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Mechanical response of packings of nonspherical particles: A case study of two-dimensional
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We investigate the mechanical response of jammed packings of circulo-lines in two spatial dimensions,
interacting via purely repulsive, linear spring forces, as a function of pressure P during athermal, quasistatic
isotropic compression. The surface of a circulo-line is defined as the collection of points that is equidistant to
a line; circulo-lines are composed of a rectangular central shaft with two semicircular end caps. Prior work has
shown that the ensemble-averaged shear modulus for jammed disk packings scales as a power law, 〈G(P)〉 ∼ Pβ ,
with β ∼ 0.5, over a wide range of pressure. For packings of circulo-lines, we also find robust power-law scaling
of 〈G(P)〉 over the same range of pressure for aspect ratios R ! 1.2. However, the power-law scaling exponent
β ∼ 0.8–0.9 is much larger than that for jammed disk packings. To understand the origin of this behavior, we
decompose 〈G〉 into separate contributions from geometrical families, Gf , and from changes in the interparticle
contact network,Gr , such that 〈G〉 = 〈Gf 〉 + 〈Gr〉. We show that the shear modulus for low-pressure geometrical
families for jammed packings of circulo-lines can both increase and decrease with pressure, whereas the shear
modulus for low-pressure geometrical families for jammed disk packings only decreases with pressure. For this
reason, the geometrical family contribution 〈Gf 〉 is much larger for jammed packings of circulo-lines than for
jammed disk packings at finite pressure, causing the increase in the power-law scaling exponent for 〈G(P)〉.
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I. INTRODUCTION

Granular materials represent fascinating examples of
nonequilibrium physical systems that display complex, col-
lective behavior [1,2], such as stick-slip motion [3], shear
banding [4], and segregation [5]. They are composed of
discrete, macroscopic grains that interact via dissipative,
frictional contact interactions. Granular materials occur in
many important contexts, including numerous geological pro-
cesses [6,7], food and consumer product processing [8,9],
and robotics applications [10,11]. Because granular media are
highly dissipative, the grains do not move unless they are
driven by gravity, fluid flow, or the system boundaries. When
granular systems are compressed to sufficiently large packing
fractions, they become jammed and possess a nonzero static
shear modulus and other solidlike properties [12].

While most dry granular materials are composed of fric-
tional, nonspherical grains, numerous computational and
theoretical studies of dry granular packings have focused on
the soft-particle model in which frictionless, spherical parti-
cles interact via the pairwise, purely repulsive potential energy
[13]: U (ri j ) ∝ (1 − ri j/σi j )α$(1 − ri j/σi j ), where ri j is the
separation between the centers of mass of particles i and j,
σi j is their average diameter, the exponents α = 2 and 5/2 are

set for purely repulsive linear and Hertzian spring interactions
[14], and $(·) is the Heaviside step function that ensures
the potential energy is nonzero only when the particles are
in contact. For frictionless, spherical particles, the jamming
transition occurs when the number of interparticle contacts,
Nc, equals or exceeds the isostatic value N0

c = dN − d + 1,
where d is the spatial dimension and N is the number of
nonrattler particles [15]. A rattler particle has too few contacts
to constrain the d f degrees of freedom per particle. When the
system is compressed above jamming onset, the pressure in-
creases from zero and the jammed packing develops nonzero
bulk and shear moduli.

A hallmark of the jamming transition in static packings of
frictionless, spherical particles is that the ensemble-averaged
contact number and shear modulus 〈G〉 scale as a power
law in the pressure P [12,16], above a characteristic pres-
sure P∗∗ that decreases with increasing system size, as the
packings are isotropically compressed above jamming onset
[17]. For example, 〈G〉 ∼ P1/2 for P > P∗∗ for packings of
spherical particles with purely repulsive, linear spring inter-
actions. Several previous experimental studies of compressed
emulsions [18,19] and packings of thin granular cylinders [20]
have also found power-law scaling of the contact number and
shear modulus with pressure during isotropic compression.
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In previous computational studies of packings of frictionless,
spherical particles [21], we showed that there are two impor-
tant contributions to the ensemble-averaged shear modulus:
Gf from geometrical families and Gr from changes in the in-
terparticle contact network during compression. For isotropic
compression, jammed packings within a geometrical family
are mechanically stable packings with different pressures that
are related to each other by continuous, quasistatic changes in
packing fraction with no changes in the interparticle contact
network. Gr includes discontinuities in the shear modulus that
arise from point and jump changes in the contact network
[22,23]. Point changes involve the addition or removal of
a single interparticle contact (or multiple contacts when a
rattler particle is added or removed from the contact net-
work) without significant particle motion. Jump changes are
caused by mechanical instabilities and typically involve mul-
tiple changes in the contact network and collective particle
motion.

For frictionless, spherical particles, the shear modulus
along a geometrical family decreases with increasing pres-
sure during isotropic compression (and no shearing of the
boundaries). For systems with purely repulsive linear spring
interactions, Gf decreases roughly linearly with pressure,
Gf (P)/G0 ∼ 1 − P/P0, where G0 is the shear modulus at
P = 0 and P0 is the pressure at which Gf (P) = 0, although
there are deviations from this simple form as the system
approaches contact network changes [21,24]. Thus, the in-
crease in the ensemble-averaged shear modulus, 〈G〉, with
pressure for packings of spherical particles arises from Gr ,
where changes in the contact network cause discontinuous
upward jumps in the shear modulus. We will show below that
the sign of the second, pressure-dependent term in Gf (i.e.,
whether Gf increases or decreases with pressure) is deter-
mined by the curvature of geometrical families in the strain
direction.

Several prior computational studies have shown that the
form of 〈G(P)〉 for jammed packings depends on the particle
shape [25–27]. For example, the pressure-dependent shear
modulus for packings of frictionless ellipse-shaped particles
with repulsive linear spring interactions scales as 〈G(P)〉 ∼
Pβ , where β ∼ 1 over a wide range of pressure, P∗∗ < P <
P∗, P∗∗ ∼ N−2, and P∗ does not depend strongly on sys-
tem size. For P > P∗, the power-law scaling crosses over to
〈G〉 ∼ P1/2, as found for jammed packings of spherical par-
ticles [17]. However, the ensemble-averaged shear modulus
for jammed packings of dimer-shaped particles (and other
composite particles formed from bonded spherical particles)
scales as 〈G〉 ∼ P1/2 over the same range of pressures and
for the same aspect ratios as those studied for packings of
smooth, ellipse-shaped particles [26]. Since packings of fric-
tionless ellipse-shaped particles are hypostatic at jamming
onset, while packings of dimer-shaped particles are isostatic
at jamming onset, it is possible that the change in the power-
law scaling exponent from β = 0.5 to ∼1 is related to the
presence of low-frequency quartic modes in the vibrational re-
sponse for packings of ellipse-shaped and other nonspherical
particles [28].

