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Frustration-induced emergent Hilbert space fragmentation
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Although most quantum systems thermalize locally on short timescales independent of initial conditions,
recent developments have shown this is not always the case. Lattice geometry and quantum mechanics can
conspire to produce constrained quantum dynamics and associated glassy behavior, a phenomenon that falls
outside the rubric of the eigenstate thermalization hypothesis. Constraints “fragment” the many-body Hilbert
space due to which some states remain insulated from others and the system fails to attain thermal equilibrium.
Such fragmentation is a hallmark of geometrically frustrated magnets with low-energy “icelike manifolds”
exhibiting a broad range of relaxation times for different initial states. Focusing on the highly frustrated kagome
lattice, we demonstrate these phenomena in the Balents-Fisher-Girvin Hamiltonian (easy-axis regime), and a
three-coloring model (easy-plane regime), both with constrained Hilbert spaces. We study their level statistics
and relaxation dynamics to develop a coherent picture of fragmentation in various limits of the XXZ model on
the kagome lattice.

DOI: 10.1103/PhysRevB.103.235133

I. INTRODUCTION

The far-from-equilibrium dynamics of interacting systems
away from zero temperature shows a variety of novel phe-
nomena. A large class of quantum systems thermalize: They
lose memory of initial conditions and explore all corners of
the many-body Hilbert space [1]. Such behavior is within
the realm of the eigenstate thermalization hypothesis (ETH)
[2–4]. On the other hand, many-body localization provides a
framework for breaking ergodicity where a disordered inter-
acting system retains local memory of its initial conditions
[5–9]. This has germinated ideas for circumventing quan-
tum thermalization by fragmenting the many-body Hilbert
space even in the absence of disorder, forming quantum scars
[10–24]. The fragmented parts fail to connect through the
Hamiltonian despite being symmetry allowed, leading to slow
thermalization and glassiness [25–31].

In recent works, quantum scars were shown to exist in
a large class of frustrated spin models [32–35], raising the
possibility of the existence of a rich variety of nonequilib-
rium phenomena in several magnetic systems. Frustration in
many-body systems has a long history of producing novel
phases of matter whose experimental search is still ongoing.
The dynamics of excitations of frustrated systems are shown
to exhibit glassiness [36–41], fractionalization and anyonic
statistics [42,43], and associated spin liquidity [44–52]. These
phenomena are generally understood in regimes either close
to the ground state or thermal equilibrium. In this work, we
shed light on situations where the system fails to explore
large sections of the Hilbert space. The tunneling between
disconnected regions in Hilbert space is either entirely ab-
sent or extremely weak, which gives rise to a wide range of

timescales, a hallmark of glassiness. This form of energy-
dependent hierarchy of eigenstates in frustrated systems is
unraveled with energy level statistics and by mapping out
connectivity and formation of “fragments” in the many-body
Hilbert space.

We consider a class of frustrated Hamiltonians where con-
servation laws emerge at low energies from local constraints,
which we broadly refer to as “ice rules” throughout this paper,
in analogy with spin ice systems (for a review, see [53]). An
exponentially large number of classical states satisfy these
rules; quantum mechanical perturbations introduce matrix el-
ements between these states. Since the Hamiltonian includes
only local few-body operators, not every ice state is directly
connected to every other ice state. What is less obvious is that
the many-body Hilbert space of ice states neatly organizes it-
self into isolated fragments, a set of interconnected states with
no connections to other states. This is a pure consequence of
the effective low energy behavior of the Hamiltonian, which
in turn emerges from the frustration of the lattice.

Our focus is on two different regimes of the XXZ model on
the kagome lattice (addressed in a variety of contexts [54–61]
previously from the point of view of understanding its ground
state): its Ising and XY regimes characterized by macroscopi-
cally degenerate ice manifolds at low energy. (An exponential
number of quasidegenerate singlets have also been reported in
the Heisenberg regime [62–64].) The Hamiltonian is

HXXZ =
∑
(i, j)

J⊥
i j

(
Sxi S

x
j + Syi S

y
j

) + Jzi jS
z
i S

z
j, (1)

where Sμ
i for μ = x, y, z are spin-1/2 operators on site i, and

J⊥
i j , Jzi j are respectively the strengths of the XY and Ising

2469-9950/2021/103(23)/235133(13) 235133-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6018-4014
https://orcid.org/0000-0001-8583-1281
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.235133&domain=pdf&date_stamp=2021-06-15
https://doi.org/10.1103/PhysRevB.103.235133


LEE, PAL, AND CHANGLANI PHYSICAL REVIEW B 103, 235133 (2021)

(a) (b)

(c) (d) (e)

FIG. 1. Structure of Balents-Fisher-Girvin Hamiltonian. (a)
Balents-Fisher-Girvin Hamiltonian HBFG contains first-, second-,
and third-nearest-neighbor XXZ interactions, and the ice Hamilto-
nian H�� in Eq. (2) acts on bowtie motifs. The filled and empty
circles respectively represent up and down spins in an example
ice configuration (three ups and three downs for every hexagonal
plaquette). (b) Connectivity graph of H�� on the ice manifold of
a 12-site lattice. A vertex represents an ice configuration, a basis
state for the ice manifold, and an edge represents a nonzero matrix
element of the Hamiltonian between two basis states. The three
large connected components each form a topological sector, and
the 16 isolated ice configurations are the 2×2 “triangular pinwheel”
configurations [shown in panel (e)] related by lattice symmetry. (c),
(d) Example ice configurations on the 12-site lattice from topological
sectors (w1, w2) = (1, 1) and (1, −1) respectively. wi are the spin
parities along the two lattice directions marked by the green dashed
lines in (c). (e) 2 × 2 triangular pinwheel-ordered state.

