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1. Introduction

Ridge regression and the lasso illustrate some of the remarkable
successes of penalized likelihood regularization for regression
analysis. When viewed through the Bayesian lens of posterior
maximization, the regularizing e!ects of their penalty functions
can be understood as stemming from prior distributions over
the regression coe"cients. This well-known Bayesian perspec-
tive provides further insights into the nature of the shrinkage
induced by such penalty functions, and opens the door for the
creation of new penalty functions from probabilistic mixtures
in the space of priors. The potential of such Bayesian penalty
mixing for penalty creation is here illustrated with the spike and
slab lasso prior. An adaptive convex combination of lasso esti-
mators which automatically employ strong thresholding shrink-
age to small coe"cients and weak stabilizing shrinkage to large
coe"cients, the spike and slab lasso is seen to o!er simultaneous
variable selection and nearly unbiased estimation of the selected
coe"cients.

2. Regularization From a Bayesian Perspective

When regression data arise as signal plus noise, over#tting
occurs when the #t of an unstable model captures too much of
the noise, obscuring the signal and rendering it less useful for
out-of-sample prediction. This results from using an overly rich,
ill-conditioned model with an unconstrained #tting criterion
such as least squares, or more generally maximum likelihood,
that exclusively rewards in-sample #t. To guard against such
over#tting, the strategy of regularization constrains the #tting
criterion with a penalty function that has the e!ect of shrinking
the #t toward more stable structures that resist oversensitiv-
ity to the noise. However, depending on the penalty function,
the nature of the induced shrinkage regularization can o!er
additional bene#ts. For example, ridge regression penalization
is grounded in providing a stabilizing in$uence, while Lasso
regression penalization is designed to provide a vehicle for vari-
able selection by exerting stronger shrinkage which thresholds
small coe"cient estimates to zero. Here we explore the Bayesian
motivation for such regularizing penalty functions in order to
provide insights that suggest how Bayesian mixture re#nements
may lead to further bene#ts.

For suitably centered and standardized regression data y and
X = (x1, . . . , xp), one of the clearest examples of e!ective

CONTACT Edward I. George edgeorge@wharton.upenn.edu Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104.

regularization is the ridge regression estimator

β̂rr = (X′X + λI)−1X′y, (1)

which can be seen as the solution of the the penalized least
squares criterion

argmin
β

‖y − Xβ‖2
2 + λ‖β‖2

2. (2)

Although Hoerl and Kennard (1970) motivated β̂rr by substitut-
ing (X′X + λI) for X′X to shrink and stabilize the least squares
estimator β̂ls = (X′X)−1X′y, they noted in passing that β̂rr can
be obtained both as a solution to (2) and as a posterior mean
under a Bayesian formulation.

The penalized least squares criterion (2) is a special case of
the now widely used regularization criteria of the form

argmax
β

{
−‖y − Xβ‖2

2 + penλ(β)
}

, (3)

where penλ is a penalty function (indexed by λ) that determines
the form of the shrinkage adjustment to β̂ls. As is well known,
such criteria can also be regarded from a Bayesian perspective
as posterior maximization under the canonical Gaussian linear
model f (y | β) = Nn(Xβ , I) with a (possible improper) prior
distribution πλ on β . In (3), −‖y − Xβ‖2

2 is proportional to
the log-likelihood of β , and penλ(β) = log(πλ(β)/πλ(0)). (For
convenience, we divide by the constant πλ(0) to center penλ(β)

at 0.) For example, the ridge penalty function penrr
λ is obtained

with the Gaussian prior π rr
λ (β) = ∏p

1(
λ

2π )1/2e−λβ2
j /2, and the

lasso penalty function penla
λ is obtained with the Laplace prior

π la
λ (β) = ∏p

1
λ
2 e−λ|βj|.

