to IC%. (not Qx[n + 1]), we have only
(5.7) (and not (5.11)) for X.

As an immediate consequence of (7.1)—(7.2), we find that
H*(X) —» HXE) for k>d. (7.4)

Now suppose that X = X appears as the singular fiber in a family X — A with
n = d and X smooth (and write £ C f(o % X for the exceptional divisor) Fork < n,
the Clemens—Schmid and vanishing cycle sequences give H k(Xo) = hm x)HT =

hm (X:), which is pure since T acts by the identity. So for 1 < k < n, in the exact
sequence

S H'(Xo) S HYU(Xo) 5 BN S HE(XG) —
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purity of H*(Xp) = 1=0 = 13 surjective; therefore
H*(Xo) - H*() for k<n—2 and k>n. (7.5)

Of course, our assumption implies that p is a hypersurface singularity, so that Qx, [d]
is perverse; (7.5) can then also be derived from the resulting exact sequence 0 —
1.W — Qx,[n] — IC;(0 — 0 (in fact, we only need an isolated l.c.i. singularity
here). The Clemens—Schmid and vanishing cycle sequences’ real strength is in using
the smooth fibers’ cohomology to further constrain those of X¢ and £.

8 Cyclic base-change and quotients

We return to a scenario analogous to (6.3), but where the singularities need not be
isolated. Begin with a flat projective family f : X’ — A with & := sing(X()) 2
sing(X) (= (A% = X'\ X{, smooth), and recall that for us X(; = UD; is the
reduction of the divisor (f) = Y «; Dj, ki € Z>(. For lack of a less self-contradictory
terminology, we shall say that X’ has reduced special fiber if all k; = 1; this implies
in particular that X{, is Cartier.

Letg : X” — Abeasecond family with a finite surjective morphism p : X" — X’
over a cyclic quotient 7 — *; and fix log resolutions ), V" of (X", X)), (X", X{))
to have a diagram

Yé C y/ ' X/ X// " y// ») Yé/ (81)

N kT

A<——A

Writing X', ), etc. when we want to make a statement independent of the decoration,
we assume that the log resolutions 7 are isomorphisms off X and write Yo = XoUE.
Denote the monodromies by T’ := Ty = T§%™0 and T" = T¥.

8.1 Cyclic base-change
An important special case of (8.1) is where:

e p is the base-change, so that X{, = X =: Xo;
e )" is the semi-stable reduction of X" (so x must satisfy (7;*)“ = I); and
e X’ (hence X) has reduced special divisor.

In this case the SNCD Y, = f(o U &, with )N(o —» X birational. When X (= X’ or
X' is not smooth (though we continue to assume X'\ X smooth), we would first like
to “quantify” the failure of the local invariant cycle theorem for X'.
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Begin with the diagram of split short-exact sequences

0 0

TH}, (Y) ;* H*(Xo) g H, (Yo)
N LN s
THF () H*(Yo)
\ /
Hl]i{m(Yt)T

0/ \0

where & <& & —ﬁ> Yo K8 Xo and )F/\;‘ is induced by Qx[n + 1] — ICS,. By the
decomposition theorem for ) — X, the curved arrows are split injections as well.
Clearly then

Hy (X0) 1= 797 (HE, (0 ) = 007" (Hpy(Y0)
and
H (Xo) = H(X0)/HY (Xo) = im {Hk (Xo) 28 H{fm(x,)T} 8.2)

are independent of choices (of whether X = X’ or X", and of V).
Remark 8.1 Since IHI’;h(X) =IH*(xX) N th(Yo) c H*(1y),
TH*(X) = THE, (X) @ Hy, (X0)T
) ! I

H¥(Yo) = HJ, (Yo) @ Hifp, (X0)T

exhibits the MHS TH*(X) as a “lower bound” on the cohomology of any resolution.

On the other hand, the monodromy invariants Hlli‘m (X,)T are certainly not independent
of the choice of X', and so the cokernel of sp in (8.2) cannot be. In view of the exact
sequence

— HYXo) — H*(Yo) @ HYE) =% HFE) S B (Xp) —
we COmpute
coker (Hk(Xo) > H{;m(x,)T) — coker (ﬁk(xo) 7 ﬁk(yo))

- _ HYO) & ke .k
= ker {Q*Hk(E)Jrﬁ*th(Yo) S H (Xo)} — H©). (8.3)
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Accordingly, the replacement for Clemens—Schmid in this general context becomes
—k k T —k
0— H (Xo) - Hj,, (X)) — H (§) — 0. 8.4)

Specializing a bit more, suppose the pre-base-change family A’ is smooth: then
IHF(X") = H*(Xo) itself is the “lower bound” for H*(Y})), and " (&) = {0}. Since
V" — X'is a proper morphism between equidimensional smooth manifolds (cf. [81]),
we have (H¥(X"") = H*(Xo) =) H*(X") — H*()") which yields

HXo) — MHYAX") — HNY))
l [ I

HY (Xo) < THS(X") —  HE (YY) (8.5)
@ &) @

HE (X0T — HE (X" = HE (X)T0

(where ()70 = ker(Np)) and
H (") = HE (X)) JHE (X)), (8.6)

So while (by Corrollary 5.7) Gr!Y rand Wiy of H k(Xo) and H,
false in general if we replace Ty by T} .

hm(Xt)TO agree, this is

8.2 Cyclic quotient singularities

Rather than obtaining X" from X”, we may wish to define X’ := X" /G, where
G = (g) = Z/«Z acts nontrivially on Xg. In this case, X’ will essentially never
be smooth or have reduced special fiber. Nevertheless, it is always true (no need to
assume X" smooth; cf. [11, Th. I11.7.2]) that

~

H*(Xy) = H* (X)) = H* (X% = H*(X{)C. (8.7)

We have g* € Aut(H*(X”)) T' e Aut(Hj (X)), T" e Aut(Hj (X)), and

Hp (X)) = Hj} (X]) =: H. One may perhaps know g* and 7", and wish to
determine T': for instance, if the quotient has been used to form a singularity of
higher index (on X{)) from one of index 1 (on X{)). To that end we have the following

PropOSItlon 8.2 T’ extends the action ofg onim{H*(X{) — H} } = H*(X ) to

all of H;} . In particular, we have H Xy = ( hm)T NH (X”) and so the local
invariant cycle theorem holds for X' if it holds for X"

