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ABSTRACT

Granular materials are often encountered in nature, but the effect of their morphological properties is poorly understood when they are accompanied by fluid. This
set of complexity brings the inertial, viscous, frictional, and elastic forces together whose connections remain debated. We report a novel coupled framework to study
the effect of particle morphology on the dynamics of granular particles. The mechanical behavior is modeled by a new micro-mechanical model and is found to be
greatly impeded by the morphology of particles. The movement difference caused by the particle shape is greatly alleviated by the presence of fluid. Our findings are
demonstrated using a collapse process and we found that the dislocation is both hindered and enhanced by the viscous and lubrication effects of fluid, respectively.
The results show that the effect of the fluid lubrication becomes dominant compared to the fluid viscous effect when particles become more irregular.

1. Introduction

The dynamic behavior of granular systems is often observed in na-
ture, such as landslides, collapse, debris flows, and solid deformation in
porous media, as well as in modern chemical industries, pharmaceutics,
mining, food processing, and cosmetics (Zhao and Shan, 2013; Zhu
et al., 2008, 2007). Understanding the fundamental mechanisms gov-
erning the flow or deformation of granular systems is of great impor-
tance to predict natural disasters or optimize the design for relevant
industrial processes. The macroscopic behavior of granular systems is
the result of microscopic interactions, which exist between parti-
cle-particle, particle-wall as well as fluid-particle in a wet environment.
Research on the microscopic mechanism of granular systems has been
widely developed. Particularly, the Discrete Element Method (DEM)
introduced by Cundall and Strack has been extensively cultivated to
simulate various particulate movements (Cundall and Strack, 1979). In
principle, the DEM adopts a soft-sphere model, where particles are
allowed to deform or overlap, to calculate elastic or frictional forces
between particles. In this method, the trajectory of each particle is
tracked separately, and their translational and rotational movements are
calculated by Newton’s equations of motion.

However, it has been proven, both experimentally and computa-
tionally, that particles’ morphology greatly determines macroscopic
properties of granular particles, such as strength, permeability, energy
dissipation, packing, bulk density, porosity, shear strength, cohesion,
energy transfer, stress distribution, and so on (Anthony and Marone,
2005; Cho et al., 2006; Jerves et al., 2016; Karimpouli and Tahmasebi,
2016; Mair et al., 2002; Murphy et al., 2019; Saadatfar et al., 2012,
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2010). Many representation techniques have been studied to depict the
irregular shapes of natural particles. Among these techniques, clus-
tering/clumping and polyhedra are widely used to capture the complex
morphologies (Adepu et al., 2020; Chen et al., 2017; Ferellec and
McDowell, 2010; Garcia et al., 2009; Pena et al., 2008; Seyedi Hossei-
ninia and Mirghasemi, 2006). Both techniques are, however, rather
crude and fail to accurately describe the real morphology of particles.
More advanced methods to capture particle morphology are based on X-
ray computed tomographic (XRCT) image data (Desrues et al., 2010).
One of the initial methods in this group was based on the “potential
particle” through which the complex particles can be described for DEM
(Boon et al., 2012; Houlsby, 2009). This method represents the particle
by a function using local coordinates f(x,y) = 0 in which the inside,
surface, and outside of particles can be described by f < 0, f = 0, and
f > 0, respectively. The methods developed after this idea all try to make
the representation of f more accurate. For example, non-uniform
rational basis-splines or level-set are two of such methods (Houlsby,
2009; Kawamoto et al., 2016; Lim and Andrade, 2014), which both aim
to represent the shape of particles more efficiently. Such techniques can
represent particle’s morphology and simulate the mechanical behaviors,
but they are computationally prohibitive. Aside from such issues, there
exist no method that can take the presence of fluid into account. Here,
thus, we propose to take advantage of an enhanced distance transform
(EDT) method as an efficient and accurate method to improve the
computational efficiency and capture the particle’s morphology (Bailey,
2005; Felzenszwalb and Huttenlocher, 2012; Huang and Mitchell,
1994). We call this new technique as image-based DEM (iDEM), which is
applied for simulating the dynamics of particles. Compared with pure

Received 5 August 2021; Received in revised form 24 December 2021; Accepted 27 December 2021

Available online 16 January 2022
0266-352X/© 2021 Elsevier Ltd. All rights reserved.


mailto:ptahmase@uwyo.edu
www.sciencedirect.com/science/journal/0266352X
https://www.elsevier.com/locate/compgeo
https://doi.org/10.1016/j.compgeo.2021.104624
https://doi.org/10.1016/j.compgeo.2021.104624
https://doi.org/10.1016/j.compgeo.2021.104624
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2021.104624&domain=pdf

