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1. Introduction

Ridge regression and the lasso illustrate some of the remarkable
successes of penalized likelihood regularization for regression
analysis. When viewed through the Bayesian lens of posterior
maximization, the regularizing effects of their penalty functions
can be understood as stemming from prior distributions over
the regression coefficients. This well-known Bayesian perspec-
tive provides further insights into the nature of the shrinkage
induced by such penalty functions, and opens the door for the
creation of new penalty functions from probabilistic mixtures
in the space of priors. The potential of such Bayesian penalty
mixing for penalty creation is here illustrated with the spike and
slab lasso prior. An adaptive convex combination of lasso esti-
mators which automatically employ strong thresholding shrink-
age to small coeflicients and weak stabilizing shrinkage to large
coefficients, the spike and slab lasso is seen to offer simultaneous
variable selection and nearly unbiased estimation of the selected
coefficients.

2. Regularization From a Bayesian Perspective

When regression data arise as signal plus noise, overfitting
occurs when the fit of an unstable model captures too much of
the noise, obscuring the signal and rendering it less useful for
out-of-sample prediction. This results from using an overly rich,
ill-conditioned model with an unconstrained fitting criterion
such as least squares, or more generally maximum likelihood,
that exclusively rewards in-sample fit. To guard against such
overfitting, the strategy of regularization constrains the fitting
criterion with a penalty function that has the effect of shrinking
the fit toward more stable structures that resist oversensitiv-
ity to the noise. However, depending on the penalty function,
the nature of the induced shrinkage regularization can offer
additional benefits. For example, ridge regression penalization
is grounded in providing a stabilizing influence, while Lasso
regression penalization is designed to provide a vehicle for vari-
able selection by exerting stronger shrinkage which thresholds
small coefficient estimates to zero. Here we explore the Bayesian
motivation for such regularizing penalty functions in order to
provide insights that suggest how Bayesian mixture refinements
may lead to further benefits.

For suitably centered and standardized regression data y and
X = (x1,...,%p), one of the clearest examples of effective

regularization is the ridge regression estimator
Ber = X'X + 1D 'X'y, (1)

which can be seen as the solution of the the penalized least
squares criterion

argmin [y — XB|3 + Al 8113 )
B

Although Hoerl and Kennard (1970) motivated ﬁrr by substitut-
ing (X’X 4 AI) for X'X to shrink and stabilize the least squares
estimator B, = (X'X) ' X'y, they noted in passing that Brr can
be obtained both as a solution to (2) and as a posterior mean
under a Bayesian formulation.

The penalized least squares criterion (2) is a special case of
the now widely used regularization criteria of the form

argmax {—y — XBI3 + pen, (B)} 3)

where pen, is a penalty function (indexed by 1) that determines
the form of the shrinkage adjustment to . As is well known,
such criteria can also be regarded from a Bayesian perspective
as posterior maximization under the canonical Gaussian linear
model f(y| B) = N,(XB,I) with a (possible improper) prior
distribution 7, on B. In (3), —|ly — Xﬂ||% is proportional to
the log-likelihood of B, and pen, (B) = log(m;.(B)/m,(0)). (For
convenience, we divide by the constant i, (0) to center pen, (8)
at 0.) For example, the ridge penalty function pen;j’ is obtained
with the Gaussian prior 7;"(8) = H}f(%)uze—kﬂfﬂ, and the
lasso penalty function penl/\a is obtained with the Laplace prior
7 (B) = [T} 5e A,

This richer Bayesian perspective provides insight into the
nature of a penalty function’s induced shrinkage. As Hastie
(2020) nicely points out, the more aggressive shrinkage due to
the lasso penalty versus the ridge penalty, may be understood
as emanating from the higher concentration around zero of
the Laplace prior compared to the Gaussian prior. As to the
common structure of these penalties, the Bayesian perspective
reveals that the separability of both of the ridge and lasso penalty
functions, namely their decompositions into sums of p separate
coefficient penalties, corresponds to an implicit assumption that
the components of 8 = (Bi,...,Bp) are apriori iid. As to
the attractive properties of particular regularizers, such as the
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mitigation of overfitting and the stabilization of multicollinear
predictors, Bayesian motivations may suggest how these ulti-
mately stem from their implicit underlying Bayesian machinery.