Proof If we analytically continue a basis {C;} C H.(X]) to Hy (X A ' ), then writing
g(Cy) (call this g4) in terms of these translates is just g, on the ¢ global” cycles and
corresponds to clockwise monodromy “downstairs” (in ). The local-system mon-
odromy T’ on cohomology is the transpose of the latter (cf. [27]): so T’ =g, = g*,

and g*|ﬁ*(xg) =g* O



Hodge theory of degenerations, (I): consequences... Page 27 of 48 71

Now suppose X is smooth. Since Clemens—Schmid (5.11) holds for X", taking G-
invariant parts exactly gives

_ sp” pxogyop™
0— H 27, (=D B Hyygn (X)) (—n — 1) 72

f HRx() Z HE (x)T0 - 0, (8.8)
since ((Hfi‘m)Tg )6 = (Hﬁ‘m)TO. (As quotient singularities, those of X’ are rational [44],
but the results of Sect. 9 for rational singularities are weaker than this.) Further, it is
often possible to deduce 7"’ from g* and 7" in this case. The action of 7" = (T*)* e
on Hjj  extends to one of sl x ((75*)), compatibly with the Deligne bigrading
Hl?m,(C = @p,q(H )P 9. Accordingly, it suffices to determine the choice of kM root T’
of T" on ker(No) C Hyf,. That of T” (resp. T") decomposes ker(No) = @pen Wkeam"
(resp. GBZENV;B"Z) over Q, where det{(Al — (T§*))|w,} (resp. det{(Al — T5%)|v,})
is the k™ (resp. 1) cyclotomic polynomial, and so the issue is to compute the {rn}
given {my). The point here is that since H (X{) = (H5 )T = W™, g* determines
the ny for all £|k, and one can sometimes deduce the others from the formula V, =
Wf;éff))/ /D) For instance, if k |k then the only possibility is Wkea = Vgimk/ “.
Conversely, this puts constraints on the set of Z/«xZ by which one can even consider
taking cyclic quotients.

8.3 Relative quotients

0
A more general quotient scenario is where G — Z/k7Z; in §1.7.2, 6 was an isomor-
phism. Now we consider the opposite extreme, where x = 1. More precisely, let

X’ —f> A be flat, projective, and smooth over A*, with X, = D, U Dy, generically a
reduced NCD along D,; = D, U Dj,. Suppose that each x € X, has a neighborhood
V arising as a finite group quotient

~ ~ ~ G
muwzyﬂmSV—%»vék%mznuw

s =fly

A

of a semistable degeneration % /A. Then the vanishing cycles of f behave exactly as
in a SSD:

Proposition 8.3 In this situation, P ¢ ;Qx = Qp,, (—1)[-2].

Proof Working locally, since 7 is G-invariant

PoQy = P (Rp:Qp)% = (P Rp.Qy)¢ = (Rp. Q)
= (Rp:Qy,, (=D[-2)¢ = Qy,, (~D[-2],

where V,;, denotes V, NV}, etc. O
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Remark 8.4 The above scenario arises frequently via weighted blow-ups: typically one
has