X. Zhang and P. Tahmasebi

particle flow, fluid-particle flow, in which the fluid phase and solid
phase affect the motion of each other, is more complicated. Different
simulation methods have been developed for the fluid-particle flow.
Robinson and Ramaioli et al. (Robinson et al., 2014) presented a
meshless simulation method for multiphase fluid-particle flow by
coupling Smoothed Particle Hydrodynamics (SPH) for the fluid and
DEM for the solid phase. They successfully reproduced the expected
behavior in 3D sedimentation cases with single and multiple particles.
This method may not capture the fine-scale phenomenon, but it is well
suited for systems for large deformations. Cheng and Luding et al.
(Cheng et al., 2019) simulated the wave propagation in saturated
poroelastic granular crystals by a hydro-micromechanical model in
which the pore fluid was resolved by the lattice Boltzmann method
(LBM) and the particle motion was simulated by DEM. LBM can repro-
duce the fine-scale flow behaviors but it can be computationally
expensive for large systems. Along with such modeling, coupled
computational fluid dynamics — discrete element method (CFD-DEM)
has become an increasingly popular Eulerian-Lagrangian technique
(Tahmasebi and Kamrava, 2019; Tomac and Gutierrez, 2014, 2013;
Zhang and Tahmasebi, 2019, 2018; Zhu et al., 2008, 2007). In these
methods, DEM is in charge of the motion of individual particles while
the flow behavior of fluid is calculated by the CFD (Hoomans et al.,
1996; Tsuji et al., 1992; Xu and Yu, 1997), which can be computation-
ally more feasible. These methods have been, however, limited to
spherical or well-defined particles. Only limited development on the
non-spherical CFD-DEM have been made, such as cylinder-shaped par-
ticles and super-quadric particles (Hilton et al., 2010; Ren et al., 2012;
Zhong et al., 2009). Zhong et al. summarized the theoretical de-
velopments and applications of DEM/CFD-DEM simulation of non-
spherical particles (Zhong et al., 2016). In this paper, we will simulate
both the motion of fully irregular particles and fluid flow by a coupled
CFD-iDEM through which the effect of fluid flow in systems with angular
particles is taken into account in a numerically efficient method.

In this paper, we first generate various granular packings to represent
different morphologies, which will then be simulated for both dry
(without fluid) and wet cases (with fluid). Our collapse results demon-
strate that both the particle morphology and fluid have an important
effect on the runout and final configuration of collapse. With the
consideration of irregular shapes of particles and fluid, this work sets the
foundation for granular flows in nature, such as landslides, avalanches,
and debris flows, hence providing a unique solution that can be used in
other fields related to granular particles.

2. Model specification
2.1. Distance transform

Distance transform is one popular image analysis technique to label
the pixel of the foreground in a binary image with the minimum distance
value to the background pixels. Mathematically, the minimum distance
for one object pixel is calculated by (Bailey, 2005):

D(p) = min(|lp —ql|), @

where ||p —q|| is a measure of the distance between one arbitrary object
pixel p and one arbitrary background pixel g. There are several common
measures, such as Euclidean distance metric, city block metric, and
chessboard metric (Bailey, 2005). Here we adopt the Euclidean distance
metric because it calculates the distance by imitating the real mea-
surement for objects. In the Cartesian coordinates, the Euclidean dis-
tance is calculated by the following equation:

Ip = all, = /(5 = %) + (3 = ¥)2- @

The distance computation is the essential part of the distance
transform, which offers an excellent and efficient method in the context
of representing complex particles. However, it should be noticed that

Computers and Geotechnics 143 (2022) 104624

distance transform only considers the distance values inside the parti-
cles, that is, the distance fields computed by distance transform are
usually unsigned. To make the distance fields for particles being signed
and smooth, we take some steps to achieve the requirements:

1. Using binary representation data of a particle, as shown in Fig. 1
(a). Here, white and black regions represent the particle and pore,
respectively. This data is used to compute the negative distance values
inside of the particle (Fig. 1(b)) and the positive distance values outside
of the particle (Fig. 1(c)), and then to obtain the signed distance field of
the particle (Fig. 1(d)) by combining the two previously computed dis-
tance fields.

2. Applying Gaussian filtering on the signed distance field to
compute the smoothed distance field (Buades et al., 2005; Gedraite and
Hadad, 2011; Kong et al., 2013), and using trilinear interpolation to find
the particle surface whose distance values are equal to zero, and dis-
cretizing the surface to nodes.

In this paper, we use a node-to-surface algorithm for the contact
problem of nonconvex particles with multiple contact nodes, which is
other discrete element models for non-spherical particles (Kawamoto
et al., 2016; Laursen, 2013; Lim et al., 2014). It has been found that
setting node-to-node spacing to be one-tenth of the diameter of a given
particle is adequate to represent the particle morphology as more nodes
make a negligible improvement on accuracy (Kawamoto et al., 2016).
With the distance transform, 3D particles are represented in Fig. 2,
which shows different morphologies for four random particles selected
from the produced assemblies.

