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ABSTRACT

Though the partitioning of shortwave radiation (K)) at the surface into its diffuse
(Ky4) and direct beam (K;p) components is relevant for, among other things, the
terrestrial energy and carbon budgets, there is a dearth of large-scale comparisons of
this partitioning across reanalysis and satellite-derived products. Here we evaluate
K|, K14, and Kp, as well as the diffuse fraction (kq) of solar radiation in four
current-generation reanalysis (NOAA-CIRES-DOE, NCEP/NCAR, MERRA-2,
ERAS5) datasets and one satellite-derived product (CERES) using ~1400 site years
of observations. Although the systematic positive biases in K| is consistent with
previous studies, the biases in gridded K| 4 and K|, vary in direction and magnitude,
both annually and across seasons. The inter-model variability in cloud cover
strongly explains the biases in both K| 4 and K| . Over Europe and China, the long-
term (10-year plus) trends in K| 4 in the gridded products are noticeably differ from
corresponding observations and the grid-averaged 35-year trends show an order of
magnitude variability. In the MERRA-2 reanalysis, which includes both clouds and
assimilated aerosols, the reduction in both clouds and aerosols reinforce each other
to establish brightening trends over Europe, while the effect of increasing aerosols
overwhelm the effect of decreasing cloud cover over China. The inter-model
variability in kq seen here (0.27 to 0.50 from CERES to MERRA-2) suggests
substantial differences in shortwave parameterization schemes and their inputs in

climate models and can contribute to inter-model variability in coupled simulations.
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Based on these results, we call for systematic evaluations of K| 4 and K|, in CMIP6

models.

Significance Statement

The direction of sunlight can be changed due to particles and clouds in the air. This
is known as diffuse light and it affects solar energy generation and plant growth.
Here, we wanted to address a gap in previous studies and compare the diffuse light
in global datasets. We find large differences between datasets, explained mostly by
differing cloud amounts. When compared to measurements from the ground, we
find that these differences exist for most sites and across seasons. The change in
diffuse light over the last 35 years also varies widely between datasets. Our results
call for larger-scale comparisons of diffuse light in all current-generation global

models. Doing so can help us better predict future climate change.

1. Introduction

Solar radiation is a key driver of the Earth’s climate system. During its transmission
through the atmosphere, it is scattered and absorbed by aerosols, clouds, and gases.
Solar radiation incident on the surface (K;) consists of beam radiation (K;p) and
diffuse radiation (K),q). The former follows the original path of the sunlight and the
latter is the scattered component that deviates from that path. These components are
not routinely measured at weather stations (Stephens et al. 2012). Instead, climatic
and ecological studies and solar energy applications generally rely on gridded

estimates from atmospheric models, including reanalysis products and global



61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

climate models (GCMs). Owing to computational limitations, these models are run
at relatively coarse resolutions (50 km to over 200 km). This leads to simplified
versions of radiative transfer codes being implemented in these models, as well as
differences in input parameters like clouds and aerosols to those codes, both of
which influence the estimated radiation fields (Oreopoulos et al. 2012). Systematic
biases exist in these model estimates. It is well-known that K| is overestimated by
most atmospheric models due in large part to the underestimation of cloud cover
(Markovic et al. 2009; Bosilovich et al. 2011; Kennedy et al. 2011; Zhao et al. 2013;
Wild et al. 2015; Zhang et al. 2016). This overestimation will lead to surface
warming (Chakraborty and Lee 2019) and also increase the energy returned to the
atmosphere through heat and moisture fluxes, which may artificially strengthen the
hydrological cycle (Wild et al. 1998).

K| a remains a relatively understudied component of the Earth’s radiation
budget. Several studies have demonstrated enhanced carbon uptake and evaporative
fraction at various scales with increasing K| ¢ (Knohl and Baldocchi 2008; Mercado
et al. 2009; Yue and Unger 2017; Rap et al. 2018; Chakraborty et al. Under
Review2021). Thus, a better constraint on K| 4 can improve our ability to predict the
surface energy, water and carbon budgets. Accurate estimates of the direct/diffuse
partitioning of K| are also important for solar energy applications, particularly
concentrating solar power (Lee et al. 2016).

This study is concerned with biases in surface K| 4 in retrospective analysis or

reanalysis datasets, which assimilate observations of some variables to constrain
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other modeled variables (Kalnay et al. 1996). These observationally constrained
datasets represent our best estimates of the current and historical global climate
system. Although site-level comparisons of radiation transfer codes that also
consider K| ¢ have been performed in the past (Oreopoulos et al. 2012), how
accurately reanalysis models simulate K| 4 remains largely unknown at the global
scale. To our best knowledge, only a couple of regional scale evaluations of K| 4
from reanalysis data are available, both for the ERAS reanalysis (Jiang et al. 2019b,
2020). The second activity of an ongoing inter-model comparative project called
Radiative Forcing Intercomparison Project (RFMIP) requests modeling centers to
provide broadband fluxes based on their radiative transfer codes, but does not
explicitly require the partitioning of K| into K| 4 and K » (Pincus et al. 2016).

The lessons learned about model biases in K| are not necessarily applicable to
K4, K| p incident on the surface is controlled by the total extinction of a light beam
as it transmits through the atmosphere, while K| 4 is a function of the scattered
sunlight (Liu and Jordan 1960). Thus, one can hypothetically fix the overestimation
of K| in modeled products by increasing aerosols or clouds or through statistical
bias-correction algorithms (Zhao et al. 2013), but with unknown individual biases in
K4 and K. Since aerosols and clouds are parameterized differently in different
gridded products, including, but not limited to, prescriptions of cloud droplet size
distribution, cloud overlap, and aerosol properties, our hypothesis is that the bias in

K4 and K| are less systematic in direction than that seen for K| in previous studies
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and strongly controlled by the cloud and aerosol inputs (Wild et al. 2015). To test
these hypotheses, the specific objectives of this study are:

(1) To perform a systematic evaluation of the monthly K , K|,-and K| 4 in gridded
data products, including five current-generation reanalysis datasets (NOAA-CIRES-
OE, NCEP/NCAR, JRA-55, MERRA-2 and ERAS; only K| for JRA-55) and one
satellite-derived product (CERES)

(2) To examine the differences in these variables between the gridded data products
benchmarked against observations at the annual and seasonal time scales

(3) To evaluate the ability of the gridded products to capture long-term changes in
these variables for Europe and China, two regions which have relatively high
densities of ground-based observations and have several previous relevant studies to
compare the results

(4) To discuss potential sources of biases and inter-model variability, particularly
due to cloud cover and also atmospheric aerosols, in these datasets

