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Abstract— Embeddings of textual data containing location
names (e.g., social media posts) have essential applications in
various contexts such as marketing and disaster management. In
these downstream implementations, social biases behind location
names are highly prone to introduce unfair results through
their embeddings; for example, emergent text messages with
swapped location names might result in varied rescue responses.
Hence, it is critical to address social biases encoded in location
names and to seek its mitigation. Prevalent works addressing
biases in embeddings mainly focus on individual attributes like
gender or ethnicity. Yet, a large number of social attributes
behind location names (e.g., income level and population density)
makes it challenging to originate the source of biases. Existing
mitigation methods based on finding attribute subspaces cannot
be simply applied to address social biases. Moreover, bias
mitigation tends to simultaneously remove necessary semantics
from embeddings, making it difficult to achieve a balance
between mitigation performance and semantics retention. In this
article, we first employ the concept of counterfactual fairness
to investigate the social biases encoded in training data. Then,
we quantify the biases in the contextual embeddings (BERT
and ELMo). We report a high correlation between biases in
the training data and embeddings. Next, we introduce a novel
bias mitigation algorithm that customizes bias representations
for any location names. The method yields debiased location
name vectors for various social attributes simultaneously. The
proposed algorithm achieves a better mitigation performance
on overall attributes compared with a prevalent postprocessing
method, while maintaining correctness by retaining semantic
information.

Index Terms— Contextual word embeddings, fairness, mitiga-
tion, social attributes.
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Fig. 1. Demonstration of potential unfair outcomes for location name bias
in embeddings.

I. INTRODUCTION

CONTEXTUAL embedding models [1]–[4] have been
utilized as the backbones of a vast majority of natural

language processing (NLP) techniques to achieve better per-
formance.

In the implementations of contextual word embedding mod-
els, social biases in location names bring serious threats to
the fairness of a large amount of related downstream tasks.
For instance, neighborhoods can be classified to have less or
greater severity of damages in disasters based on social media
posts just for their different names even when occurring in the
same damage report, causing unfair situation awareness and
relief operations [5]–[8]. A social-media-based disaster aware-
ness predictor might discriminate locations with certain values
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of social attributes [5]. As shown in Fig. 1, the probability
predicted to have people in trouble in different locations might
vary significantly when the input only varies in the location
names. Other numerous sentiment-analysis-based applications
relying on word embeddings, e.g., product recommendation,
decision making, intelligent customer services, may face the
same biases and produce biased outcomes [9]–[12].

Current efforts related to originating biases in contex-
tual embeddings mainly focus on gender biases and ethnic
biases [13]–[17]. Accordingly, prevalent bias mitigation algo-
rithms are mostly built based on the outcomes of finding
fundamental subspaces for each gender or ethnic group [13],
[18], [19]. Social attributes behind locations that are potential
to bring biases are numerous [20] (e.g., population, income
level, education level, or aging level). While some existing
algorithms bring solutions to finding subspaces for a single
binary attribute like gender or a single multilabel attribute like
ethnicity, they cannot be simply implemented in mitigating
biases related to social attributes.

The challenges in addressing the bias problems encoded in
location names are threefold. First, there are numerous social
attributes among which we need to originate the attributes
introducing social biases to the embeddings of location names.
However, prevalent bias mitigation algorithms are mostly
built based on the outcomes of finding subspaces for each
attribute [13], [18]. Subsequently, the second challenge is
that the work is arduous and time-consuming to determine
the subspaces for the numerous attributes in order to employ
the existing bias mitigation methods. Third, an ideal bias
mitigation method should efficiently remove biases for various
attributes, and at the same time retain the necessary semantic
information [21]–[24] for downstream tasks. However, the
semantics of embeddings could be a tradeoff for bias mit-
igation. Therefore, it is challenging to achieve the balance
between mitigation performance and semantic retention.

In this article, we propose a unified framework for detecting
and mitigating social biases in location names, which are
represented by separable embeddings for location names from
different social groups. First, in order to provide a more
formalized way to characterize and categorize social attributes,
we employ the definitions of social attributes determined by
Centers for Disease Control and Prevention (CDC) Social
Vulnerability Index [20]. Based on the definitions, we employ
the concept of counterfactual fairness to untangle the rela-
tionships between the embeddings and the extent of the bias
for all the chosen attributes. Second, to relieve the time-
consuming process for finding subspaces for each attribute,
we develop a novel mitigation method that mitigates social
biases of location names simultaneously for all determined
social attributes. The proposed method modifies embeddings
on dimensions with respect to the embedding results of a
perturbed sentence corpus based on posts obtained through
Twitter PowerTrack application programming interface (API).
This approach significantly reduces statistical biases in the
embeddings in order to yield fair outcomes for downstream
tasks depending on location names. Third, in order to examine
the maintenance of semantic information after embeddings
are debiased, we employ benchmark datasets for concept

Fig. 2. Counterfactual fairness diagram. Each colored rectangle represents
the summary theme. The solid arrow represents the prediction directions. Red
letters correspond to variables in (1).

categorization tasks. Evaluations conducted on bias removal
and semantics retention indicate that the proposed method
achieves significant debiasing performance for various social
attributes (lower WEAT, i.e., Word-Embedding-Association-
Test [25] test effect sizes and lower support vector machines
(SVMs) classifier performances) as well as semantic retention
performance (stable purity scores for concept categorization
tasks). We conduct the experiments on BERT (BERT-Base,
Cased) [26] and ELMo (Original) [2] as two state-of-the-
art models. The main contributions of this article can be
summarized as follows.