When one particle is characterized into the distance field, the posi-
tive, negative, and zero distance values represent the outside, inside, and
surface of the particle, respectively. Then, the inertial properties, such as
the mass, center of mass, and moment of inertia of a given particle, are
the necessary attributes for accounting for the motion of the particle.
These properties are calculated directly by employing the distance field
of the particle (Kawamoto et al., 2016).

2.2. Particle motion

The kinematic behavior of individual particles is described by
Newton’s second law, which is the principle of DEM simulation:

du,
myl =g+ > Fpp+> Fup, 3

Ny No

where m,,, u, are the mass and the velocity of one granular particle,
respectively. ZNpr-p is the total particle—particle interactions exerted
on the particle which is in contact with N, other particles. 3 "y Fy is the
total wall-particle interactions exerted on the particle which is in contact
with N, walls.

Particle-particle interaction Fp, and wall-particle interaction F,,,
are caused by the collision, which can be classified as contact force. In
the DEM, the contact force is determined by the soft-sphere model
(Cundall and Strack, 1979). In the soft-sphere model, elastic and fric-
tional forces are calculated when contacts in particle-particle or wall-
particle are detected. The motion of particles is then described by
Newton’s law of motion. Before illustrating the calculation of the con-
tact force F), , between two particles, we need to detect the contact status
and overlapping/penetration value of the two particles. For the sake of
simplicity, we use two-dimensional (2D) particles to illustrate this
concept, as shown in Fig. 3. Noting that the proposed method has full
applicability for 3D.

Here, we take particle a as the target object to illustrate the contact
detection and overlap calculation with its surrounding particle b or
particle c. Thus, the following steps are taken:

1. The distance values for all nodes on the surface of particle a,
referring to the distance field of particle b, are computed by the trilinear
interpolation. Considering node i with position x{, its distance value
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(d)

Fig. 1. 2D illustration for the characterization of a particle. (a) Binary representation for the particle. (b) Negative distance field inside the particle. (c) Positive
distance field outside the particle. (d) Combined signed distance field. (e) Smoothed signed distance field with nodes in red seeded on the particle surface. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Representation of various considered morphologies (shown by M) which are changing gradually from highly irregular (M1) to spherical particles (M20).

@ (xf) represents the distance from this node to the surface of particle b,
and its distance gradient V@, (x¢) represents the outward normal di-
rection of particle b at node i.

2. If 30, (x¢). < 0, that is, node i located inside of particle b, we
consider the two particles to be in contact at the node i which is called
contact node, as shown in Fig. 3. The overlap and contact normal vector
at contact node i are calculated as:

= @, (x7), &)
ab V‘Dh (x§')
ab— _ 2V 5
" V@, ()] )

where df‘b and nf’b are the overlap and outward contact normal vector of
particle a, respectively, at contact node i between particle a and particle
b. The contact interaction between particle a and particle b is the sum of
all the contact nodes existing between the two particles. The contact
detection for particle a and its surrounding particle ¢ has the same steps

as discussed above. Finally, the contact status with all the remaining
surrounding particles of particle a is identified with the same method.
Similarly, when particle b is considered as the target object, the contact
status with all surrounding particles is also computed in the same way.

The normal contact force between particle a and particle b is calcu-
lated using a linear elastic model, which has the following form:

Fo = —kd"n!, (6)

where Fy; is the normal contact force exerted on particle a at contact
node i. k, is the normal elastic stiffness. By action and reaction, the
normal contact force F); exerted on particle b at contact node i is
calculated as:

F., = —Fi,. @)

nyi

The resulting moments M®; and M2, at contact node i are calculated

using:
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Fig. 3. Schematic of two contacting particles.

M, = (x{ —x!) x F;, (8a)
M, = (x{ —x]) x F,,, (8b)

where x? and x? are the centers of mass of particle a and particle b,
respectively, and x{ is the position of the contact node i.

The tangential contact force between particle a and particle b is

calculated using the Coulomb friction model similar to the friction
model (Andrade et al., 2012). The relative velocity veb between particle
a and particle b is given by:
v =y o x (xf —x¢) v —0" x (x{ —xP), 9
where v?, v*, ®%, and @® are the linear and angular velocities of particle a
and particle b, respectively. The increment in shear displacement As; has
the following form:

As; = [v“*” — (v“"’.nq"’)nf"’ } At, (10)

i

where At is the time interval. The tangential contact force F; exerted on
particle a at contact node i is calculated by:

(F)ea = 2(F2, ) — kot an

where ks is the shear elastic stiffness. Coulomb friction law limits
tangential contact force F{; to be no greater than a fraction of the normal
contact force Fy;:

a

F
Fi, = comin(1F2 kP ) a2
R Rt

where 4 is the interparticle friction coefficient. Similarly, the tangential
contact force F?; exerted on particle b at contact node i is calculated as:

Ff.i = 7F§I.i~ 13)