3. Bayesian Penalty Mixing

The Bayesian nature of the regularization in (3) opens the door
to using probabilistic considerations for the elaboration and
construction of new penalty functions. For example, one might
consider combining two penalties pen, = logm,, andpen, =
log ), as a probabilistic mixture of their underlying priors

eng™(B) = log [7)"™(B) /75" (0)], (4)
where for 6 € [0, 1],

P
7 B) = [[107,B) + A=) my (B (5)
1

This example of what we call Bayesian penalty mixing (Rockova
and George 2016a), mixes the penalties in their probabilistic
prior space rather than directly in their penalty space. In con-
trast to linear combinations of the penalty functions such as
the elastic net (Zou and Hastie 2005), Bayesian penalty mixing
leads to an adaptive combination of the mixed penalty effects as
described below.

Mixture priors of the form 7" are of particular interest
when 1, is tightly concentrated around 0, and 7, is widely
dispersed over large values, leading to the so-called spike-and-
slab distributions. Conceptual motivation for such a mixture
prior is that it describes the apriori uncertainty faced in a
variable selection problem where one suspects only a fraction of
the considered predictors to be important enough for inclusion
in the model. Intuitively, under a spike-and-slab prior, those
coeflicients of 8 drawn from the spike distribution m;, would
probably be negligible enough to be ignored, while those drawn
from the slab distribution m;, would probably be large enough
to be retained. Through Bayes rule, the posterior will update this
prior information with the data to shed light on the underlying
true state of nature. By manifesting this update through the
posterior mode, the regularized estimate will thus automatically
heavily shrink small coefficients while holding the large ones
relatively steady. By settlng A1 small and A large, 7" using the
ridge components 77; and 7}’ yields the Gaussmn spike-and-
slab prior of George and McCulloch (1993), while using the lasso
components ”Ao and n  yields the spike-and-slab lasso prior of
Rockova (2018) and Rockova and George (2018).

Through the Karush-Kuhn-Tucker driven estimating equa-
tions for solving (3), the shrinkage effect of any penalty function

pen(B) = log(m(B)/logm(0)) on each g; is given by its deriva-
tive 8[’;—203) = w, also the score function of 7. For exam-

ple, M —Ap; for ridge, and = —Asign(B) for

Bi #0 and € [—1, 1] for B = 0 for lasso. Interestingly, it turns
out that the shrinkage effect of penj** adaptively combines the
shrinkage effects of its components via

apeng IX(,B) en, B)
9B; 9B;

3Pe A 2(B)
J

eny, (ﬁ)

=Pp (ﬁ]) 9,

+1 - 9(/3]))
(6)
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where
Oy, (/3])
0 7t (B)) + (1 —0) w3, (B))

is the probability that f; was drawn from the 7, (8j) component
of ;" (B;j) in (5). Expressed in terms of the prior score func-
tions, the identity (6) is a consequence of the intriguing property
that score functions of mixture distributions are similarly adap-
tive mixtures of the score functions of their component distribu-
tions. Thus, the shrinkage effect of pen™™ is an adaptive convex
combination of the shrinkage effects of its component penalty
functions pen, and pen, . Through Py (Bj), (6) puts increasing
weight on the penalization of §; by pen;, when it becomes
increasingly more probable that g; was drawn from 7;, .

Although pen{"™ is flexible in its adaptive application of
pen;, and pen,  to each coefficient of f, it remains a separable
sum of penalty mixtures for each f;. This is a consequence of the
underlying iid form of " in (5) where 6 is fixed, and hence
assumed to be known from a Bayesian point of view. Such an
assumption would be unrealistic, especially in the spike-and-
slab setting described above, where 6 represents the fraction of
large coefficients to be selected. To allow for the more flexible
assumption of unknown 6, we can elaborate pen'™ by further
Bayesian penalty mixing over a suitable prior IT on 6. This
straightforward elaboration is obtained as

_ 1 1
en™(B) « log |:/0 Jrémx(ﬂ)dl'[(é)/fo Ty

Py (B = 7)

iX(O)dH(G)} .
(8)

By averaging over 6, pen™* has become nonseparable, corre-
sponding to the often more realistic assumption of exchange-
ability of the coefficients of 8. As we will see, this averaging has
induced dependence across these coeflicients that will allow the
regularized estimator in (3) to incorporate additional ensemble
information in the data.