1) Evaluation of social biases encoded by the two contextual
embedding models in location names.

2) A novel customized mitigation method that simultane-
ously mitigates biases for all attributes.

3) A case study conducted on the core classifier module
of a recently developed pipeline for disaster situation
awareness utilizing tweets during crisis [5].

The rest of this article is organized as follows. Section II
presents the definition of the social biases and the methodolo-
gies to detect them in both the training data and the embedding
output of two popular word embedding models. In Section III,
we introduce the proposed bias mitigation approach. In
Section IV, we conduct experiments to verify the effectiveness
and the correctness of the proposed approach. Section V
includes the implementation of the proposed approach on a
state-of-the-art disaster detection model. Related works are
presented in Section VI. Concluding remarks and future works
are presented in Section VII.

II. BIAS DETECTION

In this section, we first formalize the definition of the social
biases discussed in this article and the problem of social
biases detection in location names. Based on the definition of
social biases, we measure the occurrence disparity of location
names in training datasets for BERT and ELMo. Next, we
quantitatively measure the biases exhibiting in the output of
embeddings. We observe a positive correlation between the
occurrence disparity of location names in training data and the
biases with regard to their social attributes in the embeddings.

A. Problem Statement

1) Definition of Social Biases: We define a social biased
embedding as an embedding that leads to high variation in
the probabilities of a classification result for the same label
(e.g., positive or negative sentiments in this article), given
location names from different social groups (with varying
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TABLE I

SOCIO-DEMOGRAPHIC ATTRIBUTES SELECTED FOR ANALYSIS IN THIS ARTICLE. THESE ATTRIBUTES ARE COMMONLY USED FOR DETERMINING
SOCIAL VULNERABILITY AND HENCE ARE APPROPRIATE FOR EXAMINING LOCATION NAME BIASES

compositions of social attributes). The mathematical expres-
sion is presented in the following paragraph.

2) Counterfactual Fairness: Counterfactual fairness focuses
on the counterfactual of situations with different settings of
social attributes [27]. We model social biases based on the dis-
parity of prediction results between the different situations. For
instance, one may be concerned whether embedding results
of the name of a neighborhood at below-average income
level would be different if, in counterfactual settings, it is a
neighborhood at above-average income level. The evaluation
of counterfactual fairness provides evidence of the group of
social attributes that are introducing biases and the extent to
which these biases are introduced.

We obtain eight social attributes for all counties over
the United States from the Social Vulnerability Index (SVI)
dataset [20]. Two attributes are selected from each of the four
themes provided by the dataset as shown in Table I.

With the perspective from counterfactual fairness [28],
we arrange these social attributes together as the protected
attribute set A. The location names form the input set X and
the sentiment polarities form the output set Y to be predicted.
We define the polarities or the polarity groups of a certain
attribute as the set of samples that have extreme (within top
or bottom certain percentile) values under this attribute. The
training data of the model is considered as the set of latent
background variables U . As shown in Fig. 2, the social bias
can be represented as location names (X ) showing disparity
in sentiment output (Y ), due to biases of sensitive attributes
(A) presented in training data (U ). Countering this definition
of social biases, the counterfactual fairness of the predictor Ŷ
can be claimed true when

P(ŶA←a(U) = y | X = x, A = a)

= P(ŶA←a′(U) = y | X = x, A = a) (1)

where y is the sentiment polarity prediction and x is a specific
location name. a represents situations of the locations being
in a certain polarity group of one certain SVI attribute, and
a′ represents the counterfactual situation of locations being in
the opposite polarity group of the same SVI attribute.

B. Word Frequency Disparity in Training Data

Recent studies show that models adopt and amplify biases
from the training data [29]. In this part, we examine the
distribution of the protected attribute set A represented by
the sensitive attributes within the background variables U
represented by the training data. We quantify the biases in

training data by measuring the word frequency disparity. Based
on the definition of social bias and the determined social
attributes, we report the frequency disparity of location names
from different social groups.

1) Datasets for Experiments: The training of BERT
(BERT-Base, Cased) includes two steps: pretraining and fine-
tuning. Downstream tasks utilize embedding models with
pretrained parameters to save the computational cost for pre-
training. The BooksCorpus dataset (800M words) [30] and
the English Wikipedia dataset (2500M words) are used by the
research team to pretrain the models.

ELMo (Original) also provides pretrained embeddings for
users, which are trained on the One-Billion Word Bench-
mark [31] corpus.