The resulting moments M¢; and M?, at contact node i are calculated

as:
M, = (x{ —x{) x Fy, (14a)
M{)z = (x:l 7"?) X Ff.i' (14b)

Eventually, the total contact forces and moments generated by the
contact of particle a and particle b are expressed as:
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N
Fo= ;(F:_,. +FL), (15a)
Mo = XN:(M,”;J +va[), (15b)
i=1
N
P = Z (Fo+F2). (15¢)
M= i (M, +m2,), (15d)

i=1

where N is the total number of the contact nodes between particle a and
particle b. When particle b is replaced by a wall, we can calculate the
particle-wall interaction F,,, generated by the contact of particle aand a
wall. In DEM, the motion of one particle is controlled by Newton’s
second law. All the relevant calculations for the motion of particles can
be found in the classical literature of mechanics (Cundall and Strack,
1979; Evans and Murad, 2006; Goldstein, 2001; Hart et al., 1988;
Walton and Braun, 1993).

2.3. Coupled CFD-iDEM

There are many cases in which particle movement happens with the
presence of fluid phase or even is induced by fluid phases, such as
fluidization, Pneumatic conveying, and natural hazards. Under these
circumstances, the fluid-particle interaction plays an enormous role in
determining the dynamics of granular particles submerged in a fluid.
Such phenomena are simulated by coupling the DEM and CFD methods
(Tsuji et al., 2008; Zhang and Tahmasebi, 2019, 2018; Zhao et al., 2016).
In this coupling scheme, the fluid flow is simulated by Navier-Stokes
equations with an extra force term of the fluid-particle interaction,
and the particle movement is simulated by the typical DEM with an extra
force term of the fluid-particle interaction. Therefore, the coupled dy-
namics of the fluid and solid phase is achieved by considering the extra
force term of the fluid-particle interaction. With the ability of our pro-
posed iDEM method to capture the complex morphologies, we propose
using CFD-iDEM to simulate the movement of natural particles with the
presence of fluid. With the merit of considering the irregular particle
shape, CFD-iDEM improves the range of applications and makes simu-
lation results more accurate and physically realistic. To achieve this
goal, we consider the total computational domain Q, including particle
domain €, and fluid domain Q. The fluid boundary not shared with the
particle domain is denoted by Iy, and the fluid-particle interface, that is
the particle boundary, is denoted by T,. Considering incompressible
Newtonian fluid, the governing equations for the fluid motion are given
by:

V.u = 0in (16a)

0
p (a—l; + u.Vu > = V.6 +pgVzinQ; (16b)

where u, and p are the velocity and the density of the fluid, respectively.
g is the gravitational acceleration. ¢ is the stress tensor, which has the
following form:

6= —pl+7, a7n

where p is the pressure. I is the identity tensor, and 7 is the viscous stress
tensor. For an incompressible Newtonian fluid, A.¢ is given by:
V.6 = —Vp+ulu, (18)

where y is the viscosity of the fluid. The boundary and initial conditions
are described by:
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u =g (t) only (19a)
u=u; onl, (19b)
6.n=ty, onl, (19¢)
u(t) = Uy iIle (19d)

where u; is the velocity of the fluid-particle interface. r is the outer
normal direction on the particle surface. #yo, is the traction vector
exerted on the particle surface by the fluid.

The governing equation for particles with the presence of fluid is
similar to Eq. (3), with the only difference being an extra term, that is
fluid-particle interaction, added:

du
my L =mg+Y Fpy+d Fup+Fp (20)
Ny

Ny

where Fy, is the total fluid-particle interaction exerted on the particle.
First, we consider the calculation in the CFD part, which is based on the
idea of Fully Resolved Simulation (FRS). The details of the FRS are well
documented elsewhere (Patankar et al., 2000; Shirgaonkar et al., 2009).
The calculation in the CFD part includes three steps:

The total computational domain Q is regarded as the fluid phase and
an intermediate velocity field # is computed by solving the incom-
pressible Navier-Stokes equations, which has the following form:

W _
p(afl;Jr(u‘V)u) — _ Vp+uAii +pgVz. @D

2. In the particle area, the intermediate velocity field u is corrected
by imposing the particle’s velocities provided by the DEM simulation.
The correction leads to a new velocity field u, which is equivalent to
adding a new force term f:

f=p

. 22
At (22)

Then, # is corrected to u(=particle velocity u,) and f is non-zero only
in the solid domain. Here, u, is composed of the translational and
rotational components:

U, =v,+rxa,, (23)

where v, is the translational velocity of the particle; r is the distance
vector pointing from the mass center of the particle to the center of the
fluid cell, which is occupied by the particle, and w, is the angular ve-
locity.

