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                                                                 ABSTRACT 19 

Though the partitioning of shortwave radiation (K↓) at the surface into its diffuse 20 

(K↓,d) and direct beam (K↓,b) components is relevant for, among other things, the 21 

terrestrial energy and carbon budgets, there is a dearth of large-scale comparisons of 22 

this partitioning across reanalysis and satellite-derived products. Here we evaluate 23 

K↓, K↓,d, and K↓,b, as well as the diffuse fraction (kd) of solar radiation in four 24 

current-generation reanalysis (NOAA-CIRES-DOE, NCEP/NCAR, MERRA-2, 25 

ERA5) datasets and one satellite-derived product (CERES) using ≈1400 site years 26 

of observations. Although the systematic positive biases in K↓ is consistent with 27 

previous studies, the biases in gridded K↓,d and K↓,b vary in direction and magnitude, 28 

both annually and across seasons. The inter-model variability in cloud cover 29 

strongly explains the biases in both K↓,d and K↓,b. Over Europe and China, the long-30 

term (10-year plus) trends in K↓,d in the gridded products are noticeably differ from 31 

corresponding observations and the grid-averaged 35-year trends show an order of 32 

magnitude variability. In the MERRA-2 reanalysis, which includes both clouds and 33 

assimilated aerosols, the reduction in both clouds and aerosols reinforce each other 34 

to establish brightening trends over Europe, while the effect of increasing aerosols 35 

overwhelm the effect of decreasing cloud cover over China. The inter-model 36 

variability in kd seen here (0.27 to 0.50 from CERES to MERRA-2) suggests 37 

substantial differences in shortwave parameterization schemes and their inputs in 38 

climate models and can contribute to inter-model variability in coupled simulations. 39 
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Based on these results, we call for systematic evaluations of K↓,d and K↓,b in CMIP6 40 

models. 41 

Significance Statement 42 

The direction of sunlight can be changed due to particles and clouds in the air. This 43 

is known as diffuse light and it affects solar energy generation and plant growth. 44 

Here, we wanted to address a gap in previous studies and compare the diffuse light 45 

in global datasets. We find large differences between datasets, explained mostly by 46 

differing cloud amounts. When compared to measurements from the ground, we 47 

find that these differences exist for most sites and across seasons. The change in 48 

diffuse light over the last 35 years also varies widely between datasets. Our results 49 

call for larger-scale comparisons of diffuse light in all current-generation global 50 

models. Doing so can help us better predict future climate change.  51 

1. Introduction 52 

Solar radiation is a key driver of the Earth’s climate system. During its transmission 53 

through the atmosphere, it is scattered and absorbed by aerosols, clouds, and gases. 54 

Solar radiation incident on the surface (K↓) consists of beam radiation (K↓,b) and 55 

diffuse radiation (K↓,d). The former follows the original path of the sunlight and the 56 

latter is the scattered component that deviates from that path. These components are 57 

not routinely measured at weather stations (Stephens et al. 2012). Instead, climatic 58 

and ecological studies and solar energy applications generally rely on gridded 59 

estimates from atmospheric models, including reanalysis products and global 60 
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climate models (GCMs). Owing to computational limitations, these models are run 61 

at relatively coarse resolutions (50 km to over 200 km). This leads to simplified 62 

versions of radiative transfer codes being implemented in these models, as well as 63 

differences in input parameters like clouds and aerosols to those codes, both of 64 

which influence the estimated radiation fields (Oreopoulos et al. 2012). Systematic 65 

biases exist in these model estimates. It is well-known that K↓ is overestimated by 66 

most atmospheric models due in large part to the underestimation of cloud cover 67 

(Markovic et al. 2009; Bosilovich et al. 2011; Kennedy et al. 2011; Zhao et al. 2013; 68 

Wild et al. 2015; Zhang et al. 2016). This overestimation will lead to surface 69 

warming (Chakraborty and Lee 2019) and also increase the energy returned to the 70 

atmosphere through heat and moisture fluxes, which may artificially strengthen the 71 

hydrological cycle (Wild et al. 1998). 72 

K↓,d remains a relatively understudied component of the Earth’s radiation 73 

budget. Several studies have demonstrated enhanced carbon uptake and evaporative 74 

fraction at various scales with increasing K↓,d (Knohl and Baldocchi 2008; Mercado 75 

et al. 2009; Yue and Unger 2017; Rap et al. 2018; Chakraborty et al. Under 76 

Review2021). Thus, a better constraint on K↓,d can improve our ability to predict the 77 

surface energy, water and carbon budgets. Accurate estimates of the direct/diffuse 78 

partitioning of K↓ are also important for solar energy applications, particularly 79 

concentrating solar power (Lee et al. 2016). 80 

  This study is concerned with biases in surface K↓,d in retrospective analysis or 81 

reanalysis datasets, which assimilate observations of some variables to constrain 82 
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other modeled variables (Kalnay et al. 1996). These observationally constrained 83 

datasets represent our best estimates of the current and historical global climate 84 

system. Although site-level comparisons of radiation transfer codes that also 85 

consider K↓,d have been performed in the past (Oreopoulos et al. 2012), how 86 

accurately reanalysis models simulate K↓,d remains largely unknown at the global 87 

scale. To our best knowledge, only a couple of regional scale evaluations of K↓,d 88 

from reanalysis data are available, both for the ERA5 reanalysis (Jiang et al. 2019b, 89 

2020). The second activity of an ongoing inter-model comparative project called 90 

Radiative Forcing Intercomparison Project (RFMIP) requests modeling centers to 91 

provide broadband fluxes based on their radiative transfer codes, but does not 92 

explicitly require the partitioning of K↓ into K↓,d and K↓,b (Pincus et al. 2016).  93 

The lessons learned about model biases in K↓ are not necessarily applicable to 94 

K↓,d. K↓,b incident on the surface is controlled by the total extinction of a light beam 95 

as it transmits through the atmosphere, while K↓,d is a function of the scattered 96 

sunlight (Liu and Jordan 1960). Thus, one can hypothetically fix the overestimation 97 

of K↓ in modeled products by increasing aerosols or clouds or through statistical 98 

bias-correction algorithms (Zhao et al. 2013), but with unknown individual biases in 99 

K↓,d and K↓,b. Since aerosols and clouds are parameterized differently in different 100 

gridded products, including, but not limited to, prescriptions of cloud droplet size 101 

distribution, cloud overlap, and aerosol properties, our hypothesis is that the bias in 102 

K↓,d and K↓,b are less systematic in direction than that seen for K↓ in previous studies 103 
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and strongly controlled by the cloud and aerosol inputs (Wild et al. 2015). To test 104 

these hypotheses, the specific objectives of this study are:  105 

(1) To perform a systematic evaluation of the monthly K↓,b , K↓  and K↓,d in gridded 106 

data products, including five current-generation reanalysis datasets (NOAA-CIRES-107 

OE, NCEP/NCAR, JRA-55, MERRA-2 and ERA5; only K↓ for JRA-55) and one 108 

satellite-derived product (CERES) 109 

(2) To examine the differences in these variables between the gridded data products 110 

benchmarked against observations at the annual and seasonal time scales 111 

(3) To evaluate the ability of the gridded products to capture long-term changes in 112 

these variables for Europe and China, two regions which have relatively high 113 

densities of ground-based observations and have several previous relevant studies to 114 

compare the results 115 

(4) To discuss potential sources of biases and inter-model variability, particularly 116 

due to cloud cover and also atmospheric aerosols, in these datasets 117 

2. Methods 118 

a. Global Reanalysis Products 119 

We used monthly gridded data from five reanalysis products: (1) NOAA-CIRES-120 

DOE -- the Twentieth Century Reanalysis version 3 from National Oceanic and 121 

Atmospheric Administration (NOAA), Cooperative Institute for Research in 122 

Environmental Science (CIRES), and Department of Energy (DOE), (2) 123 

NCEP/NCAR -- the 50-year Reanalysis from National Centers for Environmental 124 

Prediction (NCEP) and National Center for Atmospheric Research (NCAR), (3) 125 
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JRA-55 -- the Japanese 55-year Reanalysis, (4) MERRA-2 -- the Modern-Era 126 