This richer Bayesian perspective provides insight into the
nature of a penalty function’s induced shrinkage. As Hastie
(2020) nicely points out, the more aggressive shrinkage due to
the lasso penalty versus the ridge penalty, may be understood
as emanating from the higher concentration around zero of
the Laplace prior compared to the Gaussian prior. As to the
common structure of these penalties, the Bayesian perspective
reveals that the separability of both of the ridge and lasso penalty
functions, namely their decompositions into sums of p separate
coe"cient penalties, corresponds to an implicit assumption that
the components of β = (β1, . . . , βp) are apriori iid. As to
the attractive properties of particular regularizers, such as the
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mitigation of over#tting and the stabilization of multicollinear
predictors, Bayesian motivations may suggest how these ulti-
mately stem from their implicit underlying Bayesian machinery.

3. Bayesian Penalty Mixing

The Bayesian nature of the regularization in (3) opens the door
to using probabilistic considerations for the elaboration and
construction of new penalty functions. For example, one might
consider combining two penalties penλ1 = log πλ1 and penλ0 =
log πλ0 as a probabilistic mixture of their underlying priors

penmix
θ (β) = log [πmix

θ (β)/πmix
θ (0)], (4)

where for θ ∈ [0, 1],

πmix
θ (β) =

p∏

1
[θ πλ1(βj) + (1 − θ)πλ0(βj)]. (5)

This example of what we call Bayesian penalty mixing (Ročková
and George 2016a), mixes the penalties in their probabilistic
prior space rather than directly in their penalty space. In con-
trast to linear combinations of the penalty functions such as
the elastic net (Zou and Hastie 2005), Bayesian penalty mixing
leads to an adaptive combination of the mixed penalty e!ects as
described below.

Mixture priors of the form πmix
θ are of particular interest

when πλ0 is tightly concentrated around 0, and πλ1 is widely
dispersed over large values, leading to the so-called spike-and-
slab distributions. Conceptual motivation for such a mixture
prior is that it describes the apriori uncertainty faced in a
variable selection problem where one suspects only a fraction of
the considered predictors to be important enough for inclusion
in the model. Intuitively, under a spike-and-slab prior, those
coe"cients of β drawn from the spike distribution πλ0 would
probably be negligible enough to be ignored, while those drawn
from the slab distribution πλ1 would probably be large enough
to be retained. Through Bayes rule, the posterior will update this
prior information with the data to shed light on the underlying
true state of nature. By manifesting this update through the
posterior mode, the regularized estimate will thus automatically
heavily shrink small coe"cients while holding the large ones
relatively steady. By setting λ1 small and λ0 large, πmix

θ using the
ridge components π rr

λ0
and π rr

λ1
yields the Gaussian spike-and-

slab prior of George and McCulloch (1993), while using the lasso
components π la

λ0
and π la

λ1
yields the spike-and-slab lasso prior of

Ročková (2018) and Ročková and George (2018).
Through the Karush–Kuhn–Tucker driven estimating equa-

tions for solving (3), the shrinkage e!ect of any penalty function
pen(β) = log(π(β)/ log π(0)) on each βj is given by its deriva-
tive ∂pen(β)

∂βj
= ∂ log π(β)

∂βj
, also the score function of π . For exam-

ple, ∂penrr
λ (β)

∂βj
= −λβj for ridge, and ∂penla

λ (β)

∂βj
= −λ sign(βj) for

βj %= 0 and ∈ [−1, 1] for βj = 0 for lasso. Interestingly, it turns
out that the shrinkage e!ect of penmix

θ adaptively combines the
shrinkage e!ects of its components via

∂penmix
θ (β)

∂βj
= p∗

θ (βj)
∂penλ1(β)

∂βj
+ (1 − p∗

θ (βj))
∂penλ0(β)

∂βj
,

(6)

where

p∗
θ (βj) = θπλ1(βj)

θ πλ1(βj) + (1 − θ)πλ0(βj)
(7)

is the probability that βj was drawn from the πλ1(βj) component
of πmix

θ (βj) in (5). Expressed in terms of the prior score func-
tions, the identity (6) is a consequence of the intriguing property
that score functions of mixture distributions are similarly adap-
tive mixtures of the score functions of their component distribu-
tions. Thus, the shrinkage e!ect of penmix

θ is an adaptive convex
combination of the shrinkage e!ects of its component penalty
functions penλ1 and penλ0 . Through p∗

θ (βj), (6) puts increasing
weight on the penalization of βj by penλ1 when it becomes
increasingly more probable that βj was drawn from πλ1 .