X'C—— Bl, (A""?) = Py

g w’”

~~~~~ Xn+1
p
o>t
A
where X has a singularity at 0 arising from cyclic base-change, w = (1, wy, ..., Wy+1)
and ¥,, = fan{eg,eq,...,e,11,€0 + Zl'-’:]l wie;}. (In particular, Proposition 8.3

explains Example 6.5, which will be generalized in Part II.) The exceptional divisor
of Bis WP(w) = Py, , with £,, = fan{ey, ..., e,11, — > 12| wie; ) the image of %,
under the projection ey — — Y wje;; the proper transform of =10 is Ps, (= Antlhy
where ¥o = fan{ey, ..., ¢,4+1}. Assuming that X’ meets Py, with multiplicity 1 (so
D, = X' NPy, and Dy = X" N Pyx), it will suffice to exhibit Piw locally as a finite

quotient of A”*2 not branched along Py, or Px,.

Writing o; := ]R>o(eo, ey CiyeyCnyl, €0+ Z;’:ll w;e;) and N; = Zleg, ...,
€iy...yslnil,e0 + Z - w,e,) set U; := Spec((C[y"ﬂZHz]) and U; = Spec
l
((C[)_c"imNi]) = AZ(')“E_’MHI (where u; = x;"",and uj = xju; "I for j # i). The natu-

ral, generically w, 1 morphism U; 5 U; is the quotient by Z/w;Z > 1 — {u; —

Cw;li, Uj —> fwl uj (j # i)}. Since wop = 1 we gett = xg = Ou, = uou; (as a
function) so that 7; is not branched along Pz, or P, and 5| 0 = t|U o7, = pofor;
(as a mapping) is a SSD as desired. Note that this exhibits the singularity type in U;

(at the origin) as L(1 —1,—wy, ..., Wi, ..., —wyyt1); while if the proper transform
of X’ passes through apoint with u; = 0 for k # j, the quotient yields a point of type
m(l w1,...,w,-,...,wj, .y —Wyy1) on X7,

Example 8.5 So in Example 6.5, w = (1, 6, 14, 21) yields points of type %(1, —-1,1),
$(1,=1,1), 7(1,—=1,1) on X”, which become 3(1, —1), $(1, =1), 7(1, —1) (i.e.
Ay, Ay, Ag) on D, and Dy.

9 Singularities of the minimal model program

Let X be a projective variety with resolution X 5 X, and extend this® to a cubical
hyperresolution €® : X* — X [64].

Definition 9.1 (i) X has rational singularities <= Oy 3 Re, Oy

8 Note that typically X is only a connected component of X 0,



Hodge theory of degenerations, (I): consequences... Page290f48 71

(ii) X has du Bois singularities <= Ox — Re®Oxs.

In general we have Gr?,Hk(X) ~ HF(X, Re;Oxe), so that if X is du Bois then
Gr(I), H*(X) = H*(Oy). This last isomorphism clearly also holds if X has rational
singularities: since Ox — Re.Oy always factors through Ref Ox., we geta diagram

HYO3)
% — Ts \
H¥(X, C) H*(Ox) — 2> HE(X, ResOxs)

(*)i /

Gr). H¥ (X, C)

forcing (x) to be injective and surjective. With more work [47], one can show that
rational singularities are in fact du Bois.

Now consider a flat projective family f : X — A, with X\ Xg smooth and Y Sx
a log-resolution of (X, Xo) (i.e. ) smooth, Yy = n’l(Xo) SNCD) restricting to

~

an isomorphism Y\Yy = A\ Xo. We shall assume that 7 extends to a morphism
7w Y — X of projective Varieties_(y smooth, = off X)), and that f is also extendable
to an algebraic morphism (from X’ to a curve).

Proposition 9.2 If X' has rational singularities, then sp induces isomorphisms
Gl H* (Xo) = Gri Hfy (X010
forall k.

Proof Wehave Gr% Hlli‘m (X,)TOSS = Gr% Hlli‘m (Xp)To é% Gr% H¥(Yp), since ) is smooth

and level(Hé‘h(Yo)) < k — 2. Taking Glr(l)7 of the Mayer-Vietoris sequence (cf. [64,
Theorem 5.35])

— HY(X) - H*(V) @ H*(Xo) — H*(Yo) —
and using that X is (rational = ) du Bois yields

— H"(O3) - H*(Oy) @ G H*(Xo) — Gr H* (Yp) — .

Now 0 > R0y = H"(Oy) 3 HY(Oy) = Gr) H"(X0) = G H* (Yy)
gives the result. O

We next make use of an “inversion of adjunction” result of Schwede [71], that when
a Cartier divisor (with smooth complement) is du Bois, the ambient variety has only
rational singularities. However, this requires us to place an additional constraint on X’
to ensure that X is Cartier and remains so after base-change.
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Theorem 9.3 If X has du Bois singularities, and X has reduced special fiber (i.e.
(f) = Xo), then

Grh H*(Xo) = Gth. HE (x)T0" = Gr'% HE (X,) (Vk). 9.1)

Proof Obviously X" has rational singularities by [op. cit.], but this also applies to any
finite base-change. So taking X’ = X in the setting of Sect. 8.1, Proposition 9.2
applies in addition to X/, whose T” = T is unipotent. ]

Remark 9.4 If X is smooth, then (regardless of whether (f) = X() one can show that
X is du Bois iff Ox, — Rz%0y, [71].

Example 9.5 To see the necessity of the (f) = Xo requirement in Theorem 9.3, con-
sider a smooth X with elliptic fibers over A* and X a Kodaira type IV* (“Eg”) fiber.
Then (f) = 3D1+2(D2+ D3)+(Ds+ D5+ D) # Y_; Di = Xo; and sure enough,
the conclusion of Theorem 9.3 fails (cf. Example 6.1).

Example 9.6 Assume E = { p} is an isolated quasi- homogeneous smgulanty of type
(f MF = x>+ y> + 25+ axyz (Eg)resp G = x> + > + 7% (Ni). In the
first case, X is du Bois. As we can see from Example 6.2, the discrepancy between
H2(X0) = Hhm(X,)TO and Hl%m(X,)TO6 = ker(Np) consists of 8 (1, 1) classes, and
neither differ from Hj (X,) on Gr%. Any base-change F + " defines a rational
3-fold singularity, since (as one deduces from the absence of integral interior points
in the convex hull of {(2, 0, 0), (0, 3, 0), (0,0, 6), (0, 0, 0)}) the exceptional divisor
& of the weighted blow-up has Q%(&) = {0}.

In the second case (where Ty = TO“) H?(E) has Hodge numbers (1, 14, 1), so that
GrY of H*(Xo) = HZ. (X,)™ and HZ, (X,) differ by 1. The point is that (while X is
smooth) X is not du Bois and neither is (say) G + 10: 50 in particular, X will not
have rational singularities.

. . o €
Returning to our resolution X — X, assume now?

e X is normal (smooth in codim. 1, and satisfies S7)

o X is Q-Gorenstein (K is QQ-Cartier)
and write K = e*Kx + Y, m; E; (E; exceptional prime divisors).
Definition 9.7 X has terminal (resp. canonical, log-terminal, log-canonical) singu-
larities <= all m; are > O (resp. > 0, > —1,> —1).
A larger class of singularities is obtained by dropping the “smooth in codimension 1”
part of normality:

Definition 9.8 Assume X satisfies S, and is Q-Gorenstein, and has only normal-