interactions on a pair of sites (i, j). While the XXZ model har-
bors both ice and nonice states, we also consider its versions
projected to the ice manifold. Among the rich diversity of
possible models, we study (1) the easy-axis first-, second-, and
third-nearest-neighbor XXZ model and its projected version,
introduced by Balents, Fisher, and Girvin (BFG) [54], where a
“three-up, three-down” icelike rule on every hexagonal motif
emerges, (2) the easy-plane nearest-neighbor XXZ Hamil-
tonian, with exact three-coloring ground states at Jzi j/J

⊥
i j =

−1/2 [60,61], and (3) a projected three-coloring model [65]
with exponentially many three-coloring states that satisfy the
rule of “one red, one blue, and one green” on every triangular
motif. These limiting cases of the XXZ model provide anchor
points for the general phenomenology of scars and glassy
dynamics of spin-1/2 models on the kagome lattice.

II. RESULTS

A. Balents-Fisher-Girvin model

Consider the easy-axis limit |J⊥
i j | � Jzi j of Eq. (1) whose

sum is taken over first-, second-, and third-nearest-neighbor
pairs with equal strengths, as was considered by BFG:
HBFG = HXXZ[J1 = J2 = J3] [Fig. 1(a)]. With this choice of
coupling, the Ising term in the Hamiltonian becomes HIsing ∝

∑
�(

∑
i S

z
i,�)2 where the outer sum is over hexagonal mo-

tifs (denoted by �) and the inner sum is over the six sites of a
given hexagon (denoted by i,�). The lowest energy manifold
defined by the Ising interaction consists of states with three
up spins and three down spins on every hexagonal plaquette:
These states define the ice manifold of this Hamiltonian.

The remaining XY interaction can be treated perturba-
tively, and contributes the following leading order term in the
effective Hamiltonian of the ice manifold:

H�� =
∑
i

J��i S+
i1
S−
i2
S+
i3
S−
i4

+ H.c., (2)

where the sum is over every site i. in for n = 1, 2, 3, 4 refer
to the four sites of the bowtie motif centered at site i, in
clockwise order [shown in Fig. 1(a)].

The Hamiltonian H�� connects different ice configura-
tions through tunneling. The graph of the connection in
Fig. 1(b) shows multiple connected components, revealing
the fragmented structure of the ice manifold. Comparing ice
configurations from different components [examples shown
in Figs. 1(c) and 1(d)], we can identify each component as
a topological sector characterized by the spin parities wi =
±1 along the two lattice directions [66]. For large system
sizes, there are four distinct topological sectors; only three
of them are allowed for the 12-site lattice due to its small
size. (We explicitly show this is the case for a larger lattice in
Appendix B.)

In addition to the large connected components, which we
associate with fragmentation, we find that there are 16 isolated
states that are not part of big fragments in Fig. 1(b). These
are chiral ordered states with 2 × 2 periodicity, shown in
Fig. 1(e), which we dub pinwheel states. The 16 states are
related to each other through lattice symmetry and spin-flip
operations. A bowtie term in H�� consists of two S+ and two
S−. Since all bowtie motifs in a pinwheel configuration have
either three ups and one down, or vice versa, the state vanishes
under the action of any bowtie term, and is thus an exact
eigenstate of H�� with 0 eigenvalue, which lies in the middle
of the “ice” spectrum, akin to quantum scars [10–24]. With the
parent XXZ Hamiltonian in the limit |J⊥| � Jz, these states
are approximate eigenstates, and thus evolve with time. They
are, nevertheless, expected to have different dynamics than
other states in the ice manifold.

Inspired by the translationally invariant model, we study
the distribution of the gap ratio r̃n ≡ min(sn, sn+1)/ max
(sn, sn+1) [6], where sn is the level spacing between consec-
utive energy levels En and En+1, for models with random
J��i for every site. The randomization does not change the
connectivity of Fig. 1(b), but it breaks translation and point
symmetries. This allows for easier analysis of level statistics.
We block-diagonalize H�� with the remaining global spin-flip
symmetry, which is required by the ice rule.

Our numerical results suggest that, within each topological
sector, the distribution of levels follows Gaussian orthogo-
nal ensemble (GOE) statistics, indicating chaotic dynamics
within the sector [“ice-(1,1)” in Fig. 2(a)]. Superposing the
energy levels from all four distinct topological sectors results
in a strong deviation from GOE, closely resembling a Poisson
distribution [“ice-all” in Fig. 2(a)]. The lack of level repulsion
in the low energy manifold indicates the dramatic effect of
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FIG. 2. Level statistics of the BFG Hamiltonian. (a) Level statis-
tics of disordered ice Hamiltonian for a 30-site lattice, where J��i