Retrospective analysis for Research and Applications, version 2, and (5) ERA5 -- 127 

the Fifth Generation Reanalysis from the European Centre for Medium-Range 128 

Weather Forecasts (ECMWF). They represent the latest iteration of the major global 129 

reanalyses for research and applications. Note that although the Climate Forecast 130 

System Reanalysis (CFSR; Saha et al. 2010) is newer than the NCEP/NCAR 131 

reanalysis, it does not publicly archive K↓,d. Table 1 summarizes the important 132 

information about the products considered in the study. Short descriptions of the 133 

datasets are given below.  134 

1. NOAA-CIRES-DOE 135 

This reanalysis assimilates surface pressure observations to provide estimates of the 136 

historical climate state (Slivinski et al. 2019). In addition to improvements in the 137 

assimilation system, the latest version of the reanalysis includes a higher resolution 138 

forecast model, more assimilated pressure observations, and better representation of 139 

storm intensity. The radiative transfer model for shortwave in this reanalysis 140 

interacts with fractional cloud cover, modeled O3, time varying CO2, volcanic 141 

aerosols, and solar variations (Hou et al. 2002).  142 

2. NCEP/NCAR 143 

This reanalysis assimilates data from a wide variety of weather observation 144 

including pressure measurements over land, pressure, temperature, and specific 145 

humidity measurements over oceans, radiosonde profiles, temperature and wind data 146 

observed from aircraft, and satellite-derived cloud-tracked wind data (Kistler et al. 147 
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2001). The shortwave parameterization in this reanalysis is based on the work by 148 

Lacis and Hansen (1974). 149 

3. JRA-55 150 

The JRA-55 reanalysis version improves upon the previous JRA-25 product with an 151 

updated assimilation system, more ingested observations, a newer longwave 152 

radiation scheme, and higher resolution forecasts (Kobayashi et al. 2015). The 153 

shortwave radiation is parameterized considering random overlap of clouds, H2O 154 

absorption based on Briegleb et al. (1992), O2, O3, and CO2 absorption based on 155 

Freidenreich and Ramaswamy (1999), and assuming standard atmospheric aerosol 156 

profiles with optical depths adjusted using monthly aerosol climatology. It only 157 

archives gridded data for K↓. 158 

4. MERRA-2 159 

The MERRA-2 reanalysis is a recent global reanalysis product that assimilates bias-160 

corrected satellite observations of aerosols and clear-sky irradiances (Randles et al. 161 

2017). It also uses observed precipitation to force the land-surface model. The 162 

shortwave radiation scheme is based on Chou and Suarez (1999) and the latest 163 

version of the Goddard Earth Observing System (GEOS-5) assimilates newer 164 

satellite observations. The total aerosol optical depth (AOD) in MERRA-2 has been 165 

evaluated against independent observations (Buchard et al. 2017).  166 

5. ERA5 167 

The ERA5 reanalysis uses the recently developed Integrated Forecasting System to 168 

improve upon its predecessor (Hersbach et al. 2020). In addition to the finer 169 
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horizontal model resolution, ERA5 has consistent hourly outputs, improvements in 170 

the dynamical core, and a four-dimensional variational data assimilation system 171 

(like JRA-55). Standardized sets of long-term forcing for aerosols, greenhouse 172 

gases, and O3 are taken from the World Climate Research Programme (WCRP) and 173 

the McRad scheme is used to parameterize radiation (Morcrette et al. 2008).  174 

b. Satellite-Derived Estimates 175 

In addition to the reanalysis products, we used the satellite-derived monthly gridded 176 

K↓ and K↓,d data in the latest version of the Clouds and the Earth’s Radiant Energy 177 

System (CERES) synoptic product, (CERES_ EBAFSYN1deg_ Ed4.1; Kato Rutan 178 

et al. 20182015). The dataset is well-constrained by observations due to direct 179 

measurements of the top of the atmosphere components and the use of aerosol and 180 

cloud observations from satellites, including those carrying the Moderate Resolution 181 

Imaging Spectroradiometer (MODIS), in the radiative transfer code.  182 

c. Ground-Based Point Observations 183 

The Global Energy Balance Archive (GEBA) is a repository of energy flux 184 

measurements at the Earth’s surface (Gilgen and Ohmura 1999) and is the most 185 

comprehensive global database of observed mean monthly surface radiation 186 

components currently available. Here, we used the latest iteration of the database 187 

(Wild et al. 2017) after removing sites with missing data and applying the following 188 

quality control steps: 189 

1. We considered only the observations not flagged as erroneous by the database’s 190 

quality control procedure (thus, data with flags 5, 6, 7, and 8 were used) 191 
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2. Observations for which the monthly means were 0 W m−2 were not considered 192 

since they are primarily due to either instrument errors or during polar nights. 193 

3. We removed observations if the diffuse fraction, kd = K↓,d/K↓ , exceeded one or 194 

was 0. 195 

4. Although there are many more stations with K↓ measurements than K↓,d 196 

measurements, to keep the number of sites consistent, we only considered those 197 

with simultaneous observations of K↓ and K↓,d in most cases (except for 198 

examining long-term trends; see next subsection).  199 

After data screening, we obtained 221 stations (distribution of stations shown in Fig. 200 

S1) with a total of 16589 site-months of data between 1980 and 2015. Only a few 201 

GEBA sites have direct measurements of K↓,b. For evaluating modeled K↓,b, the 202 

observed K↓,b was computed as the difference between K↓ and K↓,d.  203 

    d. Data Processing and Metrices for Evaluation 204 

We extracted monthly K↓,d, K↓,b, and K↓ from the gridded datasets from the start of 205 

1980 to the end of 2019. Only K↓ was extracted for JRA-55 since it does not 206 

publicly archive K↓,d or K↓,b. For the overall evaluation against GEBA, all the grids 207 

overlapping the observational sites and months between 2001 to 2015 were used. 208 

This period is common to all the six datasets and is referred to as Common Period I. 209 

For cases where multiple sites were within one grid box, the same grid value was 210 

compared against each of those observations. For NCEP/NCAR, the lowest 211 

resolution dataset, roughly 12% of the sites share a common grid with another site, 212 

while only 2% of sites share a common grid when using the highest resolution 213 



11 

 

dataset (ERA5). Four metrics were used to evaluate the modeled data, including 214 

coefficient of determination (r2), root mean square error (RMSE), mean bias error 215 

(MBE), and mean percentage error (MPE). 216 

To examine inter-model variability at annual and seasonal scales, we chose 217 

Common Period I and used the CERES data as reference. To avoid mixing the 218 

seasonality of the two hemispheres, we only used sites and grids in the northern 219 

hemisphere when examining seasonality. Although point-based observations of 220 

surface radiation fields are not always comparable to gridded estimates due to how 221 

models represent clouds, at the monthly scale, these uncertainties are reduced (see 222 

Limitations subsection). 223 

We restricted our trend analysis to Europe and China between 1980 and 2015. 224 

This period, termed here as Common Period II, is longer than the CERES data 225 

period but covered by all the five reanalysis products (Table 1). These two regions 226 

have more sites with continuous data coverage than other regions of the world. We 227 

calculated temporal trends for the sites with at least a total of 10 years of data (not 228 

necessarily contiguous years). Site-averaged time trends of the gridded model data 229 

were based on the same measurement years and the grids containing these GEBA 230 

sites. The threshold of 10 years, although somewhat arbitrary, was used, not to 231 

estimate the true 35-year trend but to examine whether the gridded products showed 232 

similar trends during the corresponding time-frame. Similar thresholds have been 233 

used in other studies that have examined long-term trends in K↓ (Yang et al. 2019; 234 