2) Methodology: All 3142 counties over the United States
are ranked in terms of their attribute values. For each of the
determined social attribute, we gather the top 5% and bottom
5% counties into polarity groups, and consider the counties in
the top groups as having high values of respective attributes,
and those in bottom groups as having low values. Counties
belonging to different social attribute groups are likely to have
varied occurrence frequencies in public textual materials. As
a result, the occurrences of county names may also show a
similar disparity in the training data (e.g., book or webpage
content) of word embedding models.

We first preprocess the BooksCourpus and the One-Billion
by removing all the punctuation and transforming words into
lower case. Then we record the occurrences of county names
by counting the occurrences of the phrases consisting of the
county name and “county” (e.g., “harris county”). We denote
the occurrence of words from the top polarity group as ct

and those from the bottom polarity group as cb. In order to
provide an intuitive measurement of the inequality in name
occurrences from polarity groups, the results are normalized
in the form of ct/(ct + cb) and cb/(ct + cb).

C. Social Biases in Word Embeddings

In this part, we evaluate the correlation between the senti-
ment output of ŷ (the predictor) and the social demographic
values within A (the protected attribute set) implied by loca-
tion names in X (the input set). This correlation quantifies
the extent of inequity between the two sides of (1), hence
quantifying the extent of counterfactual unfairness. In addition
to the biases in training datasets, we further examine how the
social biases are encoded in the embeddings of words. We
seek to find the correlation between biases in embeddings and
biases in training datasets.
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Fig. 3. 2-D PCA of polarity groups for the example attributes MOBIL and
MUNIT. Blue triangles represent vectors from the top groups and orange ones
are from the bottom groups. The red triangles pointing upward and downward
represent the centroids of the top and bottom clusters. (a) 2-D PCA of MOBIL.
(b) 2-D PCA of MUNIT.

1) Geometry of Attributes: The embedding vectors of loca-
tion names from the polarity groups are down scaled to 2-D
space based on the first two principle components of principal
component analysis (PCA) as shown in Fig. 3. The centroids
of each pair of groups are highlighted. Embeddings from two
polarity groups exhibit as clusters that subtly dissociate from
each other. The cluster centroids are segregated from each
other. Considering that such separation may occur in numerous
other social attributes, we hypothesize that this bias could be
proliferated in implementations. This hypothesis is examined
based on the results of the bias detection in Section II-D2.

2) Word-Embedding-Association-Test: WEAT [25] is con-
ducted on the embeddings of the polarity groups and the
ground truth mean vectors, respectively, as two target sets
U, V (corresponding to a, a′) and two attribute sets P, Q
(corresponding to polarized values of y). The effect size d
measures how distinctive target and attribute sets are. p-Value
measures the significance of the null hypothesis that two target
word sets have no correlation with two attribute word sets. A
higher p-value (over 0.05) indicates that the polarity groups
are less distinctive and the bias is less significant.

The target sets U, V are the embeddings of location
names from polarity groups concatenated together with neutral
phrases as sentences (e.g., “People are” + “in Harris County”).
The attribute sets P, Q are sentences synthesized for ground
truth positive and negative sentiments. We collect a set of
positive and negative adjectives provided by Sentiwordnet [32]
and the same collection of neutral phrases in synthesized
sentences (e.g., “People are” + “desperate” or “People are” +
“delighted”). These sets of ground truth sentimental sentences
are employed as the attribute sets.

The test statistics can be represented as

S(U, V , P, Q) = �u∈U s(u, P, Q) −�v∈V s(v, P, Q) (2)

where

s( �w, P, Q) = � �p∈Pφ( �w, �p)

|P| − ��q∈Qφ( �w, �q)

|Q| . (3)

φ() represents the cosine similarity of two vectors. The
denominators are the length of the sets, yielding mean cosine
similarities. The one-sided p-value of the test can be repre-
sented as the probability of

s(Ui , Vi , P, Q) > s(U, V , P, Q) (4)

for all permutation of possible Xi and Yi . The effect size d
can be obtained with(

��u∈U s(u,P,Q)

|X | − ��v∈V s(v,P,Q)

|Y |
)/

stdw∈U∪V (s(w, P, Q))

(5)

where std() represents the standard deviation.
In outputs, a higher effect size indicates more bias between

the name sets and severity. The lower the p-value is (lower
than 0.05), the more confident we can be that the bias exists.

3) SVM Classification: In an ideally fair embedding space,
the representations of location names from different social
groups should be an inseparable cluster of vectors. Our
intuition to introduce SVM classification is based on this
assumption. The performance of SVM classifiers measures the
separability of such sets of embedding vectors to measure the
existence of the biases.

To determine the existence of subspaces corresponding to
social attributes of location names, we train binary SVMs.
SVMs are flexible and computationally efficient classifiers to
predict the values of social attributes of location name in
the embedding space. The values of attributes are polarized
into binary classes: high and low. Accordingly, the SVMs are
employed as binary classifiers, categorizing names from the
two polarity groups. The more capable the trained classifiers
are to predict the protected values, the more information
of those social attributes can be indicated as encoded in
the embedding model. This capability is measured by the
f − 1 scores of the predictions, which are calculated by
2 ∗ (recall−1 + precision−1)−1.