Although penmix
θ is $exible in its adaptive application of

penλ1 and penλ0 to each coe"cient of β , it remains a separable
sum of penalty mixtures for each βj. This is a consequence of the
underlying iid form of πmix

θ in (5) where θ is #xed, and hence
assumed to be known from a Bayesian point of view. Such an
assumption would be unrealistic, especially in the spike-and-
slab setting described above, where θ represents the fraction of
large coe"cients to be selected. To allow for the more $exible
assumption of unknown θ , we can elaborate penmix

θ by further
Bayesian penalty mixing over a suitable prior & on θ . This
straightforward elaboration is obtained as

penmix(β) ∝ log
[∫ 1

0
πmix

θ (β)d&(θ) /

∫ 1

0
πmix

θ (0)d&(θ)

]
.

(8)

By averaging over θ , penmix has become nonseparable, corre-
sponding to the o%en more realistic assumption of exchange-
ability of the coe"cients of β . As we will see, this averaging has
induced dependence across these coe"cients that will allow the
regularized estimator in (3) to incorporate additional ensemble
information in the data.

While penmix is less tractable than penmix
θ , its shrinkage e!ect

can still be clearly expressed in terms of its component shrinkage
e!ects via
∂penmix(β)

∂βj
= p∗

θj(βj)
∂penλ1(β)

∂βj
+ (1 − p∗

θj(βj))
∂penλ0(β)

∂βj
,

(9)
where

p∗
θj(βj) = θjπλ1(βj)

θj πλ1(βj) + (1 − θj)πλ0(βj)
. (10)

This is the same as (6) and (7) except that θ has been replaced by

θj ≡ E[θ | β−j], (11)

the conditional expectation of θ given β−j under the full mixture
prior on β and θ . (Here β−j denotes β with βj excluded.)
Because β−j contains information about the relative fraction of
coe"cients drawn from πλ1 and πλ0 , θj borrows strength from
β−j to incorporate this ensemble information. Thereby, p∗

θj
(βj),

which controls the adaptation within each βj via (10), is itself
adaptive across all the components of β . Thus, the biasing e!ect
of penmix becomes doubly adaptive, both within and across
the components of β . When πλ0 and πλ1 correspond to the
spike-and-slab choices described above, this double adaption
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enables penmix to automatically adapt to ensemble sparsity
across β1, . . . , βp.

4. The Spike-and-Slab Lasso (SSL)

To illustrate the potential of this adaptive penalty mixture con-
struction, we now focus on the spike-and-slab lasso (SSL) of
Ročková and George (2018). As mentioned above, the SSL
penalty is obtained with a mixture of the Laplace priors as

penSSL(β)

= log
∫ 1

0
∏p

1 [θ λ1
2 e−λ1|βj| + (1 − θ) λ0

2 e−λ0|βj|]d&(θ)
∫ 1

0
∏p

1 [θ λ1
2 + (1 − θ) λ0

2 ]d&(θ)
,

(12)

where a Beta(1, p) distribution is recommended for the prior
& on θ . With these Laplace priors inserted into (9) and (10),
the magnitude of the shrinkage e!ect induced by penSSL is seen
to be a doubly adaptive convex combination of the two lasso
shrinkage penalties λ1 and λ0,

λ'
θ̂j
(βj) ≡

∣∣∣∣∣
∂penssl(β)

∂βj

∣∣∣∣∣ = p∗
θj(βj) λ1 + (1 − p∗

θj(βj)) λ0, (13)

where

p∗
θj(βj) = θjλ1e−λ1|βj|

θj λ1e−λ1|βj| + (1 − θj) λ0e−λ0|βj| (14)

and θj = E[θ | β−j].
To understand the regularizing e!ect of the SSL penalty

penssl(β), consider the maximum of the penalized likelihood (3)
under penssl(β), which we denote by β̂ssl. As shown in Ročková
and George (2018), the coe"cients of β̂ssl satisfy

