The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

Regular Research Paper -

The Abaco Platform: A

Performance and Scalability Study on the Jetstream Cloud

Christian R. Garcia, Joe Stubbs, Julia Looney

Anagha Jamthe, and Mike Packard
Texas Advanced Computing Center
University of Texas at Austin
Austin, TX 78758

Email: [cgarcia, jstubbs, jlooney, ajamthe, mpackard] @tacc.utexas.edu

Abstract—Abaco is an open source, distributed cloud-
computing platform based on the Actor Model of Concurrent
Computation and Linux containers funded by the National
Science Foundation and hosted at the Texas Advanced Computing
Center. Abaco recently implemented an autoscaler feature that
allows for automatic scaling of an actor’s worker pool based on
an actor’s mailbox queue length. In this paper, we address several
research questions related to the performance of the Abaco plat-
form with manual and autoscaler functionality. Performance and
stability is tested by systematically studying the aggregate FLOPS
and hashrate throughput of Abaco in various scenarios. From
testing we establish that Abaco correctly scales to 100 JetStream
“ml.medium” instances and achieves over 19 TFLOPS.

Keywords—functions-as-a-service, autoscaling, containers,
cloud computing, performance engineering.

I. INTRODUCTION

Abaco (Actor BAsed COntainers) [1] is a hosted, functions-
as-a-service Application Programming Interface (API) which
combines Linux container technology with the Actor Model of
Concurrent Computation[2]. Also referred to as a “serverless”
platform, Abaco enables the rapid development of reactive,
event driven architectures requiring minimal long-term mainte-
nance. Funded since 2017 by the National Science Foundation,
Abaco serves the national research community with the ability
to run high throughput, low latency workloads concurrently for
faster execution. In its first two years in production, Abaco
has been adopted by several projects and has supported the
invocation of over 70,000 functions collectively running for
more than 20 million seconds.

Users register new actors in Abaco by making an API
request that includes a reference to a publicly available Docker
image to use for the actor; in response, Abaco generates and
returns a URI associated with the new actor. Users can then
use the URI to send messages to the actor. For each message
sent to an actor, Abaco puts the message on an internal queue
assigned to the actor, referred to as the actor’s “mailbox”
or “inbox”. For each queued execution, as Abaco’s internal
compute resources become available, the system launches
a container from the actor’s image and injects the original
message data into the container. Most Abaco executions start
within one or two seconds of a message being sent; however,
in some cases, users will queue tens of thousands of messages

Kreshel Nguyen
Computational Engineering
Dept of Aerospace Engineering
University of Texas, Austin
Austin, TX 78712
Email: kreshel@utexas.edu

in a short period of time for a single actor, in which case, the
executions will run over several hours or days.

The resource requirements of workloads on Abaco can vary
greatly depending on the nature of the computation being
performed. Abaco provides users with different ways of inter-
acting with the API to facilitate executions. In particular, users
have the option of manually scaling the resources assigned to
an actor, or using Abaco’s autoscaling feature to dynamically
scale resources based on the actor’s mailbox size. In this paper,
we set out to experimentally determine the differences in per-
formance between manual scaling and autoscaling under two
different work loads, and metrics: “FLOPs”, which determines
the amount of work that can be achieved by a system at a given
time and “hashrate”, which is a measure of performance that
became popular with the emergence of Bitcoin [3] technology.

A. Abaco Background

The Abaco system uses internal agents referred to as “work-
ers” to facilitate the processing of actor messages. When a
worker is created, it is assigned to exactly one actor, and
it subscribes to the internal Abaco queue corresponding to
the actor’s mailbox, defined in RabbitMQ[4]. In response to
receiving a message intended for its assigned actor, a worker
starts an actor container from the defined image associated
with the actor and injects the message data into the container,
either in an environment variable in the case of text data, or a
unix domain socket in the case of binary data. The worker then
supervises the actor execution, monitoring for the actor process
to exit, and collecting resource usage and log data along the
way. A given worker does not retrieve a new message from
the actor’s queue until the current execution is finalized. It
follows that, for a given actor, the number of messages being
processed concurrently at any given time is no more than the
number of workers assigned to the actor. In particular, an actor
with one worker only processes one message at a time.

In many applications, it is critical that messages are pro-
cessed sequentially, and Abaco formalizes this notion through
a property called “stateless” provided at actor registration. If an
actor is registered with the “stateless” property set to False,
Abaco will never start more than one worker for the actor.
This feature distinguishes Abaco from many other functions-

The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

as-a-service offerings and is an important aspect of the Actor
Model more generally.