crossing singularities in codimension 1. Let X — X be the normalization and D

the conductor (inverse image of the normal-crossing locus); let Y5 Xbea log-
resolution of (X D) Then X has semi- log canomcal (slc) singularities <= the
>—linK; + 7, 1D = 7*(K ¢ + D) + >oim E; (E; exceptional).

9 Serre’s condition S is “algebraic Hartogs™: given any Z C X of codim.> 2, jxOx\z = Ox; so it easily
follows that normality is equivalent to 6O = Oyx.
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We have two related “inversion of adjunction” results here [36,44]: if a Cartier divisor
with smooth complement in a normal, Q-Gorenstein variety is log-terminal (resp.
slc), then the ambient variety has only terminal (resp. canonical) singularities. In
addition, we know that log-terminal (resp. slc) singularities are rational (resp. du
Bois) [40,46,47]. Thus we arrive at the following

Corollary 9.9 Assume our family f : X — A has normal, Q-Gorenstein total space,
and reduced special fiber Xj.

(1) If Xo is slc, then (9.1) holds.
(i) If Xo is log-terminal, (9.1) holds and Wk_lGr(}Hl]i‘m(Xt) = {0}.

Proof For (ii), Gr% H*(X¢) = H*(Ox,) (since X is du Bois) and Gr% H*(X) =
Hk ((9)}0), where H* (f(o) is pure of weight k. Since X has rational singularities,

H"(Ox,) = HY(Og,). o

We can think of (i) in terms of Hodge-Deligne numbers as saying that

R*(X0)P 4 = bt (X)P? for p-q =0,
and (ii) as saying that moreover both are zero for (p, g) = (r, 0) or (0, r) with r # k.
In the log-terminal case, we have

GrpHff (X)) = GrpHf (X)™ 9.2)

by (ii), which might kindle hopes that perhaps this equals Gr lF H*(X¢). Unfortunately,
nothing quite this strong is true at any level of generality one can specify in terms of
the singularity types described above: for n = 3, the nicest such scenario would be
where X is smooth and X( has Gorenstein terminal ( < isolated compound du
Val) singularities.

Example 9.10 Such a singularity is given locally by f ~ x>+ y? +zw*+z2w? +z*w,
whose contribution to Hﬁm (Xo) has nontrivial (1, 1) and (1, 2) parts, with neither part
TS-invariant hence neither appearing in H>(X(). This assertion will be justified in
Part II.

In any case, here is something one can say:

Theorem 9.11 If X is log-terminal (or more generally, has rational singularities),'°
and X is smooth, then Gry. H*(X¢) = GrL.(HF_ (X)),

Proof Begin by observing that under the duality functor D on MHM we have DQ y [n+
1] = Qx[n + 1](n + 1) hence (on Xo)

DP¢4Quln + 1] = P¢"Quln + 111 + 1) 9.3)

10" we emphasize that we do not assume isolated singularities here.
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by [67, (2.6.2)]. Since H/~" (X, P¢4Qux[n + 1]) = Hin(X)T" by definition, and

H/™"(Xo, DP¢%Quxn + 11) = H" ™/ (Xo, "¢ Qx[n + 11)"
= (HZ T (X)),

van
taking the direct image of (9.3) by X¢ — pt induces (V] € Z) a perfect pairing

H (X)) x HZ=I(X)™" — Q(—n — 1). 9.4)

In particular, F" Vifln j (X)T” is dual to H. an(X,)TSS/FZ in (9.4).
Now recall that X has (not necessarily isolated) rational singularities, and X is
smooth. By a result of Saito [69, Theorems 0.4-0.6], we therefore have

(F"¢4Quln+ 1) S) F"("¢;Quln + 1) = (0}, ©.5)

where Qx[n + 1] is interpreted as a MHM and F" is F_,, in op. cit. Again taking
H"~J of the direct image, we conclude (V) € Z) that F" H Vzaﬁ, J (X)T" = {0} hence
ijan X)T" = F? HJan X)), Taking Gr}p of the T%5-invariant part of the vanishing
cycle sequence (1.3), the result follows. O

Remark 9.12 (i) The main issue dealt with in Theorem 9.11 is the vanishing of the
(1, k—1) partof H kh (X0). Indeed, one reduces to this statement as follows: taking

T*S-invariants of (9.2) gives Gr! F hm (X,)T >~ Grl F hm (X)T; while applying
C-S for X smooth (Theorem 5.3) yields GrFHhm(X,)T = sp(GrFHk(Xo)), and
ker{sp : H*(Xo) — H}_(X;)} = 8(HX,1(X,)) has pure weight k by Proposition
5.5.

(i1) According to Saito [70], for X¢ du Bois [resp. rational], the conclusions of Theorem
9.3 and Corrollary 9.9(i) [resp. Corrollary 9.9(ii) and Theorem 9.11] hold if we
assume X is smooth Kéhler, f is proper, and X is reduced — in particular, one
need not assume that f extends to an algebraic morphism (or that X’ extends to a
projective variety).

(iii) The result of Theorem 9.3 also holds for X a complex analytic space (neither
smooth nor extendable-to-algebraic) provided we assume that X'\ X is smooth, f
is projective and X is a reduced and irreducible divisor with rational singularities
[42].

One can say quite a bit more with the aid of spectra, especially in the case of isolated
singularities. For example, in Part I we will show that when &’ is smooth and X has

isolated k-log-canonical singularities in the sense of [63], one has Grf,H k (Xp) =
GrF (Xy)forj=0,...,k.

11m
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10 Decomposition theorem over a polydisk

We conclude by elaborating the consequences of Theorem 3.1 for the simplest multi-
parameter setting of all. Let f : X — A’ be a projective map of relative dimension
n, equisingular!! over (A*)" and each “coordinate (A*)F”; and take K® = IC®,. For
notation we shall use:

s1, ..., s, for the disk coordinates;
Uyry [resp. Sy ] for the coordinate (A*)" M1 [resp. A""HI where s; = 0 (Vi € I);
A" (l—“ S = U|1|:CS{1} <j—“ Uirj=cUiny =: Ue; and

Uin=c{fip} == f2 0 &2 — Uc resp. Xc ? S, for restrictions of f.

In (3.1), Zj(=r—c) is replaced by S, and the pure weight-(j + n + ¢) VHS V{_C
over U, is rewritten H{.+"+C (restricting to Hf;gnﬂ on each Uy with |I] = c). For
¢ =0, we write H/ 1" := HH" with fibers TH/*(X,) (s € (A*)") and monodromies

Ti,...,T,.Forc =1, the H{lJ}r”Jr] are the phantom IH’s of fibers of f{‘l’.}.

Remark 10.1 When X is smooth, K* = Q x[n +r], and the H£+n+c are (pure) sub-
VMHS of R-/+"+C(fC°)*QX(9, with H/ ™" = R/ (fd))*(@?fé’-

With this indexing by codimension, the terms of (3.1) become

PRI FICY = @il jCHI I — e, (10.1)
so that
IH" (X) = H"™"""(A", RfIC%)
=@, JH" "= (S, ") (10.2)
= @, IH'(Se. HI )
where £ := m — (j +n + o). There are two things to note here: first, that!?