is site dependent, and chosen from a normal distribution centered
at zero [J��i ∼ N (0, 1)]. There are 16568 configurations in the
ice manifold, partitioned into four topological sectors of the same
size. The teal (labeled “ice-all”) and pink [labeled “ice-(1,1)”] his-
tograms respectively represent the probability density functions P(r̃)
of the whole ice manifold and the topological sector (w1, w2) =
(1, 1), both within the spin-flip-even sector. (b) Density of states
of disordered BFG Hamiltonian for an 18-site lattice, where the
XY interaction is bond dependent and chosen from a uniform
box distribution J⊥

i j ∼ U (−J⊥, J⊥), while the Ising interaction is
uniformly fixed to be Jzi j = 1. The inset shows the “ice gap”
�ice ≡ minENice+1 − maxENice (averaged over disorder configura-
tions) as a function of J , which closes at J⊥ = J⊥

c ≈ 0.17 (see
Appendix C, Fig. 9). (c), (d) Low energy level statistics of disordered
BFG Hamiltonian HBFG with nearest-neighbor XY interaction only,
for a 24-site lattice in the spin-flip-even symmetry sector. J⊥ =
(c) 0.01, (d) 0.2.

the fragmentation of the Hilbert space, due to the ice rules
emergent from frustration.

Going back to the full BFG Hamiltonian, the conservation
laws emerge at low energy for |J⊥

i j | � Jzi j , where the level
statistics approaches that of H��. Given that the model is
not exactly solvable, it is not a priori clear what form the
level statistics acquires. To investigate how the level statistics
changes at different values of J⊥, we study the eigenstates of
disordered HBFG with random XY interactions on the nearest-
neighbor bonds whose magnitude is chosen from a uniform
distribution J⊥

i j ∼ U (−J⊥, J⊥), and Jzi j = 1 on every first-,
second-, and third-nearest-neighbor bond [67].

We find interesting level statistics in the strong Ising limit.
At a small value of J⊥, it shows close resemblance to Poisson
distribution. This observation provides a compelling case that
the fragmentation we find for the effective model survives in
the full BFG model in the weak J⊥ limit, given by HBFG at low
energies. The downturn at small r̃ is due to topological loops
which have nonzero matrix element for finite size systems
[order O((J⊥)3) here given the small size of the system], and
vanish in the thermodynamic limit. At large values of J⊥,

the perturbative result no longer holds as higher-order terms
beyond H�� become significant and the notion of topological
sectors is no longer sharply defined. This is indeed the case:
The low energy level statistics shows good agreement with
the GOE distribution [Fig. 2(d)], as the fragmented puddles
are destroyed in the nonperturbative regime.

The crossover between Poisson-like and GOE-like distri-
butions occurs at J⊥/J⊥

c ∼ O(1), where J⊥
c is the value of

J⊥ at which the ice gap (defined in the caption of Fig. 2)
closes and the “ice” manifold is no longer energetically well
separated from the rest of the Hilbert space. Our finite size
analysis finds no clear evidence that J⊥

c decreases with system
size (see Appendix C). If indeed J⊥

c remains nonzero in the
thermodynamic limit, Poisson-like statistics is expected for a
finite range of J⊥.

B. Three-coloring model

The BFG description was designed to explore the Ising
regime of the kagome antiferromagnet: The low energy mani-
fold defined by its ice rule breaks up into four large connected
components, along with isolated scar states. A complementary
viewpoint is provided by a model in the XY regime of the
XXZ Hamiltonian, which also contains an exponentially large
low energy manifold defined by local constraint. Contrary to
the BFG model, however, these states belong to an exponen-
tially large number of fragments, with a hierarchical structure,
as we will see in the following.

The Hamiltonian of the second model also takes an XXZ
form:

Hn.n.
XXZ =

∑
〈i, j〉

Sxi S
x
j + Syi S

y
j + JzSzi S

z
j, (3)

where the sum is now only over the nearest neighbor pairs
〈i, j〉, and the XY coupling strength is set to J⊥ = 1. At Jz =
−1/2, the ground states are exactly known for the kagome
lattice [60]: They are the exponentially many three-coloring
states [45,70–74], each of which satisfies the constraint of
exactly one red, one blue, and one green degree of freedom
[(|↑〉 + exp(2π in/3)|↓〉)/√2 with n = 0, 1, 2 respectively]
on every triangular motif. The exact solutions are tensor prod-
ucts of these degrees of freedom, which remain exact ground
states under projection to any Sz sector [60,61].

Two representative three-colorings shown in Figs. 5(a) and
5(b), the q = 0 and

√
3×√

3 states, have periodic structures
and are relevant for the ground state and finite-temperature
phase diagram of the kagome antiferromagnet [60,75]. Three
representative three-colorings are shown in Figs. 3(a)–3(c).
The first and second states, respectively referred to as q = 0
(three-site unit cell) and

√
3×√

3 states (nine-site magnetic
unit cell), have periodic structures and are relevant for the
ground state and finite-temperature phase diagram of the
kagome antiferromagnet [60,75]. These states are character-
ized by the differences in their two-color loops (Kempe loops):
In the q = 0 case, the Kempe loops wind around the torus,
and in the

√
3×√

3 case, they are local ones of length 6.
Exchanging the two colors within a loop also yields a valid
three-coloring, since the sites adjacent to the chain all have the
third color which is different from the two colors of the loop.
Different colorings have Kempe loops of different lengths and
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(a)

(b)

(c)

(d)

(e)

FIG. 3. Three-coloring states and Kempe loops. (a), (b),
(c) Three-coloring states of a kagome lattice. (a) and (b) are re-
spectively referred to as q = 0 and

