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Modern Variable Selection in Action:
Comment on the Papers by HTT and BPV
Edward I. George

Let me begin by congratulating the authors of these two
papers, hereafter HTT and BPV, for their superb contribu-
tions to the comparisons of methods for variable selection
problems in high dimensional regression. The methods
considered are truly some of today’s leading contenders
for coping with the size and complexity of big data prob-
lems of so much current importance. Not surprisingly,
there is no clear winner here because the terrain of com-
parisons is so vast and complex, and no single method can
dominate across all situations. The considered setups vary
greatly in terms of the number of observations n, the num-
ber of predictors p, the number and relative sizes of the
underlying nonzero regression coefficients, predictor cor-
relation structures and signal-to-noise ratios (SNRs). And
even these only scratch the surface of the infinite possi-
bilities. Further, there is the additional issue as to which
performance measure is most important. Is the goal of
an analysis exact variable selection or prediction or both?
And what about computational speed and scalability? All
these considerations would naturally depend on the prac-
tical application at hand.

The methods compared by HTT and BPV have been un-
leashed by extraordinary developments in computational
speed, and so it is tempting to distinguish them primar-
ily by their novel implementation algorithms. In particu-
lar, the recent integer optimization related algorithms for
variable selection differ in fundamental ways from the
now widely adopted coordinate ascent algorithms for the
lasso related methods. Undoubtedly, the impressive im-
provements in computational speed unleashed by these
algorithms are critical for the feasibility of practical ap-
plications. However, the more fundamental story behind
the performance differences has to do with the differences
between the criteria that their algorithms are seeking to
optimize. In an important sense, they are being guided by
different solutions to the general variable selection prob-
lem.

Focusing first on the paper of HTT, its main thrust ap-
pears to have been kindled by the computational break-
through of Bertsimas, King and Mazumder (2016) (here-
after BKM), which had proposed a mixed integer opti-
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mization approach (MIO) for best subsets selection in
problems with p as large as in the thousands. Requiring
the optimization of !0-constrained least squares, conven-
tional wisdom had long considered best subsets to be the
computationally elusive gold standard for variable selec-
tion, having defied computation for p much larger than
30. Finally breaking this seemingly impenetrable barrier,
MIO had suddenly unleashed a feasible implementation
of best subsets for application in sparse high dimensional
regression.

Illustrating the performance of MIO, BKM carried out
simulation comparisons with some of its most prominent
alternatives, including forward stepwise selection and the
lasso. A close cousin of best subsets, stepwise is one of the
most routinely used computable heuristic approximations
for large p. The lasso, on the other hand, differs funda-
mentally from best subsets by its very nature. Obtained by
optimizing an !1-penalized least squares criterion rather
the best subsets !0-constrained criterion, it substitutes
a rapidly computable convex optimization problem for
an NP-hard nonconvex optimization problem. The BKM
simulations demonstrated setups where best subsets sub-
stantially dominated both stepwise and the lasso in terms
of both predictive squared error loss and variable selection
precision, appearing to confirm the gold standard promise
of best subsets.

Concerned that BKM’s simulation terrain was too lim-
ited to come to such a universal conclusion, HTT set out
to perform broader simulation comparisons. In particu-
lar, the terrain of comparisons has been expanded to in-
clude setups with a broader range of SNRs. As opposed to
BKM, HTT now include setups with weaker SNRs corre-
sponding to PVE values that more realistically character-
ize applications often encountered in practice. In addition
to comparing best subsets, stepwise and the lasso, HTT
include a new contender, the (simplified) relaxed lasso,
driven by an interesting combination of the lasso and least
squares.

From this broader terrain of comparisons presented by
HTT, new patterns of relative performance emerge. To
begin with, the performance of stepwise is now appears
very similar to that of best subsets throughout. The ma-
jor differences between stepwise and best subsets found
by BKM disappear when stepwise is tuned by cross-
validation (here on external validation data) rather than
AIC. This is valuable to see because the choice of stop-
ping rule has been controversial for applications of step-
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wise in practice. HTT’s comparisons suggest that cross-
validated stopping may be the best way to go.