HY(S,, H'Y) = @)1=.IH (S|1), H{I}_ ) = @®11=cIH (H{I} )o are really just sums
of local IH groups at 0. These are naturally endowed with mixed Hodge structures

by setting H{I} lim = (]_[”H %})H{I} (or just Hyf = v - - Y, H* for ¢ = 0) and
defining Koszul complexes .%"* (H; ,}) by

Hitim = @j¢rNiH{ 1im (D = @j1<jog1 Njy NjyHip) jim (=2) — -+ 5(10.3)
then (as MHSs)

TH (H{;))o = H (7 (Hi;) ¢ (10.4)

1 More precisely, we assume that the restrictions of R! f*IC:YQ to Uyyy are local systems (Vi, I).
12 For simplicity, we write this as IH{{(HC’"_Z)Q below; this notation means the stalk cohomology
HE-rte i]f* (H" [+ — ¢]), not the (costalk) cohomology with support at 0.
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where Gj is the (finite) group generated by the {TJ‘?S} jer [13,38]. We shall

* —
c

write H>{k1},inv = IHO(H?‘I})Q for the {7} ;¢-invariants in HTI},lim’ and H
69|1|:CHE‘1},inV. Obviously, (10.4) vanishes for £ > max{r — |I| — 1, 0}.
Second, the hard Lefschetz isomorphisms (3.2) take the form

Jnv T

—Jj+n+c .
Hc (_

7 E) Hg+n+c

b

so that HY is centered about * = n + ¢. Since it is zero for * > 2n, it is also zero for
* < 2c. Taking stock of these vanishings, (10.2) becomes

min(r, [ 5 |)

H"(X) = @y e O (S, H Y, (10.5)

Now we introduce two filtrations: the coniveau filtration (by codimension of sup-
port) is just

min(r, | %))

:/VaIHm(X) . 65121:218(0,"—6—1) IH/Z (S, Hzn—lf); (10.6)
while the shifted perverse Leray filtration £* := P L% is given (cf. (3.4)—(3.5)) by

in(r,| 5 ) —c— _
LUH"(X) = gy 2 @O TS, HE ). (10.7)

{=max(a¢—c,0)

The following is essentially a special case of [20]:
Proposition 10.2 2% is the kernel of restriction to f~1(A), where A C A’ is a
general affine' slice of codimension « — 1; and N® C L.

Proof The restrictions
HY (S, H" %) — IHYS, N A% H =Y (10.8)

are either injective or zero. Here the target is computed by a Cech-Koszul double
complex, which has the N, --- Nj, Hﬁgrﬁ(—ﬁ) terms required if and only if Sc1¢ N
A%~ is nonempty. So (10.8) is zero <= £ > a — c (as required).

The inclusion A% C £* is now geometrically obvious, though it also follows
directly from (10.6)-(10.7) byc > o =— o —c>0 = max(e —c,0) >0. O
Taken together, these filtrations endow every term in the double sum (10.5) with
geometric meaning: from (10.6) and (10.7) we have Gr%, = GBZ‘IOIH’Z(Hz__éZ )o and
GriVIH’" (X) = E{B?Zag(rfﬁil’o)IHZ (HZ’_Z)Q, whereupon

H (H" %) = GrchrC/IH’" (X). (10.9)

Recalling that X1 = f -1 ({s1 - - - s, = 0}), we also obtain a generalization of (part of)
the Clemens—Schmid sequence:

13 More precisely, we mean the intersection of « — 1 hypersurfaces of the form L(s) = K, where L is a
linear form and K a sufficiently small nonzero constant.
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Theorem 10.3 The sequence of MHS

TH™(X)

0

lim

IHY, (X) — X)) — 0  (10.10)

is exact.
Proof Actually more is true: IH” (X) is the direct sum of A4 'TH"(X) = image
{IH’" (X) — IH™(X)}and Gr° IH"™ (X) = @] _IH"~! (H"~*)g, with IHO(H™)o =

Ti,..., T,
1nv (Hhm) ! " |

For the remainder of the section, we assume that X is smooth, so that (10.10)
becomes!*

* Xl
"xo'* H™(Xo) e
HY (X) = —— 2
&) IH (H"=%)g

y (Xs) — 0. (10.11)

11’1V

(Note that we are not assuming unipotent monodromies.) It is instructive to write out
the decomposition (10.5) in detail for small 7:

o (r=1)H"(Xo) = H & H}
\/-f

inv
#1
gz

——
o (r=2)H"(Xo) = HI" & TH' (K" @ H',\ & HY

mnv

gl
32
e S PN T
—3) H™(X, H3
o (r ) ( 0) mvea{ @Hl 'inv @ H! (Hm 1) @Hz inv 69\/3-/
3

&1
in which H} = 0 for % < 2¢ — I (and H7 is the phantom cohomology in codimension
1). By Proposition 10.2, #! is the kernel of the restriction to a nearby fiber X s (i.e.of
sp), .£? of the restriction to a nearby affine line (meeting all coordinate hyperplanes),
and so on.
Finally, here are a few examples which illustrate the r = 2 scenario (and which all
happen to have unipotent monodromy):

Example 10.4 Let C — A? be a family of curves with smooth total space. Then
H'(Cy) = H! and H*(Cp) = H2 (= Q(-1)) & IHO(H ) @ H1 ;.- The simplest

mv mv
example with IH!-term nonzero is when C is a family of elliptic curves with I;-fibers
on {0} x A*UA* x {0} (with equal monodromies N; = N,) and I»-fiber at O (cf. [48]);
then H? = 0 and H?(Cp) = Q(—1)®2. For instance, if we base-change a 1-variable I

14 Alternatively one can move the denominator of the middle term to the right-hand term as a direct
summand.
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degeneration by (s, s2) — 5152, the nonvanishing of IH' (/') simply indicates that
without blowing up, we have a singular total space.

Example 10.5 Abramovich and Karu [3] defined a notion of semistable degenerations
in more than one parameter; these are characterized by having (i) smooth total space
(so that (10.11) applies) and (ii) local structure of a fiber product of SSDs along the
coordinate hyperplanes. (In particular, they have unipotent monodromies.) An easy

case is that of an “exterior product” of 1-variable SSDs: for instance, let £ LA
be a semistable degeneration of elliptic curves with I; singular fiber, so that X' :=

ExE 878 A x A has fibers E;, x Ey,. (Locally this takes the form s1 = xy, s = zw.)
Regardless of k, we have IH'(H*) = 0. For k = 1, the Hyy and H>{k12} all

vanish, so that H" (Xp) = i’;’V in all degrees. However, when k = 2, we have
>{ki},inv = HITIQZ(ES)(—I), and H>{k12} = H**(pt.)(—2); the reader may check that
HY @ H?’i}’im, &) H?’é},inv @ Hﬁz} correctly computes H™ (Ey x Ejg).

Example 10.6 Mirror symmetry allows for the computation of (unipotent) mon-
odromies T; = i of families of CY toric hypersurfaces X s C Pin the “large complex
structure limit”. In particular, [49, §8.3] and [31] study two distinct 2-parameter fam-
ilies of h%! = 2 CY 3-folds over (A*)? with Hodge-Tate LMHS H  at the origin.
The notation (IV | IV, | Illp) for the first family and (Il | IV, | ) for the second