√
3×√

3 states. The orange lines
example red-blue Kempe loops: In the q = 0 state, Kempe loops are
all global, while in the

√
3×√

3 state, they are all local. (d) Number
of connected components in Kempe connectivity graph with loops of
length 6 (Nk6) vs number of sites (Ns), for various system geometries.
The orange dashed line is an exponential fit Nk6 ∼ WNs to the largest
number of components for every system size (marked by a red cross).
For comparison, we present an exponential with theW for the scaling
of the number of colorings [68] (shown as the green dashed-dotted
line), normalized to match the data point at 108 sites. (e) Scaling
analyses for the exponential fits. The y axis represents the parameter
W from fitting to data points in the range 60 � Ns � Nmax

s .

some colorings contain both local loops and global loops [see
Fig. 3(c)]. We also note that, unlike the Ising ice states, three-
coloring wave functions are not orthogonal to each other, but
there is an intricate structure of how they are connected to one
another under two-color loop moves (Kempe moves).

To explore the structure of the three-coloring manifold
with Kempe loops, we construct a model where (1) the non-
three-coloring states are completely projected out, and (2)
the allowed three-colorings are assumed to be orthogonal
to each other (akin to the status of dimer coverings in the
Rokhsar-Kivelson model [76]). We then impart dynamics
to the three-colorings by Kempe moves for loops of cer-
tain lengths. The resulting effective model is a Hamiltonian
[65,77] in the many-body Hilbert space of three-colorings
which is written as

HK =
∑
C

∑
k∈K (C)

κ�k |k(C)〉〈C|, (4)

where the sum is over every three-coloring C. K (C) is the set
of Kempe loops in C, �k is the length of the Kempe loop k,
and k(C) is the resulting three-coloring after exchanging the
two colors within the Kempe loop k from C. (Here we define
the colorings as equivalent up to global “color rotations,” e.g.,
red to green, green to blue, blue to red, which corresponds to
projecting to a particular Sz sector in the XXZ model.)

We find that, contrary to the BFG model, the number of
fragments in this model scales exponentially with system size.
In Fig. 3(d), we show number of fragments (i.e., connected
components) vs. number of sites, for Kempe connectivity
graphs including loops of length 6 only, for all inequiva-
lent lattice geometries having 60 to 108 sites. The number
of fragments vary substantially even for lattices with the
same number of sites, especially for small systems which
are strongly influenced by the boundary condition. We can
nevertheless estimate the scaling Nk6 ∼ WNs from the largest
number of fragments for each system size, where Nk6 and
Ns are respectively the number of fragments and the number
of sites. We find that W ≈ 1.101, which is smaller than the
W ≈ 1.135 for the scaling of the number of three-colorings
[68]. For comparison, we also tried fitting the same data points
to a power law (shown in Appendix D). Although the limited
range of system sizes makes it difficult to conclusively dis-
tinguish an exponential from a power law, finite size scaling
of the fitting parameters strongly suggests that the number of
fragments scales exponentially.

Since there are Kempe loops of various lengths, the length-
dependent connectivity of the three-coloring states shows a
rich structure. (See Appendix G for algorithms used to gener-
ate the connectivity graph.) Figure 4(a) shows an illustrative
example of the connectivity graph of the three-coloring states
of the 36-site lattice with full point group symmetry 6mm
of the infinite lattice. When loops of all lengths are allowed,
we identify two connected components: There are no Kempe
moves that connect a state from component A to a state from
component B. The fragmentation structure is much richer on
larger lattices, shown in Fig. 4(c) for 81 sites. Both structures
nevertheless show close resemblance, e.g. there are tightly
bound sets of states in the center to which the

√
3×√

3 con-
figurations belong, and the q = 0 configurations are weakly
connected to other states at longer loop lengths.

The length-dependent hierarchy of the Hilbert space frag-
ments is shown in Fig. 4(b) for the 36-site lattice. This
hierarchy provides a way of organizing the states in terms of
slow and fast modes. States which connect with each other at
shorter loops thermalize faster, compared to those that require
longer loops (i.e., higher up in the hierarchy). In the thermo-
dynamic limit, there should be exponentially many fragments
for finite loop lengths, and hence a broad distribution of re-
laxation times. This hierarchically constrained dynamics is
analogous to classical glasses [78], where the relaxation due
to fast modes involving the stronger bonds is constrained by
the slow modes.

Within this framework, one would expect the q = 0 state,
which has only “topological” Kempe loops and hence is an
exact eigenstate (unless �k is macroscopically large), to re-
lax parametrically slower than the

√
3×√

3 state which has
loops of length 6. This is confirmed by full diagonaliza-
tions of the effective model on an 81-site kagome lattice.
In Fig. 5(a), we plot the overlap between the time-evolved
wave function and the initial state, also known as Loschmidt
echo, for various coloring states, with κ� = 1 for � = 6, and
0 otherwise. In addition to confirming our intuition for the
q = 0 and

√
3 × √

3 states, we observe that, for other states
with a mixture of Kempe loops of length 6 and longer,
the relaxation timescales are in the intermediate range. For
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FIG. 4. Kempe connectivity of three-coloring manifold. (a) Kempe connectivity graph of the three-coloring manifold of a 36-site lattice
(168 colorings). A vertex represents a three-coloring, and an edge represents a Kempe move that connects two colorings. The color of a vertex
represents the component it belongs to, and the color of an edge represents the length of the move. Two special configurations are highlighted
by blue and red circles, q = 0 and