While pen™ is less tractable than penf'™, its shrinkage effect
can still be clearly expressed in terms of its component shrinkage
effects via

mix

8Penmlx(ﬂ) pen, (B) dpen,, (:3)
e Sl M L 1 — R
9%, P, (,3]) %, (1 — pg,(B)) 9,
)
where
9. .
P3,8) = 70 5) (10)

9j Ty, (/3]) +0 - 9j) T (,3]) '
This is the same as (6) and (7) except that 6 has been replaced by
0; = E[0| B—j], (11)

the conditional expectation of 6 given B_; under the full mixture
prior on B and 0. (Here B_; denotes B with B; excluded.)
Because B_; contains information about the relative fraction of
coefficients drawn from 73, and 7;,, 6 borrows strength from
B-; to incorporate this ensemble information. Thereby, pzj (B>
which controls the adaptation within each g; via (10), is itself
adaptive across all the components of 8. Thus, the biasing effect
of pen™* becomes doubly adaptive, both within and across
the components of 8. When m;, and ,, correspond to the
spike-and-slab choices described above, this double adaption
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enables pen™X to automatically adapt to ensemble sparsity
across B, . - - By

4. The Spike-and-Slab Lasso (SSL)

To illustrate the potential of this adaptive penalty mixture con-
struction, we now focus on the spike-and-slab lasso (SSL) of
Rockova and George (2018). As mentioned above, the SSL
penalty is obtained with a mixture of the Laplace priors as

SSL(IB)
fO HP [9 AL o—MlB)] +(1-0) %Ue_)“)lﬂfl]dl_[(Q)
X nP [0 +(1-6)21d110)

(12)

where a Beta(1, p) distribution is recommended for the prior
IT on 6. With these Laplace priors inserted into (9) and (10),
the magnitude of the shrinkage effect induced by pen®! is seen
to be a doubly adaptive convex combination of the two lasso
shrinkage penalties A; and Xg,

Ssl (IB)
3,3]

)»;ij(ﬁj) = ‘ Py, (B M+ (1 — pg.(B) Ao, (13)

where

9]')\16_)‘1 1Bjl

14
0 me Al 4 (1 — 6;) hge M lA (14)

PZ]- B) =

and 0; = E[0 | B_;].

To understand the regularizing effect of the SSL penalty
pen®(B), consider the maximum of the penalized likelihood (3)
under pen*(8), which we denote by g% B%l. As shown in Roikova
and George (2018), the coefficients of 8 Bl satisfy

- 0 when |z < A,
:3] =111, A 7ssl : . h . /A\ (15)
n[|Z]| éj('Bj M4sign(zj) when |zj] > Aj,

where zj = x]f(y - Zk#xkﬁk), é; = E[f| B\S_S]l']’ and KJ’ ~

2n log[l/p;ij(o)] + A1

It is illuminating to examine the form of ESSI in (15). When
|zJ| < A], ,3 B! is thresholded to zero by an adaptive threshold

A that increases as 9] decreases. Thus, A acts an automatically
increasing multiplicity correction when the estimated fraction
9 of large coeflicients across ﬂ“l decreases. When |zj| > A
,8551 is strikingly similar to the soft thresholding form of the
lasso estimator. However, rather than shrink by a fixed penalty 2,
,3551 is shrunk by the self adaptive penalty k* (,BJ) which shrinks

more when jSSl is large and less when B is small. Reflecting the
nature of the spike-and-slab prior, this adaptation protects the
larger coeflicients from the over shrinkage that can occur with
the single A fixed penalty of lasso. In contrast to the lasso, 8 B i
doubly adaptive, adapting to the overall level of sparsity, while
performing adaptive selection and nearly unbiased estimation
of the selected coeflicients.

5. Dynamic Posterior Exploration

Implementation of the SSL proceeds by dynamic posterior
exploration via successive warm starts along an increasing
sequence of A¢ values. Analogous to implementations of the
lasso, coordinate ascent is used to maximize the posterior at each
iteration. The desired value of Ag and its corresponding subset
model are then selected from this path. It should be emphasized
that implementation of the SSL is not obtained by plugging in a
single preselected value for A.

More precisely, implementation of the SSL regularization
path proceeds as follows. With X; fixed at a small value, B!
is iteratively evaluated over a ladder of increasing Ao values
starting with Ay &~ Xj. At each iteration, B is updated with
the next value of Aq, usuig fast coordinate ascent reinitialized
at the previous values of 8% and z. As this algorithm of warm
starts proceeds, the 8 gl paths can be seen to stabilize. Typically,
these easily identified stabilized values will be the desired S gl
estimates. However, unlike the convex lasso posterior, the non-
convex nature of the SSL criterion may lead its 8 Bl paths to local
rather than global maxima, and values prior to stabilization may
give better prediction error and so be preferred. In any case, such
local maxima may still be an improvement over the lasso’s global
maxima.