However, for actors registered with the stateless property
set to True, Abaco can increase or decrease the number of
workers associated with an actor. Abaco provides an endpoint
in its HTTP API that users can use to create additional workers
or shutdown existing workers for actor’s they have access to.
This approach is referred to as “manual scaling”.

B. Autoscaling

The Abaco autoscaler will automatically scale the number
of workers associated with an actor according to the size of
the actor’s mailbox. The autoscaling will scale up when an
actor has at least 1 message in its inbox. Similarly, when the
actor has 0 messages in its inbox, the autoscaler will shut
down workers for that actor that are not currently overseeing
a running execution. There is also a limit to the number of
workers an actor can have. If this limit is reached, then Abaco
will stop the scale-up process until the number of workers for
that actor has reduced below the limit.

The autoscaling in Abaco has been developed on top of
Prometheus, an open-source time series database and mon-
itoring server [5]. Prometheus functions by scraping plain-
text values that it converts into time series data. Prometheus
can be configured to repeatedly scrape values from specific
APIs on a given time interval. The algorithm for autoscaling
is as follows. The Abaco metrics API endpoint produces plain
text values of the current actor inbox sizes, as well as how
many workers are assigned to each actor. Prometheus scrapes
the instantaneous mailbox sizes using the Abaco metrics
endpoint every 5 seconds. The autoscaler then uses this data to
determine whether it should scale-up, scale-down, or neither.
This allows Abaco to provide more resources to those actors
which require it, while removing resources once they are no
longer needed. If an actor has at least one message, but it has
reached its limit of workers, then neither scale-up or scale-
down will occur.

II. EXPERIMENT DESIGN

Harnessing the full potential of high performance computing
at a user level has become increasingly difficult as the field has
grown in scale and complexity. The Abaco platform attempts
to alleviate this issue by giving users an additional tool in
HPC. This study seeks to answer the research questions below
by analyzing various performance metrics in order to better
understand the use, potential, and limitations of the Abaco
platform.

A. Research Questions

o What is the difference in worker creation rate between a
manually scaled worker pool and using the autoscaler?

o What is the performance of Abaco at different node sizes
and how does it compare to the theoretical limit of the
hardware utilized?

o What are the scaling limits of the Abaco platform and
what are the causes to those limits?

B. Experiment Overview

Our experiment compares the performance of the Abaco
autoscaler versus manually scaling actor’s worker pools. Each
test run consists of three main tasks. First we must create
an actor, second we must create workers for that actor, and
third we must run the actual computations for that actor.
Actor creation is identical no matter whether the autoscaler
capability is used or not. Worker creation however varies and
can be measured separately in order to quantify the scaling
rate between manual scaling and autoscaling. The actual
computations are also possible dependent variables which can
be measured using two sets of performance metrics and allows
us to measure any differences due to workload or work type.
Additionally, we measure how different hardware allocations
affects the results by making use of Jetstream to run tests on
different node sizes.

C. Performance Metrics

In this section we describe the performance metrics utilized,
FLOPS and hashrate, along with the theoretical bounds used
in test setup.

1) FLOPS: The four basic mathematical floating point
operations performed by computers are: addition, subtraction,
multiplication, and division. The amount of above operations
performed on a per second basis is referred to as floating-
point operations per second, abbreviated as FLOPS. FLOPS
of a computer system acts as a metric for the amount of work
a computer can perform in a given time. In this experiment
we use the amount of FLOPS to compare different testing
scenarios and gauge system overheads, slowdowns, and most
importantly, scalability.

There are two parts to the FLOPS evaluation experiment.
First, a large scale distribution of relatively quick work is
set up to test the autoscaling performance of the platform.
Second, a smaller scale distribution of relatively slow work
is set up to achieve peak FLOPS by removing overhead in
worker deployment.

The “work” mentioned above is a Python script that
when executed takes three inputs: the amount of threads
the script should utilize, standard deviation for randomiz-
ing a square matrix, and the size of the two square ma-
trices. The script then calculates the dot product of these
two random square matrices as the “work of the experi-
ment”. This script is packaged as a Docker Hub image at
abacosamples/abaco_perf_flops[6].

To calculate the amount of FLOP in each execution we
use equation 1, where S is the input size, described above.
This equation calculates the amount of FLOP in a dot product
operation between two square matrices[7].