In addition, recent studies of the structural and mechan-
ical properties of jammed packings of deformable particles
that can change shape [29,30] have shown that 〈G〉 versus

P displays scaling behavior that is different from that for
jammed packing packings of spherical particles. Thus, in the
absence of universal behavior for the mechanical properties of
jammed particle packings, it is important to develop a theoret-
ical framework that can relate the structural and mechanical
properties of single jammed configurations to the properties
of the ensemble. In light of this, two important goals of the
present paper are (1) emphasizing that the power-law scal-
ing behavior of the ensemble-averaged shear modulus versus
pressure depends on the particle shape and (2) describing
the key ingredients—the pressure dependence of the shear
modulus of geometrical families, the frequency of changes
in the interparticle contact network, and the size of jumps
in the shear modulus caused by the contact changes—that
are needed to develop a theoretical framework for calculat-
ing the ensemble-averaged shear modulus of jammed particle
packings.

Specifically, we address the question of what determines
the power-law scaling exponent β for packings of nonspheri-
cal particles. Does Gf decrease with pressure for packings of
nonspherical particles? Are the frequency of contact network
changes and the magnitude of the discontinuities in the shear
modulus at contact changes different from those for packings
of spherical particles? As a case study, we investigate the
pressure-dependent mechanical response of jammed packings
of circulo-lines interacting via purely repulsive, linear spring
interactions in two spatial dimensions as a function of aspect
ratio.

We find several key results for the mechanical response
of jammed packings of circulo-lines. First, the curvature of
the variation of packing fraction with strain for geometri-
cal families can be either negative or positive, and thus the
shear modulus of geometrical families can either increase or
decrease with pressure: Gf /G0 ∼ 1± P/P0 to linear order
in pressure. We derive an exact expression for the pressure-
dependent shear modulus of jammed packings and show
that near jamming onset it can be approximated as Gf ∼
− 1

φ
( dPdγ

)φ (
dφ
dγ

)P − P
φ
(
( dφ
dγ

)P
dγ

)φ [31], where γ is the shear strain.
The first term tends to a constant,G0 > 0, in the zero-pressure
limit and the sign of the coefficient of the second term (that
is roughly linear in P) is determined by the curvature of
geometric families in the φ-γ plane. Second, we decompose
Gf = Ga − Gna for each first, low-pressure geometrical fam-
ily into its affine and nonaffine contributions. Ga gives the
response of the system to a globally affine change of the parti-
cle positions and system boundaries, while Gna also includes
particle motion in response to potential energy minimization.
We find that the nonaffine term plays an important role in
determining Gf . In particular, the nonaffine contribution can
cause Gf to increase with pressure, which does not occur
in jammed packings of spherical particles. We also calcu-
late the ensemble-averaged shear modulus 〈G〉 versus P for
jammed packings of circulo-lines over a range of aspect ratios
R and system sizes. For packings of circulo-lines, we find
that 〈G〉 ∼ Pβ , where β ∼ 0.8–0.9, over a range of pressures
P∗∗ < P < P∗, where P∗∗ ∼ N−2 and P∗ decreases asR → 1
and does not depend strongly on system size. We find that the
finite fraction of geometrical families with negative curvature
in the φ-γ plane causes the power-law exponent β for 〈G〉
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versus P to increase compared to that for jammed packings of
spherical particles.

The remainder of the article is organized as follows. In
Sec. II, we describe the interparticle potential and types
of contacts that occur between pairs of circulo-lines, the
numerical methods used to generate jammed packings of
circulo-lines, and formulas for calculating the pressure, shear
stress, and shear modulus. In Sec. III, we describe the results
concerning geometrical families, nonaffine contributions to
the shear modulus, point and jump changes, and the ensemble-
averaged shear modulus for jammed packings of circulo-lines.
Finally, in Sec. IV, we provide the conclusions and point
to promising future research directions. We also include an
Appendix that gives explicit expressions for the affine shear
modulus for packings of circulo-lines with purely repulsive,
linear spring interactions.

II. METHODS

A circulo-line is the set of points that are equally dis-
tant from a line segment; it is thus a two-dimensional (2D)
shape composed of a rectangular middle region capped by
two semicircles on both ends. Figure 1(a) shows a circulo-line
(labeled i) with diameter of the semicircles, σi, and length of
the middle line segment, 2li. We will refer to the end points
of the middle line segment as the foci. The aspect ratio of a
circulo-line is R = (σi + 2li )/σi, and R = 1 in the limit that
the particle becomes coincident semicircles. The asphericity
of a circulo-line isA = p2i /4πai =

(2π+4(Ri−1))2

4π (π+4(Ri−1)) , where pi =
2πσi + 4li is the perimeter and ai = πσ 2

i /4+ σili is the area
of the circulo-line. In these studies, we varyR − 1 andA − 1
over the ranges 10−2 to 2 and 10−5 to 0.5, respectively. We
study bidisperse packings of circulo-lines to inhibit positional
and orientational order. We consider packings in simulation
boxes in which all of the edges have length L, periodic bound-
ary conditions in the x and y directions, and N/2 large and
N/2 small particles with end cap diameter ratio σl/σs = 1.4,
but the same mass m and aspect ratio R. To investigate the
effect of system size, we studied packings with N = 16, 64,
128, 256, and 512.

In Figs. 1(b)–1(d), we show that there are three ways in
which two circulo-lines can make contact (or make small
overlaps) with each other: end-end, end-middle, and middle-
middle contacts. Figure 1(b) shows an end-end contact
between circulo-lines i and j. In this case, the relevant sep-
aration ri j between the circulo-lines is the separation between
the two closest foci on i and j. Another important distance
is the separation λi between the center of circulo-line i and
the point at which the line from the closest focus on j that is
perpendicular to the axis of circulo-line i intersects the axis of
i. For an end-end contact, the following three conditions must
be satisfied: ri j < σi j = (σi + σ j )/2, λi > li, and λ j > l j .

Figure 1(c) shows an end-middle contact where the end of
circulo-line j is in contact with the middle region of circulo-
line i. For an end-middle contact, the relevant separation is the
distance r ji between the closest focus on i and the axis of j.
Similarly, we can define the separation ri j , but r ji (= ri j . For
an end-middle contact, the following four conditions must be
satisfied: ri j < σi j , r ji > σi j , λi < li, and λ j > l j .