More importantly, HTT’s performance evaluations
highlight interesting differences between best subsets and
both the lasso and relaxed lasso. In predictive perfor-
mance, the lasso now appears better than best subsets
for smaller SNRs, but worse for larger SNRs with a
performance crossover that varies from setup to setup.
The same is true for HTT’s selection accuracy metrics,
though the lasso regularly produces too many nonzero
estimates especially in the higher SNR settings. An ex-
ception where best subsets dominates throughout occurs
when the known mutual incoherence (MI) conditions for
lasso consistency seem to fail. Remarkably, the relaxed
lasso fares extremely well throughout the comparisons.
It appears to adaptively move closer to the best of the
methods for each SNR value, occasionally even outper-
forming them all. Although no one of the four procedures
is best in every setting, the relaxed lasso certainly comes
the closest. Finally, it is notable that in terms of explained
variation, namely PVE, no essential differences between
the four methods appeared.

The observed performance differences between these
methods can be intuitively understood as stemming from
how their induced coefficient estimators are driven to bal-
ance bias-variance tradeoffs in order to minimize predic-
tion error on the validation data. For best subsets and step-
wise, this induced estimator is simply least squares on a
selected subset of coefficients. For the lasso, it is a shrink-
age adjusted least squares estimator which has been soft-
thresholded by a selected λ. And for the relaxed lasso, it
is a γ -weighted mixture of a λ-soft-thresholded lasso esti-
mator with a least squares estimator on the lasso’s nonzero
coordinates, for a selected λ and γ . Note that each of these
induced estimators consists of both zero and nonzero esti-
mates of the components of the actual underlying β . Thus,
the squared prediction error over the validation set will in-
clude the squared bias of the zero estimates in addition to
the variance and squared bias of the nonzero estimates.

From this bias-variance tradeoff perspective, it is
straightforward to see why best subsets and stepwise pro-
vide desirable variable selection and prediction when the
variance of the subset least squares estimates is small
enough relative to the sizes of the underlying nonzero co-
efficients. This is exactly what occurs throughout HTT’s
setups as SNR increases (with β and n fixed) and the sub-
set least squares estimates become more and more accu-
rate. However, when the variance of subset least squares is
relatively large compared to the sizes of the nonzero coef-
ficients, which is what occurs in HTT’s setups where SNR
is small, the accuracy and stability of the least squares es-
timates can be substantially improved by shrinkage. This
is precisely where we see the lasso improvements over
best subsets and stepwise. However, there is also a no-
table conflict between the goals of variable selection and

prediction for the lasso. With the choice of λ guided by
prediction error, the lasso is forced to shrink less in or-
der not to over-bias the nonzero estimates of the larger
sized coefficients. This is what is leading to the lasso’s
increased number of nonsparse estimates that appears in
so many of the plots.

It is very interesting to understand how the relaxed
lasso is able to better negotiate the tension between se-
lection and prediction faced by the lasso. Combining the
lasso and least squares by unshrinking the nonzero lasso
estimates back toward the least squares estimates, what
makes the relaxed lasso so effective is that it does this
adaptively. At first glance, it may seem puzzling that the
relaxed lasso would yield fewer nonzero estimates than
the lasso. However, this is explained by the fact that both
λ, the amount of lasso shrinkage, and γ , its mixing param-
eter, are being simultaneously tuned by prediction error
on external validation data. By controlling the shrinkage
of its nonzero estimates for better predictions, the relaxed
lasso can balance increasing thresholding of the smaller
estimates with less biasing of the larger estimates. Via the
external validation data, it adapts this balance to the data
at hand. Thus the the relaxed lasso is able to offer good
accuracy and prediction error across all the SNR settings.