FLOP = (S+ S5 —1)* S? (1)

From there, in order to calculate the speed of one whole
trial we use equation 2 to calculate FLOPS. We do this by
taking the amount of FLOP per executions, multiplying it by

The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

the amount of executions, E, of each trial, and dividing by the
amount of elapsed time, t, from trial start to end.

(253 — S2) % E

FLOPS,ea1 = "

2

2) Hashrate: The second performance metric used in our
experiment is hashrate. Hashrate is the number of hashes per
second, where a hash is one iteration of a SHA256 hashing
function, which creates a hashed block [8]. This measure of
performance became popular with the rise of Bitcoin[3], where
mining a block with certain parameters gave a reward in the
form of bitcoins. Without using an identical hashing function,
language, and algorithm to Bitcoin, which is proprietary, or
some other proof-of-work function, we are unable to compare
our hashrate with the results from other computers. Instead we
will hash a set amount of blocks and compare results gathered
through the testing.

To actually calculate hashrate of the
system, we register an actor using the
abacosamples/abaco_perf_hashrate[9] image,

available on Docker Hub. This image contains a script
that runs Python’s hashlib.sha256 () function a given
number of times. Each iteration of this hashlib.sha256 ()
function is a hash of a block. Our experiment runs each
execution running until three million hashes are calculated.
Hashrate is given in equation 3, where Hr is hashrate, h is
hashes, and t is elapsed time from trial start to end.

Hr =~ 3)

D. Obtaining Theoretical Bounds

While we have an established method of obtaining FLOPS
and hashrate, we’re still in need for a result to compare our
data against. With an addition of a comparative result, we gain
access to additional insights on system overhead and the real
limits of our testing.

We use equation 4 to obtain the theoretical limit of FLOPS
for a single server [10]. In this equation N is the number of
cores per CPU, F is the average frequency of these cores, and
O is the operations per cycle for each CPU.

FLOPStheory = Ncores * Favg * Ocycle (4)

Plugging into the above equation knowing that the Jetstream
server cluster is using 6 cores of a v3 Intel Xeon E5-2680
turbo-boosted to 3.30GHz and running 16 operations per cycle
gives us a theoretical max speed of 316.8 GFLOPS per node.
This number now acts as the theoretical fastest speed that our
servers could ever possibly achieve.

Along with a theoretical limit for FLOPS, we also have a
practical limit, which is the speed of our experiment script
running solely on a Jetstream compute node. This is the
practical limit for our experiment and any change from that
number would be caused by overhead from Abaco, Docker,
Python, networking, etc.

Hashrate on the other hand is determined empirically and
thus does not have a theoretical max that we can calculate.
Instead, similar to FLOPS, we run our hashrate script solely
on a Jetstream compute node, which allows us to compare and
view the effects of system overhead.

III. EXPERIMENTAL SETUP

We divide the experiment setup into two parts: deployment
and validation. We first deploy the servers that run Abaco,
it’s components, and the compute nodes that Abaco will
utilize to spawn new workers on. Secondly, we run the test
suite to conduct the performance studies. Our entire testing
repository, along with Docker images is hosted on Github,
TACC/abaco-autoscaling, with READMEs detailing
the exact instructions to reproduce the experiment. In this
section we describe an overview of the experimental process
so that users can implement this method in their workflows.

A. Resource Configuration

We begin with configuring the resources needed for this
experiment. All servers are hosted by the NSF’s scalable cloud
system for XSEDE, Jetstream [11]. This service allows for
the creation and configuration of virtual machines (VMs),
or “nodes”, which gives our experiment the ability to scale.
Jetstream uses Openstack [12] for resource management and
gives us the ability to deploy servers through the command
line interface (CLI). Although this paper will continue to
reference the resources used, it’s important to note that the
Abaco platform is capable of running on any cluster of Linux
nodes.

All nodes have the following specifications: CentOS Linux
version 7.6.1810, kernel version 3.10.0-957.5.1.e17.x86_64,
Docker version 18.09.5, and Docker Compose version 1.24.0.
All Abaco nodes are Jetstream m1.quad nodes which have 10
GB RAM, 20 GB SSD storage, and 4 vCPUs. A vCPU in
this case is one core of a Intel Xeon E5-2680 v3, which can
turbo-boost from 2.50GHz to 3.30GHz.

B. Resource Deployment

In this section we describe the automated deployment pro-
cess used by the test program to create the cluster of nodes
and install the Abaco software exercised by the test trial.
At a high-level, deployment consists of 1) creating 5 Open-
Stack instances for each of the dedicated Abaco components
(MongoDB, Redis, RabbitMQ, Prometheus, and the Abaco
web services), 2) creating a number of Openstack instances
corresponding to the cluster size of the trial (these are the
Abaco “compute nodes”), and 3) installing and starting the
services.