Schwarz et al. 2020). Since few of the sites have both observations of K↓,d and K↓ 235 



12 

 

that satisfy all the above criteria, we used a different subset of measurements for K↓ 236 

and K↓,d over these regions. This left us with 28 (7) stations over Europe (China) for 237 

examining K↓ trends, and 15 (5) sites over Europe (China) for K↓,d trends. Before 238 

using these stations, however, we also tested for change/breakpoints in the time 239 

series data using the Standard Normal Homogeneity Test (Alexandersson 1986). 240 

Considering only those stations that show no breakpoints at the 95% significance 241 

level, we got 24 (4) stations over Europe (China) for K↓ and 8 (4) stations over 242 

Europe (China) for K↓,d. We also calculated the grid-averaged modeled trend for the 243 

entire period (1980-2015) using all the grids that fall within Europe and China. 244 

Before finding the grids intersecting these two regions, the five reanalysis products 245 

were re-gridded to 1◦ × 1◦ grids, the grid size of CERES, using bilinear 246 

interpolation, which is appropriate due to the spatial continuity in these variables at 247 

the annual time scale. This re-gridded data were also used to demonstrate grid-by-248 

grid difference in multi-year average values between the products (see Section 3b). 249 

In all cases, the trends were based on the annual average value regressed against the 250 

year of observation, with the statistical significance of the trends calculated. Finally, 251 

we also estimated cloud cover, top of the atmosphere K↓ and AOD (from MERRA-252 

2) for Europe, China, and globally to examine the reasons for some of these biases. 253 

3. Results 254 

a. Overall Evaluation and Annual Inter-Comparisons 255 

The global mean K↓ varies from 185.4 W m−2 (CERES) to 205.3 W m−2 256 

(NCEP/NCAR) for Common Period I (2001-2015), based on all model grids (Table 257 
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1). In comparison, Wild et al. (2015) found a multi-model mean K↓ of 189.1 W m−2 258 

based on 43 CMIP5 models for 2000-2004. For the grid-years that coincide with the 259 

GEBA observations, the modeled mean K↓ varies from 165.2 W m−2 (CERES) to 260 

208.1 W m−2 (NCEP/NCAR), and the observed mean K↓ is 162.5 W m−2. All the 261 

reanalysis datasets capture the seasonal (Fig. 3) and geographic distributions of the 262 

GEBA-observed K↓ relatively well, with the overall r2 varying from 0.9 for NOAA-263 

CIRES-DOE and NCEP/NCAR to 0.96 for CERES (Table 2). As expected, CERES 264 

performs better than all the reanalysis products, both in terms of variability (r2 = 265 

0.97) and bias (MBE=2.6 W m−2).  266 

The global mean K↓,b varies from 82.8 W m−2 (CERES) to 132.8 W m−2 267 

(MERRA-2) during Common Period I, based on all model grids. The sign of the 268 

error in K↓,b is less consistent across the different products than the error in K↓ (Fig. 269 

1). While NCEP/NCAR, MERRA-2, and ERA5 overestimate K↓,b (MBE = 36.8, 270 

39.9, and 17.4 W m−2, respectively), NOAA-CIRES-DOE and CERES 271 

underestimate it (MPE = -4.3 and -16.8 W m−2, respectively; Table 2). Among the 272 

reanalyses, ERA5 performs the best at capturing the global variability in K↓,b (r
2 = 273 

0.9), and NCEP/NCAR perform the worst (r2 ≈ 0.73).  274 

The global mean K↓,d varies from 52.8 W m−2 (MERRA-2) to 102.6 W m−2 275 

(CERES), and diffuse fraction kd varies from 0.28 (MERRA-2) to 0.55 (CERES) 276 

during Common Period I based on all model grids (Table 1). For the grid-years that 277 

coincide with the GEBA observations, kd ranges from 0.28 (MERRA-2) to 0.55 278 

(CERES), and the observed mean kd for the quality-controlled GEBA dataset is 0.46. 279 
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NOAA-CIRES-DOE, NCEP/NCAR and CERES have positive biases in K↓,d (MBE 280 

= 13.8, 8.77, and 19.5 W m−2, respectively; Table 2), and MERRA-2 and ERA5 281 

have negative biases (MBE = -21.4 and -9.9 W m−2, respectively; Table 2). Bias 282 

errors in kd depends on errors in K↓,d and K↓. For MERRA-2 and ERA5, K↓ is 283 

positively biased, and K↓,d is negatively biased (Table 2). Consequently, these two 284 

reanalyses underestimate kd, with MERRA-2 performing the worst among the 285 

datasets, with an MBE of -0.18 for all sites. NCEP/NCAR underestimates kd (MBE 286 

= -0.07) because it overestimates K↓ more (relatively speaking) than it overestimates 287 

K↓,d (Table 2). Even though NCEP/NCAR and NOAA-CIRES-DOE show smaller 288 

MBE than MERRA-2, they do not capture the observed variability in kd well (r2 = 289 

0.36 to 0.41). ERA5 captures the variability in kd the best (r2 = 0.72), even better 290 

than CERES (r2 = 0.67). CERES overestimates kd (MBE = 0.09) as it underestimates 291 

K↓,b and overestimates K↓,d.  292 

Figure 1 shows the scatter plots between gridded and observed kd, K↓,d , and K↓,b 293 

for all common GEBA site-months, with each data point representing a monthly 294 

mean and the color representing the density of data. Fig. S2 shows the scatter plots 295 

for total K↓. The scatter is a result of both natural (seasonal and geographic) 296 

variations and measurement and model errors. As discussed earlier, the gridded data 297 

show larger variability than observations, and the biases in gridded K↓,d and K↓,b 298 

across products is less systematic in sign than the consistent overestimation seen for 299 

K↓ (Fig. S1 and Table 2). This lack of consistency is evident in the scatter plot. For 300 

instance, although the line of best fit for the gridded K↓,b data is ERA5 is almost 301 
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identical to the 1:1 line, the slope is only 0.7 for K↓,d since the intercept. For CERES, 302 

the line of best fit is less than the 1:1 line for K↓,b, but is greater than 1:1 for K↓,d, 303 

demonstrating the underestimation of K↓,b and overestimation of K↓,d by this dataset 304 

with an intercept close to zero. In general, more scatter is seen for NOAA-CIRES-305 

DOE and NCEP/NCAR data and the least for ERA5 and CERES. For NOAA-306 

CIRES-DOE, the large scatter for kd suggests that the dataset cannot adequately 307 

capture the spatiotemporal distribution of this variable.  308 

b. Site-level Evaluation and Spatial Patterns 309 

Figure 2a and 2b map the MBE in K↓ at individual GEBA sites for NCEP/NCAR 310 

and CERES, respectively, for Common Period I. Similarly, Figs 2c and 2d display 311 

the site-level MBE in NCEP/NCAR and CERES for K↓,d. Bias maps for the other 312 

data products can be found in Figure S3.  313 

 The site-level MBE patterns of K↓ and K↓,d are consistent with the overall 314 

evaluation in the previous subsection. The reanalysis products show a positive K↓ 315 

bias for the majority of the GEBA sites (80.5% for NOAA-CIRES-DOE, 98.9% for 316 

NCEP/NCAR, 90% for JRA-55, 94.7% for MERRA-2, and 78.9% for ERA5). The 317 

NCEP/NCAR reanalysis has the highest K↓ MBE among the datasets considered, 318 

and ERA5 and CERES have low biases. MERRA-2 underestimates K↓,d  for almost 319 

all the sites  (99.7%; Fig. S1f) and ERA5 underestimates K↓,d  for 91.9% of the sites 320 