√
3×√

3, respectively shown in Figs. 5(a) and 5(b). The graph clusters into two connected components
(labeled A and B) when loops of all lengths are allowed. (b) The hierarchical component structure of the graph in (a). A leaf node (circle)
represents a three-coloring, and an internal node (rectangle) represents a connected component when Kempe moves of a certain length or
shorter (represented by the gray horizontal lines) are allowed. Vertical lines mark component-subcomponent relationship; a child node is a
subcomponent of its parent node. The number shown in an internal node is the number of colorings in the connected component. The colors of
vertices and edges match those of panel (a). (c) Kempe connectivity graph of the three-coloring manifold on a 81-site lattice (45 184 colorings).
Length dependent structures are presented in the Supplemental Material [69], Video 1.

small t , each curve is expected to follow ∼ cos2(
√
dκ6t ),

where d is the number of Kempe loops, i.e., the degree of
a node in the Kempe connectivity graph. (See Appendix E for
proof.) Based on this relationship, we can use d as a proxy
for the relaxation dynamics at short times. The histogram
in Fig. 5(b) shows that d forms a broad distribution. Fur-
ther analyses on the distribution of the relaxation timescales
presented in Appendix E suggest exponential number of
states with glassy relaxation dynamics in the thermodynamic
limit.

To see whether our findings on the varying timescales for
the coloring states applies to the full XXZ Hamiltonian, we
consider the time evolution of the q = 0 and

√
3×√

3 states
projected to the Sz = 0 sector, under Hn.n.

XXZ. (We also car-
ried out calculations for the unprojected coloring states. See
Appendix F for a discussion on the effect of Sz projection.)
In Fig. 5(b), we plot the Loschmidt echo for the two coloring
states on an 18-site lattice, calculated with full diagonaliza-
tion. This is used to diagnose the relaxation times of the
coloring states. At Jz = −1/2, they are exact eigenstates, and
hence do not evolve with time. Away from, but close to, this

FIG. 5. Dynamics of three-coloring states. (a) Loschmidt echoes F (t ) ≡ |〈ψ (0)|ψ (t )〉|2 for length-6 Kempe model on a 81-site kagome
lattice. The blue and red curves respectively represent Loschmidt echoes of q = 0 state and

√
3×√

3 state. The black dotted curves are
Loschmidt echos of other coloring states. (b) Degree histogram of the Kempe connectivity graphs with loops of length 6, i.e., distribution of
numbers of Kempe loops d for all three-colorings. Inset: F ′′(t ) vs number of Kempe loops, confirming the relationship F (t ) ≈ 1 − dκ6

2t2.
(c) Loschmidt echoes for XXZ model Hn.n.

XXZ at �Jz ≡ Jz + 1/2 = 0.01, 0.02, 0.03, with 18 sites.
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special point, these states thermalize at distinctly different
rates despite being at similar energies: The

√
3×√

3 state
thermalizes much faster than the q = 0 state. For both, the
timescale is approximately proportional to �Jz ≡ Jz + 1/2.
(The difference appears to get smaller as one goes even further
away from Jz = −1/2.) The fact that the thermalization time
depends on the Kempe loop structure of the three-coloring
state confirms a qualitative explanation in terms of the phe-
nomenological model.

III. CONCLUSION

In conclusion, we have presented a class of spin-1/2
models on the kagome lattice, whose low energy quantum
dynamics, governed by icelike rules, forces the formation of
Hilbert space fragments, giving rise to glassy dynamics as a
consequence. This includes easy-axis (Ising) and easy-plane
(XY) regimes both of which harbor macroscopically degener-
ate manifolds.

Our work opens several questions related to the nonequi-
librium dynamics of frustrated spin systems. The dynamics of
defects in the constrained ice manifold could potentially be
useful for protecting information in excited states of many-
body systems [79,80]. The relationship between the graphical
structure of fragmented clusters and the emergent symmetries
in the model can shed light on the dynamics of symmetry
breaking in the presence of frustration and can provide an
alternative route to understanding the ground states in these
models [81]. Finally, the recent developments in synthetic
quantum systems of Rydberg atoms and trapped ions in two
dimensions have made possible the experimental realization
of these models in the different regimes. (See Refs. [82–84]

FIG. 6. Geometry of a finite size kagome lattice with shape
(2, −2) × (2, 4). The purple arrows on the right mark the lattice
vectors a1 and a2 of the Bravais lattice (represented by green pluses).
The blue arrows are the lattice vectors of the superlattice (represented
by red crosses): b1 = 2a1 − 2a2 and b2 = 2a1 + 4a2.

TABLE I. Geometries of the kagome lattices used in the paper.