β̂ssl
j =

{
0 when |zj| ≤ (̂j,
1
n [|zj| − λ'

θ̂j
(β̂ssl

j )]+sign(zj) when |zj| > (̂j,
(15)

where zj = x′
j(y − ∑

k%=j xkβ̂k), θ̂j = E[θ | β̂ssl
−j], and (̂j ≈

√
2n log[1/p'

θ̂j
(0)] + λ1.

It is illuminating to examine the form of β̂ssl
j in (15). When

|zj| ≤ (̂j, β̂ssl
j is thresholded to zero by an adaptive threshold

(̂j that increases as θ̂j decreases. Thus, (̂j acts an automatically
increasing multiplicity correction when the estimated fraction
θ̂j of large coe"cients across β̂ssl decreases. When |zj| > (̂j,
β̂ssl

j is strikingly similar to the so% thresholding form of the
lasso estimator. However, rather than shrink by a #xed penalty λ,
β̂ssl

j is shrunk by the self adaptive penalty λ'
θ̂j
(β̂j), which shrinks

more when β̂ssl
j is large and less when β̂ssl

j is small. Re$ecting the
nature of the spike-and-slab prior, this adaptation protects the
larger coe"cients from the over shrinkage that can occur with
the single λ #xed penalty of lasso. In contrast to the lasso, β̂ssl is
doubly adaptive, adapting to the overall level of sparsity, while
performing adaptive selection and nearly unbiased estimation
of the selected coe"cients.

5. Dynamic Posterior Exploration

Implementation of the SSL proceeds by dynamic posterior
exploration via successive warm starts along an increasing
sequence of λ0 values. Analogous to implementations of the
lasso, coordinate ascent is used to maximize the posterior at each
iteration. The desired value of λ0 and its corresponding subset
model are then selected from this path. It should be emphasized
that implementation of the SSL is not obtained by plugging in a
single preselected value for λ0.

More precisely, implementation of the SSL regularization
path proceeds as follows. With λ1 #xed at a small value, β̂ssl

is iteratively evaluated over a ladder of increasing λ0 values
starting with λ0 ≈ λ1. At each iteration, β̂ssl is updated with
the next value of λ0, using fast coordinate ascent reinitialized
at the previous values of β̂ssl and z. As this algorithm of warm
starts proceeds, the β̂ssl paths can be seen to stabilize. Typically,
these easily identi#ed stabilized values will be the desired β̂ssl

estimates. However, unlike the convex lasso posterior, the non-
convex nature of the SSL criterion may lead its β̂ssl paths to local
rather than global maxima, and values prior to stabilization may
give better prediction error and so be preferred. In any case, such
local maxima may still be an improvement over the lasso’s global
maxima.

We illustrate this implementation and compare it with the
lasso on a small simulated data set of n = 50 observations
of p = 12 predictors generated as 4 independent blocks of
highly correlated xj’s. More precisely, n rows of X were generated
independently from a Np(0, )) distribution with block diagonal
) = bdiag()̃, . . . , )̃) where )̃ = (̃σij)3

i,j=1, σ̃ij = 0.9 if i %= j
and σ̃ii = 1. The response was generated from y ∼ Nn(Xβ0, I)
with β0 = (1.3, 0, 0, 1.3, 0, 0, 1.3, 0, 0, 1.3, 0, 0)′. Note that only
x1, x4, x7, and x10 belong in this true model.