2. Methods

a. Global Reanalysis Products

We used monthly gridded data from five reanalysis products: (1) NOAA-CIRES-
DOE -- the Twentieth Century Reanalysis version 3 from National Oceanic and
Atmospheric Administration (NOAA), Cooperative Institute for Research in
Environmental Science (CIRES), and Department of Energy (DOE), (2)
NCEP/NCAR -- the 50-year Reanalysis from National Centers for Environmental

Prediction (NCEP) and National Center for Atmospheric Research (NCAR), (3)
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JRA-55 -- the Japanese 55-year Reanalysis, (4) MERRA-2 -- the Modern-Era
Retrospective analysis for Research and Applications, version 2, and (5) ERAS --
the Fifth Generation Reanalysis from the European Centre for Medium-Range
Weather Forecasts (ECMWF). They represent the latest iteration of the major global
reanalyses for research and applications. Note that although the Climate Forecast
System Reanalysis (CFSR; Saha et al. 2010) is newer than the NCEP/NCAR
reanalysis, it does not publicly archive K4 Table 1 summarizes the important
information about the products considered in the study. Short descriptions of the
datasets are given below.

1. NOAA-CIRES-DOE

This reanalysis assimilates surface pressure observations to provide estimates of the
historical climate state (Slivinski et al. 2019). In addition to improvements in the
assimilation system, the latest version of the reanalysis includes a higher resolution
forecast model, more assimilated pressure observations, and better representation of
storm intensity. The radiative transfer model for shortwave in this reanalysis
interacts with fractional cloud cover, modeled Os, time varying CO2, volcanic
aerosols, and solar variations (Hou et al. 2002).

2. NCEP/NCAR

This reanalysis assimilates data from a wide variety of weather observation
including pressure measurements over land, pressure, temperature, and specific
humidity measurements over oceans, radiosonde profiles, temperature and wind data

observed from aircraft, and satellite-derived cloud-tracked wind data (Kistler et al.
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2001). The shortwave parameterization in this reanalysis is based on the work by
Lacis and Hansen (1974).

3. JRA-S5

The JRA-55 reanalysis version improves upon the previous JRA-25 product with an
updated assimilation system, more ingested observations, a newer longwave
radiation scheme, and higher resolution forecasts (Kobayashi et al. 2015). The
shortwave radiation is parameterized considering random overlap of clouds, H.O
absorption based on Briegleb et al. (1992), Oz, O3, and CO> absorption based on
Freidenreich and Ramaswamy (1999), and assuming standard atmospheric aerosol
profiles with optical depths adjusted using monthly aerosol climatology. It only
archives gridded data for X|.

4. MERRA-2

The MERRA-2 reanalysis is a recent global reanalysis product that assimilates bias-
corrected satellite observations of aerosols and clear-sky irradiances (Randles et al.
2017). It also uses observed precipitation to force the land-surface model. The
shortwave radiation scheme is based on Chou and Suarez (1999) and the latest
version of the Goddard Earth Observing System (GEOS-5) assimilates newer
satellite observations. The total aerosol optical depth (AOD) in MERRA-2 has been
evaluated against independent observations (Buchard et al. 2017).

5. ERAS

The ERAS reanalysis uses the recently developed Integrated Forecasting System to

improve upon its predecessor (Hersbach et al. 2020). In addition to the finer
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horizontal model resolution, ERA5 has consistent hourly outputs, improvements in
the dynamical core, and a four-dimensional variational data assimilation system
(like JRA-55). Standardized sets of long-term forcing for aerosols, greenhouse
gases, and O3 are taken from the World Climate Research Programme (WCRP) and
the McRad scheme is used to parameterize radiation (Morcrette et al. 2008).

b. Satellite-Derived Estimates

In addition to the reanalysis products, we used the satellite-derived monthly gridded
K| and K| 4 data in the latest version of the Clouds and the Earth’s Radiant Energy
System (CERES) synoptic product, (CERES— EBAESYNldeg— Ed4.1; Kate-Rutan
et al. 20482015). The dataset is well-constrained by observations due to direct
measurements of the top of the atmosphere components and the use of aerosol and
cloud observations from satellites, including those carrying the Moderate Resolution
Imaging Spectroradiometer (MODIS), in the radiative transfer code.

¢. Ground-Based Point Observations

The Global Energy Balance Archive (GEBA) is a repository of energy flux
measurements at the Earth’s surface (Gilgen and Ohmura 1999) and is the most
comprehensive global database of observed mean monthly surface radiation
components currently available. Here, we used the latest iteration of the database
(Wild et al. 2017) after removing sites with missing data and applying the following
quality control steps:

1. We considered only the observations not flagged as erroneous by the database’s

quality control procedure (thus, data with flags 5, 6, 7, and 8 were used)
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2. Observations for which the monthly means were 0 W m 2 were not considered
since they are primarily due to either instrument errors or during polar nights.

3. We removed observations if the diffuse fraction, k4 = K| 4/K| , exceeded one or
was 0.

4. Although there are many more stations with K| measurements than K|g
measurements, to keep the number of sites consistent, we only considered those
with simultaneous observations of K; and K4 in most cases (except for
examining long-term trends; see next subsection).

After data screening, we obtained 221 stations (distribution of stations shown in Fig.

S1) with a total of 16589 site-months of data between 1980 and 2015. Only a few

GEBA sites have direct measurements of K. For evaluating modeled K|p, the

observed K|, was computed as the difference between K| and K q.

d. Data Processing and Metrices for Evaluation

We extracted monthly K| 4, K| p, and K| from the gridded datasets from the start of

1980 to the end of 2019. Only K| was extracted for JRA-55 since it does not

publicly archive K| 4 or K. For the overall evaluation against GEBA, all the grids

overlapping the observational sites and months between 2001 to 2015 were used.

This period is common to all the six datasets and is referred to as Common Period 1.

For cases where multiple sites were within one grid box, the same grid value was

compared against each of those observations. For NCEP/NCAR, the lowest

resolution dataset, roughly 12% of the sites share a common grid with another site,

while only 2% of sites share a common grid when using the highest resolution

10
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dataset (ERAS). Four metrics were used to evaluate the modeled data, including
coefficient of determination (+?), root mean square error (RMSE), mean bias error
(MBE), and mean percentage error (MPE).

To examine inter-model variability at annual and seasonal scales, we chose
Common Period I and used the CERES data as reference. To avoid mixing the
seasonality of the two hemispheres, we only used sites and grids in the northern
hemisphere when examining seasonality. Although point-based observations of
surface radiation fields are not always comparable to gridded estimates due to how
models represent clouds, at the monthly scale, these uncertainties are reduced (see
Limitations subsection).