(Fig. S3g). NOAA-CIRES-DOE, NCEP/NCAR, and CERES overestimate K↓,d for 321 

93.6%, 76.5%, and 98% of the sites, respectively (Figs 3c, S3e, and 3d). 322 
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Since CERES captures both the magnitude and variability of K↓ more accurately 323 

than the reanalyses (Table 2), here we use CERES as the reference to examine 324 

anomaly hot spots of the reanalysis products for Common Period I (Figs 3c and S4). 325 

All the reanalysis products show qualitatively similar positive biases from CERES 326 

over southern China and along the western coast of South America. NOAA-CIRES-327 

DOE shows some of the largest localized anomalies; positive biases as much as 100 328 

W m−2 are evident over eastern China. Overall, the differences are lower over 329 

Europe (0.0 ± 1.2 W m−2 for ERA5 to 46.6 ± 2.0 W m−2 for NCEP/NCAR; mean ± 330 

standard deviation) than over China (12.3 ± 1.4 W m−2 for NOAA-CIRES-DOE to 331 

65.6 ± 2.1 W m−2 for NCEP/NCAR) for all the reanalysis products, a pattern 332 

consistent with site-level evaluations using GEBA observations (Figs 2 and S3). The 333 

closer value between CERES and the reanalyses over Europe could be due to 334 

stronger constraints on the energy budget due to more quality-assured assimilated 335 

meteorological observations over this region. For reference, the number of common 336 

GEBA stations over Europe for Common Period I is 93, while there are only 10 over 337 

China; with similar sampling biases expected for assimilated variables. Another 338 

potential factor is the influence of higher aerosol loading over China, which is not 339 

explicitly represented in most of these datasets.   340 

c. Annual Cycle 341 

Figure 3 compares the northern hemisphere seasonal patterns in K↓,d, K↓, and kd 342 

among the datasets and the GEBA observations in the northern hemisphere, using 343 

the site-months common to the datasets and the GEBA observations for Common 344 
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Period I. The complete northern hemispheric mean seasonal patterns are given in 345 

sub-figures 3b, 3d, and 3f using all the model grids. The GEBA observations are 346 

skewed towards middle to high latitudes; thus Figs 3a and 3b shows a stronger K↓ 347 

and K↓,d seasonality than Figs 3b and 3d. For instance, the inter-seasonal range of 348 

K↓, or the difference between the monthly maximum and monthly minimum K↓ for 349 

the average year, is 134.4 W m−2 in Fig. 3b and 178.8 W m−2 in Fig. 3a for CERES. 350 

The data products generally capture the observed seasonality, showing much higher 351 

K↓ and K↓,d values in the summer than in the winter (Figs 3a and 3c). Among the 352 

datasets, the inter-seasonal range in site-corresponding K↓ varies from 178.8 W m−2 353 

in CERES and ERA5 (181 W m−2 for GEBA) to 207.7 W m−2 in NCEP/NCAR 354 

according to Fig. 3a.  355 

  Generally, there is a larger inconsistency in the K↓,d  seasonal variations than the 356 

K↓ seasonal variations among the datasets. Particularly, the CERES data shows a 357 

more pronounced K↓,d seasonality (inter-seasonal range = 101 W m−2) than the 358 

GEBA observations (inter-seasonal range = 70 W m−2) and the other data products 359 

(average inter-seasonal range of 61.6 W m−2 for the other products; Fig. 3c). 360 

Globally, the observed kd is higher in winter and lower in the summer (Fig. 3e). 361 

The inter-seasonal range in kd varies substantially between the products, with 362 

CERES showing the lowest range of 0.03 and NOAA-CIRES-DOE showing the 363 

highest range of 0.22 (Fig. 3e). In comparison, the inter-seasonal range in the 364 

corresponding GEBA observations is 0.13. The muted seasonality in CERES is 365 

evidently driven by the stronger seasonality for K↓,d in this dataset. Combining all 366 
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the gridded products, for the northern hemisphere, the spatially averaged inter-367 

seasonal range in kd is only 0.05 (Fig. 3f), compared to 0.13 for the grids 368 

corresponding to the GEBA observations; evidently due to the higher frequency of 369 

GEBA observations in the higher latitudes.  370 

d. Long-term Trends over Europe and China 371 

We analyze the long-term trends in K↓ and K↓,d in Europe and China in two ways. 372 

First, we calculate the trends using the reanalysis products for Common Period II 373 

(1980-2015) and all grid cells in these two regions. The results are presented as solid 374 

bars in Fig. 4 with the statistical significance of the trends noted. Over Europe, 375 

NOAA-CIRES-DOE shows a slightly negative trend and the other four reanalysis 376 

products show clearly positive trends in K↓, with the rate of change varying from -377 

0.07 W m−2 per decade in NOAA-CIRES-DOE to 2.02 W m−2 per decade in ERA5 378 

(Fig. 4a). The average trend of the five products is 0.80 ± 0.74 W m−2 per decade 379 

(mean ± standard deviation; here standard deviation indicates variation among the 380 

five products). The regional mean K↓,d shows an increasing trend according to 381 

NCEP/NCAR and decreasing trends according to the other three products (NOAA-382 

CIRES-DOE, MERRA-2, and ERA5), with the rate of change ranging from 0.39 W 383 

m−2 per decade in NCEP/NCAR to -1.6 W m−2 per decade in MERRA-2 (Fig. 4b), 384 

with a four-product mean value of -0.86 ± 0.75 W m−2 per decade. JRA-55 does not 385 

provide K↓,d data. 386 

Over China, the trends in K↓ are less consistent than those over Europe. Two 387 

products (MERRA-2 and JRA-55) show decreasing trends, and three (NOAA-388 
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CIRES-DOE, NCEP/NCAR, and ERA5) show increasing trends. The rate of change 389 

varies from -0.73 W m−2 per decade (MERRA-2) to 1.76 W m−2 per decade 390 

(NCEP/NCAR), giving a five-product mean of 0.41 ± 0.88 W m−2 per decade. In 391 

contrast, all products show decreasing trends in K↓,d, giving a four-product mean rate 392 

of change of -0.72 ± 0.39 W m−2 per decade (Fig. 4d).  393 

Second, we analyze the time trends using the GEBA data and the reanalysis data 394 

from the grids containing these GEBA sites and for the same measurement years. 395 

Since the number of sites which fulfill all the quality-control criteria, including the 396 

homogeneity test, are small (see Methods section), we stress that these do not 397 

necessarily represent regional trends. Instead, we examine whether the gridded 398 

products capture the observed trends for the corresponding periods. The trends for 399 

the individual stations included for each region are represented by the circles in Fig. 400 

4, with the overall mean and standard errors for these shown as hatched bars. For 401 

62.5% (15 of 24) of the GEBA sites considered over Europe, we see a positive trend, 402 

with an average increasing trend in K↓ (2.18 W m−2 per decade), which is consistent 403 

with existing studies (Wild 2012, 2016; Schwarz et al. 2020). None of the reanalysis 404 

products capture the direction of the mean brightening trend for the corresponding 405 

grids and years, though the regressions between the observed and modeled trends in 406 

K↓ are positive for ERA5 (r = 0.28) and MERRA-2 (r = 0.32). For K↓,d, only half of 407 

the six GEBA sites show decreasing trends. Among the reanalysis products, only 408 

ERA5 captures (weakly) the corresponding trends (r = 31). 409 
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Over China, 3 of the 4 GEBA sites show a brightening trend (Fig. 4c), with 410 

none of the corresponding reanalysis products capturing the variability of trends 411 

between the sites. On the contrary, for K↓,d, all the four considered GEBA sites show 412 

an increase over time, with all the reanalysis products other than NCEP/NCAR 413 

capturing the positive direction of the mean trend.  414 

Several previous studies have examined the long-term trends in K↓ over Europe 415 

and China owing to the larger data coverage and strong temporal trends in these 416 

regions (Samukova et al. 2014; Lorenzo et al. 2015; Feng et al. 2018; Schwarz et al. 417 