Applied to these data, Figure 1 displays the regularization
paths of both the SSL and lasso as λ0 and λ are increased. (For
the SSL, λ1 = 0.01 is #xed throughout.) Both the SSL and lasso
are seen to begin at λ0 = λ = 0 with the same 12 nonzero
maximum likelihood estimates. As the SSL proceeds in the le%
plot, one can see the distinct manifestations of the spike and of
the slab regularizations. Adaptively, the eight smaller estimates
are gradually shrunk to zero mostly by the spike penalization,
while the four large estimates are held steady mostly by the slab
penalization, eventually stabilizing at values which have been
shrunk just a bit from their initial maximum likelihood esti-
mates. Here, the SSL has both correctly selected and estimated
the four nonzero coe"cients of the true model.

Notice also how easy it is to visually identify the stabilized
estimates with the SSL, thereby avoiding the need for more
elaborate alternatives to select the “best” value of λ0.

In contrast, as the lasso proceeds in the right plot of Figure 1,
one sees the manifestation of regularization with a single Laplace
penalty function. With no slab distribution to hold the large
values steady, all 12 estimates are gradually shrunk to zero
along di!erent varying paths. This is the Bayesian e!ect of
tightening a single Laplace prior down toward a point mass at
zero. Due to the order in which the 12 estimates have been
thresholded to zero, no value of λ here yields the correct subset
selection {x1, x4, x7, x10}. In particular, the λ chosen by cross-
validation here yielded a lasso selected subset with four false
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Figure 1. The paths of the β̂ssl and β̂ lasso estimates as λ0 and λ are increased. The connected points o! the axis (in blue) are the nonzero estimates. The points along the
axis (in red) are zero values where the negligible estimates disappear.

positives. Noting that the restrictive conditions for lasso consis-
tency (Zhao and Lu 2006; Zou 2006; Yuan and Lin 2007) do not
hold under the correlation structure of our simulation setup, the
lasso seems not to be an e!ective choice for this data. Of course,
in less correlated setups, the lasso can be much more e!ective for
selection, although the over shrinkage of large coe"cients may
still require further mitigation.

6. Further Elaborations

The SSL is a particularly nice illustration of simultaneous
selection and estimation obtained by Bayesian penalty mixing
because Laplace regularization with the spike distribution auto-
matically thresholds small estimates to zero, just as occurs with
the lasso. This would not occur directly with the Gaussian spike-
and-slab prior of George and McCulloch (1993) because its
underling ridge components π rr

λ0
and π rr

λ1
do not provide such

thresholding. However, with an introduction of intermediate
latent indicators that identify which of π rr

λ0
and π rr

λ1
has given

rise to each βj, the regularized maximal estimator β̂SS under
this prior can still be found with an EM algorithm that treats
the indicators as missing data. A fast and e!ective approach
for selection is then obtained by thresholding β̂SS onto the
conditionally most likely values of these indicators. This is the
essence of the EMVS algorithm of Ročková and George (2014).

In large part facilitated by further Bayesian considera-
tions, the SSL has recently enjoyed a variety of elabora-
tions and developments. These include variants of the SSL
for high-dimensional confounding adjustment in causal anal-
ysis (Antonelli, Parmigiani, and Dominici (2019), for high-
dimensional Bayesian varying coe"cient models (Bai, Chen,
and Boland 2020), for grouped regression and sparse general-
ized additive models (Bai et al. 2020), for simultaneous variable
and covariance selection in multivariate regression (Deshpande,
Ročková, and George 2019), for graphical models with unequal
shrinkage (Gan, Narisetty, and Liang (2019), for regression
with unknown error variance (Moran, Ročková, and George
2019), for Bayesian biclustering (Moran, Ročková, and George
2020), for fast Bayesian factor analysis via automatic rotations

to sparsity (Ročková and George 2016), for variable selection
in time series (Ročková and McAlinn 2020), for generalized
linear models (Tang, Shen, Zhang and Yi 2017a), and for the Cox
survival model (Tang, Shen, Zhang and Yi 2017b).

Implementations of the SSL for both known and unknown
error variance are available in the R package sslasso (Ročková
and Moran 2018). These implementations are fast and scalable
as they are linear in both n and p. Comparable in speed to the
various related fast implementations in the R-package ncvreg,
the SSL also saves time by avoiding the need for cross-validated
selection of θ which is internally adapted.
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