Lattice size Shape Used in

12 (2, 0) × (0, 2) Figs. 1(b)–1(d)
18 (3, 0) × (1, 2) Figs. 2(b), 5(c)
24 (2,−1) × (2, 3) Figs. 2(c), 2(d)
30 (3,−1) × (1, 3) Fig. 2(a)
36 (2,−2) × (2, 4) Figs. 4(a), 4(b)
81 (3,−3) × (3, 6) Figs. 4(c), 5(a) 5(b)

FIG. 7. (a) Connectivity graph of H�� on Balents-Fisher-Girvin
ice manifold on a 36-site kagome lattice with 107 176 ice config-
urations. Each vertex represents an ice configuration, and an edge
represents a nonzero tunneling element between two ice configura-
tions that the edge connects. The ice manifold fragments into four
topological sectors, shown as four connected components in the
graph. The color of a vertex indicates the connected component it
belongs to. (b)–(d) Representative configurations in each of the four
topological sectors (chosen arbitrarily), for (2,−2) × (2, 4) clus-
ter. Opaque black circles (open circles for down spins, and filled
circles for up spins) mark the sites within the cluster, and gray
circles represent translated image sites under periodic boundary con-
dition. Corresponding values of topological invariant (w1,w2) are
(b) (1,−1), (c) (1,1), (d) (−1, 1), and (e) (−1, −1).
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for review.) Local addressability and monitoring of the
quantum states in these experiments are promising for
preparing these three-coloring states and investigating their
dynamics.

ACKNOWLEDGMENTS

We thank V. Elser, E. Yuzbashyan, A. Patra, O. Vafek, V.
Dobrosavljevic, K. Hazzard, and S. Pujari for valuable discus-
sions on a wide range of related topics. H.J.C. thanks G. Chan
for encouraging him to think about nonequilibrium dynamics
of frustrated magnets. K.L. and H.J.C. acknowledge support
from Florida State University and the National High Magnetic
Field Laboratory. The National High Magnetic Field Labora-
tory is supported by the National Science Foundation through
NSF/DMR-1644779 and the state of Florida. H.J.C. was also
supported by NSF CAREER Grant No. DMR 2046570. A.P.
was funded by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
program (Grant Agreement No. 853368). We also thank the

Research Computing Cluster (RCC) at Florida State Univer-
sity for computing resources.

APPENDIX A: CONVENTION FOR LATTICE GEOMETRY

Throughout the paper, we study kagome lattices of various
sizes. Here we briefly explain the convention used in this work
for specifying the geometry of a finite size lattice.

A finite size system with periodic boundary condition can
be thought of as a quotient space of an infinite space by
superlattice translations. Therefore, one way to specify the
geometry of the finite size lattice is by defining the superlattice
through its lattice vectors.

A kagome lattice is defined by a triangular Bravais lattice
with a basis of three sites. Throughout this work we use
Bravais lattice vectors a1 = (1, 0) and a2 = (−1/2,

√
3/2).

The superlattice vectors can be written in units of these lat-
tice vectors. For example, (2,−2) × (2, 4) refers to a 36-site
cluster, shown in Fig. 6. (2,−2) and (2,4) respectively repre-
sent the superlattice vectors b1 = 2a1 − 2a2 = (3,−√

3) and
b2 = 2a1 + 4a2 = (0, 2

√
3).

FIG. 8. Level statistics for disordered H�� on a 30-site lattice of shape (3,−1) × (1, 3). The panels show the probability density
distributions P(r̃), for (a)–(d) Z2 symmetric sector of connected components 1, 2, 3, and 4, respectively, (e)–(h) Z2 antisymmetric sector of
connected components 1, 2, 3, and 4, respectively, (i) Z2 symmetric sector (combining all four connected components), (j) Z2 antisymmetric
sector, and (k) the complete ice manifold. The blue and red dashed curves respectively mark the P(r̃) for Poisson and GOE distributions. For
the GOE level statistics, we use the expression for P(r̃) from Ref. [85].
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Shapes of the kagome lattices used in the paper are listed
in Table I.

APPENDIX B: BALENTS-FISHER-GIRVIN “ICE” MODEL

The ice manifold of Ref. [54] has four topological sec-
tors characterized by topological invariants wi = ±1, the spin
parities along two lattice directions. Such breaking up of the
Hilbert space can be visualized as multiple connected com-
ponents in the connectivity graph of the Hamiltonian H�� on
the ice manifold. In the main text we have shown the graph for
a 12-site cluster, which showed only three connected compo-
nents, in addition to 16 isolated states. This, however, was due
to the small size of the system. Figure 7(a) is the connectivity
graph for a 36-site system with 107 176 ice configurations,
which clearly shows four distinct connected components, in
addition to the 16 isolated states. Representative ice configu-
rations (arbitrarily chosen) of the four topological sectors are
shown in Figs. 7(b)–7(e).

In the main text we have presented the level statistics of the
ice manifold in a 30-site lattice, within the Z2 symmetric sec-
tor (combining all four topological sectors) as well as within
a single topological sector, also in the Z2 symmetric sector. In
fact, all sectors (four topological × two Z2) individually show
almost identical GOE-like level statistics, shown in Figs. 8(a)–
8(h). Combining multiple sectors results in the level statistics
appearing more Poisson-like [see Figs. 8(i)–8(k)]: the larger
the number of combined sectors, the closer the level statistics
is to a Poisson distribution. [Compare Figs. 8(i), 8(j) with
8(k).]