We restricted our trend analysis to Europe and China between 1980 and 2015.
This period, termed here as Common Period II, is longer than the CERES data
period but covered by all the five reanalysis products (Table 1). These two regions
have more sites with continuous data coverage than other regions of the world. We
calculated temporal trends for the sites with at least a total of 10 years of data (not
necessarily contiguous years). Site-averaged time trends of the gridded model data
were based on the same measurement years and the grids containing these GEBA
sites. The threshold of 10 years, although somewhat arbitrary, was used, not to
estimate the true 35-year trend but to examine whether the gridded products showed
similar trends during the corresponding time-frame. Similar thresholds have been
used in other studies that have examined long-term trends in K| (Yang et al. 2019;

Schwarz et al. 2020). Since few of the sites have both observations of K| ¢ and K|

11
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that satisfy all the above criteria, we used a different subset of measurements for K
and K| ¢ over these regions. This left us with 28 (7) stations over Europe (China) for
examining K| trends, and 15 (5) sites over Europe (China) for K| 4 trends. Before
using these stations, however, we also tested for change/breakpoints in the time
series data using the Standard Normal Homogeneity Test (Alexandersson 1986).
Considering only those stations that show no breakpoints at the 95% significance
level, we got 24 (4) stations over Europe (China) for K| and 8 (4) stations over
Europe (China) for K 4. We also calculated the grid-averaged modeled trend for the
entire period (1980-2015) using all the grids that fall within Europe and China.
Before finding the grids intersecting these two regions, the five reanalysis products
were re-gridded to 1o x 1o grids, the grid size of CERES, using bilinear
interpolation, which is appropriate due to the spatial continuity in these variables at
the annual time scale. This re-gridded data were also used to demonstrate grid-by-
grid difference in multi-year average values between the products (see Section 3b).
In all cases, the trends were based on the annual average value regressed against the
year of observation, with the statistical significance of the trends calculated. Finally,
we also estimated cloud cover, top of the atmosphere K; and AOD (from MERRA-
2) for Europe, China, and globally to examine the reasons for some of these biases.
3. Results

a. Overall Evaluation and Annual Inter-Comparisons

The global mean K| varies from 1854 W m™? (CERES) to 2053 W m2

(NCEP/NCAR) for Common Period I (2001-2015), based on all model grids (Table

12
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1). In comparison, Wild et al. (2015) found a multi-model mean K| of 189.1 W m™2
based on 43 CMIP5 models for 2000-2004. For the grid-years that coincide with the
GEBA observations, the modeled mean K| varies from 165.2 W m 2 (CERES) to
208.1 W m™2 (NCEP/NCAR), and the observed mean K| is 162.5 W m 2. All the
reanalysis datasets capture the seasonal (Fig. 3) and geographic distributions of the
GEBA-observed K| relatively well, with the overall /2 varying from 0.9 for NOAA-
CIRES-DOE and NCEP/NCAR to 0.96 for CERES (Table 2). As expected, CERES
performs better than all the reanalysis products, both in terms of variability (+* =
0.97) and bias (MBE=2.6 W m?).

The global mean K| varies from 82.8 W m™2 (CERES) to 132.8 W m™
(MERRA-2) during Common Period I, based on all model grids. The sign of the
error in K is less consistent across the different products than the error in K| (Fig.
1). While NCEP/NCAR, MERRA-2, and ERAS overestimate K|, (MBE = 36.8,
39.9, and 174 W m 2 respectively), NOAA-CIRES-DOE and CERES
underestimate it (MPE = -4.3 and -16.8 W m ™2, respectively; Table 2). Among the
reanalyses, ERAS performs the best at capturing the global variability in K|, (+* =
0.9), and NCEP/NCAR perform the worst (2= 0.73).

The global mean K4 varies from 52.8 W m™2 (MERRA-2) to 102.6 W m™>
(CERES), and diffuse fraction kg varies from 0.28 (MERRA-2) to 0.55 (CERES)
during Common Period I based on all model grids (Table 1). For the grid-years that
coincide with the GEBA observations, kg ranges from 0.28 (MERRA-2) to 0.55

(CERES), and the observed mean kg for the quality-controlled GEBA dataset is 0.46.
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NOAA-CIRES-DOE, NCEP/NCAR and CERES have positive biases in K| 4 (MBE
= 13.8, 8.77, and 19.5 W m™2, respectively; Table 2), and MERRA-2 and ERAS
have negative biases (MBE = -21.4 and -9.9 W m 2, respectively; Table 2). Bias
errors in kq depends on errors in K4 and K|. For MERRA-2 and ERAS, K| is
positively biased, and K| 4 is negatively biased (Table 2). Consequently, these two
reanalyses underestimate k4, with MERRA-2 performing the worst among the
datasets, with an MBE of -0.18 for all sites. NCEP/NCAR underestimates k¢ (MBE
= -0.07) because it overestimates K| more (relatively speaking) than it overestimates
K4 (Table 2). Even though NCEP/NCAR and NOAA-CIRES-DOE show smaller
MBE than MERRA-2, they do not capture the observed variability in kq well (#* =
0.36 to 0.41). ERAS captures the variability in kq the best (> = 0.72), even better
than CERES (+*= 0.67). CERES overestimates k4 (MBE = 0.09) as it underestimates
K| and overestimates K 4.

Figure 1 shows the scatter plots between gridded and observed k4, Ky, and K|
for all common GEBA site-months, with each data point representing a monthly
mean and the color representing the density of data. Fig. S2 shows the scatter plots
for total K|. The scatter is a result of both natural (seasonal and geographic)
variations and measurement and model errors. As discussed earlier, the gridded data
show larger variability than observations, and the biases in gridded K4 and K
across products is less systematic in sign than the consistent overestimation seen for
K| (Fig. S1 and Table 2). This lack of consistency is evident in the scatter plot. For

instance, although the line of best fit for the gridded K|, data is ERAS is almost
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identical to the 1:1 line, the slope is only 0.7 for K| 4 since the intercept. For CERES,
the line of best fit is less than the 1:1 line for K|, but is greater than 1:1 for K| g,
demonstrating the underestimation of K|, and overestimation of K| 4 by this dataset
with an intercept close to zero. In general, more scatter is seen for NOAA-CIRES-
DOE and NCEP/NCAR data and the least for ERAS and CERES. For NOAA-
CIRES-DOE, the large scatter for k¢ suggests that the dataset cannot adequately
capture the spatiotemporal distribution of this variable.

b. Site-level Evaluation and Spatial Patterns

Figure 2a and 2b map the MBE in K| at individual GEBA sites for NCEP/NCAR
and CERES, respectively, for Common Period I. Similarly, Figs 2c¢ and 2d display
the site-level MBE in NCEP/NCAR and CERES for K| 4. Bias maps for the other
data products can be found in Figure S3.