All scripts used by the test program for automating the
deployment are maintained in the Github repository for
this project [13], within the /deployment folder. The
README . md file, included in that directory, provides an in-
depth description of all of the scripts available for the users.

To simplify the process of running multiple trials, the
performance test suite git repository was designed to be cloned

The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

to a single persistent instance running within the Openstack
network where the node clusters for the different trials will
be provisioned. Scripts that make use of the OpenStack CLI
to start or stop instances require an OpenStack authentication.
The root directory of the repository contains a shell script,
openrc-script, which prompts the user for a password
when run using command . /openrc-script. This script
sets environment variables that will authenticate a user with
OpenStack. It’s worth noting that an entire Abaco installation
can run correctly on just one node, but for the experiment,
we chose to separate Abaco’s components across five separate
nodes for resource distribution and debugging purposes.

Additionally, the test scripts make use of a few pre-defined
Openstack instance images. Using pre-built images that in-
cluded base software such as the Docker container runtime,
docker-compose, etc., significantly reduced the overall rntime
of the test suite across multiple trials, as the instances were
burned down and recreated between runs. The images used by
the tests are available on the JetStream system, and we can
make them available to import to other OpenStack clusters
upon request.

The Abaco system is not ready for use until the com-
pute nodes are created and ready for use. Creation and
management of the compute nodes was also automated
with scripts in the /deployment folder. For example, the
.up_instances script creates a specified input number of
OpenStack ml.medium compute nodes using the prebuilt
perf-abaco-compute Openstack image. The up_abaco
script starts the Abaco services (packaged as Docker con-
tainers) on the various instance. The up_abaco script is a
convenience wrapper around an Ansible playbook designed
to interact with sets of instances running on an OpenStack
cluster, also included in the repository.

C. Validation Setup

The test suite itself was also automated and requires little
human intervention once the Abaco system against which it
will run has been instantiated. The /test_suite/tests
folder within the Github repository includes all the Python
tests for this experiment. The master test script, named
run_tests.sh, runs the test for all specified node sizes,
each time deleting nodes to reach the specified amount of
nodes and re-initializing all containers.

To run the tests with the autoscaler ON, the
run_tests.sh script must be modified to uncomment
the Python scripts that begin with scaling, and the
instances must be redeployed with an updated version of the
abaco.conf file, included in the repository. It’s also worth
noting that the Prometheus component is only needed when
running with the autoscaler turned on. Complete details are
provided in the project repository on Github.

D. Validation

The execution of our experiment suite has five trials of six
jobs - three using manual scaling and three using autoscaler - at
ten different node sizes. The first of the three jobs with manual

TABLE I
WORKER CONFIGURATIONS PER TEST TYPE

Test Type max workers per host max workers per actor
Quick FLOPS 6 30
Slow FLOPS 1 1

Hashrate 6 36

scaling is a quick work FLOPS test. The test is setup with six
Abaco actors per node to have one actor per node core. Each
of these actors are given 5 executions to complete and each
of these executions consists of doing the dot product of two
square matrices of dimensions 8000 by 8000. The second test
using manual scaling is the hash test and is setup similarly
to quick work FLOPS except for the fact that each actor is
given 6 executions and each execution is meant to complete
3,000,000 SHA256 hashes. The third test using manual scaling
is the slow work FLOPS test. This test has one Abaco actor per
node so that each actor gets 6 cores to run on. Each of these
actors is given 5 executions to complete and each of these
executions consists of doing the dot product of two square
matrices of dimensions 25,000 by 25,000. The last three tests
are exactly the same as the first three, but they utilize the
Abaco autoscaler for worker management.

For this paper, we use the Abaco system configura-
tions described in table I, for each test type. These pa-
rameters are set in the abaco.conf file found in the
deployment/abaco_files folder of the repository.
These parameters act as the upper bounds of available workers
in each test. These bounds resemble configurations in TACC’s
existing production deployment of Abaco and ensure that we
don’t ruinously scale up our workers and cause bottlenecks
due to inefficient CPU distribution.

IV. FINDINGS

We conduct experiments to answer the research questions
stated in section 2.1. From the first set of experiments, we
gather data on the rate of worker creation at different node
sizes, manual and autoscaler to scale workers. The second set
of experiments do the same, except we measures two perfor-
mance metrics in order to visualize any falloff in performance.