For each attribute, we train 1000 SVMs on arbitrarily
partitioned 80% of embeddings from each polarity group as
the training data and report their average performance. Then
we test them on the remaining 20% embeddings.

D. Bias Detection Results

1) Bias Detection in Training Data: The statistics of polar-
ities vary significantly with respect to which polarity the
locations belong to (the first two rows of Table II). The
training data is strongly unbalanced for most of the eight
attributes, in terms of the occurrence ratio between top and
bottom group (mostly over 4:1 or below 1:4). Also, biases
in different training data employed by different models vary.
Take “AGE65” attribute as an example; the dominating group
of BERT and ELMo alters from the top group to the bottom
group. For other attributes, the disparity of bias detection
results between datasets lands only on the word frequencies.
The biases in embeddings introduced by models trained on the
biased datasets are expected to be correlated with the bias in
the data. In order to clearly illustrate the connection between
training data and the corresponding embeddings, we report the
correlation with a correlation symbol for each attribute and
model, which is expected to be identical to the correlation
between polarity groups of the embeddings.

2) Bias Detection in Word Embeddings: The results of the
WEAT tests and SVM classification are shown in the bottom
half of Table II. The detection results for BERT and ELMo
are given as follows:
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TABLE II

LEFT AND RIGHT COLUMNS UNDER EACH ATTRIBUTE CORRESPOND TO THE MEASURES OF BERT AND ELMo. THE FIRST AND SECOND ROWS PRESENT
THE OCCURRENCES OF NAMES IN BOOKSCORPUS FROM THE TOP AND BOTTOM POLARITY GROUPS OF EACH ATTRIBUTES. THE FIRST AND THE

SECOND ± OF EACH COLUMN PRESENT POSITIVE OR NEGATIVE CORRELATION BETWEEN THE OCCURRENCE AND POLARITY GROUPS,
AND BETWEEN THE EMBEDDINGS OF THE NAMES FROM POLARITY GROUPS AND THE SENTIMENT CENTROIDS (Top-Pos. AND Btm.-

Neg. AS “+”; Top-Neg. AND Btm.-Pos. AS “−”). d AND p REPRESENTS THE EFFECT SIZES AND THE p-VALUES OF WEAT
TESTS. THE BOTTOM ROW SHOWS THE f-1 SCORES OF 1000 SVMs TRAINED IN THE VECTOR SPACES

1) BERT: The location names belonging to polarity groups
related to “socioeconomic” and “housing or transportation”
attributes show significant biases. The WEAT test yields
effect sizes greater than 0.199, with relatively low p-values
less than 0.05 (whose null hypothesis is that the difference
between targets is not significantly related to the attributes).
The high f − 1 scores of SVM classifiers trained on the
embeddings of these attributes indicate that the embeddings
are much more likely (above 0.66 compare with close to
0.50) to be separated than those from ideally unbiased
embeddings. In terms of the correlations, the attributes with
significant sentimental bias all show the same correlation
with the occurrence disparities of the attribute sets.

2) ELMo: We observe that the WEAT and the f −1 scores are
indicating significant biases for attributes PCI, LIMENG,
and MUNIT. The correlations of biases all match the
inequity of training data. This matched correlation indi-
cates that location names with frequent exposure to the
training data yield a more positive sentimental inclination
for their embedding trained on such data. This issue might
be because the exposure of locations’ names in textual
materials is in proportion to their degree of development
and the positivity of their context.

III. BIAS MITIGATION

Based on the biases detected and their underlying social
attributes revealed in Section II, in this section, we propose a
customized methodology to mitigate biases for a variety of
attributes simultaneously (Fig. 4). We first extract the bias
content of location names from their embeddings, and then
exclude the biases from the vectors in a customized way to
reduce bias information contained in the embeddings while
maintaining the semantics for downstream tasks.

A. Motivation

Location names should exhibit equality in embedding
spaces so that they are not to be discriminated against in
downstream tasks, such as sentiment analysis for disaster
situation awareness. Prevalent embedding debiasing methods
such as hard debias introduced by Bolukbasi et al. [18] or
data augmentation introduced by Zhao et al. [13] determine
subspaces for the debiased attributes. However, in such high

Fig. 4. Overview of the proposed mitigation method. We employ the NER
approach to divide an input sentence into a location name and neutral phrases.
Then we extract the bias representation through the embeddings of neutral
phrases with and without the location name in context. Bias is removed from
the embedding of the location name according to the bias representation.

dimensional spaces, it is arduous to define bias subspaces for
numerous social attributes that introduce biases to all different
tasks. In addition, for different models with different structures
that are trained on different datasets, there should be a post-
hoc debiasing algorithm to produce a customized statistical
structure and an improved way to extract biases. To provide a
generalized methodology of embedding bias mitigation, our
goal in this section is to customize the definition of one
uniform bias for each location name in each dimension of
the embedding space in a real-time manner.