FIG. 1. (a) A single circulo-line with middle segment length 2li
and end cap diameter σi. The three types of contacts between a pair
of circulo-lines i and j: (b) an end-end contact, (c) an end-middle
contact, and (d) a middle-middle contact. Note that σi j = (σi + σ j )/2
and the distances ri j , r ji, λi, and λ j are defined in the main text. (e)
The effective point of contact Ci j between two overlapping circulo-
lines i and j is located at the midpoint of ri j . The vector )ρi j points
fromCi j to the center of circulo-line j. The overlaps between circulo-
lines are magnified for visualization purposes; overlaps between
particles are much less than 0.1% in the simulations.
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Figure 1(d) shows two circulo-lines for which the two mid-
dle regions are in contact. We model middle-middle contacts
as two end-middle contacts, so that when a middle-middle
contact becomes an end-end contact [from Figs. 1(d) to
1(b)] or end-middle contact [from Figs. 1(d) to 1(c)] due
to small changes in the positions and orientations of the
circulo-lines, the interparticle potential energy and forces are
continuous. Thus, for a middle-middle contact, the following
four conditions must be satisfied: ri j < σi j , r ji < σi j , λi < li,
and λ j < l j .

We seek to model elastic particles with purely repulsive
interactions. Therefore, for all three types of contacts, we use
the pairwise, purely repulsive, linear spring potential

U (ri j ) =
ε

2

(
1 − ri j

σi j

)2

$

(
1 − ri j

σi j

)
, (1)

where ε is the characteristic energy scale of the interaction
and $(·) is the Heaviside step function, ensuring that pairs
of circulo-lines do not interact when they are not in contact.
We consider systems near jamming onset in the low-pressure
limit, and thus the interparticle overlaps will be small. The
contact rules in Fig. 1 ensure that the total potential en-
ergy, U =

∑
i> j U (ri j ), and pair forces, )fi j = (dU/dri j )r̂i j ,

are continuous as a function of the coordinates )ri of the centers
of mass and orientations θi of the circulo-lines. We use ε, ε/σs,
and ε/σ 2

s for the units of energy, force, and stress.
We employ the Love expression [32] to calculate the stress

tensor:

,αβ = 1
2L2

N∑

i, j=1

( fi jαρi jβ + fi jβρi jα ), (2)

where fi jα is the α component of the force on particle i due
to particle j and ρi jβ is the β component of the vector point-
ing from the effective contact point between two overlapping
circulo-lines i and j to the center of j. The effective contact
point Ci j is the midpoint of ri j as shown in Fig. 1(e). We
define the pressure as P = (,xx + ,yy)/2 and the shear stress
as , = −,xy.

To calculate the shear modulus, we first apply an affine
simple shear strain step δγ , which changes the circulo-line
center of mass positions and orientations,

x′
i = xi + δγ yi, (3)

and

θ ′
i = cot−1(cot θi + δγ ), (4)

together with Lees-Edwards shear-periodic boundary condi-
tions, such that the two side walls tilt by δγ relative to the
horizontal axis [33]. (xi, yi) gives the position of the center of
mass of the ith circulo-line and θi gives the angle that the axis
of the circulo-line makes with the x axis. After each simple
shear strain step, we minimize the total potential energy using
the fast inertial relaxation engine (FIRE) algorithm [34] and
measure the shear stress ,. We can then determine the shear
modulus by calculating G = d,/dγ .

We employ an athermal, quasistatic isotropic compression
protocol to generate packings of circulo-lines at jamming
onset. We initialize the system with random positions and
orientations of the circulo-lines in the dilute limit with packing

fraction φ < 10−2. We then compress the system by .φ/φ =
2 × 10−3 and minimize the total potential energy using the
FIRE algorithm. We have verified that FIRE and the steepest
descent energy minimization algorithms give the same value
of the shear modulus for geometrical families of jammed disk
and circulo-line packings as a function of pressure.

After energy minimization, we measure the pressure P and
if P < Pt , where Pt is the target pressure, we again compress
the system by .φ and minimize the total potential energy. If
P > Pt , we return to the previous configuration (before the
most recent compression step) and decrease the packing frac-
tion increment by a factor of 2. We continue this compression
process until |P − Pt |/Pt < 10−5. For Pt < 10−7, we find that
the number of interparticle contacts satisfies the effective iso-
static condition: Nc = N0

c − Nq, where N0
c = d f N ′ − d + 1,

d = 2 is the spatial dimension, the number of degrees of
freedom per particle is d f = 3, N ′ = N − Nr − Ns/3, Nr is the
number of rattler particles with too few contacts to constrain
the d f degrees of freedom per particle, and Ns is the number
of slider particles with one unconstrained translational degree
of freedom. For example, a circulo-line that is sandwiched
between two other aligned circulo-lines (one on top and the
other on the bottom) is a slider since it is free to move in the di-
rection parallel to the neighboring particles. Nq is the number
of quartic modes of the dynamical matrix [28]. For pertur-
bations along quartic modes with amplitude δ, the change
in potential energy scales as .U ∼ δ4, instead of .U ∼ δ2

for nonquartic modes. To investigate the pressure-dependent
mechanical properties, we start with systems at Pt = 10−7 and
then successively increase the target pressure over the range
10−7 < Pt < 10−2.

III. RESULTS

Here, we describe our main results in five subsections. In
Sec. III A, we generalize the concept of geometrical fami-
lies of jammed packings in the φ-γ plane to packings of
circulo-lines and show that the curvature d2φ/dγ 2 can be
both positive and negative for packings of circulo-lines. In
Sec. III B, we derive a general expression for the pressure-
dependent shear modulus G in terms of derivatives of U and
φ with respect to γ at fixed packing fraction and at fixed pres-
sure. Using this expression, we find that the first geometrical
family in the P → 0 limit scales as Gf /G0 ∼ 1± P/P0 to
linear order in P, where the sign of d2φ/dγ 2 determines the
sign of the second term in Gf . In Sec. III C, we decompose
the shear modulus for each low-pressure geometrical family,
Gf = Ga − Gna, into the affine and nonaffine contributions,
respectively. We show that the nonaffine contribution to the
shear modulus of the low-pressure geometrical families is
larger for packings of circulo-lines compared to that for disk
packings, and that the pressure dependence of Gna can cause
Gf to increase with pressure, which does not occur for pack-
ings of spherical particles. In Sec. III D, we characterize point
and jump changes in the contact network during isotropic
compression in packings of circulo-lines (interacting via re-
pulsive linear springs) and show that jump changes give rise
to discontinuous changes in potential energy, shear stress,
and shear modulus, whereas point changes give rise to dis-
continuous changes only in the shear modulus. We find that
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point changes are more frequent for packings of circulo-lines
(compared to disk packings), but the resulting jumps in the
shear modulus are smaller, over the same range of pressure
as for disk packings. In Sec. III E, we discuss the results for
the ensemble-averaged shear modulus 〈G〉 as a function of
pressure. We show that, for large aspect ratios R ! 1.2, 〈G〉
scales as a power-law at large pressures with an exponent
that is nearly a factor of 2 larger than that for disk packings.
For small aspect ratios, R " 1.2, 〈G〉 versus pressure does
not possess a single power-law scaling exponent. We further
decompose 〈G〉 = 〈Gf 〉 + 〈Gr〉 into contributions from geo-
metrical families Gf and changes in the contact network Gr .
We show that 〈Gr〉 is smaller for packings of circulo-lines
compared to that for spherical particles, and thus the increase
in the power-law exponent is caused by the fact that the shear
modulus can increase in pressure during geometrical families
for packings of circulo-lines.