indicates the LMHS types corresponding to Ny (on {0} x A*), N; + N; (at {0}), and
N> (on A* x {0}). These types are described by their Hodge-Deligne diagrams:

q

I,

3. = Q(0) and H} = H?(P)(—1) for their respective
toric varieties, and of course [H! (H*)o = 0 for * # 3. Let us assume we have smooth
compactifications of both families with all H’f’ inv and HJ zero. Then H 3 (Xo) = Q(0)
and H4(XQ) = H*(P)(—1) @ IH! (H3)Q in both cases; so the key to the topology
of Xy in each case (provided we want a smooth total space) lies in the cohomology
of the complex HZ  — NiHP (—=1) ® NoH (—=1) — NiN,Hj (—2). From the
LMHS types one immediately deduces that (writing ranks of maps over the arrows) this

complex takes the form C® —5> Cioct 2 C?2 in the first case (so that IH! (H3) = 0),
and C° > c*eC* 3 C2 in the second (so that IH' (H?) = Q(—2)).

Both variations have H3
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Appendix: Decomposition theorem over Stein curves by Morihiko
Saito

In this Appendix we prove the following (see Theorem A.4 below):

Theorem A Let f : X — C be a proper surjective morphism of a connected complex
manifold X to a connected non-compact curve C. The decomposition theorem for
R f.Qx is equivalent to the Clemens-Schmid exact sequence (or the local invariant
cycle theorem) for every singular fiber of f.

We also show that the weak decomposition always holds if C is a connected non-
compact smooth curve, see Corollary A.3 below. Note that the last hypothesis implies
that C is Stein by Behnke—Stein, see for instance [29, Corollary 26.8]. We have the
following.

Corollary A For f : X — C as above, the decomposition theorem holds for R f,Qx,
if there is an embedded resolution p : X — X such that the inverse image X ¢ =
o~ (X,) of any singular fiber X. := f~'(c) is a divisor with simple normal crossings
(not necessarily reduced) and there is a cohomology class n. € H 2()? ¢» C) whose
restriction to any irreducible component of X, is a Kiihler class.

Note that the local invariant cycle theorem holds under the above hypotheses as is
well-known, see also Remark A.4 (ii) below.

This work is partially supported by JSPS Kakenhi 15K04816.
A.1. t-structure on complex manifolds (see [8]). Let X be a complex manifold, and A

be any subfield of C. Let Df (X, A) be the bounded derived category of A-complexes
with constructible cohomology sheaves. For k € Z, we have the full subcategories

Dl (x, A= ¢ Db(x, A),
defined by the following condition for K* € Df (X,A):
dimSuppH/K* <k—j (VjeZ). (A.1.1)
Put

Db(x, Ak =D (Db(x, A)=7F)
(= {K* e DX(X,A) | DK" € D2(X, A)=F}),
DY (x, AWM .= Db(x, A=k n DE(x, A=K, (A.1.2)

Here, taking an injective resolution Ax —> Z°, we can define DK*® by
DK® = t<«tHoma(K"®, Z*(dim X)[2dim X]) (k> 0), (A.1.3)

where 7 is a classical truncation.
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By [8], the D2(X, A)*] are abelian full subcategories of D2(X, A), and there are
truncation functors

Prg: DP(X, A) — Db(X, A=,
(similarly for 7 t=) together with the cohomological functors
PH* Db (X, A) - DY(x, A,

and also the distinguished triangles for K* € Df, (X, A):

Pr1K® — Prg Kt — PHEK[—k 5

A.2. Curve case. Assume dim X = 1, thatis, X is a smooth curve C. It is well-known
that D2(C, A)K1 ¢ D?(C, A) is defined by the following conditions:

dim Supp H*K* = 0,
HHTIK =0 (YeeO),
HIK' =0 (V) ¢k k—1)). (A2.1)

This can be shown using the functor i ; for i, : {c} — C together with duality.
The following proposition and lemma are also well-known:

Proposition A.2 For any K* € Df(C, AW there is a unique finite increasing filtra-
tion G on K°* satisfying
Gr§ K*® = (j«L)[1—k],
dim Supp GréK* =0 if |i| =1,
GréK* =0 if |i| > 1. (A2.2)

where L is an A-local system on a Zariski-open subset C' <s C which is obtained
by restricting H*"'K* to C’ (note that |C\C'| may be infinite). Moreover Gr(flK'
(resp. Gr? K?*) is the maximal subobject (resp. quotient object) of K* supported on a
discrete subset of C.

Proof Set
GiK* :=K*, GoK®':=14_1K",

where T<x_ is the truncation in the classical sense. By (A.2.1) we have the canonical
isomorphisms

GoK*® = (H* 'K [1-k], Gr¥K® = (H*K*)[—k], (A2.3)
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together with the short exact sequence of sheaves
0— H 1K = jxL — Cokert — 0, (A2.4)

inducing a short exact sequence in Df(C , A
0 — (Coker ))[—k] — (H*'K*)[1—k] = (juL)[1—k] = 0.  (A.2.5)

So we get (A.2.2), setting G_1 K* := (Coker t)[—k], G_, K* := 0. The last assertion
follows from Lemma A.2 below. This finishes the proof of Proposition A.2.

Lemma A.2 [n the notation of Proposition A.2, the shifted direct image sheaf (j.L)[1]
is canonically isomorphic to the intermediate direct image j.(L[1]) in Df(C , A)lo]
(see [8)).

Proof We have the following short exact sequences in Df (C, AT

0 — (Cokert') — (HL)[1] — (jxL)[1] — 0,
0 — (j«L)[11 = (Rj.L)[1] — R'j.L — 0, (A.2.6)

where ¢’ : jiL <> j,L is a canonical inclusion. (These two short exact sequences are
dual of each other if L in the second sequence is replaced by its dual.) Lemma A.2
then follows.

Lemma A.2 and Proposition A.2 imply the following.

Corollary A.2 Any simple object of Df(C, AR is either A.[—k] with Ac a sheaf
supported at a point ¢ € C or (j.L)[1—k] with L a simple A-local system on a

Zariski-open subset C' < oc.

(Note, however, that the intermediate direct image ji, and the direct image j. are
not exact functors.)

Remark A.2 The intermediated direct image j.(L[1]) is also written as IC¢ L, and is
called the intersection complex (with local system coefficients).

A.3. Vanishing of higher extension groups. In the case of non-compact curves, we
have the following.

Proposition A.3 If C is a connected non-compact smooth curve, and K*, K'* €
DE(C, A)K we have

Exthy, o 4 (K K™ =0 (i =2). (A3.1)

Proof Since the assertion is independent of k € Z, we may assume k = 1. Set

E*:=RHoma(K*, K'") € D’(C, A).
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We first reduce the assertion (A.3.1) to