In a nutshell, the least squares component of the relaxed
lasso is serving to stabilize the estimates of the larger
size coefficients so that they do not interfere with the
lasso variable selection, thereby resulting in fewer false
nonzero coefficient estimates. It may be of interest to note
that this aspect of the relaxed lasso is similar in spirit to
the scalable, fully Bayesian spike-and slab lasso (SSL) of
Ročková and George (2018). The SSL also stabilizes the
larger size estimates, but by using the log of a mixture of
spike-and-slab Laplace priors as a regularization criterion.
In effect, the SSL adaptively applies simultaneous strong
thresholding lasso shrinkage to smaller coefficients and
weak lasso shrinkage to stabilize the larger coefficients.
By including a prior on the mixing weights, the SSL be-
comes even more self adaptive, avoiding the need to use
cross-validation for mixing weight estimation.

Turning now to focus on the paper by BPV, which fol-
lowed the paper by HTT, its main thrust revolves around
CIS and SS, two newer approaches introduced by the au-
thors in Bertsimas, Pauphilet and Van Parys (2017) and
Bertsimas and Van Parys (2020). In contrast to the !0-
constrained best subsets criterion of MIO, both CIS and
SS are driven by an !0-constrained, !2-penalized least
squares criterion for variable selection in linear regres-
sion. CIS does this with a cutting-plane algorithm for fast
integer optimization, while SS applies a dual subgradi-
ent algorithm to a continuous Boolean relaxation of the
criterion. These algorithms are impressive and effective
advances, especially in terms of their speed and ability to
handle larger problems. As seen across the simulations,
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CIS and SS offer dramatic improvements in speed over
MIO, coping now with problems of size n = 1000 and
p = 20,000 within seconds of the glmnet implementa-
tion of the lasso. Apparently, they can even scale further
to feasibly handle problems of sizes n, p of 100,000 or
n = 10,000 and p = 1,000,000 within minutes, a major
step forward.

Beyond this increased feasibility for larger problems,
which is obviously a huge boon for practicality, the sta-
tistical value of CIS and SS ultimately rests on the infer-
ential consequences of adding an !2-penalization to the
!0-constrained least squares criterion of MIO. With this
addition, an !2-penalized subset least squares estimator,
adaptively tuned by cross-validation, is now induced to
reduce prediction error. Such !2-penalization was implicit
in the early shrinkage proposals of ridge regression and
Stein estimation for improved prediction as well as sta-
bilization of least squares estimation (Hoerl and Kennard,
1970, Stein, 1960, James and Stein, 1961). But in contrast
to !1 induced shrinkage, !2-penalization alone does not
lead to thresholding and so is not directly useful for selec-
tion. However, when combined with the !0-constrained
criterion as BPV have done, the improved accuracy of
the induced coefficient estimator can be expected to lead
to both improved variable selection and prediction, espe-
cially in settings where the variance of least squares is
large relative to the sizes of the nonzero regression coef-
ficients. It may be of interest to note that such threshold-
ing of an !2 shrinkage estimator is akin to the automatic
thresholding by the positive-part James–Stein estimator,
which also has the attractive theoretical property of being
classically minimax under squared predictive loss. Fur-
ther, more powerful minimax versions of such positive-
part shrinkage estimators for selection were developed by
Zhou and Hwang (2005).

Illustrating the statistical potential of CIS and SS, BPV
go on to compares their performance to three prominent
shrinkage-selection methods that use enhanced lasso re-
lated penalties, namely ENet (the elastic net), MCP (max-
imum convex penalty) and SCAD (smoothly clipped ab-
solute deviation). ENet enhances the lasso criterion with
the addition of an !2-penalization, in the same way that
CIS and SS enhance the best subsets criterion. More pre-
cisely, ENet is driven by a mixture of !1 and !2 penal-
ties, parametrized by a shrinkage parameter λ and a mix-
ing parameter α, both of which are then tuned by cross-
validation. The combination of the !1 and !2 penalization
serves to stabilize the shrinkage of subset least squares,
especially in the context of highly correctly predictors. On
the other hand, both SCAD and MCP are driven by care-
fully tailored nonconvex relaxations of the !1-criterion
that automatically allow for lighter shrinkage of the es-
timates of the larger coefficients, in that way mitigating
the tension between selection and prediction faced by the

lasso. Both MCP and SCAD are parametrized by both a
shrinkage parameter λ and a shape parameter γ which are
adaptively tuned to the data via cross-validation. Just as
for the HTT comparisons, the statistical performance dif-
ferences between all these methods can be intuitively un-
derstood from the bias-variance tradeoffs faced by their
induced coefficient estimators as they are predictively
tuned by cross-validation.