2020). Although the magnitude of the trends varies across studies depending on 418 

quality control of the data and the selection of the observation sites and the time 419 

periods of interest, most studies have found strong brightening over Europe and 420 

weak to negligible brightening over China since the 1980s. For Europe, Lorenzo et 421 

al. (2015) found an increasing trend of 3.2 W m−2 per decade for K↓ between 1986 422 

and 2012. Similarly, Pfeifroth et al. (2018) found increasing trends between 1.9 W 423 

m−2 and 2.4 W m−2 per decade for 1983-2015. Most recently, Schwarz et al. (2020) 424 

found an increase in the K↓ absorbed by the surface at a rate of 1.7 W m−2 per 425 

decade in Europe for the 31-year period between 1985 and 2015. For the time 426 

periods corresponding to the three studies mentioned above, we calculate the five-427 

product mean brightening trends of 0.63 W m−2 per decade, 0.68 W m−2 per decade, 428 

and 0.57 W m−2 per decade, respectively. Over China, strong brightening trends (by 429 

10.6 W m−2 per decade) have been seen for clear-sky conditions between 2006-2018 430 

(Yang et al. 2019). For all-sky conditions, the absorbed K↓ at the surface showed a 431 
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dimming trend of -0.7 W m−2 per decade between 1985 and 2009 and a brightening 432 

trend of 1.4 W m−2 per decade between 2011 and 2015 (Schwarz et al. 2020). We 433 

find a five-product mean increase in K↓ by 0.41 W m−2 per decade for Common 434 

Period II in China. The observed increase in K↓ for the subset of GEBA sites in 435 

China is not captured by the reanalyses over the corresponding sites. The overall 436 

regional brightening has also been found to be missing in unconstrained CMIP5 437 

model simulations (Moseid et al. 2020). 438 

Observational constraints on long-term trends in K↓,d are much rarer, partly 439 

because of the lack of sufficient ground stations that measure this variable, as well 440 

as higher uncertainties in these measurements. For Europe, a couple of studies show 441 

decreasing trend in K↓,d since the 1980s (Samukova et al. 2014; Wild et al. 2017). 442 

We also find a decreasing four-product mean trend of -0.86 W m−2 per decade for 443 

Common Period II. For China, there are more studies on long-term trends in K↓,d, 444 

generally showing a decrease in K↓,d till the 1990s, followed by an increase till 2010 445 

(Wang and Yang, 2014). For northern China, K↓,d showed an increasing tendency 446 

from 1959 to 2016 according to a recent study (Feng et al. 2018), but a strong 447 

decreasing tendency for the Beijing and Shenyang stations, both in the northern 448 

China, according to another study (Wang et al. 2020). We find a decreasing four-449 

product mean trend in K↓,d of -2.93 (-0.72) W m−2 per decade for Common Period II. 450 

e. Role of Clouds and Aerosols on Inter-Model Variability in Gridded Products 451 

Previous studies show overestimation of K↓ in reanalysis datasets due to the 452 

underestimation of clouds (Zhao et al. 2013; Wild et al. 2015; Loeb et al. 2019). 453 
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Here, we separately analyze the correlation of K↓,d and K↓,b with percentage cloud 454 

cover at the global scale, both within the gridded products using annual averages and 455 

between the products using multi-year averages for Common Period I (Fig. 5). The 456 

datasets show similar spatial patterns in cloud cover (Fig. S5), but large differences 457 

in global mean values, ranging from 52.3% in NCEP/NCAR to 66.5% in CERES. In 458 

general, products with lower cloud cover have higher average K↓,b and lower K↓,d, 459 

which makes sense mechanistically. The exception to this strong linear relationship 460 

(r2 = 0.96 for K↓,b and 0.92 for K↓,d; Fig. 5) is NCEP/NCAR, which has the lowest 461 

cloud cover, but not the lowest K↓,d or the highest K↓,b. Note that NCEP/NCAR does 462 

have the highest K↓ (Table 1). Thus, the issue is the partitioning of K↓,d in the 463 

product. The underestimation of K↓,b and overestimation of K↓,d in CERES may be 464 

due to the positive bias in not just percentage cloud cover (Kato et al. 2018), but the 465 

well-known systematic overestimation in MODIS-derived cloud droplet size 466 

(Painemal and Zuidema 2011). Larger particles lead to more forward scattering 467 

(Plass and Kattawar 1968), which would could contribute to the positive bias in total 468 

K↓,d at the surface while simultaneously reducing K↓,b. 469 

Although the relationships between annual cloud cover and annual K↓,b (and 470 

K↓,d) for each gridded product are not consistently strong, we find the expected 471 

direction of sensitivity to cloud cover in all the datasets. The sensitivities are 472 

positive for K↓,d, ranging from 0.22 W m−2 per cloud cover percentage in MERRA-2 473 

to 0.87 W m−2 per cloud cover percentage in NOAA-CIRES-DOE, and negative for 474 

K↓,b, ranging from -0.47 W m−2 per cloud cover percentage in MERRA-2 to -2.89 W 475 
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m−2 per cloud cover percentage in NOAA-CIRES-DOE. Overall, the collinearity 476 

between cloud cover and K↓,b is higher than for K↓,d. The individual scatterplots 477 

between K↓,d (and K↓,b) and cloud cover percentage are also in Fig. S6. Although 478 

there are large uncertainties in both cloud and aerosol representation in coarse-479 

gridded models, that the inter-product variability of these atmospheric constituents 480 

controls the inter-product variability in the surface radiation fields is a reasonable 481 

assumption. This is because the top of the atmosphere incoming K↓ has strong 482 

theoretical constraints and varies between 340.3 W m−2 in NOAA-CIRES-DOE to 483 

341.9 W m−2 in NCEP/NCAR for Common Period I. It is harder to separate the 484 

relative importance of the individual constituents due to the structural and 485 

parametric differences between these products. Cloud-radiation interactions depend 486 

not only on aerial coverage of clouds, but also on cloud thickness and cloud optical 487 

properties, usually represented by the cloud optical depth (COD). For instance, an 488 

underestimation of cloud cover and an overestimation of COD can lead to a positive 489 

bias in K↓,b and a negative bias in K↓,d with minimal impact on overall K↓, which is 490 

seen in ERA5 (Table 2). In contrast, CERES, which has a much higher cloud cover 491 

than ERA5 (Fig. 5), shows a negative bias in K↓,b and a positive bias in K↓,d, which 492 

may be due to either the larger cloud droplet size or underestimated COD or a 493 

combination of both (Minnis et al. 2011). The overestimation of optically thick 494 

clouds in models compared to satellite observations has been known for a while 495 

(Zhang et al. 2005) but has not been used to specifically examine the differences in 496 

direct/diffuse partitioning among models. Although COD is not 497 
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publicly archived in most of these reanalysis products, preventing such an analysis 498 

in the present study, accurately representing both overall cloud cover and COD 499 

might reduce this large variability in direct/diffuse partitioning across these 500 

products. The reanalysis products also have large differences in aerosol 501 

representation. The NOAA-CIRES-DOE and NCEP/NCAR reanalysis do not 502 

include tropospheric aerosols (although NOAA-CIRES-DOE has volcanic aerosols), 503 

ERA5 and JRA-55 consider aerosol climatology, and MERRA-2 includes time-504 

varying assimilated aerosols and is the only one of these products that archive AOD. 505 

Thus, a similar analysis using all gridded products is not possible for the inter-506 

product variability in aerosols. 507 

We also examined the long-term trends in clouds and aerosols for Europe and 508 

China. Figure 6 (a to f) shows the correlation between the trends in cloud cover and 509 

the trends in K↓ and K↓,d for Europe and China among the six datasets. Common 510 