E* e DE(C, A=, (A3.2)
using the well-known isomorphism

Ext"Db(C (KK = H'(C,RHoma(K", K'))
=H(C,E"), (A.3.3)

together with the Riemann-Hilbert correspondence and also Cartan’s Theorem B.
(Here some finiteness condition would be needed if we use the duality for the direct
images of objects of Df(C, A) by the morphism C — pt.)

By scalar extension A — C we may assume A = C. Let M be the regular
holonomic left Dc-module M corresponding to PH/ E* (j < 1). It has a global good
filtration F, and we have the following quasi-isomorphism for £ > 0:

C(d: FkM — FM ®0, Q) —> DR(M) = PHIE".

Recall that any connected non-compact smooth curve is Stein as a consequence of the
theory of Behnke-Stein, see for instance [29, Corollary 26.8]. We then get by Cartan’s
Theorem B

H (C,PH/E®) =0 (i > 0).

Here one problem is that it is not quite clear whether k exists globally, since C is
non-compact. For this we can use Proposition A.2 so that the assertion is reduced to
the intersection complex case. Then the Deligne extension [22] gives the filtration F
with the above k rather explicitly. (Note that Cartan’s Theorem B does not necessarily
hold for quasi-coherent sheaves, see for instance [66, Remark 2.3.8 (2)].) The assertion
(A.3.1) is thus reduced to (A.3.2).

Let C' C C be a Zariski-open subset such that K*|¢/, K'*|¢/ are local systems.
Since the assertion (A.3.2) is local, we may assume that (C, C’) = (A, A*) so that
E°| A+ is a local system. The assertion is then reduced to that

(H/E*)y = Ext’

Db(A,(C)(K.’ K*)=0 (j=2). (A3.4)

Using the Riemann-Hilbert correspondence, the latter assertion is equivalent to that
Exté)A‘O(M, MY=0 (j=>2), (A.3.9)

for any regular holonomic D ¢-modules M, M’. This is further reduced to the case
where M, M’ are simple regular holonomic D ¢-modules (using the standard long
exact sequences of extension groups). So we may assume that M, M’ are of the form
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Da.o/Da oP with
P =20, t, td, —a (@ € C\Z), (A.3.6)

where t is a coordinate of A. This implies a free resolution

0—>DA70'—P>DA,O—>M—>O,

and shows (A.3.5). (Here itis also possible to use the isomorphism RHom 4 (K*, K'*) =
$'(DK* X K'*) with § : X < X x X the diagonal, although the argument is more
complicated.) This finishes the proof of Proposition A.3.

From Proposition A.3 we can deduce the following.

Theorem A.3 (Weak Decomposition theorem). Let C be a connected non-compact
smooth curve. For any K* € Df (C, A), we have a non-canonical isomorphism

K=, (PH/K*)[—j] in Db(C, A), (A3.7)

Proof This follows from Proposition A.3 by using the distinguished triangles in (A.1.4)
by induction on k. O

CorollaryA.3 Let f : X — C be a proper morphism of complex manifolds with C
a connected non-compact smooth curve. Let X' C X be a Zariski-open subset. Set
f' = flx, PRI f. := PH/Rf., and dx := dim X. Then we have a non-canonical
isomorphism

Rf{(Axldx) =@, ("R f{(AxldxD)[=)] in DXC.A). (A3S)

Remark A.3 (i) It is quite unclear whether R f, A x belongs to Df (C, A) unless we
assume that /' : X’ — C can be extended to a proper morphism of complex manifolds
f X — C with X\ X’ a closed analytic subset of X.

(1) If f : X — Y is a smooth projective morphism of complex manifolds, we have
the weak decomposition (see [21]):

Rfu(AxldxD) = @), ("R fu(AxldxD)[=j] in DX(Y.A). (A39)
using the Leray spectral sequence together with the hard Lefschetz property
PR fu(Axldx]) = PRY f(AxldxD()) (j>0).  (A3.10)
since Pij*(AX[dX]) = (Rx—dv f«Ax)[dy] in the f smooth case.

(iii) In the f non-smooth case, we need a “spectral object” in the sense of Verdier
[79] in order to extend the above argument, see also [66, Lemma 5.2.8]. Note that the
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proof of the decomposition theorem in [8, Theorem 6.2.5] is completely different from
this. It uses mod p reduction, and the coefficients are C, not Q.

(iv) The decomposition theorem in the derived category of mixed Hodge modules
was not proved in [66] (it follows from [67, (4.5.4)]). We can deduce from [66]
only the decompositions of the underlying Q-complex and the underlying complex
of filtered D-modules together with some compatibility between the decomposition
isomorphisms, using Deligne’s argument on the “uniqueness” in [24]. We have to use
[66, Lemma 5.2.8 and Proposition 2.1.12] to apply Deligne’s argument respectively
to the Q-complex and the complex of filtered D-modules (by passing from the derived
category of filtered D-modules to that of the abelian category of graded B-modules),
see also [68, 2.4-5].

A.4. Clemens—-Schmid sequence. For K* € Df (A, A), we have the following dia-
gram for the octahedral axiom of derived categories (see also [66, Remark 5.2.2]):

itK* <« i{K* itK*  <«— iK*
N e/ Nood

I+1d Po1K'a 1+1 J+te C(N)c 1P+1
can/r ¢ \Var /+1 d \

Pyn Kt Ly K (—D)Py Kt D Py KU (= 1)

Here ¢ and d mean respectively commutative and distinguished, and i : {0} < A is
the inclusion. We denote respectively by ”v1, P ¢; the unipotent monodromy part of
the shifted nearby and vanishing cycle functors ”vr := {[—1], P¢ := ¢[—1] for the
coordinate f of A.

In the above diagram, the following two distinguished triangles are respectively
called the vanishing cycle triangle (see [23]) and the dual vanishing cycle triangle :

. can S |
Py K — Po1K* — ifK* —,

K — Po K5 ry k(-1 B (A4.1)

These are dual of each other if K* in the second triangle is replaced by DK*, see for
instance [66, Lemma 5.2.4].

The Clemens—Schmid sequence is associated to the outermost part of the above
diagram as follows:

— H/7N K — HITN K — H'"y K X HI"y K" (=1)
— HIK > HITEK® > (A4.2)

There are two sequences depending on the parity of j € Z, see also [14]. Note that
this sequence is essentially self-dual, more precisely, its dual sequence is isomorphic
to the Clemens—Schmid sequence for DK °. This follows from the duality between the
two distinguished triangles in (A.4.1).