3. It should be noticed that step 2 introduces a discontinuity in ve-
locity at the fluid-particle interface, which results in a non-zero diver-
gence at the fluid-particle interface. Hence, final velocity field u, which
is divergence-free, is obtained by a scalar field ¢:

u=u-Veo, 24)
where ¢ is calculated by the following Poisson equation:
Ad =V (25)

Similarly, the manipulation of the velocity field (only in the solid
domain) is equivalent to adding an extra pressure term:

u—u V¢
At - /) A[ ) (26)
The substitution of Eq. (22) and Eq. (26) into Eq. (21) leads to:
ol
p<£+ (u.V)u> = —Vp +uAu+f+pgVz, 27)

where the corrected pressure p* is p + %"Z.
Then, we consider the iDEM simulation for particle motion. The key
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to calculating the force exerted on particles by a fluid is to include the
fluid-particle interactions Fy, into the iDEM simulation. The fluid-
particle interaction exists at the fluid-particle interface, which can be
calculated by the integration of fluid force over the particle’s surface I,
(Hager et al., 2014):

F, = / to,dT, = / (—pI +7).ndT, (28)
p r,

P

n is the outer normal direction on the particle surface. Combining the
divergence theorem leads to:

/(_p1+r).ndr,,: V(= pl +7)d2,. 29)

r, Q,

The integration can be rewritten as:

F;, = / (= Vp+uAu)dQ,. (30)
Q)

Here, we apply the CFD method to obtain the numerical solutions for
the fluid phase, which means the fluid phase is analyzed in discrete fluid
meshes. Eq. (30) can be, therefore, transformed into a discretization
form with the extension from the integration over the particle domain to
the integration over the whole fluid-solid domain Q:

/ (= Vp+pAu)dQ, :/ (= Vp +pAu)de,dQ. 31
Q Q

Considering an arbitrary element x in the domain Q, &, is defined as:

[ lifxeQ,
Oa, = { Oelse (32)

Numerical integration in the whole domain leads to:

N

Fr, = (= Vp+pubdu)V, (33)

i=1

where N is the total number of the fluid cells which is covered by the
particle. V; is the volume of cell i. The other steps in the iDEM, such as
the calculation of particle—particle interaction Fyp, the update of parti-
cle motion, will remain unchanged.

The key to accomplishing the coupled CFD-iDEM is to successfully
identify the particle in the computational fluid cells. Considering the
complex morphology of the particles in our study, we have proposed a
numerical algorithm to evaluate the particle volume in fluid cells, which
is currently applied for hexahedral cells:

Step 1: Divide one particle into small cubes, shown in Fig. 5(b),

Step 2: Assign the particle volume to each of these small cubes. The
particle volume in one cube is determined by the vertex number of one
cube. One vertex, which exists inside the particle, contributes to the
stored volume by one-eighth of the cube volume. Therefore, if all the
eight vertices of one cube exist inside the particle, the particle volume
stored in the cube equals the cube volume. The decision of the position
status of one vertex ve; (i = 1,2---8) inside or outside of the particle is
determined by ®(ve;): a negative value means inside of the particle while
positive means outside of the particle, where ® represents the distance
map of the particle.

Step 3: Assign the particle volume to the fluid cells, which requires
identifying the particle in the fluid cells as follows:

e Find the fluid cell that contains the center position of the particle.
When it comes to the parallel simulation, the center position will be
supplemented by the particle surface nodes because the center po-
sition only exists in one processor. The fluid cell (one corresponding
to each processor in the parallel simulation) is called the first
particle-occupied cell.
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Particle cube

(b)

Fig. 4. The illustration of the overlap between the particle cube and fluid cell. partially overlapped (a) and fully overlapped (b).

Fig. 5. Illustration for the identification of one particle in the computational fluid cells. (a) One irregular particle and (b) division of the particle into small cubes. (c)
2D slice from the particle and (d) the location of the slice in fluid cells. (e) Calculated void-fraction based on the slice.

e Based on the first particle-occupied cell, the loop to detect more fluid
cells occupied by the particle starts by examining if the six neighbor
cells of the first particle-occupied cell contain a part of the particle.
If one neighbor cell is determined to contain a part of the particle, the
six neighbor cells of the neighbor cell will be examined as well.
Otherwise, there will be no further examination on the neighbor cells
of this neighbor cell. The fluid cells containing the particle are all
detected when no neighbor cell in the whole computation domain
needs to be examined.

The particle volume contained in the fluid cells is the key to
continuing or terminating the loop: if the particle volume contained
in one fluid cell is bigger than zero, a part of the particle is detected in
this fluid cell and the loop continues with the neighbor cells. The
overlap volume between the particle cube and fluid cell (as shown by
the red part in Fig. 4) represents how much of the particle volume
stored in the particle cube can be assigned to the fluid cell. For
example, if the particle cube is fully involved in the fluid cell, the
fluid cell will obtain the whole particle volume stored in the particle
cube, as shown in Fig. 4(b). At the end of the cell search loop, the
fluid cells containing the particle are all detected, and the particle
volume is assigned to these fluid cells, as shown in Fig. 5(e) (the
fraction of particle volume = 1 - void-fraction).