The site-level MBE patterns of K| and K| 4 are consistent with the overall
evaluation in the previous subsection. The reanalysis products show a positive K|
bias for the majority of the GEBA sites (80.5% for NOAA-CIRES-DOE, 98.9% for
NCEP/NCAR, 90% for JRA-55, 94.7% for MERRA-2, and 78.9% for ERAS). The
NCEP/NCAR reanalysis has the highest K, MBE among the datasets considered,
and ERAS and CERES have low biases. MERRA-2 underestimates K| 4 -for almost
all the sites -(99.7%; Fig. S1f) and ERAS underestimates K| q -for 91.9% of the sites
(Fig. S3g). NOAA-CIRES-DOE, NCEP/NCAR, and CERES overestimate K4 for

93.6%, 76.5%, and 98% of the sites, respectively (Figs 3¢, S3e, and 3d).
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Since CERES captures both the magnitude and variability of K| more accurately
than the reanalyses (Table 2), here we use CERES as the reference to examine
anomaly hot spots of the reanalysis products for Common Period I (Figs 3¢ and S4).
All the reanalysis products show qualitatively similar positive biases from CERES
over southern China and along the western coast of South America. NOAA-CIRES-
DOE shows some of the largest localized anomalies; positive biases as much as 100
W m? are evident over eastern China. Overall, the differences are lower over
Europe (0.0 = 1.2 W m ™2 for ERAS to 46.6 = 2.0 W m~2 for NCEP/NCAR; mean +
standard deviation) than over China (12.3 = 1.4 W m™? for NOAA-CIRES-DOE to
65.6 = 2.1 W m2 for NCEP/NCAR) for all the reanalysis products, a pattern
consistent with site-level evaluations using GEBA observations (Figs 2 and S3). The
closer value between CERES and the reanalyses over Europe could be due to
stronger constraints on the energy budget due to more quality-assured assimilated
meteorological observations over this region. For reference, the number of common
GEBA stations over Europe for Common Period I is 93, while there are only 10 over
China; with similar sampling biases expected for assimilated variables. Another
potential factor is the influence of higher aerosol loading over China, which is not
explicitly represented in most of these datasets.

c. Annual Cycle
Figure 3 compares the northern hemisphere seasonal patterns in K4, K|, and kq
among the datasets and the GEBA observations in the northern hemisphere, using

the site-months common to the datasets and the GEBA observations for Common
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Period I. The complete northern hemispheric mean seasonal patterns are given in
sub-figures 3b, 3d, and 3f using all the model grids. The GEBA observations are
skewed towards middle to high latitudes; thus Figs 3a and 3b shows a stronger K|
and K| 4 seasonality than Figs 3b and 3d. For instance, the inter-seasonal range of
K, or the difference between the monthly maximum and monthly minimum K| for
the average year, is 134.4 W m™2 in Fig. 3b and 178.8 W m2 in Fig. 3a for CERES.
The data products generally capture the observed seasonality, showing much higher
K, and K| 4 values in the summer than in the winter (Figs 3a and 3c). Among the
datasets, the inter-seasonal range in site-corresponding K| varies from 178.8 W m™>
in CERES and ERAS5 (181 W m™2 for GEBA) to 207.7 W m 2 in NCEP/NCAR
according to Fig. 3a.
Generally, there is a larger inconsistency in the K| 4 -seasonal variations than the
K| seasonal variations among the datasets. Particularly, the CERES data shows a
more pronounced K4 seasonality (inter-seasonal range = 101 W m2) than the
GEBA observations (inter-seasonal range = 70 W m2) and the other data products
(average inter-seasonal range of 61.6 W m ™2 for the other products; Fig. 3c).
Globally, the observed kq is higher in winter and lower in the summer (Fig. 3e).
The inter-seasonal range in kq varies substantially between the products, with
CERES showing the lowest range of 0.03 and NOAA-CIRES-DOE showing the
highest range of 0.22 (Fig. 3e). In comparison, the inter-seasonal range in the
corresponding GEBA observations is 0.13. The muted seasonality in CERES is

evidently driven by the stronger seasonality for K| q in this dataset. Combining all
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the gridded products, for the northern hemisphere, the spatially averaged inter-
seasonal range in kq is only 0.05 (Fig. 3f), compared to 0.13 for the grids
corresponding to the GEBA observations; evidently due to the higher frequency of
GEBA observations in the higher latitudes.
d. Long-term Trends over Europe and China
We analyze the long-term trends in K| and K| ¢ in Europe and China in two ways.
First, we calculate the trends using the reanalysis products for Common Period II
(1980-2015) and all grid cells in these two regions. The results are presented as solid
bars in Fig. 4 with the statistical significance of the trends noted. Over Europe,
NOAA-CIRES-DOE shows a slightly negative trend and the other four reanalysis
products show clearly positive trends in K|, with the rate of change varying from -
0.07 W m 2 per decade in NOAA-CIRES-DOE to 2.02 W m 2 per decade in ERAS
(Fig. 4a). The average trend of the five products is 0.80 = 0.74 W m™2 per decade
(mean + standard deviation; here standard deviation indicates variation among the
five products). The regional mean K| 4 shows an increasing trend according to
NCEP/NCAR and decreasing trends according to the other three products (NOAA-
CIRES-DOE, MERRA-2, and ERAS), with the rate of change ranging from 0.39 W
m 2 per decade in NCEP/NCAR to -1.6 W m 2 per decade in MERRA-2 (Fig. 4b),
with a four-product mean value of -0.86 = 0.75 W m ™2 per decade. JRA-55 does not
provide K| 4 data.

Over China, the trends in K| are less consistent than those over Europe. Two

products (MERRA-2 and JRA-55) show decreasing trends, and three (NOAA-
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CIRES-DOE, NCEP/NCAR, and ERAS5) show increasing trends. The rate of change
varies from -0.73 W m™? per decade (MERRA-2) to 1.76 W m? per decade
(NCEP/NCAR), giving a five-product mean of 0.41 = 0.88 W m 2 per decade. In
contrast, all products show decreasing trends in K| 4, giving a four-product mean rate
of change of -0.72 = 0.39 W m 2 per decade (Fig. 4d).