B. Data Collection and Preprocessing

We collect tweet posts with timestamps within the range
of August 22 to September 30 in 2017 through the Twitter
PowerTrack API. Using the Stanford named entity recognition
(NER) tool [33], we identify county names mentioned in the
posts and filter out the posts without any county names. We
design a sentence template according to the most frequent
contents in the filtered tweet posts to shape a testing word array
corpus. In order to obtain a clear idea about the presentation of
location name bias, we maintain the tweet bodies, considering
them as neutral phrases in the form of word arrays. Accord-
ingly, we substitute location names for those from various
social attribute polarities, considering them as biased names.
For example, we may have “People in” + “Harris County” +
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“need help” as one of our word arrays, where “People in” and
“need help” are the neutral phrases that are controlled within
the same corpus, and “Harris County” is the biased name to
be debiased.

We equally select county names according to the process
for bias detection in Section II. The biased county names are
from the top and bottom 5% polarity groups within the United
States in terms of certain social vulnerability attributes. Each
sentence in this set is represented as an array of words.

C. Bias Extraction

Both BERT and ELMo are contextual embedding models.
The input of these models is sentences as arrays of word
tokens. The resulting embeddings are vectors containing con-
textual information from adjacent words. Each word token
is embedded with one vector of constant length. The bias
extraction and removal process is based on this word-level
structure of input and output. There might be multiple vectors
for one word if a word is disassembled into multiple tokens.
In this case, we mean-pool the vectors of tokens that belong
to one word.

Contextual word embedding models bring contextual infor-
mation to each word’s embedding. The embeddings of the con-
text of potentially biased words are straightforward sources to
extract those encoded biases. As a reference or a ground truth,
we first obtain the original embeddings of neutral phrases
alone. Then, we extract the difference between the reference
embeddings and the embeddings when neutral phrases are
embedded with biased words (e.g., location names). As the
ground truth vectors, the embeddings gt of the neutral phrases
are collected from the model. Then, the word arrays are used as
input into embedding models as well, with the output obtained
as embedded vector arrays.

For each of the vector arrays, we select the vectors �̂gti
corresponding to the neutral phrases in the biased sentence.
The remaining vectors vi are the name vectors to be debiased.
On the j th dimension, we record the mean “bias rate” between
all the i word vectors in the neutral phrases from the biased
sentences �̂gt and their counterparts within the ground truth
vectors �gt. The bias representation vector �b is composed of the
mean “bias rates” on all of the embedding space dimensions.

b j = 1

|Ineu|�i∈Ineu ĝti j/gti j , 1 ≤ j ≤ n (6)

�b = (b1, b2, . . . , bn) (7)

where Ineu is the set of indices of each word in the neutral
phrase, n is the dimensionality of the embedding space.

D. Bias Subtraction

Biased embeddings of location names are tailored on each
dimension accordingly based on the obtained representation
of “bias rate.” We adjust each dimension of each word vector
�vi . The values of vi j are shrunk or dilated in proportion
to the “bias rate” b j based on its corresponding dimension.

Algorithm 1 Customized Bias Mitigation Method

Input : neutral word vectors: {gti ∈ RD|i ∈ Ineu}
biased neutral word vectors: {ĝti ∈ RD|i ∈ Ineu}
location name vectors: {vi ∈ RD|i ∈ Iloc}
damping factors: α, β

1 b = [0] ∗ D
2 {di = [0] ∗ |vi ||i ∈ Iloc}
3 for j from 1 to D do
4 sum = 0
5 for i ∈ Ineu do
6 sum+ = ĝti j/gti j

7 b j = sum/|Ineu|
8 for i ∈ Iloc do
9 for j from 1 to D do

10 di j = vi j/(α + logβb j)
Output: {di ∈ RD|i ∈ Iloc}

Accordingly, we obtained the debiased word vector �d
di j = vi j

α + logβb j
, 1 ≤ j ≤ n (8)

{ �di = (di1, di2, . . . , din) | i ∈ Iloc} (9)

where α and β are two damping factors to limit the extent
of debiasing for a balance between removing biases and
maintaining semantic information. In implementation, β is
often determined as the form of an exponential of 10. In our
experiments, α is fixed to 5 and β is been fixed to 103.

E. Implementation

The pseudocode of the algorithm is shown in Algorithm 1.
To implement this method in contextual word embedding
tasks, location names are suggested to be retrieved through
NER approaches (e.g., the Stanford NER tool [33]). With the
determined location names, contextual words with and without
those names serve as the biased and the ground truth neutral
phrases for the following steps of the debiasing process.

IV. EXPERIMENTS

In this section, we conduct experiments on two prevalent
embedding models. We evaluate its mitigation and semantic
retention performances, with comparison to a baseline.