3. Model simulations

Based on the X-ray computed tomographic (XRCT) image data, we
used an improved distance transformation to depict particles by distance
values (see Section 2.1). In other words, the virtual specimen, whose
particles are the same as the actual particles in both shape, position, and
properties, is generated by the enhanced distance transform character-
ization and is used in the motion simulation (see Section 2.2). With all
the particle data prepared, the image-based DEM (iDEM) is used to
simulate the motion of real irregular particles. Finally, a coupled system
in which the domain is composed of solid particles and fluid is simulated
to capture the dynamic behavior of both the fluid and particles (see

Section 2.3). With the XRCT image data of a sandstone sample, we apply
the enhanced distance transform (EDT) to convert them to distance
fields and generated 20 granular assemblies containing 288 particles
with different irregularities. It should be noted that such particles, if
XRCT data are not available, can be produced using stochastic modeling
as well (Tahmasebi, 2018a, 2018b). Fig. 6 shows the distribution of
particle sphericity (S) and roundness (R) for all the produced granular
assemblies (Krumbein, 1941; Powers, 1953; Wadell, 1932). Krumbein
defined the sphericity as:

s = bee. 34)

where a for the long axis, b for the intermediate axis, and c for the short
axis of the three representative axes of one particle. Wadell defined the
roundness as the ratio of the average radius of curvature of the corners of
one particle to the radius of its maximum inscribed sphere:

_ ﬁZLm

Tmax—in

R (35)

where r; is the radius of the i-th corner curvature, n the number of cor-
ners, and rygx_in the radius of the maximum inscribed sphere. It can be
observed that the shape of particles gradually changes from irregular to
regular spheres from both Fig. 6 and Fig. 2 (in Section 2.1). It should be
noticed that the individual particle mass (with the unit of kg) in different
assemblies is the same, with a relative error of less than 5 x 10,
calculated by:

My — ms’,l

i=2,3,,20 (36)

masserror =

ms,l

where my is the mass of one particle in the first particle assembly, and
ms; is the mass of the corresponding particle in the i-th particle assem-
bly). Here, we set the friction coefficient for the first granular assembly,
as the most irregular, to be 0.5, and the friction coefficient for the last
granular assembly, which is the spherical particles, as 0.25. The friction
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Fig. 6. The sphericity and roundness of different morphologies (upper row). Morphological representation of a random particle with five distinct shapes (lower row).

coefficients for the rest of the assemblies are determined by linear
interpolation between particle roundness and friction angle (Cho et al.,
2006; Minsu et al., 2014).

Using our computational method, we performed the collapse simu-
lation for all granular assemblies containing 288 particles with no fluid.
Furthermore, the collapse behavior of all granular assemblies with the
presence of a fluid (here, water) is also simulated and studied. For the
dry cases, the simulations are operated based on our proposed iDEM
while a coupled scheme, namely CFD-iDEM, is used for the wet cases to
consider the effect of fluid. The key to achieving the CFD-iDEM coupling
is to transfer the particle information, such as mass, shape, position, and
velocity, etc., into the fluid domain and exert the fluid force on particles.
The motion state of particles affects the fluid flow behavior, which in
turn exerts forces on the particles. The detailed theories are referred to
the Section 2.3. The spatial distribution of the considered particles for
each assembly follows a certain pattern: six particles along the x-direc-
tion (horizontal direction), one particle along the y-direction and there
are two vertical walls to constrain the y-directional particle motion, and
48 particles along the z-direction (vertical direction). The average di-
ameters of individual particles in all assemblies range from 0.8 mm to
0.9 mm with the same density of p; = 2.5 x 10® kg/m®. It should be
noted that the average particle diameter is calculated based on the

particle mass, thatisd; =2 x <i%> 1/3 where d; is the average diameter

(with the unit of m) and m; is the mass of one particle (with the unit of
kg). Furthermore, we considered water as the fluid in this study with the
density p; =1 x 10® kg/m® and the kinematic viscosity vy = 1x

107® m?2/s. The fluid flow is solved numerically, where an Euler scheme
for d/ot, Gauss linear for gradient and divergence, and Gauss linear
corrected for Laplacian V? are used. While the DEM solver updates the
particle motion, the PISO (Pressure-Implicit with Splitting of Operators)
algorithm is applied for solving the Navier-Stokes equations in the CFD-
solver. A no-slip boundary condition is used in all the wet simulations.