Period I is used for CERES and Common Period II for the reanalysis products. For 511 

Europe in particular, these correlations are strong (r2 = 0.92 for K↓,b and 0.80 for 512 

K↓,d; Figs 6c and 6e), suggesting that the strength of the brightening over these 513 

regions in the gridded data is primarily a function of the trends in the modeled cloud 514 

cover. All the datasets other than JRA-55 show a decrease in cloud cover over this 515 

region between 1980 and 2015 (Common Period II). We also calculate the trend in 516 

AOD for Europe from the MERRA-2 data (Fig. 6g), showing a decreasing trend of 517 

0.04 per decade during the same period. The decrease in aerosol for Europe has been 518 

previously seen using both observations and models (Yang et al. 2020). Since 519 
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aerosols generally increase K↓,d, keeping all other factors constant, this would 520 

explain the simultaneous decadal increase in K↓ and decrease in K↓,d over Europe. 521 

For China, cloud cover decreases in most of the gridded products (other than JRA-522 

55), with the magnitudes of change roughly half of that seen over Europe. The 523 

correlation between trends in cloud cover and trends in K↓ is relatively weak, though 524 

this is primarily driven by MERRA-2 being an outlier (r2 increases to 0.88 if 525 

MERRA-2 is not used in this regression). Incidentally, only MERRA-2 assimilates 526 

observations of aerosols, showing an increase in AOD by 0.03 per decade over this 527 

region (Fig. 6h). Moreover, according to the grid-averaged trends, K↓,d decreased 528 

during this period over China. This pattern could be due to the relative change in 529 

absorbing and scattering aerosols over the region during this time period. MERRA-2 530 

data shows a stronger increase in absorbed AOD compared to scattered AOD over 531 

China during Common Period II, suggesting a relative enhancement in absorbing 532 

aerosols (Fig. 6h). Even though the absorbing component of total AOD in MERRA-533 

2 is modeled, not assimilated, observations bear out the increase in absorbing 534 

aerosols over China during this period (Schwarz et al. 2020). 535 

Since in addition to cloud cover, MERRA-2 assimilates gridded AOD, we can 536 

estimate the sensitivity of the trends in K↓ and K↓,d due to the trends in cloud cover 537 

and aerosols by solving this system of two equations: 538 

                                                                         
(1)

 539 

                                                                         
(2)

 540 
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Here, subscripts R,Tr,Eu and R,Tr,Ch represent the trends in the MERRA-2 gridded 541 

products for Europe and China, respectively. The variables considered are the 542 

incoming radiation (KR; either K↓ or K↓,d), the cloud cover (CLD), and AOD. Since 543 

these variables have different ranges, they are normalized by the value of the 544 

variable for the base year (1980; denoted by subscripts R,80,Eu and R,80,Ch) to represent 545 

the fractional rates of change. For reference, CLDR,80,Eu and CLDR,80,Ch are 63.56% 546 

and 47.95%, respectively, while AODR,80,Eu and AODR,80,Ch are 0.26 and 0.18. 547 

Finally, a and b are the unitless coefficients that give the sensitivity of the fraction 548 

rate of change in the radiation components to the fractional rate of change in CLD 549 

and AOD, respectively. Simultaneously solving these two equations, we find that 550 

both a and b are negative for fractional rate of change in K↓ (a = -0.184, b = -0.037) 551 

and positive for the corresponding fractional rate of change in K↓,d (a = 1.074, b = 552 

0.124). These values make sense physically since an increase in aerosols and clouds 553 

tends to decrease K↓ and increase K↓,d. In terms of magnitude, clouds play a stronger 554 

role than aerosols; with the sensitivity being almost 9 times higher for clouds for 555 

K↓,d and 5 times stronger for K↓. Over Europe, the effect of clouds and aerosols 556 

reinforce each other, with both decreasing, thereby increasing K↓ and decreasing 557 

K↓,d. Over China, the total effect of aerosols, controlled by both the lower sensitivity 558 

to aerosols and the much higher fractional rate of change in AOD, overwhelm the 559 

impact of clouds, with K↓ decreasing in spite of a decrease in cloud cover.  560 

We use this framework to constrain the sensitivity of K↓ and K↓,d to CLD and 561 

AOD in the MERRA-2 dataset because of its conceptual simplicity. For comparison, 562 
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we also used multi-linear regressions to examine the trend in K↓ and K↓,d as a 563 

function of grid-averaged CLD and AOD separately for Europe and China, given by 564 

the equation: 565 

                                                                          
(3)

 566 

Here, the annual average values of K↓ and K↓,d (KR), CLD (CLDR), and AOD 567 

(AODR) are normalized by their 1980 values and β0, β1, and β2 are the coefficients of 568 

regression. Although the results are different over the two regions since they are not 569 

mathematically constrained by the same sensitivity as done for Eqs 1 and 2, we get 570 

the same signs and similar relative magnitudes of the regression coefficients. β1 and 571 

β2 are always positive for K↓,d and always negative for K↓. Clouds play a stronger 572 

role in both Europe and China for K↓ (β1/β2 = 14.52 and 6.26, respectively) and K↓,d 573 

(β1/β2 = 3.57 and 8.03, respectively).  574 

 4. Discussion and Summary 575 

a. Comparison with Other Modeled and Satellite-Derived Estimates 576 

We are not aware of any formalized attempts to evaluate K↓,d in current-generation 577 

CMIP6 models or their previous iterations. Although operational GCMs may 578 

sometimes lead reanalysis products in model development efforts (for instance, 579 

frequently using prognostic aerosols instead of prescribed aerosol distributions), 580 

many of the radiation codes and cloud parameterizations used to generate the 581 

reanalysis products are also implemented in those models. Additionally, that GCMs 582 

are run with less constraints on the atmospheric and surface variables than reanalysis 583 



28 

 

products suggests that there may also be wide disparities in the K↓,d modeled by 584 

GCMs. We see evidence of this from two studies that have evaluated K↓,d at larger 585 

scales. Mercado et al. (2009) used radiative transfer calculations to simulate K↓,b and 586 

K↓,d globally. Using a subset of GEBA observations over Europe, Germany, and 587 

China, they evaluated their modeled K↓ and kd. For GEBA stations in Germany and 588 

Europe, they found an underestimation in K↓ and an overestimation in kd. Over 589 

China, their model overestimated K↓, but correctly simulated kd, suggesting an 590 

overestimation in K↓,d. More recently, Chakraborty et al. (Under Review2021) used 591 

the latest version (version 6) of the Community Atmosphere Model (CAM6; 592 

Gettelman et al. 2019) to simulate K↓,d and K↓,b and evaluated the modeled values 593 

using all available GEBA observations. CAM6 overestimated K↓ and underestimated 594 

K↓,d, leading to an MBE of -0.08 for kd for all GEBA sites.  595 

Our evaluation of the CERES dataset shows that, while CERES does a great job 596 

at capturing both the magnitude and variability in K↓ (Table 2), there are issues with 597 

the direct/diffuse partitioning. CERES overestimates K↓,d and underestimates K↓,b, 598 

leading to an overestimation in kd (roughly 0.09 for all GEBA sites; Table 2), 599 

potentially caused by higher cloud fraction and cloud droplet size in satellite-derived 600 

products (Painemal and Zuidema 2011; Kato et al. 2018). In this context, a few other 601 

satellite-derived K↓,d products also warrant discussion. Recently, Jiang et al. (2020) 602 

evaluated the K↓,d in a recent dataset (JiEA) created using a deep learning algorithm 603 

and geostationary satellite measurements (Jiang et al. 2019a). Using 39 observation 604 

sites over East Asia, they found much better performance of the JiEA product 605 



29 

 

compared to ERA5. Consistent with our results, ERA5 underestimated K↓,d (MBE=-606 