Second, we analyze the time trends using the GEBA data and the reanalysis data
from the grids containing these GEBA sites and for the same measurement years.
Since the number of sites which fulfill all the quality-control criteria, including the
homogeneity test, are small (see Methods section), we stress that these do not
necessarily represent regional trends. Instead, we examine whether the gridded
products capture the observed trends for the corresponding periods. The trends for
the individual stations included for each region are represented by the circles in Fig.
4, with the overall mean and standard errors for these shown as hatched bars. For
62.5% (15 of 24) of the GEBA sites considered over Europe, we see a positive trend,
with an average increasing trend in K| (2.18 W m ™2 per decade), which is consistent
with existing studies (Wild 2012, 2016; Schwarz et al. 2020). None of the reanalysis
products capture the direction of the mean brightening trend for the corresponding
grids and years, though the regressions between the observed and modeled trends in
K are positive for ERAS (r = 0.28) and MERRA-2 (» = 0.32). For K 4, only half of
the six GEBA sites show decreasing trends. Among the reanalysis products, only

ERAS captures (weakly) the corresponding trends (= 31).
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Over China, 3 of the 4 GEBA sites show a brightening trend (Fig. 4c), with
none of the corresponding reanalysis products capturing the variability of trends
between the sites. On the contrary, for K| 4, all the four considered GEBA sites show
an increase over time, with all the reanalysis products other than NCEP/NCAR
capturing the positive direction of the mean trend.

Several previous studies have examined the long-term trends in K| over Europe
and China owing to the larger data coverage and strong temporal trends in these
regions (Samukova et al. 2014; Lorenzo et al. 2015; Feng et al. 2018; Schwarz et al.
2020). Although the magnitude of the trends varies across studies depending on
quality control of the data and the selection of the observation sites and the time
periods of interest, most studies have found strong brightening over Europe and
weak to negligible brightening over China since the 1980s. For Europe, Lorenzo et
al. (2015) found an increasing trend of 3.2 W m 2 per decade for K| between 1986
and 2012. Similarly, Pfeifroth et al. (2018) found increasing trends between 1.9 W
m ™2 and 2.4 W m 2 per decade for 1983-2015. Most recently, Schwarz et al. (2020)
found an increase in the K| absorbed by the surface at a rate of 1.7 W m ™2 per
decade in Europe for the 31-year period between 1985 and 2015. For the time
periods corresponding to the three studies mentioned above, we calculate the five-
product mean brightening trends of 0.63 W m™2 per decade, 0.68 W m ™2 per decade,
and 0.57 W m ™2 per decade, respectively. Over China, strong brightening trends (by
10.6 W m ™2 per decade) have been seen for clear-sky conditions between 2006-2018

(Yang et al. 2019). For all-sky conditions, the absorbed K| at the surface showed a
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dimming trend of -0.7 W m ™2 per decade between 1985 and 2009 and a brightening
trend of 1.4 W m™2 per decade between 2011 and 2015 (Schwarz et al. 2020). We
find a five-product mean increase in K| by 0.41 W m 2 per decade for Common
Period II in China. The observed increase in K| for the subset of GEBA sites in
China is not captured by the reanalyses over the corresponding sites. The overall
regional brightening has also been found to be missing in unconstrained CMIP5
model simulations (Moseid et al. 2020).

Observational constraints on long-term trends in K4 are much rarer, partly
because of the lack of sufficient ground stations that measure this variable, as well
as higher uncertainties in these measurements. For Europe, a couple of studies show
decreasing trend in K| 4 since the 1980s (Samukova et al. 2014; Wild et al. 2017).
We also find a decreasing four-product mean trend of -0.86 W m ™2 per decade for
Common Period II. For China, there are more studies on long-term trends in K| g,
generally showing a decrease in K| 4 till the 1990s, followed by an increase till 2010
(Wang and Yang, 2014). For northern China, K| 4 showed an increasing tendency
from 1959 to 2016 according to a recent study (Feng et al. 2018), but a strong
decreasing tendency for the Beijing and Shenyang stations, both in the northern
China, according to another study (Wang et al. 2020). We find a decreasing four-
product mean trend in K| 4 of -2.93 (-0.72) W m ™2 per decade for Common Period II.
e. Role of Clouds and Aerosols on Inter-Model Variability in Gridded Products
Previous studies show overestimation of K| in reanalysis datasets due to the

underestimation of clouds (Zhao et al. 2013; Wild et al. 2015; Loeb et al. 2019).
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Here, we separately analyze the correlation of K| ¢ and K|, with percentage cloud
cover at the global scale, both within the gridded products using annual averages and
between the products using multi-year averages for Common Period I (Fig. 5). The
datasets show similar spatial patterns in cloud cover (Fig. S5), but large differences
in global mean values, ranging from 52.3% in NCEP/NCAR to 66.5% in CERES. In
general, products with lower cloud cover have higher average K| and lower K g,
which makes sense mechanistically. The exception to this strong linear relationship
(> = 0.96 for K and 0.92 for K| 4; Fig. 5) is NCEP/NCAR, which has the lowest
cloud cover, but not the lowest K| 4 or the highest K| . Note that NCEP/NCAR does
have the highest K| (Table 1). Thus, the issue is the partitioning of K4 in the
product. The underestimation of K|, and overestimation of K| 4 in CERES may be
due to the positive bias in not just percentage cloud cover (Kato et al. 2018), but the
well-known systematic overestimation in MODIS-derived cloud droplet size
(Painemal and Zuidema 2011). Larger particles lead to more forward scattering
(Plass and Kattawar 1968), which weuld-could contribute to the positive bias in tetal
K 4 at the surface while simultaneously reducing K| .

Although the relationships between annual cloud cover and annual K, (and
K| a) for each gridded product are not consistently strong, we find the expected
direction of sensitivity to cloud cover in all the datasets. The sensitivities are
positive for K| 4, ranging from 0.22 W m™? per cloud cover percentage in MERRA-2
to 0.87 W m ™2 per cloud cover percentage in NOAA-CIRES-DOE, and negative for

K|, ranging from -0.47 W m ™2 per cloud cover percentage in MERRA-2 to -2.89 W
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m 2 per cloud cover percentage in NOAA-CIRES-DOE. Overall, the collinearity
between cloud cover and K| is higher than for K| 4 The individual scatterplots
between K| 4 (and K| ) and cloud cover percentage are also in Fig. S6. Although
there are large uncertainties in both cloud and aerosol representation in coarse-
gridded models, that the inter-product variability of these atmospheric constituents
controls the inter-product variability in the surface radiation fields is a reasonable
assumption. This is because the top of the atmosphere incoming K| has strong
theoretical constraints and varies between 340.3 W m 2 in NOAA-CIRES-DOE to
341.9 W m? in NCEP/NCAR for Common Period I. Tt is harder to separate the
relative importance of the individual constituents due to the structural and
parametric differences between these products. Cloud-radiation interactions depend
not only on aerial coverage of clouds, but also on cloud thickness and cloud optical

properties, usually represented by the cloud optical depth (COD). For instance, an

underestimation of cloud cover and an overestimation of COD can lead to a positive

bias in K| and a negative bias in K| 4 with minimal impact on overall K|, which is