A. Experimental Settings

In Section II, we observe that the major source of biases
in pretrained embeddings is the word frequency disparity
within the training dataset. We consider that the disaster-
related dataset introduced for fine-tuning of embedding models
is highly likely to share the same unbalanced trait on location
names [5]. Thus the mitigation method is experimented on
the pretrained models to produce more generalized results for
various downstream tasks.

We maintain the same sentence sets of all polarity groups
of 8 social attributes. For both BERT (BERT-Base, Cased) and
ELMo (Original), the mitigation method is implemented upon
their embeddings. The tailored embeddings are subsequently
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TABLE III

DEBIASING RESULTS OF EACH SVI ATTRIBUTES FOR BOLUKBASI’S POSTPROCESSING METHOD (Bol.) AND OUR CUSTOMIZED DEBIASING METHOD
(Cus.). BOLD ROWS ARE THOSE WITH SIGNIFICANT BIAS IN TRAINING DATA AS WELL AS THE EMBEDDINGS

evaluated with the same WEAT test and SVM classification
and are visualized with PCA. In PCA, we expect to see
mingled vectors from the two sets with centroids close to
each other. From a quantitative perspective, we expect to see
relatively reduced effect sizes, insignificant p-values (lower
than 0.05 as insignificant) and f − 1 scores closer to 0.5.
These metrics reflect a decent mitigation performance.

B. Baseline

We employ the postprocessing debiasing method proposed
in [18]. In this method, first, attribute subspaces are deter-
mined, followed by hard debiasing and soft bias correction.
We define bias subspaces of each attribute by providing two
groups of definitive words. To compare the generality of our
method with the baseline, for each pair of polarity groups, we
control the mitigated direction to be wealth (corresponding
to PCI) with a group of predetermined definitive word pairs
(e.g., “wealth” and “poverty”).

C. Bias Mitigation Evaluation

1) Geometric: In the embedding spaces, as shown in Fig. 5,
we find that the vectors from two polarity groups are forming
relatively denser clusters with centroids closer to each other.
Also, for the two samples, we observe that the centroids rotate
in the direction orthogonal to those before debiasing.

2) Quantitative Performance: The quantitative performance
of debiasing is shown in Table III. For the bold attributes
observed to have a significant bias in the training dataset
of the two models, we also observe significant bias with
this experiment setting. For BERT, on the bias-significant
attributes, PCI, POV, MOBILE, and MUNIT, we observe
that not only the effect sizes d are reduced to lower than
50% of the original size, but also the p-values indicating the
insignificance of the biases (lower than 0.05 indicates a sig-
nificant bias) rose from below 0.05 to over 0.5. Furthermore,
for the other attributes that impose insignificant bias before
the process, their p-values are further increased and results

Fig. 5. 2-D PCA of polarity groups of example attributes MOBIL and
MUNIT after debiasing. See the caption of Fig. 1 for a detailed description
on the legends. (a) 2-D PCA of MOBIL. (b) 2-D PCA of MUNIT.

are significant. For ELMo, we observe significant biases for
PCI, LIMENG, and MUNIT. For all the three attributes, the
effect sizes are mostly reduced to less than 50% (except PCI).
The p-values all increase significantly to close to 1.0. For the
other attributes, the mitigation brings lower significance by
reducing the effect sizes d and increase their p-values. For
the debiased embeddings of both models, The SVM back-
predictors have lower performance for classifying attribute
polarity groups from their location name vectors. The f − 1
scores have been reduced from over 0.6 to less than 0.6, much
closer to random guess (0.5).

The baseline postprocessing method is shown to perform
relatively well in the controlled attribute PCI. For the other
seven attributes that the method does not specifically debias,
the effect sizes measured by WEAT and the f − 1 scores of
SVM classifications are observed to be less reduced than our
customized method. This result indicates that our customized
method has a more significant debiasing performance on
overall attributes, rather than the only one specific attribute
mitigated by the baseline method.

D. Mitigation Versus Semantics Retention Tradeoff

One of the challenges for developing word embedding debi-
asing methods is the balance between mitigation performance
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TABLE IV

RESULTS OF BERT AND ELMo FOR CONCEPT CATEGORIZATION ON
BENCHMARKS PRIOR (Org.) AND POSTERIOR TO BOLUKBASI’S POST-

PROCESSING METHOD (Bol.) AND OUR CUSTOMIZED DEBIASING

METHOD (Cus.). PERFORMANCE IS MEASURED IN PURITY

SCORES. IN BOTH MODELS, THERE IS NO SIGNIFICANT
DEGRADATION OF PERFORMANCE DUE TO APPLYING

THE PROPOSED METHOD

and retention of semantics for downstream tasks. In this
section, we evaluate how our proposed method retains seman-
tics after mitigation.