We illustrate this implementation and compare it with the
lasso on a small simulated data set of n = 50 observations
of p = 12 predictors generated as 4 independent blocks of
highly correlated x;’s. More precisely, nn rows of X were generated
independently from a N, (0, X) distribution with block diagonal
Y = bdiag(Z Z) where & = (0,1)1] o = 09ifi #j
and o; = 1. The response was generated from y ~ N, (X, 1)
with B = (1.3,0,0, 1.3,0,0, 1.3,0,0, 1.3,0,0)". Note that only
X1, X4, %7, and x19 belong in this true model.

Applied to these data, Figure 1 displays the regularization
paths of both the SSL and lasso as 1 and A are increased. (For
the SSL, A1 = 0.01 is fixed throughout.) Both the SSL and lasso
are seen to begin at Ap = A = 0 with the same 12 nonzero
maximum likelihood estimates. As the SSL proceeds in the left
plot, one can see the distinct manifestations of the spike and of
the slab regularizations. Adaptively, the eight smaller estimates
are gradually shrunk to zero mostly by the spike penalization,
while the four large estimates are held steady mostly by the slab
penalization, eventually stabilizing at values which have been
shrunk just a bit from their initial maximum likelihood esti-
mates. Here, the SSL has both correctly selected and estimated
the four nonzero coefficients of the true model.

Notice also how easy it is to visually identify the stabilized
estimates with the SSL, thereby avoiding the need for more
elaborate alternatives to select the “best” value of A¢.

In contrast, as the lasso proceeds in the right plot of Figure 1,
one sees the manifestation of regularization with a single Laplace
penalty function. With no slab distribution to hold the large
values steady, all 12 estimates are gradually shrunk to zero
along different varying paths. This is the Bayesian effect of
tightening a single Laplace prior down toward a point mass at
zero. Due to the order in which the 12 estimates have been
thresholded to zero, no value of A here yields the correct subset
selection {xi, x4, X7, x10}. In particular, the A chosen by cross-
validation here yielded a lasso selected subset with four false
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Figure 1. The paths of the ESS' and ﬁ'asso estimates as Ag and X are increased. The connected points off the axis (in blue) are the nonzero estimates. The points along the

axis (in red) are zero values where the negligible estimates disappear.

positives. Noting that the restrictive conditions for lasso consis-
tency (Zhao and Lu 2006; Zou 2006; Yuan and Lin 2007) do not
hold under the correlation structure of our simulation setup, the
lasso seems not to be an effective choice for this data. Of course,
in less correlated setups, the lasso can be much more effective for
selection, although the over shrinkage of large coefficients may
still require further mitigation.

6. Further Elaborations

The SSL is a particularly nice illustration of simultaneous
selection and estimation obtained by Bayesian penalty mixing
because Laplace regularization with the spike distribution auto-
matically thresholds small estimates to zero, just as occurs with
the lasso. This would not occur directly with the Gaussian spike-
and-slab prior of George and McCulloch (1993) because its
underling ridge components 7;; and 7;] do not provide such
thresholding. However, with an introduction of intermediate
latent indicators that identify which of 7, and 7} has given

rise to each B;, the regularized maximal estimator % under
this prior can still be found with an EM algorithm that treats
the indicators as missing data. A fast and effective approach
for selection is then obtained by thresholding A% onto the
conditionally most likely values of these indicators. This is the
essence of the EMVS algorithm of Rockova and George (2014).

In large part facilitated by further Bayesian considera-
tions, the SSL has recently enjoyed a variety of elabora-
tions and developments. These include variants of the SSL
for high-dimensional confounding adjustment in causal anal-
ysis (Antonelli, Parmigiani, and Dominici (2019), for high-
dimensional Bayesian varying coefficient models (Bai, Chen,
and Boland 2020), for grouped regression and sparse general-
ized additive models (Bai et al. 2020), for simultaneous variable
and covariance selection in multivariate regression (Deshpande,
Rockova, and George 2019), for graphical models with unequal
shrinkage (Gan, Narisetty, and Liang (2019), for regression
with unknown error variance (Moran, Rockovd, and George
2019), for Bayesian biclustering (Moran, Rockova, and George
2020), for fast Bayesian factor analysis via automatic rotations

to sparsity (Rockova and George 2016), for variable selection
in time series (Rockova and McAlinn 2020), for generalized
linear models (Tang, Shen, Zhang and Yi 2017a), and for the Cox
survival model (Tang, Shen, Zhang and Yi 2017b).

Implementations of the SSL for both known and unknown
error variance are available in the R package sslasso (Ro¢kova
and Moran 2018). These implementations are fast and scalable
as they are linear in both #n and p. Comparable in speed to the
various related fast implementations in the R-package ncvreg,
the SSL also saves time by avoiding the need for cross-validated
selection of 6 which is internally adapted.
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