APPENDIX C: STABILITY OF THE ICE GAP OF THE
BALENTS-FISHER-GIRVIN MODEL

The level statistics of the random-bond HBFG for |J⊥| � Jz

on the whole ice manifold (even after resolving the Z2 spin-
flip symmetry required by the ice rule) is expected to be
Poisson-like, especially so in the thermodynamic limit since
the level repulsions between different topological sectors are
exponentially suppressed. With increasing |J⊥|, however, the
ice gap �ice—the energy separation between the ice mani-
fold and the rest of spectrum—closes at J⊥ = J⊥

c . The level
statistics crossovers from Poisson-like to GOE-like at scale
J⊥/J⊥

c ∼ O(1).
For the system sizes that we have considered, the ice

gap �ice depends linearly on J⊥ to leading order [shown in
Fig. 9(a)]. We can extract estimates for J⊥

c from linear fits to
the means of �ice over different random configurations. As
shown in Fig. 9(b), we do not find a clear sign that J⊥

c vanishes
with increasing system size. If indeed the J⊥

c remains finite
in the thermodynamic limit, the level statistics is expected to
show either a crossover or possibly a sharp transition between
Poisson-like and GOE-like distributions, at a nonzero value
of J⊥.

APPENDIX D: KEMPE CONNECTIVITY
OF THREE-COLORING MANIFOLD

The connectivity structure of the three-coloring manifold
changes with the lengths of the Kempe moves. Table II shows
the sizes of the connected components in an 81-site (3,−3) ×

FIG. 9. (a) Box plots for the “ice gap” �ice, sampled over dis-
order configurations {J⊥

i j }. The box ranges from the lower to upper
quartiles, with a line marking the median, and the whiskers showing
the range of the data. The number above a box indicates the number
of sampled disorder configurations, and the dashed lines are fits to the
disorder averaged �ice with the form �ice/Jz = 1 − J⊥/J⊥

c . (b) J⊥
c vs

number of sites. The horizontal lines mark the standard error for J⊥
c .

(3, 6) lattice, when Kempe loops of certain length or shorter
are allowed. At loop length 6, which is the shortest local loop
length possible, the coloring manifold is still fragmented into
3264 sectors; when loops of all lengths are allowed, these
eventually coalesce into three large connected components.

The hierarchical connectivity structure that arises from the
length dependence are shown in Fig. 10 for 36-site and 48-site
lattices. The result for 81 sites is too large to plot.

In the main text (Fig 3) we showed that the number of
fragments, each consisting of three-coloring states connected
by Kempe loop lengths of size six (Nk6), is exponential in
system size Ns. In Fig. 11 we replot the same numerical data,
but instead attempt to fit it to a polynomial form Nk6 ∼ Nα

s .
We find that α changes with Ns, strongly suggesting that this
functional form is incorrect.

APPENDIX E: KEMPE DYNAMICS
OF THREE-COLORING STATES

At short times, the Kempe relaxation dynamics of a color-
ing state is fully determined by the number of other coloring
states connected to it through Kempe moves. Here we show
that the Loschmidt echo approximates to

|〈ψ (0), |ψ (t )〉|2 ≈ 1 − dκ2
6 t

2, (E1)

TABLE II. Kempe connectivity of three-colorings on a
(3, −3) × (3, 6) Kagome lattice (45 184 colorings total).

Loop length Component size (number of components)

6 19298(1), 378(18), 180(3), 20(162), 19(108),
17(324), 14(108), 13(162), 8(18), 4(162),
3(324), 2(486), 1(1388)

10 22052(1), 3942(2), 2214(6), 180(3), 3(324), 1(452)
12 37172(1), 3942(2), 1(128)
14 37172(1), 3942(2), 54(2), 1(20)
18 37172(1), 3942(2), 54(2), 20(1)
20 37280(1), 3942(2), 20(1)
22 37280(1), 7884(1), 20(1)
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FIG. 10. Hierarchical connectivity structures of the three-coloring manifold with Kempe moves at various loop lengths, for (a) 36-site
kagome lattice of shape (2, −2) × (2, 4), and (b) 48-site lattice of shape (4, 0) × (0, 4). The leaf nodes at the bottom are three-coloring
configurations, and the internal nodes labeled � are connected components when loops of length � or less are allowed, with increasing value of
� from bottom to top.

where d is the number of other states connected to the ini-
tial coloring state, i.e., the degree in the Kempe connectivity
graph.

Denote the initial coloring state as |ψ (0)〉 = |C0〉. The
Kempe Hamiltonian can then be broken into terms that act
on |C0〉, and those that do not:

HK = κ6

√
d

(
1√
d

∑
k∈K6(C0 )

|k(C0)〉
)

〈C0|

+ κ6

∑
C �=C0

∑
k∈K6(C)

|k(C)〉〈C|, (E2)

where K6(C) is the set of length-6 Kempe moves for the
coloring C, and d ≡ |K6(C0)| is the number of moves for C0.
At small t , the leading order time evolution can be approxi-
mated by that of a two-level system, whose states are |C0〉 and
|C′

0〉 ≡ ∑
k |k(C0)〉/√d:

e(−iHKt )|C0〉 ≈ cos
(√

dκ6t
)|C0〉 − i sin

(√
dκ6t

)|C′
0〉. (E3)

The Loschmidt echo therefore approximates to

|〈ψ (0)|ψ (t )〉|2 ≈ cos2
(√

dκ6t
) ≈ 1 − dκ2

6 t
2. (E4)

The t2 dependence is in agreement with the log-log plot in
Fig. 12(a).