BPV carry out simulated comparisons of CIS, SS,
ENet, MCP and SCAD across various versions of the ba-
sic underlying Gaussian structure used by HTT. For their
terrain of comparisons, they consider six noise/correlation
settings with three noise levels: low (SNR = 6, k = 100,
p = 20,000), medium (SNR = 1, k = 50, p = 10,000)
and high (SNR = 0.05, k = 10, p = 2000), and two pre-
dictor correlation levels: ρ = 0.2,0.7. Although there are
lots of moving parts across these setups, one can say
roughly that the low noise settings, where the signal is
easiest to measure, are the least challenging for variable
selection, whereas the high noise settings, where the sig-
nal is most hidden, are the most challenging and perhaps
most like what is most often encountered in practice. As
elaborated by HTT, both the low and medium noise SNR
values correspond to PVE values that may be less fre-
quently in encountered in practice. It should also be noted
that unlike HTT, BPV vary the sample size n within each
of their settings, thereby also illustrating performance dif-
ferences as n increases. Revealing the limiting behavior
of the methods, increasing n has the effect of making
the problems statistically easier in terms of measuring the
signal. By decreasing the implicit variance of the subset
least squares estimates on which shrinkage is applied, in-
creasing n thus diminishes the importance of shrinkage
for each the methods. In this way, the effect of increasing
n parallels the effect of increasing SNR.

Beyond these settings, BPV also provide valuable com-
parisons on simulated data where the MI conditions for
lasso consistency fail, as well as comparisons using data
generated with a real design matrix X with p = 14,858
gene expressions for n = 1145 lung cancer patients. With
this X, they simulate hypothetical continuous patient out-
comes from various Gaussian linear models with SNR
levels varying from 0.05 to 6, as well as discrete 0–1 pa-
tient outcomes by thresholding these linear models. Ex-
tending the methods for the classification data, they apply
CIS and SS driven by hinge loss, and ENet, MCP and
SCAD driven by logistic loss.

For performance evaluations of the competing methods,
BPV highlight their potential for variable selection with
accuracy A (the fraction of true nonzero found), FDR, (the
false discovery rate), and ROC curves of true positives
versus false positives. Taken together these reveal the se-
lection tradeoffs obtained by each of the methods. For pre-
dictive performance, they report MSE, casting prediction
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primarily as a “practical implication of accuracy.” And to
convey the practicality of their CIS and SS implementa-
tions, they also report speed comparisons across various
settings, gauging the speed of every method against the
gold standard fastest speed of the lasso.

Across all these simulation comparisons, many differ-
ent patterns of relative accuracy, false discovery rates and
prediction quality emerge. Beginning with the accuracy
and MSE comparisons when the actual underlying spar-
sity level ktrue is treated as fixed and known, so that
A = 1 − FDR. This constraint forces all the methods to
explicitly trade correct selection for false detections. It is
hence not surprising that ENet is the least accurate as it
also suffers from the lasso’s tension between selection and
prediction. In contrast it is impressive that both CIS and
MCP are the most accurate throughout, MCP apparently
avoiding this tradeoff tension with its relaxed penalty.
More pronounced in the low noise and high correlation
settings, these differences diminish rapidly as we would
expect when n and/or the noise level is increased, virtu-
ally disappearing in the high noise setting. For prediction
in the low and medium noise settings, CIS is best, slightly
beating SS and MCP and SCAD, and with ENet clearly
worst, though again all these differences seem to disap-
pear in the more statistically difficult high noise setting.
The speed comparisons here demonstrate that CIS and SS
are dramatically faster than MIO, and even computation-
ally comparable with MCP and SCAD for larger n. In-
deed, in the high noise setting, SS appears to be nearly as
fast as ENet, which is as fast as the lasso in every setting.