17.2 W m−2; -1.2 W m−2 for JiEA) over their study area. The grid-area averaged kd 607 

over East Asia was 0.42 for JiEA and 0.35 for ERA5. For China, which covers a 608 

large part of their study area, the grid-averaged kd for the same time period (2007-609 

2014) varies from only 0.27 in the MERRA-2 dataset to roughly double that value 610 

(0.56) in the CERES data. Over Europe and Africa, the Copernicus Atmosphere 611 

Monitoring Service (CAMS) provides K↓, K↓,d, and K↓,b estimates every 15 minutes 612 

based on the Heliosat-4 method using Meteosat geostationary satellite observations 613 

(Qu et al. 2017). We estimated K↓,d over the region of Europe (‘AGATE’) covered 614 

by these satellites for Common Period I and found the regional average K↓,d to range 615 

from 52.8 W m−2 in MERRA-2 to 102.6 in CERES versus a value of 65.4 W m−2 in 616 

CAMS. Another recent study produced global datasets of K↓, total 617 

photosynthetically active radiation (PAR) and its diffuse component from 2000 to 618 

2016 by combining a radiative transfer model with an artificial neural network 619 

trained using MODIS data (Ryu et al. 2018). They calculated a global average ratio 620 

of 0.41 for diffuse PAR to total PAR and 0.46 for total PAR to K↓.  621 

Of the data products we consider, only MERRA-2, NOAA-CIRES-DOE, and 622 

NCEP/NCAR publicly archive the diffuse portion of PAR. For Common Period I, 623 

we find large differences in these estimates for the three datasets for both diffuse 624 

PAR to total PAR (0.37 for MERRA-2; 0.54 for NOAA-CIRES-DOE; 0.46 for 625 

NCEP/NCAR) and for total PAR to K↓ (0.44 for MERRA-2; 0.52 for NOAA-626 

CIRES-DOE; 0.61 for NCEP/NCAR). In comparison, the diffuse PAR to total PAR 627 
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and total PAR to K↓ in the CAM simulations by Chakraborty et al. (Under 628 

Review2021) were 0.41 and 0.51, respectively. 629 

b. Limitations 630 

Point observations have been frequently used to compare against gridded estimates 631 

of surface radiation (Markovic et al. 2009; Zhao et al. 2013; Wild et al. 2015). 632 

However, radiation transfer calculations in GCMs and reanalyses are based on the 633 

plane-parallel approximation, the assumption of one-dimensional atmospheric grids 634 

with horizontal planes as the upper and lower bounds, for computational efficiency. 635 

The real atmosphere has 3D cloud structures, particularly relevant for cloud-636 

radiation interactions. For instance, cloud side illumination is the interception of 637 

radiation due to the existence of cloud sides in the real atmosphere, which are not 638 

captured by their plane-parallel approximations; a major issue at high solar zenith 639 

angles (Schäfer et al. 2016). Similarly, for low zenith angles, cloud side leakage 640 

causes more radiation to pass through the edges of clouds and reach the surface, 641 

which would be blocked in a plane-parallel representation (Ham et al. 2014). The 642 

overall result of these two mechanisms is generally an underestimation in simulated 643 

K↓ even when the cloud fraction is correctly captured by the approximation (Okata 644 

et al. 2017). Thus, these two effects on their own cannot explain the systematic 645 

overestimation in K↓ we find in the gridded products (Table 2). Cloud sky leakage 646 

would normally lead to more forward scattering, and may thus increase K↓,d in 647 

regions with low zenith angle, which we do find in the GEBA observations 648 

compared to the MERRA-2 and ERA5 datasets. The effect of cloud side 649 
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illumination, on the other hand, primarily blocks K↓,b (Hogan and Shonk 2013), 650 

which would overestimate K↓,b in GCMs, which is seen in all reanalysis products 651 

other than NOAA-CIRES-DOE (Table 2). 652 

These problems are most serious at shorter time scales, as patchy clouds can 653 

cause large fluctuations in the observations at individual sites. Thus, since the signs 654 

of these 3D effects largely depend on zenith angle, the errors are reduced 655 

substantially when using monthly means since it averages over the various zenith 656 

angles (as was done here) and by combining the biases over multiple sites in a 657 

region. Note that the bias errors found here may also be related to other aspects of 658 

the 3D cloud structure, such as how overlap of clouds at various heights is 659 

represented (Wang et al. 2016). However, the inter-model variability is not affected 660 

by these issues since all the products considered use similar approximations. We 661 

find that this variability for both K↓,d and K↓,b is strongly controlled by cloud fraction 662 

(Fig. 4). Additional differences are also expected due to the shortwave 663 

parameterizations used in these datasets that convert the cloud representations to the 664 

radiances across wavelength channels. However, such an evaluation requires a 665 

modeling setup that controls for the different inputs to the radiative transfer models 666 

used in the gridded products and hyperspectral observations for validation (Aumann 667 

et al. 2018). 668 

A quantitative comparison of the long-term trends using observations requires 669 

consistent data coverage. The GEBA data are not always appropriate for this 670 

purpose because the trends in K↓,d and K↓ (circles and hatched bars, Figure 4) are 671 
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derived from two different subsets of the data (there are more K↓ observations than 672 

K↓,d  observations). Moreover, even within Common Period II, the data coverage 673 

changes over time. This lack of consistent data coverage is particularly relevant for 674 

China since many studies find a reversal of the trends somewhere between 1990 and 675 

2000, potentially influenced by the instrument changes after 1993 (Wang and Yang, 676 

2014). We try to account for potential breakpoints in the trends by testing for 677 

homogeneity of the time-series. However, this reduces the number of available 678 

stations substantially, particularly over China (Fig. 4). As such, although the inter-679 

model variability in long-term trends in the gridded datasets illustrates the 680 

differences between these models, we advise caution when talking about the ‘real’ 681 

regional trends using GEBA observations, particularly for K↓,d given the dearth of 682 

available observations. For China, one alternative is to use data from the China 683 

Meteorological Data Service Center (http://data.cma.cn). However, as seen in Wang 684 

et al. (2020), after testing for homogeneity, only 12 stations are available with long-685 

term observations of both K↓ and K↓,d. An in-depth analysis of the influence of 686 

station and year range selection on these trends is in Schwarz et al. (2020), though 687 

they do not focus on K↓,d. Given that we find that the gridded data cannot generally 688 

capture either the direction or the variability in trends across the available GEBA 689 

sites for the corresponding time-periods, further work is necessary to evaluate long-690 

term trends in K↓,d across CMIP6 models with consolidated observational databases 691 

that include both regional and global networks.  692 

c. Summary 693 

http://data.cma.cn/
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We find large differences in K↓,d, K↓,b, and kd across current-generation gridded 694 

products. The variability is evident from the monthly to the annual scales and show 695 

large biases from observational benchmarks. For 2001-2015, the range of variability 696 

is 10.7 % for global mean K↓ (185.4 to 205.3 W m−2), 60.4% for global mean K↓,b 697 

(82.8 to 132.8 W m−2), 94.3% for global mean K↓,d (52.8 to 102.6 W m−2), and 698 

96.4% for global mean kd (0.28 to 0.55). The variability between these products is 699 

statistically explained by the biases in modeled cloud fraction. Long-term (1980-700 

2015) trends in the two variables also differ over Europe and China and are not 701 

captured well by the gridded products. These inter-model differences in K↓,d would 702 

affect Earth system simulations, particularly relevant for surface climate and for 703 

estimating solar energy potential. Thus, we suggest comprehensive comparisons of 704 

simulated kd in the CMIP6 models to better identify potential deficiencies in current-705 

generation atmosphere models.  706 

707 
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 915 

Table 1. Summary of the global gridded products considered in the present 916 
study. The global means and interannual standard deviations of the variables of 917 
interest for Common Period I (2001-2015) are also noted. 918 

Data 

product 

Spatial 

resolution 

Temporal 

coverage 
Reference 

Global K↓ 

(W m-2) 

Global K↓,d 

(W m-2) 

Global K↓,b 

(W m-2) 

Global kd 

(unitless) 

NOAA-

CIRES-DOE 
1◦ × 1◦ 1836 - 2015 

Slivinski et 

al. (2019) 
192.9 ± 0.4 92.2 ± 0.2 100.7 ± 0.5 

0.478 ± 

0.002 

NCEP/NCA

R 
1.85◦ × 1.85◦ 

1948 - 

Present 

Kistler et al. 