A. Geometrical families of circulo-lines

Jammed packings within a geometrical family are mechan-
ically stable packings with different values of the pressure
(and shear stress) that are related to each other by continuous,
quasistatic changes in packing fraction and shear strain with
no changes in the interparticle contact network. We showed in
previous studies of jammed disk packings that near-isostatic
geometrical families form upward parabolic segments in the
φ-γ plane [31,35]. An example geometrical family of N = 6
jammed disk packings in the P → 0 limit runs from point A
to point B in Fig. 2(a). Similarly shaped geometrical families
occur at higher pressures, as shown by the upward parabolic
contours in Fig. 2(a). We show the pressure versus the total
potential energyU and shear strain γ in Fig. 2(b) for the same
data in Fig. 2(a).

Geometrical families begin and end at point or jump
changes in the interparticle contact network [22]. For exam-
ple, after making an infinitesimal increase in shear strain at
point C (γ ∼ 0.50) in Fig. 2(a), the system undergoes a jump
change to point D. At a jump change, the packing becomes
unstable, particles rearrange, and the packing fraction, shear
stress, and shear modulus change discontinuously. At point B
(γ ∼ 0.49) in Fig. 2(a), the system undergoes a point change.
For point changes, a single contact is added or removed from
the contact network and the packing fraction and shear stress
are continuous. For packings with purely repulsive linear
spring interactions, the shear modulus is discontinuous at
point changes [22].

In Fig. 3(a), we show the structure of geometrical families
in the φ-γ plane for jammed packings of N = 6 bidisperse
circulo-lines with aspect ratio R = 2.0. As for jammed disk
packings, we find that packings of circulo-lines can form
upward parabolic geometrical families, e.g., from point (b)
to (c) in Fig. 3(a). The configurations that correspond to the
beginning and end of this geometrical family are shown in
Figs. 3(b) and 3(c). These two configurations share the same
contact network, but the relative angles that the circulo-lines
make with each other are different; e.g., circulo-lines 3 and 4
in Fig. 3(c) are tilted away from the horizontal axis compared
to those in Fig. 3(b).

FIG. 2. (a) Pressure P for jammed packings of N = 6 bidisperse
disks as a function of packing fraction φ and shear strain γ . White
regions correspond to unjammed states. Points A and B correspond
to the beginning and end of a geometrical family in the P → 0 limit.
At point B (γ ∼ 0.49), the system undergoes a point change to the
next geometrical family that ends at point C. At point C (γ ∼ 0.50),
the system undergoes a jump change to the next geometrical family
that starts at point D. (b) The same data as in (a), except we show P
as a function of the total potential energyU and γ .

Because pairs of circulo-lines can form three different
types of contacts, the contact network can change when parti-
cles i and j form or break a contact, as well as when the type
of contact between i and j changes (e.g., from an end-end to
an end-middle contact). (See Sec. II). As a result, packings
of circulo-lines possess more point changes and shorter ge-
ometrical families in the φ-γ plane than disk packings. For
example, the average terminus Pend of the lowest-pressure ge-
ometrical family is a factor of 5 larger forN = 6 disk packings
compared to N = 6 packings of circulo-lines with R = 2. In
response to an infinitesimal increase in shear strain at point (c)
in Fig. 3(a), the system undergoes a jump change to point (d).
There are a total of eight changes in the contact network across
the jump change, e.g., circulo-lines 1 and 2 are in contact in
Fig. 3(c), but they are not in contact in Fig. 3(d) and the types
of contacts between circulo-lines 3 and 4 change between
Figs. 3(c) and 3(d) (from end-middle to middle-end or from
middle-end to end-middle). At a jump change in packings
of circulo-lines, the packing fraction, shear stress, and shear
modulus also change discontinuously. (See Sec. III D below).

Another upward geometrical family occurs between points
(d) and (e) in Fig. 3(a). At point (e), the system undergoes
a point change. As shown in Figs. 3(e) and 3(f), the system
loses a single contact across the point change. The packing
fraction and shear stress are continuous, whereas we will show
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FIG. 3. (a) Pressure P for jammed packings of N = 6 bidisperse circulo-lines with aspect ratio R = 2.0 as a function of packing fraction
φ and shear strain γ . White regions correspond to unjammed states. Points (b) and (c) correspond to the beginning and end of an upward
geometrical family. At point (c) (γ ∼ 0.19), the system undergoes a jump change to point (d). A second upward geometrical family occurs
between points (d) and (e). The system undergoes a point change from points (e) to (f) (γ ∼ 0.205). We also show a downward geometrical
family in the P → 0 limit (dotted line) that extends from γ ∼ 0.82 to 1. The packings in (b)–(f) correspond to points (b)–(f) in the φ-γ plane
in (a). The highlighted contacts in (c) do not occur in (d), and the highlighted contacts in (d) do not occur in (c). The highlighted contact in (e)
does not occur in (f). EM (or ME) indicates an end-middle (or middle-end) contact between circulo-lines 3 and 4.

in Sec. III D that the shear modulus is discontinuous across a
point change (for purely repulsive, linear spring interactions).

In contrast to jammed disk packings, the geometrical fam-
ilies for packings of circulo-lines can form both upward and
downward parabolic segments in the φ-γ plane. One of the
downward geometrical families is highlighted from γ ∼ 0.82
to 1 in Fig. 3(a). In the next section, we show that the sign of
the curvature of the parabolic geometrical families determines
whether the shear modulus of the geometrical family increases
or decreases with pressure.

B. Stress-dilatancy relation

We now derive an exact expression for the shear modulus
in terms of derivatives of the total potential energyU , packing
fraction φ, and pressure P with respect to the shear strain
γ . This expression will enable us to understand the behavior
of G(P) within geometrical families. If we take infinitesimal
steps dφ and dγ along a geometrical family in the φ-γ plane,
the change in the total potential energy is

dU = −PdA − ,xyAdγ , (5)

where A = L2 is the area of the system and dA/A = −dφ/φ.
After rearranging Eq. (5), we find the following expression
that relates the shear stress to the dilatancy −φ−1(dφ/dγ )P at
finite pressure [31]:

, = 1
L2

(
dU
dγ

)

P
− P

φ

(
dφ

dγ

)

P
. (6)

The shear modulus can be obtained by calculating the deriva-
tive d,/dγ at constant packing fraction:

G =
(
d,

dγ

)

φ

= 1
L2

(
d
( dU
dγ

)
P

dγ

)

φ

− P
φ

(( dφ
dγ

)
P

dγ

)

φ

− 1
φ

(
dP
dγ

)

φ

(
dφ

dγ

)

P
. (7)

The shear modulus is a sum of three terms, G = G1 +
G2 + G3, whereG1 = L−2(d (dU/dγ )P/dγ )φ includes mixed
derivatives of U with respect to γ at fixed φ and at fixed P,
G2 = −Pφ−1(d (dφ/dγ )P/dγ )φ is proportional to the deriva-
tive of the dilatancy with respect to γ at fixed φ, and G3 =
−φ−1(dP/dγ )φ (dφ/dγ )P includes shear strain derivatives of
P at fixed φ and of φ at fixed P. Since φ(γ ) is approximately
parabolic at low pressures, G2 is proportional to pressure and
G3 is nonzero in the P → 0 limit. In contrast, G1 involves two
derivatives of the total potential energyU with respect to shear
strain γ . In Fig. 2(b), we show that (for the regions of shear
strain where jammed packings exist) the potential energy U
does not vary strongly with γ at low pressures. Thus, we ex-
pect that |G1| is small in the low-pressure regime, and instead
variations of φ(γ ) determine the mechanical properties of the
system.