Before discussing the results for a complex case with angular parti-
cles, let us verify the accuracy of our proposed method for spherical
particles as one can find several such studies using analytical and nu-
merical solutions. Thus, we have tested the simulation of one particle
settlement with different contact parameters (normal stiffness k,) and
global damping parameters, as shown in Figs. 7 and 8. It can be observed
that the simulation results of one particle settlement have a great
agreement with the results of Glowinski et al. with the global damping

being 15 (Glowinski et al., 2001; Hager, 2014). Considering that the
contact interaction is generated only when the particle hits the bottom
wall, Fig. 8 plots the comparison of velocity (time from 0.35 s to 0.5 s) of
different normal stiffness k, = 2,1, 0.5 (kN/m) with the global damping
being 15. Moreover, the shear stiffness k; is determined based on the
normal stiffness k,: ks = ﬁ, where v is Poisson’s ratio and is set as
0.25 in our paper. It can be observed that there is a negligible difference
in the particle velocity, which can be explained by the number of contact
nodes. This also can be automatically adjusted with different normal
stiffness: more contact nodes with smaller normal stiffness; fewer con-
tact nodes with larger normal stiffness. Therefore, the contact interac-
tion of particle-particle or particle-wall calculated in this study is rather
robust. Considering that the global damping plays an important role in
dissipating the energy of the granular system, we have chosen the global
damping being 20 in the main example described in this paper, namely
collapsing of a column of particles, which is more complicated than the
one particle settlement problem.

Fig. 9 displays successive velocity snapshots of the collapse of dry
models (three time-steps t = 0 s, 0.075 s, and 0.175 s) and wet models
(three time-steps t = 0.0125 s, 0.15 s, and 0.3 s) for the M1 and M20
(spheres) assemblies. It shows that the grains collapse vertically (z-di-
rection) first, spread horizontally (x-direction), and finally, stop after
traveling a certain distance. It is also observed that the runout distance,
that is the spread distance of particles on the x-direction, elevates as the
regularity of particles increases for both dry and wet models (Topin
et al., 2012). The difference in the runout distance of the assemblies in
the dry state is much more distinct than that of the wet state. Next, we
will discuss the collapse further based on more analyses.

With the numerical simulations, we have obtained the movement
information at various time intervals, such as positions, displacements,
and velocities of particles. Note that the results are dimensionless: using
d for length normalization, \/% for time normalization, mg for force
normalization, and mgd for energy normalization. Here, d is the average
diameter of one assembly, m is the average mass of one assembly, and g
is the gravitational acceleration. Fig. 10 shows the grain trajectories
together with the vertical and horizontal mean kinetic energy calculated
by:

mv? my?

E, = zz,andEx = 7" 37)

Here, the mean kinetic energy refers to the arithmetic mean estimator
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Fig. 8. The comparison of the particle vertical velocity after the particle hits
the bottom wall with different normal stiffness.

over a single assembly. In the dry models, the grain trajectories and the
evolution of mean kinetic energy (E, and E,) show that the horizontal
movement of M20 assembly (i.e., spheres) is much larger than that of M1
(most irregular shape) while there is a negligible difference in the ver-
tical direction. Although there is also an obvious horizontal difference
between M1 and M20 assemblies in the wet cases, such a difference is
greatly mitigated by the presence of the fluid, which does not allow the
particles to travel a longer distance. Compared with the dry cases, the
fluid in the wet cases more effectively blocks the horizontal movement
of M20 than that of M1. The presence of fluid prolongs the life of E, and
E,, which is the reason why the vertical displacement of the dry and wet
cases is similar when the maximum of E, in the wet cases is much smaller
than that of the dry cases.

Once the simulations are complete (i.e., t = 0.45 s), the grain final
displacements, as shown in Fig. 11(a) and 8(b), are obtained for the dry
and wet assemblies (M1-M20). In the dry cases, the x-direction (hori-
zontal) displacements gradually increase as the regularity of particles
enhances. There is also a small increase in the z-direction (vertical)
displacements when the particles become more regular. In the wet cases,
both the horizontal and vertical displacements are impeded: the
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horizontal displacements slowly increase with rising the regularity of
particles while the vertical displacements are similar. Moreover, the
displacement comparison between dry and wet cases shows that both
the horizontal and vertical displacements of the dry models become
larger than the corresponding wet models with enhancing the regularity
of particles, which reflects that there are more viscous effects on the high
regular particles and therefore greatly impedes the movement of such
particles. For the first six assembles (M1, M2, ..., M6), it is interesting to
observe that the horizontal displacement of the wet models is larger than
that of the dry samples. The movement difference between the dry and
wet models indicates that the particle movement with a fluid is both
impeded and enhanced by the viscous and lubrication effects. The larger
horizontal displacement in the wet cases (M1, M2, ..., M6) indicates that
the lubrication effect exerted on the highly irregular particles by the
fluid surpasses the viscous effect.