The relationship between the number of Kempe moves and
the dynamics allows us to study the statistics of relaxation
timescale of the coloring states through graph analyses of
Kempe connectivity. Figures 12(b) and 12(c) show degree
histograms of Kempe connectivity graphs of loop length 6. As
Fig. 12(d) shows, the average degree appears to grow linearly
with the system size. This is in agreement with the fact that
the maximum number of (two-color) Kempe loops is that of
the

√
3×√

3 state, and is given by the number of hexagonal
plaquettes.

APPENDIX F: DYNAMICS OF UNPROJECTED
COLORING STATE

As pointed out in the main text, the three-coloring states,
whether projected or unprojected, are eigenstates of the

nearest-neighbor XXZ Hamiltonian at Jz = −1/2. The unpro-
jected coloring state is written as

|γ〉 ≡
N⊗
i=1

|γi〉, where |γi〉 = 1√
2

(|↑〉 + eiαi |↓〉) (F1)

with αi = 0, 2π
3 , 4π

3 for the three colors. The projected states
can be written as

|γ,m〉 ≡ 1

Nm
PSz=m|γ〉. (F2)

FIG. 11. (a) Number of connected components in Kempe con-
nectivity graph with loops of length 6 (Nk6) vs number of sites (Ns),
for various system geometries, plotted on a log-log scale. The orange
dashed line is a power-law fit Nk6 ∼ Ns

α to the largest number of
components for every system size (marked by a red cross). (b) Scal-
ing analyses for the power-law fits. The y axes represent parameters
from fits to data points in the range 60 � Ns � Nmax

s .
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FIG. 12. (a) Loschmidt echoes for the length-6 Kempe model on an 81-site kagome lattice [same the data as Fig. 3(d)] plotted as 1 −
|〈ψ (0)|ψ (t )〉|2 vs κ6t in log-log scale. For small t (κ6t � 0.1), the curves follow 1 − |〈ψ (0)|ψ (t )〉|2 ∝ t2. (b), (c) Degree histograms of the
Kempe connectivity graphs with loops of length 6 for systems of shapes (3, −3) × (3, 6) (81 sites) in (b) and (6, 0) × (0, 6) (108 sites) in (c).
(d) Average degree vs number of sites for various lattice geometries.

These coloring states, however, are not mutually orthogonal.
Since

〈γ ′
i |γi〉 = 1 + ei(αi−α′

i )

2
= 1,

e± i2π
3

2
, (F3)

the overlap between two colorings states is written as

|〈γ ′|γ〉| = 1

2nd
, (F4)

where nd is the number of sites with different colors between
γ and γ ′. In other words, two coloring states can only be
orthogonal to each other in the thermodynamic limit.

Overlap between projected coloring states, on the other
hand, is sector dependent. In the extreme limit of fully polar-
ized sectors, all coloring states project to the exact same state
|↑↑ · · · 〉 or |↓↓ · · · 〉. In the unpolarized sector (total Sz = 0
or ±1/2), on the other hand, the overlaps between different
colorings are less than unity, and can even be smaller than the
overlap between unprojected states in Eq. (F4).

At points away from Jz = −1/2, these states are no longer
eigenstates of the Hamiltonian, and thus evolve with time.
How do these nonzero overlaps (i.e., the nonorthogonal na-
ture of the coloring manifold) affect the dynamics? Would
the unprojected coloring states relax faster compared to the

FIG. 13. Loschmidt echo plot for q= 0 and
√

3×√
3 states on the

18-site lattice of shape (3, 0) × (1, 2), at �Jz ≡ Jz + 1/2 = 0.01.

projected states since there are more overlaps between them,
which translates to more decay channels? Would having more
channels reduce the difference between different coloring
states?

We show the Loschmidt echo |〈ψ (0), |ψ (t )〉|2 for the
unprojected |q = 0〉 and |√3×√

3〉 states in Fig. 13. The
two states show almost identical relaxation. This is in
contrast to the projected coloring states PSz=m|q = 0〉 and
PSz=m|√3×√

3〉 presented in the main text, where there is a
stark difference between the two states. Also, the relaxation
timescale is shorter compared to that of the projected states
by a factor of ∼5.

APPENDIX G: CONSTRUCTING KEMPE CONNECTIVITY
GRAPHS

Here we describe exactly how we construct the Kempe
connectivity graph for the three-coloring manifold on kagome
lattices. As we clarified in the paper, we define the color-
ings as “relative colorings,” meaning that two colorings are
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equivalent if they differ by a global color rotation, analo-
gous to projecting to a particular Sz sector. To enforce this
equivalence numerically, we define a “normal” coloring by
fixing the color of a particular site. More precisely, given a
three-coloring c : V → Z3 whereV is the set of sites, the nor-
malized coloring c′ is defined as c′ : v �→ c(v) − c(v0) mod 3,
for an arbitrarily (but consistently) chosen v0 ∈ V .

For any three-coloring of a kagome lattice, every nearest-
neighbor bond belongs to a single Kempe loop. This property
is specific to kagome lattice, where every node has degree
4. (In the triangular lattice, for example, a bond belongs to

multiple Kempe loops.) We can make use of this nonbranch-
ing property to find all Kempe loops of all three-colorings.
Given a coloring and a bond, Algorithm 1 finds the Kempe
loop that the bond belongs to. Algorithm 2 can then be used
to find all Kempe loops of a given coloring.

Using these, we can construct the Kempe connectivity
graph, whose vertices are the three-colorings of the lattice,
with an edge between two colorings if there is a Kempe move
that connects the two. Algorithm 3 describes the steps.
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