Equation (7) is verified numerically for a low-pressure geo-
metrical family of circulo-line packings for whichG increases
with P in Fig. 4(a). For all disk and circulo-line packings that
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FIG. 4. (a) Comparison of the shear modulus G versus pressure
P for N = 16 jammed packings of bidisperse circulo-lines withR =
2 obtained by calculating G = d,/dγ numerically (circles) and by
calculating the three termsG = G1 + G2 + G3 in Eq. (7) individually
(crosses). Note that G increases with P for this geometrical family.
(b) |G1|/G (asterisks), |G2|/G (diamonds), and |G3|/G (crosses) as
defined in Eq. (7) for the same data in (a).

we have considered, |G1| , |G2| or |G1| , |G3|, and thus
the first term G1 in Eq. (7) can be neglected. Furthermore,
we show in Fig. 4(b) for an N = 16 packing of circulo-lines
with R = 2 that |G3| > |G2| for P < P′ and |G2| > |G3| for
P > P′. (P′ ∼ 10−5 for this particular system size and aspect
ratio). We find that G ∼ G3 ∼ G0 > 0 in the zero-pressure
limit, and thus the shear modulus for low-pressure geomet-
rical families can be approximated as G ∼ G0 + ηP, where
η is determined by the negative curvature of the geometrical
families in the φ-γ plane. In particular, η > 0 (η < 0) for
downward (upward) geometrical families in the φ-γ plane.
In Fig. 5, we show the shear modulus versus pressure for
50 low-pressure geometrical families of N = 16 bidisperse
packings of circulo-lines with R = 2. We show that the shear
modulus obeys G ∼ G0 + ηP within each geometrical family.
For this system size and aspect ratio, approximately half of
the geometrical families have η > 0 and the other half have
η < 0. The fact that a finite fraction of geometrical families
possesses upward geometrical families with η > 0 strongly
influences the ensemble-averaged shear modulus 〈G〉 as dis-
cussed in Sec. III E.

FIG. 5. The shear modulus G versus the pressure P for N = 16
jammed packings of bidisperse circulo-lines with aspect ratio R =
2.0. We show 50 different low-pressure geometrical families (black
circles) and each geometrical family ends at a point or jump change
in the interparticle contact network. The blue solid lines are best fits
to G = G0 + ηP.

C. Affine and nonaffine contributions to the shear modulus
for geometrical families

The shear modulus can be decomposed into the affine
and nonaffine contributions: G = Ga − Gna, where the affine
contribution, Ga = L−2d2U/dγ 2, is obtained by applying a
global, affine simple shear strain and the nonaffine contri-
bution, Gna, includes the relaxation process during potential
energy minimization following the applied affine shear strain.
Explicit expressions for the affine contribution for circulo-
line packings are provided in the Appendix. Numerous prior
studies have shown that the nonaffine response dominates the
shear modulus in disk packings near jamming onset [36–40].
Similar calculations of the nonaffine contribution to the shear
modulus of jammed packings of nonspherical particles have
not been performed.

In previous studies [24], we calculated Gna = G − Ga for
isostatic geometrical families of jammed disk packings. These
results are also shown in Fig. 6(a) for N = 16 disk pack-
ings. We find that Gna increases with pressure, which causes
jammed disk packings to soften (i.e., G decreases) along
compression geometrical families. If changes in the contact
network do not occur until relatively large pressures, the pack-
ings can be strained toward a mechanical instability, where
the nonaffine particle motion and nonaffine contribution to the
shear modulus increase dramatically, causing deviations from
the simple form Gna ∼ G′

0 + η′P, and the total shear modu-
lus G = Ga − Gna decreases more strongly than linearly with
pressure. In contrast, when a geometrical family ends (via a
change in the contact network) at a relatively small pressure,
Gna for disk packings increases linearly with pressure and the
total shear modulus decreases linearly with pressure.

We now describe similar studies of Gna for low-pressure
geometrical families of circulo-lines, as shown in Fig. 6(b)
for R = 2.0. We identify several results concerning Gna for
packings of circulo-lines that are different from the results for
disk packings. First, as discussed above, the average pressure
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FIG. 6. (a) The nonaffine contribution to the shear modulus Gna

versus pressure P for 30 low-pressure geometrical families of N =
16 jammed disk packings (black dots). (b) Gna versus P for 57
low-pressure geometrical families of N = 16 bidisperse circulo-line
packings with R = 2.0 (black dots). Each geometrical family ends
at a point or jump change in the interparticle contact network. The
solid blue lines in both panels are fits to Gna ∼ G′

0 + η′P.

range over which the first, low-pressure geometrical families
persist is smaller for packings of circulo-lines, and Gna(P)
is well fit by Gna(P) ∼ G′

0 + η′P. Second, Gna can either
increase or decrease with pressure (i.e., η′ > 0 or η′ < 0).
In particular, packings of circulo-lines can harden (i.e., G
increases) along compression geometrical families, in contrast
to disk packings. In addition, the ensemble-averaged 〈Gna〉 for
the first geometrical family is typically larger for packings of
circulo-lines compared to that for disk packings. For example,
for packings of circulo-lines withR = 2.0, 〈Gna〉 is more than
a factor of 2 larger than 〈Gna〉 for disk packings.

D. Point and jump changes in the contact network

In previous studies [22] of jammed packings of disks that
interact via purely repulsive, linear spring potentials, we found
that the shear modulus possesses discontinuous jumps when
the packings undergo point and jump changes in the inter-
particle contact networks during applied deformations (such
as shear or compression). Point changes are additions or

FIG. 7. (a) Scatter plot of the change in the shear modulus |.G|
versus the change in the potential energy |.U | measured between
packings separated by small compression steps for N = 128 disk
packings. (b) Same data as in (a), but for N = 128 circulo-line pack-
ings with R = 2.0. The red dots in region 3 indicate comparisons
between two packings with the same interparticle contact networks.
The blue points in regions 1 and 2 correspond to jump and point
changes, respectively.

removals of a single contact in the network. In contrast, jump
changes are caused by mechanical instabilities and involve
multiple contact changes and significant particle motion. In
Fig. 7(a), we show a scatter plot of changes in G and the
potential energy U between jammed N = 128 disk packings
that are separated by small compression steps over a range of
pressure 10−3 < P < 10−2. To generate Fig. 7(a), we identify
the pressures at the beginning and end of all geometrical fam-
ilies in this pressure range (10−3 < P < 10−2) and compare
G and U between two packings before the contact network
change and one before and one after the contact network
change.