seen in ERAS (Table 2). In contrast, CERES, which has a much higher cloud cover

than ERAS (Fig. 5), shows a negative bias in K|, and a positive bias in K| 4, which

may be due to either the larger cloud droplet size or underestimated COD or a

combination of both (Minnis et al. 2011). The overestimation of optically thick

clouds in models compared to satellite observations has been known for a while

(Zhang et al. 2005) but has not been used to specifically examine the differences in

direct/diffuse  partitioning among  models.  Although COD is not
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publicly archived in most of these reanalysis products, preventing such an analysis

in the present study, accurately representing both overall cloud cover and COD

might reduce this large variability in direct/diffuse partitioning across these

products. The reanalysis products also have large differences in aerosol
representation. The NOAA-CIRES-DOE and NCEP/NCAR reanalysis do not
include tropospheric aerosols (although NOAA-CIRES-DOE has volcanic aerosols),
ERAS and JRA-55 consider aerosol climatology, and MERRA-2 includes time-
varying assimilated aerosols and is the only one of these products that archive AOD.
Thus, a similar analysis using all gridded products is not possible for the inter-
product variability in aerosols.

We also examined the long-term trends in clouds and aerosols for Europe and
China. Figure 6 (a to f) shows the correlation between the trends in cloud cover and
the trends in K| and K4 for Europe and China among the six datasets. Common
Period I is used for CERES and Common Period II for the reanalysis products. For
Europe in particular, these correlations are strong (> = 0.92 for K, and 0.80 for
K, 4; Figs 6¢ and 6e), suggesting that the strength of the brightening over these
regions in the gridded data is primarily a function of the trends in the modeled cloud
cover. All the datasets other than JRA-55 show a decrease in cloud cover over this
region between 1980 and 2015 (Common Period II). We also calculate the trend in
AQOD for Europe from the MERRA-2 data (Fig. 6g), showing a decreasing trend of
0.04 per decade during the same period. The decrease in aerosol for Europe has been

previously seen using both observations and models (Yang et al. 2020). Since
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aerosols generally increase K4, keeping all other factors constant, this would
explain the simultaneous decadal increase in K| and decrease in K| 4 over Europe.
For China, cloud cover decreases in most of the gridded products (other than JRA-
55), with the magnitudes of change roughly half of that seen over Europe. The
correlation between trends in cloud cover and trends in K| is relatively weak, though
this is primarily driven by MERRA-2 being an outlier (+* increases to 0.88 if
MERRA-2 is not used in this regression). Incidentally, only MERRA-2 assimilates
observations of aerosols, showing an increase in AOD by 0.03 per decade over this
region (Fig. 6h). Moreover, according to the grid-averaged trends, K| 4 decreased
during this period over China. This pattern could be due to the relative change in
absorbing and scattering aerosols over the region during this time period. MERRA-2
data shows a stronger increase in absorbed AOD compared to scattered AOD over
China during Common Period II, suggesting a relative enhancement in absorbing
aerosols (Fig. 6h). Even though the absorbing component of total AOD in MERRA-
2 is modeled, not assimilated, observations bear out the increase in absorbing
aerosols over China during this period (Schwarz et al. 2020).

Since in addition to cloud cover, MERRA-2 assimilates gridded AOD, we can
estimate the sensitivity of the trends in K| and K| 4 due to the trends in cloud cover
and aerosols by solving this system of two equations:

KrTrEu_ _ CLDRTrEu, , AODRTrEU
Krgoeu  CLDrgogu  AODRgoEu 1

Krrreh_  CLDRrrch, 4. AODRr7TrcCh
Krgoch  CLDrgoch  AODggoch @)

25



541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

Here, subscripts r e and rrrcn represent the trends in the MERRA-2 gridded
products for Europe and China, respectively. The variables considered are the
incoming radiation (Kg; either K| or K| q), the cloud cover (CLD), and AOD. Since
these variables have different ranges, they are normalized by the value of the
variable for the base year (1980; denoted by subscripts rso,ea and r.go,cn) to represent
the fractional rates of change. For reference, CLDRr go,eu and CLDggo,ch are 63.56%
and 47.95%, respectively, while AODr3gora and AODgrgo,cn are 0.26 and 0.18.
Finally, a and b are the unitless coefficients that give the sensitivity of the fraction
rate of change in the radiation components to the fractional rate of change in CLD
and AOD, respectively. Simultaneously solving these two equations, we find that
both @ and b are negative for fractional rate of change in K| (a =-0.184, b =-0.037)
and positive for the corresponding fractional rate of change in K| 4 (a = 1.074, b =
0.124). These values make sense physically since an increase in aerosols and clouds
tends to decrease K| and increase K| 4. In terms of magnitude, clouds play a stronger
role than aerosols; with the sensitivity being almost 9 times higher for clouds for
K4 and 5 times stronger for K. Over Europe, the effect of clouds and aerosols
reinforce each other, with both decreasing, thereby increasing K| and decreasing
K 4. Over China, the total effect of aerosols, controlled by both the lower sensitivity
to aerosols and the much higher fractional rate of change in AOD, overwhelm the
impact of clouds, with K| decreasing in spite of a decrease in cloud cover.

We use this framework to constrain the sensitivity of K| and K4 to CLD and

AOD in the MERRA-2 dataset because of its conceptual simplicity. For comparison,
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we also used multi-linear regressions to examine the trend in K| and K 4 as a
function of grid-averaged CLD and AOD separately for Europe and China, given by

the equation:

CLDR | AODg

Kr
=6,+86 t
0" Y1 CLDRgo -2 AODRg0 €)

KRr,go

Here, the annual average values of K| and K4 (Kr), CLD (CLDRr), and AOD
(AODr) are normalized by their 1980 values and 8o, 81, and 8; are the coefficients of
regression. Although the results are different over the two regions since they are not
mathematically constrained by the same sensitivity as done for Eqs 1 and 2, we get
the same signs and similar relative magnitudes of the regression coefficients. 81 and
B, are always positive for K| 4 and always negative for K. Clouds play a stronger
role in both Europe and China for K| (61/682 = 14.52 and 6.26, respectively) and K| 4
(61/62 = 3.57 and 8.03, respectively).