For K* € Df (A, A), we say that the Clemens—Schmid exact sequence holds if the
above two sequences are exact at every term.
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We say that the local invariant cycle property holds if the above sequence is exact
at the third term, that is, if we have the exactness of

HiK* — H/yK* N HIy K (=) (VjeD). (A4.3)

We say that the strong decomposition holds for K* € Dé’ (C, A) with C a smooth
curve if there is a non-canonical isomorphism

o~ Jr_ Jr_ s s b
K _@jEZICcL [—j1 @ @Cec’jez El[—j]1 in D(C,A), (A44)

where the L/ are local systems defined on a Zariski-open subset of C, and the E/ are
sheaves (in the classical sense) supported at ¢ € C.

If the weak decomposition holds (that is, if the isomorphism (A.3.7) holds), then the
strong decomposition is equivalent to the following canonical isomorphisms called
the cohomological decompositions :

PHK =1CcL @ @ E! in DYC. A vjez).

These isomorphisms are canonical by strict support decomposition (see [66, 5.1.3]),
and (A.4.5) is equivalent to the following direct sum decompositions at every ¢ € C:

Imcan @ Ker Var =P, (PH/K® (V] € Z), (A4.5)

where 7 is a local coordinate of (C, c).

By Theorem A.3, the weak decomposition holds for any complex K* € Di? (C, A)
if C is connected and non-compact.

We have the following.

Theorem A.4 Let C be a connected non-compact smooth curve. Let K* € Df (C,A)
with a self-duality isomorphism DK*® = K*[m] for some m € Z. Then the following
three conditions are equivalent to each other:

(a) The strong decomposition holds.
(b) The Clemens—Schmid exact sequence holds at any c € C.
(¢) The local invariant cycle property holds at any ¢ € C.

Proof We first prove (a) = (b). Restricting to each direct factor of K*, it is enough to
consider the case K* = j,L with L a local system, where the self-duality assumption
DK* = K°*[m] is forgotten for the moment. (Indeed, in the case K* = E., we can
use the functorial isomorphisms ié o(ic)s = ifo(ic)x = id with i. : {c} — C the
inclusion.) We have to show the exact sequence

0= igjul = YiL > Y1 L(=1) - H2i}j,L — 0, (A.4.6)

where 1 j. L is denoted by vr; L. We have the exactness at the second term by def-
inition. This implies the exactness at the third term, if we remember the self-duality
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condition DK* = K*[m] (which implies that D(j,L) = (j,L')[2] for some direct fac-
tor (j«L")[m'] C K*) together with the self-duality of the Clemens—Schmid sequence
explained after (A.4.2). So the implication (a) = (b) follows.

Assume now condition (c) (since the implication (b) = (c) is trivial). Let A C C
be a sufficiently small neighborhood of ¢ with coordinate ¢. Condition (c) implies that

Kercan = Ker N in 7y, [PH/K" (j € Z),

using the long exact sequence associated to the vanishing cycle triangle in (A.4.1),
since

Varocan = N on pw[,lijK'.
Considering the coimages and images of can and N, it induces the isomorphism

Var : Imcan => Im N, hence
Im can N Ker Var = 0. (A4.7)

We then get the direct sum decomposition (A.4.6) using the self-duality isomorphism
DPHIK® =PHIDK® = PH" I K* (j € Z),

since can and Var are dual of each other (up to a sign) as is explained after (A.4.1),

see also Remark A.4 (i) below. So condition (a) follows. This finishes the proof of

Theorem A.4. O

Remark A.4 (i) It is well-known that any indecomposable regular holonomic Dy-
module M (with Dy := D, ) is isomorphic to one of the following:

(A) Do/Do(9;1)' (K =Rj:j*K) i>1,
(B) Do/ Do (1)’ (K = jij"K) i=1,
(C) Do/Do(3:1) '3 (K = juj*K) i1,
(D) Do/Dot (9;1)" i =0,

(B) Do/Do(t—a)' (K = jij*K =R, j*K) i > 1,

where « € C\Z, K := DR(M)[—1] € Df(C, A and i is the rank of the local
system K |a+. Note that their duals are respectively (B), (A), (C), (D), (E) (with «
changed). We can prove the assertion, for instance, calculating the extension groups of
simple regular holonomic Dy-modules in (A.3.6). The local invariant cycle property
implies that indecomposable Dy-modules of type (A), (C), (D) (with i = 0), (E)
are allowed, and the self-duality excludes the type (A). Here we use the short exact
sequences

0 — Do/DoP -2 Dy/DyP Q — Dy/DyQ — 0.



Hodge theory of degenerations, (I): consequences... Page 450f48 71

This implies that Op o is a Dp-submodule of an indecomposable regular holonomic
‘Do-module M only for type (A), (C). (This classification argument is used in a detailed
version of [65].)

(i1) The local invariant cycle theorem holds for a proper morphism of complex
manifolds f : X — A if there is an embedded resolution p : ()? , )?0) — (X, Xo)
such that X is a divisor with simple normal crossings (not necessarily reduced) and
there is a coholnology class n. € H 2()? 0, ©) whose restriction to any irreducible
component of X is represented by a Kéhler form. This follows for instance from the
arguments in [66, 4.2.2 and 4.2.4] (see also arXiv:math/0006162). It is known that
the argument in [76] is insufficient, see for instance [32] where the singular fiber is
assumed reduced. (It does not seem very clear whether one can prove the semi-stable
reduction theorem in the analytic case using the same argument as in the algebraic
case.)

(iii) The reduction of the decomposition theorem using a base change is trivial if
X is smooth. Indeed, assume there is a commutative diagram

X < v
lr lg
c < D

where X,Y are connected complex manifolds, C, D are curves, f, g are proper
surjective morphisms, 7’ is a finite morphism, and 7 is a proper and generically
finite étale morphism. Then the canonical morphism Ax — R, Ay splits by com-
posing it with its dual, using the self-duality of Ax[dx], Ay[dy] together with
Hom s x ay(Ax, Ax) = A. Moreover, it is known that intersection complexes with
local system coefficients are stable under the direct images by finite morphisms, see
[8]. So the decomposition theorem for g implies that for f. (Here C can be singular.)
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