For the more realistic settings where the sparsity level
ktrue is unknown and estimated via cross validation, we
first see from the ROC curves, that CIS, SS and MCP
essentially provide the most desirable tradeoffs between
true and false selection in the low and medium noise set-
tings, with ENet performing worst. However, these differ-
ences become much less pronounced and even reversed in
the high noise setting, especially when the predictor cor-
relations are high. For prediction in the low and medium
noise settings, CIS continues to be best up to around ktrue
with MCP becoming best at the higher levels of estimated
sparsity, with ENet worst throughout. It is interesting that
the predictions of MCP, SCAD and ENet continue to im-
prove with increasing k, suggesting that they add more
variables to improve their predictive cross-validation tun-
ing. In the high noise setting, it appears that MCP and
SCAD predict best, with ENet second under high correla-
tion, although the wide error bars for these comparisons
suggest such differences may not be real. In terms of ac-
curacy, ENet, MCP and SCAD are best, followed by CIS
and then SS in the low and medium noise settings, all dif-
ferences disappearing as n increases. In the high noise
setting, these differences are more pronounced and per-
sistent. However, in terms of FDR, CIS is clearly best and

ENet persistently worst in all settings. SS and MCP are
also sometimes best, improving along with SCAD as n in-
creases. As BPV suggest, this overall observed tendency
of ENet, MCP and SCAD to select many more variables
than are selected by CIS and SS, can be understood to
be a consequence of using soft penalization rather than a
hard cardinality constraint to drive variable selection and
prediction.

For the settings where the MI conditions for lasso con-
sistency fail, Enet is seen, not surprisingly, to be among
the least accurate across all three noise settings with an
accuracy converging to less than 1 for large n. In contrast,
the accuracies of the other four methods, which do not
rely on the MI conditions, converge to 1 in the low and
medium noise settings. CIS and SS are best in all settings,
along with MCP which is also one of the best in the low
noise setting. CIS and SS are also seen to dominate in pre-
diction in the low and medium noise settings. However, in
the high noise setting, the predictive performances of all
the methods become indistinguishable.

Lastly, we consider the simulated comparisons based
on the real data design matrix where the predictors cor-
relations are apt to be less symmetrically structured and
perhaps more realistic. For the linear model setup, as SNR
increases, ENet is increasingly the least accurate with the
most false detections, while MCP is increasingly the most
accurate with the fewest false detections. However, these
differences all disappear at the lowest SNR levels where
the variable selection problem is most challenging. In
terms of the ROC curve tradeoffs, ENet goes from best to
worst and MCP goes from worst to best as the SNR level
is increased from 0.05 to 6. For the classification model
setup, we see ENet, MCP and SCAD generally provid-
ing better accuracy compared to CIS and SS across all the
noise settings, with the differences diminishing as n, the
noise level and the predictor correlations are increased.
But in terms of false detection rates, this ordering is re-
versed, except for MCP which also obtains lower false
detection in the low noise settings. For the classifications
obtained by their respective cross-validated support selec-
tions, SS appears to provide the most desirable tradeoffs
between accuracy, false detection and sparsity.

In concluding, let me thank the HTT and BPV for
their illuminating comparisons of some of the leading ap-
proaches for variable selection in high dimensional re-
gression, and for their many insightful summary conclu-
sions with which I agree. Together, they have provided
convincing evidence that the relaxed lasso, CIS and SS
will be very valuable additions to the arsenal of mod-
ern variable selection approaches. Of course, as so aptly
demonstrated throughout the simulations, no single ap-
proach will dominate all others in every setting, especially
as pertains to the ease of detecting the underlying sig-
nal which is typically unknown. So in practice it makes
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good sense to consider a collection of methods together,
for example, beginning an application with lasso predic-
tive screening and then proceeding from there with other
methods, as BPV have suggested. Finally, it should be
emphasized that the arsenal of valuable modern variable
selection approaches goes well beyond the methods con-
sidered here, as HTT have indicated. In particular, in line
with the underlying Bayesian nature of penalized likeli-
hood methods, a growing number of promising scalable
Bayesian variable selection approaches, for example, the
spike-and-slab lasso described earlier, are valuable addi-
tions to the arsenal and should not be overlooked.
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