(2001) 
205.3 ± 0.6 81 ± 0.3 124.3 ± 0.6 

0.394 ± 

0.002 

JRA-55 
0.562◦ × 

0.562◦ 

1958 - 

Present 

Kobayashi et 

al. (2015) 
189 ± 0.8 NA NA NA 

MERRA-2 0.5◦ × 0.625◦ 
1980 - 

Present 

Randles et 

al. (2017) 
185.6 ± 0.7 52.8 ± 0.4 132.8 ± 1 

0.284 ± 

0.003 

ERA5 0.25◦ × 0.25◦ 
1979 - 

Present 

Hersbach et 

al. (2020) 
187.9 ± 0.4 63.7 ± 0.1 124.2 ± 0.4 

0.339 ± 

0.001 

CERES 1◦ × 1◦ 2000 - 2019 
Rutan et al. 

(2015) 
185.4 ± 0.3 102.6 ± 0.7 82.8 ± 0 

0.553 ± 

0.004 

919 
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Table 2. Evaluations of monthly mean incoming shortwave radiation (K↓), 920 
direct beam radiation (K↓,b), diffuse radiation (K↓,d), and diffuse fraction (kd) at 921 
the surface against the common GEBA observations for Common Period I 922 
(2001-2015). Statistical summaries of the evaluations include the intercept and 923 
slope of the line of best fit, coefficient of determination (r2), Mean Bias Error 924 
(MBE), and Mean Percentage Error (MPE). The sample size is 14155 in all 925 

cases. 926 
  Slope Intercept r2 RMSE MBE MPE Slope Intercept r2 RMSE MBE MPE 

  Total shortwave radiation (K
↓
) Direct beam radiation (K

↓,b
) 

NOAA-CIRES-

DOE 1 8.82 0.9 30.16 9.52 5.9 0.89 6.15 0.75 34.66 -4.28 -4.4 

NCEP/NCAR 1.01 43.91 0.9 53.45 45.56 28 0.89 47.59 0.73 51.43 36.79 38.2 
JRA-55 0.98 18.25 0.93 26.71 15.27 9.4 NA NA NA NA NA NA 

MERRA-2 1.03 13.06 0.94 28.22 18.54 11.4 1.08 32.11 0.86 49.44 39.9 41.5 
ERA5 0.99 9.72 0.96 18.04 7.51 4.6 0.99 18.15 0.9 27.17 17.38 18.1 

CERES 0.98 6.45 0.97 15.72 2.65 1.6 0.8 2.7 0.88 28.32 -16.82 -17.5 

  Diffuse radiation (K
↓,d

) Diffuse fraction (k
d
) 

NOAA-CIRES-

DOE 0.94 17.68 0.75 21.67 13.8 20.8 0.7 0.21 0.41 0.16 0.08 16.4 

NCEP/NCAR 0.73 26.91 0.66 20.01 8.77 13.2 0.41 0.2 0.36 0.14 -0.07 -14.5 
MERRA-2 0.61 4.84 0.83 25.84 -21.36 -32.2 0.56 0.03 0.62 0.2 -0.18 -38.4 

ERA5 0.7 9.86 0.86 16 -9.87 -14.9 0.72 0.05 0.72 0.11 -0.08 -17.5 
CERES 1.28 0.89 0.86 26.61 19.47 29.4 0.76 0.2 0.67 0.13 0.09 19.8 

927 
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 928 

Fig. 1 Evaluations of monthly mean incoming a diffuse fraction (kd), b beam radiation 929 
(K↓,b), and c diffuse radiation (K↓,d)  at the surface of gridded reanalysis and CERES 930 
products against the common GEBA observations for Common Period I (2001-2015). 931 
The red dashed lines represent the 1:1 relationship. Color indicates data density. 932 
Statistical summaries of the evaluations are in Table 2.  933 

 934 

 935 
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 936 
Fig. 2. Site-level mean bias error (MBE) in incoming shortwave radiation (K↓) at the 937 
surface for a NCEP/NCAR and b CERES data compared to common GEBA 938 
observations for Common Period I (2001-2015). Sub-figures c and d show mean bias 939 
error in incoming diffuse radiation (K↓,d) at the surface for NCEP/NCAR and CERES, 940 
respectively. Finally, sub-figure e shows the grid-wise difference in K↓ between 941 
NCEP/NCAR and CERES data. 942 

943 



49 

 

 944 
Fig. 3. Seasonal variation in a incoming shortwave radiation (K↓), c incoming diffuse 945 
radiation (K↓,d), and e diffuse fraction (kd) at the surface for all northern Hemisphere 946 
common GEBA sites and the grids overlaying the sites for Common Period I (2001-947 
2015). Sub-figures b, d, and f show the corresponding northern hemisphere means from 948 
the gridded products for the same period. In all cases, the black lines show the standard 949 
deviations (of the site-level data for a, c, and e and the spatial variability of the grid 950 
values for b, d, and f). 951 

952 
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953 
Fig. 4. Long-term trends from gridded and observed data. Sub-figures a and b show 954 
trends in incoming shortwave radiation (K↓) and incoming diffuse radiation (K↓,d) at the 955 
surface over Europe. The long-terms trends in the GEBA observations with at least 10 956 
years of data in Common Period II (1980-2015), as well as the corresponding trends for 957 
the overlapping grids from the gridded products, are shown with circles. The hatched 958 
bars show the mean (± standard error) of the trends based on these circles. Equations of 959 
lines representing the associations between the observed and the corresponding 960 
modeled trends are in the legends. The solid bars show the grid-area averaged regional 961 
values for the gridded reanalysis products for the entire period (1980-2015), and the 962 
error bars represent the standard errors. Sub-figures c and d are similar, but for China. 963 
The p-values of the grid-averaged trends are indicated by asterisks, with three asterisks 964 
representing p<0.0001, two for p<0.001, and one for p<0.05.  965 

966 
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967 

 968 

Fig. 5. Associations between percentage cloud cover and a incident diffuse radiation 969 
(K↓,d) and b direct beam radiation (K↓,b) for Common Period I (2001-2015). Each 970 
colored circle represents an annual mean value, while the black circle shows the multi-971 
year average for the gridded product. The lines of best fit and their equations are 972 

shown, both for individual gridded products and across products (not considering 973 
NCEP/NCAR). 974 
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975 
Fig. 6. Linear regressions between trends in grid-area averaged percentage cloud cover 976 
and trends in a incoming shortwave radiation (K↓) over Europe, b K↓ over China, c 977 
incoming diffuse radiation (K↓,d) over Europe, d K↓,d over China, e direct beam 978 
radiation (K↓,b) over Europe, and f K↓,b over China for all the gridded products during 979 
Common Period II (1980-2015) for the reanalysis products and Common Period I 980 
(2001-2015) for CERES. The equations for the lines of best fit are annotated. Sub-981 
figures g and h show the trends in grid-area averaged aerosol optical depth (AOD), 982 
separated into the scattering and absorbing components, for Common Period II as 983 
assimilated by MERRA-2. For g and h, the black lines show the standard errors. The p-984 
values are indicated for g and h by asterisks, with three asterisks representing 985 
p<0.0001, two for p<0.001, and one for p<0.05.  986 