It can be observed that the horizontal and vertical displacements of
both the dry and wet models are greatly affected by the regularity of
particles. Moreover, we have found that particle sphericity is more
relevant to particle movement. Fig. 11(c) and 8(d) exhibit a good cor-
relation between particle movement and sphericity. The coefficients a in
the exponential fitting function (can be expressed by xgyp = fe™)
quantifies the dependence level of particle movement in the horizontal
direction on the sphericity. The coefficient of a (7.0649) in the dry cases
is larger than the a (2.6209) in the wet cases, which reflects that the
presence of fluid alleviates the movement discrepancy caused by particle
morphology. The coefficient j in the fitting function predicts the particle
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Fig. 9. Successive velocity snapshots of the collapse for M1 and M20 (spheres) assemblies of dry and wet cases.

movement in the horizontal direction under extreme morphological
conditions (sphericity = 0). The coefficient of # (0.0117) in the dry cases
is smaller than the 4 (0.5968) in the wet models, which indicates that the
highly irregular particles in the wet cases are more active than the dry
circumstance because of the fluid lubrication effect.

Fig. 12(I) shows the mean kinetic energy for both the dry and wet
cases (e.g., M1, M6, M11, M15, M20). It can be observed that the hor-
izontal component of mean kinetic energy (E,) increases as the particles
become more regular in the dry cases. The vertical component of mean
kinetic energy (E;) in the dry cases, however, is similar for different
particle morphologies. In the wet cases, the difference of the horizontal
mean kinetic energy caused by the particle shape is not obvious, but the
vertical mean kinetic energy tends to decrease by enhancing the regu-
larity of particles, which reflects the larger obstruction effect of fluid on
the more regular particles. Moreover, the values of the mean kinetic
energy in the wet cases are smaller than that of the dry cases, which is
due to the fluid viscous effect. Furthermore, it can be seen that the E,
becomes zero aroundt/(d/g)®® = 25 in the dry cases while the curves
meet zero at aroundt/(d/g)’> = 50 in the wet cases, which implies that
the lifespan of particle movement is sustained by the fluid lubrication
effect, and particles can keep the energy for a longer time instead of a
rapid release. This finding can be important for natural hazards as the
wet environment may cause more serious and longer threats. Fig. 12(II)
displays the maximum of horizontal and vertical components of mean
kinetic energy in both the dry and wet models. It can be observed that
only the maximum of horizontal mean kinetic energy in the dry cases
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increases as the regularity of particles enhances. By increasing the reg- difference induced by different particle shapes.
ularity of particles, the discrepancy of horizontal mean kinetic energy
triggered by distinct morphologies is diminished as the fluid effect in- 4. Conclusion
creases, which results in dipping the vertical mean kinetic energy. The
change of kinetic energy from dry to wet cases, again, is highlighting the The morphology of particles has a great effect on the dynamic

phenomenon that the presence of fluid can lighten the movement behavior of granular particles. Our collapse results show that the

10
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dry (a) and wet (b) cases.

horizontal displacement increases with the growing regularity of parti-
cles in dry models while the presence of fluid mitigates the difference.
The vertical displacement slightly increases with enhancing the regu-
larity in the dry cases while the effect of particle shape on the vertical
movement is negligible compared with the fluid effect in the wet cases.
The fluid can both impede and enhance the movement of particles by the
viscous and lubrication effects, respectively. Compared to fluid lubri-
cation, the fluid viscous effect becomes dominant when the morphology
of particles becomes more regular.

It is found that the displacements of particles in both dry and wet
cases have a good correlation with the sphericity: exponential relation
on the horizontal direction. The coefficient a in the exponential linear
fitting function, which reflects the dependence level of particle move-
ment in the horizontal direction on the sphericity, is larger in the dry

11

cases compared to the wet cases. The smaller coefficient a reveals the
fact that the presence of fluid alleviates the movement difference caused
by the morphology of particles. The coefficient § in the exponential
fitting function is larger in the wet cases than the dry models, which
indicates that the fluid lubrication effect becomes dominant with highly
irregular particles. Therefore, such particles in wet systems are more
active and experience more movement than the dry circumstance (e.g.,
M1, M2, ..., M6).

The horizontal component of E, increases as particle regularity en-
hances in the dry cases while no obvious difference in the vertical
component of E, is observed. In the wet cases, the values of the mean
kinetic energy are smaller due to the impediment exerted on particles by
the fluid viscous effect while the lifespan of the mean kinetic energy is
much prolonged owing to the fluid lubrication effect. By increasing the
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regularity of particles, the discrepancy of horizontal mean kinetic en-
ergy triggered by distinct morphologies is diminished as the fluid effect
increases, which results in dipping the vertical mean kinetic energy. The
results of this study shed a light on complex problems related to irregular
particles immersed in the fluid and allow one to predict the collapse-
related movement, such as landslides, avalanches, and debris flows,
and help to reduce natural damage and economic losses. Furthermore, as
mentioned, the results are quite generic and can be used in other fields
related to granular particles and also it can be coupled with other rapid
flow models under some simplifications (Tahmasebi and Kamrava,
2018).
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