We identify three regions of clustered points in Fig. 7(a):
regions with (1) large |.G| and large |.U |, (2) large |.G|
and small |.U |, or (3) small |.G| and small |.U |. The inter-
particle contact networks change for the systems in regions 1
and 2, and data in these regions correspond to jump and point
changes, respectively. For the data in region 3, the contact
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network does not change, and |.G| and |.U | will decrease
with improved force balance.

In Fig. 7(b), we show similar data for |.G| and |.U |
for N = 128 jammed packings of circulo-lines with R = 2.0
over the same pressure range as studied for jammed disk
packings. As found previously for disk packings, jammed
packings of circulo-lines undergo point and jump changes
in the contact network, which lead to discontinuous jumps
in G. As found previously, point and jump changes can be
differentiated because point changes have vanishing |.U |,
whereas jump changes have nonzero values of |.U |.

For the jammed disk packings considered in Fig. 7(a), jump
changes accounted for ∼0.13 of the changes in the contact
network. However, jump changes accounted for only ∼0.03
of the changes in the contact network for jammed circulo-line
packings over the same range of pressure. Since point changes
can involve changes in the type of contact between the same
pair of particles, point changes are much more frequent in
packings of circulo-lines compared to disk packings.

E. Ensemble-averaged shear modulus

Numerous prior studies have shown that the ensemble-
averaged shear modulus 〈G〉 for packings of frictionless,
spherical particles increases as a power law in pressure
when P > P∗∗ [12,17], where P∗∗ ∼ N−2 decreases with in-
creasing system size. For finite-sized systems, we have used
the following scaling form for the ensemble-averaged shear
modulus [21]:

〈G〉 = 〈G0〉 +
bPχ

1+ cPχ−β
, (8)

where 〈G0〉 ∼ N−1, b and c are constants, χ and β are power-
law exponents, and the large-pressure scaling exponent β ∼
0.5 for packings of spherical particles with repulsive linear
spring interactions. [See Fig. 8(a)].

In Fig. 8(b), we show 〈G〉 versus P for packings of circulo-
lines with R = 1.5 for several system sizes. As for disk
packings, 〈G〉 = 〈G0〉 ∼ N−1 in the zero-pressure limit and
〈G(P)〉 increases as a power law at large pressure. For pack-
ings of circulo-lines with R ! 1.2, we find that a scaling
function with a single power law [i.e., c = 0 in Eq. (8)] pro-
vides a better description of 〈G〉 versus P over the full range
of pressure. We find that the power-law exponent χ ∼ 0.9 for
R = 1.5, suggesting that the pressure-dependent mechanical
properties of jammed packings of circulo-lines differ from
those of jammed disk packings.

In Fig. 9, we show 〈G〉 (normalized by the zero-pressure
value 〈G0〉) versus P over a range of aspect ratios (for a single
system size N = 128). In Fig. 9(a), we compare 〈G〉/〈G0〉 for
packings of circulo-lines with large aspect ratios (R = 1.5
and 2) and for disk packings. 〈G〉/〈G0〉 for the packings with
large aspect ratios has a robust large-pressure scaling expo-
nent χ that is larger than that for disk packings. The inset to
Fig. 8(b) shows that 0.8 " χ " 0.9 forR > 1.2. In Fig. 9(b),
we show 〈G〉/〈G0〉 versus P for small aspect ratios R ! 1.2.
〈G〉/〈G0〉 no longer has a single large-pressure scaling ex-
ponent. The curves have a steep region in the intermediate
pressure regime from 10−5 to 10−3.5, with scaling exponents
that are comparable to those for higher aspect ratios. However,

FIG. 8. (a) Ensemble-averaged shear modulus 〈G〉 versus pres-
sure P for bidisperse disk packings for several system sizes: N = 64
(crosses), 128 (solid circles), 256 (asterisks), and 512 (open circles).
The solid lines are best fits to Eq. (8). The inset shows the large-
pressure power-law scaling exponent β versus N . (b) Similar data as
in (a), but for packings of circulo-lines with R = 1.5 and N = 64
(squares), 128 (circles), 256 (triangles), and 512 (diamonds). The
solid lines are best fits to Eq. (8) with c = 0. The inset shows the
large-pressure scaling exponent χ versus R − 1. In both panels, the
averages are calculated over 103 different initial conditions.

at larger pressures above a characteristic pressure, P > P∗, the
curves bend over and have scaling exponents that are much
less than those in the inset to Fig. 8(b). The data also suggest
that P∗ decreases as the aspect ratio decreases, indicating that
the range of pressure over which the elevated scaling exponent
occurs decreases as R → 1.

To explain the increase in the power-law scaling ex-
ponent for packings of circulo-lines, we decompose the
ensemble-averaged shear modulus 〈G〉 into contributions from
geometrical families, 〈Gf 〉, and from discontinuous jumps
caused by changes in the interparticle contact network,
〈Gr〉: 〈G〉 = 〈Gf 〉 + 〈Gr〉 [21,24]. In Fig. 10(a), we com-
pare |〈Gf 〉|/〈G0〉 and 〈Gr〉/〈G0〉 for packings of circulo-lines
with R = 1.5 and for disk packings both with N = 128. For
jammed disk packings, 〈Gf 〉/〈G0〉 decreases monotonically
with increasing pressure, and thus there is a characteristic
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FIG. 9. (a) Ensemble-averaged shear modulus 〈G〉 (normalized
by the zero-pressure value 〈G0〉) versus pressure P for N = 128
packings of circulo-lines with several aspect ratios:R = 1 (crosses),
1.5 (upward triangles), and 2 (circles). (b) Similar data as in (a),
except for R = 1 (crosses), 1.05 (leftward triangles), 1.1 (squares),
and 1.2 (diamonds). In both panels, the solid lines are fits to Eq. (8).
For R > 1.2, c = 0. 〈G〉 is calculated using 103 different initial
conditions.

pressure 〈P0〉 at which 〈Gf 〉 = 0 and above which 〈Gf 〉 <
0. For N = 128 jammed disk packings, 〈P0〉 ∼ 10−5. Thus,
for P > 〈P0〉, the difference between the rearrangement and
geometrical family contributions, 〈G〉 = 〈Gr〉 − |〈Gf 〉|, deter-
mines the power-law scaling behavior of the shear modulus
with pressure for jammed disk packings.