4. Discussion and Summary

a. Comparison with Other Modeled and Satellite-Derived Estimates

We are not aware of any formalized attempts to evaluate K| 4 in current-generation
CMIP6 models or their previous iterations. Although operational GCMs may
sometimes lead reanalysis products in model development efforts (for instance,
frequently using prognostic aerosols instead of prescribed aerosol distributions),
many of the radiation codes and cloud parameterizations used to generate the
reanalysis products are also implemented in those models. Additionally, that GCMs

are run with less constraints on the atmospheric and surface variables than reanalysis
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products suggests that there may also be wide disparities in the K| 4 modeled by
GCMs. We see evidence of this from two studies that have evaluated K| 4 at larger
scales. Mercado et al. (2009) used radiative transfer calculations to simulate K, and
K globally. Using a subset of GEBA observations over Europe, Germany, and
China, they evaluated their modeled K| and k4. For GEBA stations in Germany and
Europe, they found an underestimation in K| and an overestimation in k4. Over
China, their model overestimated K|, but correctly simulated k4, suggesting an
overestimation in K| 4. More recently, Chakraborty et al. (UnderReview2021) used
the latest version (version 6) of the Community Atmosphere Model (CAMG6;
Gettelman et al. 2019) to simulate K| 4 and K| and evaluated the modeled values
using all available GEBA observations. CAM6 overestimated K| and underestimated
K| 4, leading to an MBE of -0.08 for kq for all GEBA sites.

Our evaluation of the CERES dataset shows that, while CERES does a great job
at capturing both the magnitude and variability in K| (Table 2), there are issues with
the direct/diffuse partitioning. CERES overestimates K| 4 and underestimates K| p,
leading to an overestimation in kq (roughly 0.09 for all GEBA sites; Table 2),
potentially caused by higher cloud fraction and cloud droplet size in satellite-derived
products (Painemal and Zuidema 2011; Kato et al. 2018). In this context, a few other
satellite-derived K| 4 products also warrant discussion. Recently, Jiang et al. (2020)
evaluated the K| ¢ in a recent dataset (JIEA) created using a deep learning algorithm
and geostationary satellite measurements (Jiang et al. 2019a). Using 39 observation

sites over East Asia, they found much better performance of the JiEA product
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compared to ERAS. Consistent with our results, ERAS underestimated K| 4 (MBE=-
17.2 W m 2% -1.2 W m~2 for JiEA) over their study area. The grid-area averaged kq
over East Asia was 0.42 for JiEA and 0.35 for ERAS. For China, which covers a
large part of their study area, the grid-averaged kq for the same time period (2007-
2014) varies from only 0.27 in the MERRA-2 dataset to roughly double that value
(0.56) in the CERES data. Over Europe and Africa, the Copernicus Atmosphere
Monitoring Service (CAMS) provides K|, K| 4, and K| estimates every 15 minutes
based on the Heliosat-4 method using Meteosat geostationary satellite observations
(Qu et al. 2017). We estimated K| 4 over the region of Europe (‘AGATE’) covered
by these satellites for Common Period I and found the regional average K| 4 to range
from 52.8 W m 2 in MERRA-2 to 102.6 in CERES versus a value of 65.4 W m 2 in
CAMS. Another recent study produced global datasets of K, total
photosynthetically active radiation (PAR) and its diffuse component from 2000 to
2016 by combining a radiative transfer model with an artificial neural network
trained using MODIS data (Ryu et al. 2018). They calculated a global average ratio
of 0.41 for diffuse PAR to total PAR and 0.46 for total PAR to K.

Of the data products we consider, only MERRA-2, NOAA-CIRES-DOE, and
NCEP/NCAR publicly archive the diffuse portion of PAR. For Common Period I,
we find large differences in these estimates for the three datasets for both diffuse
PAR to total PAR (0.37 for MERRA-2; 0.54 for NOAA-CIRES-DOE; 0.46 for
NCEP/NCAR) and for total PAR to K| (0.44 for MERRA-2; 0.52 for NOAA-

CIRES-DOE; 0.61 for NCEP/NCAR). In comparison, the diffuse PAR to total PAR
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and total PAR to K| in the CAM simulations by Chakraborty et al. (Under
Review2021) were 0.41 and 0.51, respectively.

b. Limitations

Point observations have been frequently used to compare against gridded estimates
of surface radiation (Markovic et al. 2009; Zhao et al. 2013; Wild et al. 2015).
However, radiation transfer calculations in GCMs and reanalyses are based on the
plane-parallel approximation, the assumption of one-dimensional atmospheric grids
with horizontal planes as the upper and lower bounds, for computational efficiency.
The real atmosphere has 3D cloud structures, particularly relevant for cloud-
radiation interactions. For instance, cloud side illumination is the interception of
radiation due to the existence of cloud sides in the real atmosphere, which are not
captured by their plane-parallel approximations; a major issue at high solar zenith
angles (Schifer et al. 2016). Similarly, for low zenith angles, cloud side leakage
causes more radiation to pass through the edges of clouds and reach the surface,
which would be blocked in a plane-parallel representation (Ham et al. 2014). The
overall result of these two mechanisms is generally an underestimation in simulated
K| even when the cloud fraction is correctly captured by the approximation (Okata
et al. 2017). Thus, these two effects on their own cannot explain the systematic
overestimation in K; we find in the gridded products (Table 2). Cloud sky leakage
would normally lead to more forward scattering, and may thus increase K| 4 in
regions with low zenith angle, which we do find in the GEBA observations

compared to the MERRA-2 and ERAS5 datasets. The effect of cloud side
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illumination, on the other hand, primarily blocks K|, (Hogan and Shonk 2013),
which would overestimate K, in GCMs, which is seen in all reanalysis products
other than NOAA-CIRES-DOE (Table 2).

These problems are most serious at shorter time scales, as patchy clouds can
cause large fluctuations in the observations at individual sites. Thus, since the signs
of these 3D effects largely depend on zenith angle, the errors are reduced
substantially when using monthly means since it averages over the various zenith
angles (as was done here) and by combining the biases over multiple sites in a
region. Note that the bias errors found here may also be related to other aspects of
the 3D cloud structure, such as how overlap of clouds at various heights is
represented (Wang et al. 2016). However, the inter-model variability is not affected
by these issues since all the products considered use similar approximations. We
find that this variability for both K| 4 and K| is strongly controlled by cloud fraction
(Fig. 4). Additional differences are also expected due to the shortwave
parameterizations used in these datasets that convert the cloud representations to the
radiances across wavelength channels. However, such an evaluation requires a
modeling setup that controls for the different inputs to the radiative transfer models
used in the gridded products and hyperspectral observations for validation (Aumann
et al. 2018).