1) Evaluation Methodology: We conduct concept catego-
rization tasks to evaluate semantic retention of the debiased
embeddings. In concept categorization, a set of words are
provided with labeled classes. The capability of an embedding
to distinguish one class from the other is the test objective.
Clustering methods such as KMeans are employed to cluster
words by their embeddings. To quantitatively evaluate the
retention of semantics, the purity scores of clustering are
measured. The purity [34] of concept categorization has been
evaluated upon several benchmark datasets, including the
BLESS [21], BM [22], AP [23], and ESSLLI-2008 [24].
For all of these datasets, we record the words and attach
them to the provided conceptual labels. The embeddings of
both biased and debiased models are clustered with KMeans.
The number of clusters for KMeans is fixed to the exact
number of conceptual labels the datasets provide. We then
assemble the words in the benchmark datasets with the same
neutral phrases used in debiasing and process them with the
proposed mitigation methods. The embeddings of the target
words are recorded. The purity scores on clustering the biased
and debiased vectors of target words

purity(C, S) = 1

n
�i max

j
(ci ∪ s j ) (10)

where C = {c1, c2, . . . , cn} denotes the clusters, n represents
the number of clusters, and S = {s1, s2, . . . , sm} denotes the
semantic categories, are shown in Table IV.

2) Results: The original BERT achieves relatively high
purity scores in categorizing BLESS and ESSLLI datasets and
BM and AP under 0.5. The purity after being mitigated by
the proposed method, compared to the original scores, does
not decrease significantly. In fact, purity scores in half of the
tests even increase. For ELMo, the same pattern of purity
fluctuation occurs in the original model. After the embedding
is debiased by the proposed method, scores of BM, AP, and
ESSLI decrease insignificantly. The purity score of BLESS
increases. Compared with the results of the baseline method,
the purity has been less significantly impaired after debiasing
the embeddings with our method, thus indicating that the
model retains adequate semantics for downstream tasks.

V. CASE STUDY: A SOCIAL MEDIA CONTENT CLASSIFIER

FOR DISASTER SITUATION AWARENESS

In this section, we evaluate our mitigation method on a
BERT-based social media content classifier in a pipeline for
disaster situation awareness and responses [5]. The pipeline
includes three modules: input, learning, and output.

1) The input module filters social media data to retain
necessary input information.

2) The learning module is composed of the location
entity extraction and the fine-tuned BERT (BERT-Base,
Cased) based classifier. The location entity extraction
unit obtains multiscale location information from social
media contents. The BERT classifier label contents with
eight different predetermined humanitarian categories
(“affected individuals,” “injured people,” “missing peo-
ple,” “infrastructure and utility damage,” “vehicle dam-
age,” “rescue, volunteering or donation,” “Other relevant”
and “Nonrelevant”).

3) The output module conducts further evaluations of the
development of disaster events.

A. Task Objective

The case study focuses on the BERT classifier in the
learning module. The classifier is developed to determine
the humanitarian category related to tweets content. In the
implementation, the fine-tuned model outputs predicted prob-
abilities for each of the 8 humanitarian categories [5]. In
the ideal nonbiased case, for a set of tweets consisting of
various location names and identical phrases as the context, the
prediction for a certain category should be identical. However,
if biases are encoded in the embeddings of the location names,
we expect to observe a correlation between the nonuniform
predictions and the values of certain social attributes of the
tweets with different location names.

1) Test Data: Following the study of the original
pipeline [5], we adopt the humanitarian categories and labeled
tweet posts for Hurricane Harvey in 2017 from the dataset
CrisisMMD [35]. First, tweet posts labeled as “affected indi-
viduals” are selected. Using the Stanford NER tool [33], we
identify county names mentioned among the selected posts
and filter out the posts without county names. Next, we
introduce perturbation to the sentences by controlling the
sentence bodies and substituting the original location names
with locations names from polarity groups of all 34 social
attributes provided by SVI. This perturbed tweet corpus is
then conveyed to the classifier as the input.

2) Evaluation Metrics: We compare the prediction rankings
prior and posterior to debiasing with the determined metrics.
The classifier outputs eight predicted probabilities for the eight
humanitarian categories for each input sentence. We rank the
counties by their predicted probabilities of being categorized
‘affected individuals’, in a descending order. This rank is
denoted as R0. We then rank the counties by the values under
each SVI attribute. This rank is denoted as R1. Each county
will have its R0 and one R1 for each SVI attribute. The ranking
R1 of the counties’ value under each SVI attribute is also
saved in a descending order. Spearman correlations between
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Fig. 6. Sorted correlations and p-values of Spearman test of all SVI attributes
on classification predictions for all counties [(a) and (b)] and top/bottom 1%
counties [(c) and (d)] prior and posterior to debiasing. Broken lines represents
the median values among all attributes.

R0 and all 34 R1s are measured. ρ represents the Spearman
correlations. The p-value is measured on the null hypothesis
that two rankings are uncorrelated. If the embeddings of
location names are not correlated with their social attributes,
the prediction for sentences containing different locations
should be identical (ρ = 0). The Spearman correlation is
firstly measured on the original R0 for all counties within the
United States. Next, we retain only 1% top and 1% bottom
counties according to the probability ranking R0 and record
social attribute rankings R1 only for counties within the two
polarity groups. Spearman correlation is measured accordingly.

B. Quantitative Results

Research studies have provided standards for interpreting
the measures of Spearman correlations [36].