A key difference between jammed disk packings and pack-
ings of circulo-lines is that circulo-line packings possess a
finite fraction of geometrical families whose shear modu-
lus increases with pressure [see inset of Fig. 10(a)], which
can cause 〈Gf 〉/〈G0〉 to increase with pressure. For R = 1.5
circulo-line packings with N = 128, we find that 〈Gf 〉/〈G0〉
increases over a wide pressure range 10−7 " P " 10−3.5. For
P ! 10−3.5, the fraction of geometrical families that increases
with pressure, pup, decreases dramatically, and 〈Gf 〉/〈G0〉
begins decreasing with pressure. 〈Gf 〉/〈G0〉 reaches zero near
〈P0〉 ∼ 10−2.5 and continues decreasing with further increases
in pressure.

FIG. 10. The average rearrangement 〈Gr〉 (crosses) and geomet-
rical family |〈Gf 〉| (asterisks) contributions to the shear modulus
for N = 128 jammed packings of circulo-lines (normalized by the
average zero-pressure value of the shear modulus, 〈G0〉) for (a)R =
1.5 and (b) 1.1. As a comparison, we also show 〈Gr〉 (circles) and
|〈Gf 〉| (triangles) for N = 128 disk packings. In each panel, the inset
shows the probability pup that each geometrical family increases with
pressure, obtained from 500 jammed packings of circulo-lines at
each small pressure interval.

In addition, the rearrangement contribution 〈Gr〉/〈G0〉 is
larger for disk packings compared to packings of circulo-lines
with R = 1.5, as shown in Fig. 10(a). Thus, even though the
frequency of contact network changes is enhanced for pack-
ings of circulo-lines (see Sec. III D), the discontinuous jumps
in the shear modulus are sufficiently small for circulo-line
packings that 〈Gr〉/〈G0〉 is larger for disk packings. Since
〈Gr〉/〈G0〉 is larger for jammed disk packings compared to
circulo-line packings and 〈Gf 〉/〈G0〉 increases with pressure
over a wide range of pressure, it is clear that the existence
of geometrical families with shear moduli that increase with
pressure is responsible for the elevated power-law scaling
exponent for packings of circulo-lines withR ! 1.2.

For jammed packings of circulo-lines withR " 1.2, we do
not find a single power-law scaling exponent for 〈G〉 versus
P. Instead, 〈G(P)〉 has a power-law exponent β ∼ 0.8–0.9 for
intermediate pressures and then the exponent decreases for
P ! 10−2.5. [See Fig. 9(b)]. In Fig. 10(b), we show that 〈Gr〉 is
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much larger for circulo-line packings with R = 1.1 than that
with 1.5. In particular, 〈Gr〉 forR = 1.1 is comparable to that
for jammed disk packings for P ! 10−4 and 〈Gf 〉 > 0 over a
much narrower range of pressure. The two results cause the
lack of single power-law scaling for packings of circulo-lines
withR " 1.2.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we studied the structural and mechanical
properties of jammed packings of circulo-lines with friction-
less, purely repulsive, linear spring interactions. We found
several important results for jammed packings of circulo-lines
that are different from those for jammed packings of spherical
particles. First, we showed that packings of circulo-lines pos-
sess geometrical families that can be both concave upward or
concave downward in the packing fraction-shear strain (φ-γ )
plane. In contrast, the geometrical families are nearly always
concave upward in the φ-γ plane, especially at low pressure,
for jammed packings of spherical particles. We then derived a
stress-dilatancy relation for packings at finite pressure, which
allowed us to show that the shear modulus for low-pressure
geometrical families obeys Gf = G0 + ηP to linear order in
pressure, where the sign of η is determined by the negative
curvature of geometrical families in the φ-γ plane. Thus, the
shear modulus of low-pressure geometrical families increases
with pressure when d2φ/dγ 2 < 0 and decreases with pres-
sure when d2φ/dγ 2 > 0. The fact that the shear modulus of
geometrical families can increase with pressure has a pro-
found effect on the pressure-dependent, ensemble-averaged
shear modulus 〈G(P)〉. In particular, we found that 〈G(P)〉 for
jammed packings of circulo-lines with aspect ratios R ! 1.2
displays robust power-law scaling over a wide range of pres-
sure, but the scaling exponent (β ∼ 0.8–0.9) is nearly a factor
of 2 larger than that for jammed disk packings (β ∼ 0.5).
For smaller aspect ratios, R " 1.2, 〈G(P)〉 does not possess
a single power-law scaling exponent over the same range
of pressure. To understand the origin of this behavior, we
decomposed 〈G〉 into separate contributions from geometri-
cal families, 〈Gf 〉, and from changes in the contact network,
〈Gr〉: 〈G〉/〈G0〉 = 〈Gf 〉/〈G0〉 + 〈Gr〉/〈G0〉, where 〈G0〉 is the
value of 〈G〉 in the zero-pressure limit. In general, we found
that 〈Gr〉/〈G0〉 is larger for disk packings compared to that
for packings of circulo-lines, even though the frequency of
changes in the contact network is larger for packings of
circulo-lines. In contrast, we found that 〈Gf 〉/〈G0〉 is much
larger for packings of circulo-lines. In fact, 〈Gf 〉/〈G0〉 < 0
for disk packings, whereas it can be positive for packings
of circulo-lines in the pressure regime where the power-law
scaling exponent is larger than that for disk packings. Thus,
the presence of geometrical families with shear moduli that
increase with pressure gives rise to important changes in the
pressure-dependent mechanical properties for jammed pack-
ings of circulo-lines.

These results suggest several promising areas of future
research. First, in the present studies, we did not examine in
detail how properties of jammed packings of circulo-lines in
the R → 1 limit compare to those for jammed disk packings.
Two issues arise in theR → 1 limit:

(1) Noncircular particles always possess three degrees of
freedom per particle, whereas smooth disks possess only two
nontrivial degrees of freedom per particle. Thus, in future
studies, we will compare the properties of jammed packings
of circulo-lines to those for packings of weakly frictional or
bumpy particles, which both possess three degrees of freedom
per particle [41].

(2) The current force model for circulo-lines, which con-
siders forces between the end and middle sections of pairs of
circulo-lines, does not converge to the force model obtained
from Eq. (1) in the R → 1 limit for packings with finite
pressure. A force law that is a function of the square root of
the area of overlap between pairs of circulo-lines is a more
promising model.

Another promising area of future research involves studies
of how the mechanical response of jammed packings depends
on both the particle shape and form of the interparticle po-
tential. In previous studies of jammed disk packings [24], we
found that the shear modulus G of near-isostatic geometric
families scales with pressure P as G ∼ (P/P0)(α−2)/(α−1) −
P/P0, where P0 is the pressure at which G = 0 and α = 2,
5/2 for repulsive linear and Hertzian spring potentials, re-
spectively. Based on the results found here, we predict that
the shear modulus for near-isostatic geometrical families of
circulo-lines with repulsive Hertzian spring interactions will
scale as G ∼ (P/P0)1/3 ± P/P0, where the sign of the second
term depends on whether the geometrical family is concave
downward or upward in the packing fraction and shear strain
plane. Thus, the scaling of the ensemble-averaged shear mod-
ulus versus pressure for jammed packings of circulo-lines
with repulsive Hertzian spring interactions will differ from
the current results. However, there is currently no theoretical
framework that can predict 〈G(P)〉 based on the statistics
and pressure dependence of the shear moduli of geometrical
families.