A quantitative comparison of the long-term trends using observations requires
consistent data coverage. The GEBA data are not always appropriate for this

purpose because the trends in K| 4 and K| (circles and hatched bars, Figure 4) are
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derived from two different subsets of the data (there are more K| observations than
K| 4 -observations). Moreover, even within Common Period II, the data coverage
changes over time. This lack of consistent data coverage is particularly relevant for
China since many studies find a reversal of the trends somewhere between 1990 and
2000, potentially influenced by the instrument changes after 1993 (Wang and Yang,
2014). We try to account for potential breakpoints in the trends by testing for
homogeneity of the time-series. However, this reduces the number of available
stations substantially, particularly over China (Fig. 4). As such, although the inter-
model variability in long-term trends in the gridded datasets illustrates the
differences between these models, we advise caution when talking about the ‘real’
regional trends using GEBA observations, particularly for K4 given the dearth of
available observations. For China, one alternative is to use data from the China

Meteorological Data Service Center (http://data.cma.cn). However, as seen in Wang

et al. (2020), after testing for homogeneity, only 12 stations are available with long-
term observations of both K| and K 4. An in-depth analysis of the influence of
station and year range selection on these trends is in Schwarz et al. (2020), though
they do not focus on K| 4. Given that we find that the gridded data cannot generally
capture either the direction or the variability in trends across the available GEBA
sites for the corresponding time-periods, further work is necessary to evaluate long-
term trends in K| 4 across CMIP6 models with consolidated observational databases
that include both regional and global networks.

c. Summary
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We find large differences in K4, Kip, and kq across current-generation gridded
products. The variability is evident from the monthly to the annual scales and show
large biases from observational benchmarks. For 2001-2015, the range of variability
is 10.7 % for global mean K| (185.4 to 205.3 W m?2), 60.4% for global mean K,
(82.8 to 132.8 W m2), 94.3% for global mean K 4 (52.8 to 102.6 W m2), and
96.4% for global mean kg (0.28 to 0.55). The variability between these products is
statistically explained by the biases in modeled cloud fraction. Long-term (1980-
2015) trends in the two variables also differ over Europe and China and are not
captured well by the gridded products. These inter-model differences in K|.¢ would
affect Earth system simulations, particularly relevant for surface climate and for
estimating solar energy potential. Thus, we suggest comprehensive comparisons of
simulated kq in the CMIP6 models to better identify potential deficiencies in current-

generation atmosphere models.
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from NCAR’s Research Data Archive (https://rda.ucar.edu/). The CAMS dataset for

Europe was downloaded from http://www.soda-pro.com/.
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916
917
918

919

Table 1. Summary of the global gridded products considered in the present
study. The global means and interannual standard deviations of the variables of
interest for Common Period I (2001-2015) are also noted.

Data Spatial Temporal Global K; Global K4 Global K, Global k4

product resolution coverage Reference Wm?) (Wm?) (Wm?)  (unitless)
CIESQSE)E lox 1o 1836-2015 5;1“’23];‘9?[ 1929404 922402  100.7+05 Oéggzi
NCE}]ZNCA 1.85" x 1.85° ;rgeiin_t Kls(tzlgro?t) 05306 81403 124306 0533;
i LT
MERRA-2 0.5 x 0.625° ;feign't ]:f“(glglsf; 185.6+0.7 528+04  132.8+1 O(fg(‘)‘;
ERAS  0.25 % 0.25° ;::Szn't Iijrs(g‘(’fz}:))et 1879404 637+0.1 1242+04 O(fggli
CERES  lex1s  2000-2019 R“(t;glest)al' 185403 102.6=0.7  82.8+0 0533;
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920 Table 2. Evaluations of monthly mean incoming shortwave radiation (K}),

921  direct beam radiation (K| ), diffuse radiation (K| 4), and diffuse fraction (kq) at

922  the surface against the common GEBA observations for Common Period I

923  (2001-2015). Statistical summaries of the evaluations include the intercept and
924  slope of the line of best fit, coefficient of determination (+?), Mean Bias Error
925 (MBE), and Mean Percentage Error (MPE). The sample size is 14155 in all

926  cases.
Slope Intercept 2 RMSE MBE MPE Slope Intercept 2 RMSE MBE MPE
Total shortwave radiation (KL) Direct beam radiation (Ki.b)
NOAA-CIRES-

DOE 1 882 09 3006 952 59 | 089 615 075 3466 -428 -4.4
NCEPNCAR 1 01 4301 09 5345 4556 28 | 0.89 47.59 073 5143 3679 382
JRA-55 098 1825 093 2671 1527 94 | A NA NA NA  NA NA
MERRA-2 103 1306 094 2822 1854 114 | 1.08 3211 086 4944 399 415

ERAS 099 972 096 1804 751 46 | 099 1815 09 2717 1738 18.1
CERES 098 645 097 1572 265 16| 08 27 088 2832 -1682 -17.5

Diffuse radiation (K L-d) Diffuse fraction (k,)
NOAA-CIRES-

DOE 094 17.68 075 2167 138 208 | 0.7 021 041 016 008 164
NCEPNCAR 73 2691 0.66 2001 877 132|041 02 036 014 -007 -145
MERRA-2 061 484 083 2584 -21.36 -322| 056 003 062 02 -0.18 -384

ERAS 07 986 08 16 -987 -149] 072 005 072 011 -008 -17.5
CERES 128 089 086 2661 1947 294|076 02 067 0.3 009 198

927
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Fig. 1 Evaluations of monthly mean incoming a diffuse fraction (kqg), b beam radiation
(Kyp), and c diffuse radiation (K q) -at the surface of gridded reanalysis and CERES
products against the common GEBA observations for Common Period I (2001-2015).
The red dashed lines represent the 1:1 relationship. Color indicates data density.
Statistical summaries of the evaluations are in Table 2.
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error in incoming diffuse radiation (K| q) at the surface for NCEP/NCAR and CERES,
respectively. Finally, sub-figure e shows the grid-wise difference in K| between
NCEP/NCAR and CERES data.
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Fig. 5. Associations between percentage cloud cover and a incident diffuse radiation
(Ky.4) and b direct beam radiation (K p) for Common Period I (2001-2015). Each
colored circle represents an annual mean value, while the black circle shows the multi-
year average for the gridded product. The lines of best fit and their equations are

shown, both for individual gridded products and across products (not considering
NCEP/NCAR).
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Fig. 6. Linear regressions between trends in grid-area averaged percentage cloud cover
and trends in a incoming shortwave radiation (K}) over Europe, b K| over China, ¢
incoming diffuse radiation (K 4) over Europe, d K| 4 over China, e direct beam
radiation (K| ») over Europe, and f K|, over China for all the gridded products during
Common Period II (1980-2015) for the reanalysis products and Common Period I
(2001-2015) for CERES. The equations for the lines of best fit are annotated. Sub-
figures g and h show the trends in grid-area averaged aerosol optical depth (AOD),
separated into the scattering and absorbing components, for Common Period II as
assimilated by MERRA-2. For g and h, the black lines show the standard errors. The p-
values are indicated for g and h by asterisks, with three asterisks representing

p<0.0001, two for p<0.001, and one for p<0.05.

52