For all US counties, as shown in Fig. 6(a) and (b), the
correlations of attributes have shown a decreasing order for
over 50%. The p-value, on the other hand, increased from
0.021 (under 0.05) to 0.289, indicating less confidence for the
correlations. For the selected top and bottom 1% counties,
as shown in Fig. 6(c) and (d), the correlations between
attributes and the probability ranking of the predictions have
a median value decreased from 0.442 to 0.137, interpreted as
from strong correlation to negligible according to correlation
standard for politic area [36]. The tests yield p-values with a
median value significantly increasing from 10−4 to 0.335, from
below the 0.001 threshold of significance to insignificant. This
result indicates that the correlations between the classifier’s
outputs and SVI attributes are less significant after debiasing.
The distribution curves of ρ and p-values demonstrate that the
biases are mitigated under the majority of attributes.

The debiased classifier yields an average probability of
74.95% as the prediction for the test sentences on “affected
individuals,” correctly as they were labeled in CrisisMMD.
This result indicates that the debiased embeddings thoroughly
retain the necessary semantics for the pipeline.

C. Discussion

The Spearman tests reveal the extent to which social
biases encoded in embedding models could be propagated
to the downstream tasks. These biases, as a consequence,
produce predictions with prejudices. In this case of classifier
implemented for disaster situation awareness, a prejudiced
prediction is highly prone to yielding results shown in Fig. 1.
In the implementation, this would result in an unbalanced
location-wise awareness of disaster situations, and thus bring
critical crisis responses to different locations with potential
disparity in resource allocation and relief and rescue efforts.

After bias mitigation, the correlations between predictions
of locations and their social attributes are largely reduced to an
insignificant level. This case study demonstrates clearly how
this approach could yield fairer outputs for social-related tasks
based on contextual word embedding models.

VI. RELATED WORK

Word embeddings are trained on large-scale corpora con-
sisting of artificial text materials. Recent studies show the
presence of biases related to gender and corresponding occu-
pations [13], [18], [25], ethnicity, and corresponding human
names [37], [38] in embedding models. Therefore, mod-
els utilizing these embeddings tend to involve undesired
biases, and subsequently propagate them into downstream task
results [39], [40].

The current literature on embedding bias mitigation mainly
focuses on the prevalent attributes such as gender or ethnic-
ity. A postprocessing debiasing method for word2vec model
trained on the Google News corpus [41] is proposed in [18].
In these studies, gender biases are mitigated through three
steps: gender space identification, hard debiasing, and soft
debiasing. For contextual embeddings like BERT and ELMo,
several researchers have proposed methods to detect as well as
mitigate gender biases [13]. Biases are observed in unbalanced
training data and the geometry of the embedding spaces.
For ELMo, researchers introduced data augmentation and
neutralization, respectively, for the training and the testing
processes [13]. Some other studies also show strong evidence
related to social and intersectional biases in various state-of-
the-art contextual embeddings [42], with the debiasing meth-
ods remain to be purposed. Since this article is focusing on
biases in location names, the social attributes behind locations
are inevitable to be a source of bias. In this article, We adopt
the definition of counterfactual fairness [28] to determine the
statistical notions of fairness.

In addition to the debiasing process, the retention of
semantics in the embeddings is necessary to be tested. Exist-
ing semantic retention tests mainly consist of two cate-
gories of benchmark evaluations, including word analogy and
concept categorization. For word analogy, prevalent bench-
mark tasks include MSR [43] and Google word analogy.
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For concept categorization, benchmark datasets such as the
BLESS dataset [21], the Battig 1969 set [22], the Almuhareb-
Poesio dataset [23] and the ESSLLI 2008 [24] are commonly
employed by researches. Concept categorization tasks are
tested and evaluated on debiased embeddings to examine
the retention of semantics by the proposed bias mitigation
methods.

As a major implementation of word embeddings,
researchers use sentiment analysis techniques on social
media data to increase disaster situation awareness [44]–[46].
Word embedding models are employed by different recent
studies to help accelerate the process and enrich the semantic
expression [5], [47], [48]. In these tasks, social media contents
are first embedded into vector spaces and are then classified
by various clustering methods. The names of locations shape
an essential part of the training data of the embedding models,
as well as the input for the models to predict on. Hence,
biases related to location names from the embedding models
should be mitigated before the downstream tasks.

VII. CONCLUSION

The biases under different social attributes encoded in
the contextual models BERT and ELMo are originated and
quantified in this study. We find a positive correlation between
the occurrences of locations in training data and the positive
sentimental inclination of their embeddings. The proposed bias
mitigation method shows its versatility of reducing a major
proportion of bias on different attributes from different embed-
dings. At the same time, the method well retains semantic
information of embeddings for downstream tasks. With the
case study, we demonstrate how those biases are potentially
hampering the location-wise fairness of crisis situation aware-
ness, and the subsequent relief efforts that impact potential
human lives. In this case, our method help to produce a more
objective and fairer severity evaluation across locations.
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