Third, we know that jammed packings of circulo-lines
possess concave upward and concave downward geometrical
families in the φ-γ plane. Do jammed packings of other
nonspherical particle shapes also possess concave upward and
concave downward geometrical families? Can we find parti-
cle shapes for which jammed packings only possess concave
downward geometrical families in the φ-γ plane? We have
shown in previous studies that the power-law scaling exponent
for 〈G(P)〉 for jammed packings of ellipse-shaped particles
is also elevated relative to that for jammed disk packings
[25,26]. Thus, it is likely that jammed packings of ellipse-
shaped particles also possess concave downward geometrical
families in the φ-γ plane. Since the power-law scaling expo-
nent β for 〈G(P)〉 depends on properties of the geometrical
families, the frequency of contact network changes, and the
size of the discontinuous jumps in G caused by the contact
network changes, it seems likely that the power-law scaling
exponent β will depend sensitively on particle shape. Thus,
it will be important to study 〈G(P)〉 and other mechanical
properties for packings of different particle shapes in both
two and three dimensions. The results from these studies will
allow us to develop a theoretical framework that can predict
the power-law scaling behavior of 〈G(P)〉 in terms of the
statistics of changes in the interparticle contact network and
the form of the shear modulus of geometrical families.
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In addition, we have shown that the shear modulus can
become negative in jammed packings when they are sheared
using strain control [24]. For example, for jammed disk
packings with repulsive linear spring interactions, the shear
modulus for near-isostatic geometrical families scales as
G/G0 ∼ 1 − P/P0 at low pressure, where G0 is a constant
and P0 is the pressure at which G becomes zero. Thus, as the
pressure increases from zero, and if there are no changes in the
interparticle contact network, the shear modulus of geometri-
cal families can decrease to zero and, with further increases
in pressure, become negative. For the isotropic compression
protocol that we employ, the number of geometrical fami-
lies with negative shear moduli is sufficiently large that the
ensemble average is affected. The ensemble-averaged shear
modulus for geometrical families |〈Gf 〉| in Fig. 10, which
is plotted on a logarithmic scale versus pressure, displays a
deep cusp at a characteristic pressure where |〈Gf 〉| approaches
zero. The shear modulus of individual geometrical families
can become negative over a wide range of pressures, but there
are not enough of these to cause the ensemble average to
vanish at other values of the pressure. An important topic for
future research is to understand whether different protocols
for generating jammed packings [35] in the φ-γ plane (such
as varying the rate at which energy is removed from the
system) can affect the frequency and range of pressure over
which geometrical families possess negative shear moduli.
If so, different packing-generation protocols can give rise to
different behavior for the ensemble-averaged shear modulus,
〈G(P)〉.
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APPENDIX: AFFINE SHEAR MODULUS

In Sec. III C in the main text, we calculated the nonaffine
shear modulus Gna = G − Ga for low-pressure geometrical
families for jammed packings of circulo-lines. In this Ap-
pendix, we derive an expression for the affine contribution to
the shear modulus, Ga, for jammed packings of circulo-lines.
For a globally affine simple shear strain, the particle posi-
tions and orientations of each circulo-line change according
to Eqs. (3) and (4), and the affine contribution to the shear
stress is

,a = L−2 dU (ri j )
dγ

, (A1)

where the contact distance vector satisfies

)ri j = )ci j + λ j û j − λiûi, (A2)

)ci j = (xi j, yi j ) is the the separation vector between the centers
of mass of particles i and j, and ûi = (cos θi, sin θi ). We set
λi = li and λ j = l j for end-end contacts and set

λi = ()ri j + λ j û j ) · ûi (A3)

for end-middle contacts, where λ j = l j and particle j is the
particle whose end is in contact with the middle section of
particle i.

The affine shear modulus is

Ga =
d,a

dγ
= L−2 d

2U (ri j )
dγ 2

. (A4)

Using Eq. (1), we obtain the following for the second deriva-
tive of the total potential energy with respect to shear strain γ :

d2U (ri j )
dγ 2

= 1
σ 2
i j

((
dri j
dγ

)2

− (σi j − ri j )
d2ri j
dγ 2

)
. (A5)

For both end-end and end-middle contacts, the first and sec-
ond derivatives of the contact distance with strain are given by

dri j
dγ

= f1xi j + f2yi j
ri j

(A6)

and

d2ri j
dγ 2

= − ( f1xi j + f2yi j )2

r3i j
+ f 21 + f 22 + f3xi j + f4yi j

ri j
,

(A7)
respectively, where f1, f2, f3, and f4 are functions of λi, λ j ,
θi, and θ j . For end-end contacts,

f1 = yi j − λi sin3 θi + λ j sin3 θ j, (A8)

f2 = λi sin2 θi cos θi − λ j sin2 θ j cos θ j, (A9)

f3 = 3λi sin4 θi cos θi − 3λ j sin4 θ j cos θ j, (A10)

and

f4 = (3 sin2 θi − 2) cos θi − (3 sin2 θ j − 2) cos2 θ j . (A11)

For end-middle contacts, f1, f2, f3, and f4 obey different
expressions. We find

f1 = yi j − λi sin3 θi + λ j sin3 θ j + f5 cos θ j, (A12)

f2 = λi sin2 θi cos θi − λ j sin2 θ j cos θ j + f5 sin θ j, (A13)

f3 = 3λi sin4 θi cos θi − 3λ j sin4 θ j cos θ j

+ 2 f5 sin3 θ j + f6 cos θ j, (A14)

and

f4 = (3 sin2 θi − 2) cos θi − (3 sin2 θ j − 2) cos2 θ j

− 2 f5 sin2 θ j cos θ j + f6 sin θ j, (A15)

where

f5 = (yi j + λ j sin3 θ j ) cos θi + (xi j + λ j cos θ j ) sin3 θi

− λ j sin2 θ j cos θ j/ sin θi

− (yi j + λ j sin θ j ) sin2 θi cos θi (A16)
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and

f6 = −3λ j cos θi sin4 θ j cos θ j

+ 2(yi j + λ j sin3 θ j ) sin3 θi

− 3(xi j + λ j cos θ j ) sin4 θi cos θi

− λ j sin3 θ j (3 sin2 θ j − 2) sin θi

+ 2λ j sin2 θ j cos θ j sin2 θi cos θi

− (yi j + λ j cos θ j ) sin3 θi(3 sin2 θi − 2). (A17)
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