Our experimental findings broadly follow the patterns that
we expect in terms of worker creation rate and performance
drop off. Using these insights we propose to answer the re-
search questions posed by this paper in the following sections.

A. Difference in worker scaling rate between scaling types

The largest difference between manually scaled worker pool
tests and autoscaler tests is obviously the rate of worker
creation. By making this part of the experiment independent
of any work done we can see the difference in time when
creating workers.

Figures 1 and 2 both are split into two subplots for easier
viewing and analysis. Experiments on node sizes 1 through 40
are on the left plot of each figure and node sizes 50 through
100 are on the right plot of each figure.

The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

12000 - # of Nodes 1 # of Nodes

o1 — 20 —4- 50 -l 80
2 2 =k 30 60 - 90
+ 10000 g 5 40 1% 70 — 100
g ~- 10
o
»n 8000 - B
'S
g
X
S 6000+
S
-
o
% 4000
a
5
> 2000

0 - T T T
N N “‘00 @00
Time (Seconds)
Fig. 1. Rate of worker creation in the manually scaled case

In figure 1 we see two important elements. First, from 1 to
40 nodes, the manually scaled worker creation rate increases
linearly. Secondly from 50 to 100 nodes, there seems to be
a worker creation slowdown at around 200 seconds, when
around 8000 workers are created. While this particular set of
circumstances is unlikely to repeat itself in a real workflow,
we can see that the rate of worker creation reaches some upper
limit that results in a slowdown of worker creation.

400071 4 of Nodes # of Nodes
-9 1 — 20 —4- 50 - 80

T 35001 2 =k 30] 60 - 90
£ ——— 40 ¥ 70— 100
[3000 - 10
(]
2500 A 4
[
=
5 2000
2
L
© 1500 A
1S
2
£ 1000
2

500 A

0 T T T
N o o o
0 w &

Time (Seconds)

Fig. 2. Rate of worker creation in the autoscaler case

In figure 2 we can see that from 1 to 40 nodes worker
creation rate increases in a relatively regular fashion and
reaches a ceiling from 50 to 100 nodes. This can likely be
attributed to the way Abaco queues up and creates workers
once they are requested. While there may be resources to
create more workers, the autoscaler requests those resources
at set time increments and caps off the worker creation rate.

Figure 3 shows us the overall average worker creation rate
for both manual and autoscaler cases and compares them.
Here we can see that the worker creation rate slows down
in the manually scaled case at around a node size of 70 when
overall average rate begins to drop off. We can also see the rate
gradually increasing in the autoscaling case as worker creation
rate rises with additional nodes and then reaches a plateau.

17.5 mm Autoscaler N N
15.0 N Manually Scaled N
EE ' NN P 100 \
¥ 9125 N D
ga 111 11
= 10.0 1 N
w 0 N N N N
°% 75 N B N D
wg 7.5 |
S8 S \
gg 5.0 NN
IV
2.5 1
N
0.0 - N D
1 2 5 10 20 30 40 50 60 70 80 90 100

Amount of Nodes

Fig. 3. Comparison of worker creation rates

The data gathered gives useful information to users about
the Abaco platform. We see that the manually scaled case
has a higher rate of worker creation. The necessity of this
performance is somewhat negligible however due to a use case
of this variety being particular rare. The autoscaler rate has
a ceiling of about 6.5 workers created every second. Over
the course of one minute, any node size greater than around
thirty would product around 390 workers. Ten minutes would
produce around 3900 workers. This amount of workers per
node would create a bottleneck on resources solely due to
having so many docker containers running in parallel. Even
more resource hungry would be manually scaling workers at
a rate of 15 workers per node which is possible at a node size
above 30. While possible, this would produce a prohibitively
large amount of workers on a single node.

Overall, we see that Abaco performs exceptionally well
during worker creation. Assuming a user is running demanding
tests, worker creation time would be a small fraction of total
run time and will far exceed the performance necessary for
most users. While in the manually scaled case we do run into
performance issues, it’s important to note that they arise at
around 7000 workers and are likely due to the rate of worker
creation being too fast.

B. Analysis of performance at different node sizes

One of the most important questions to ask when using
Abaco is how much performance is a user ready to trade in
for the ease of use and accessibility of the Abaco autoscaler.

Column 1 of table II is the ratio of autoscaler performance
to manually scaled performance. From the results we can see
that the overall trade-off when an execution is running is nearly
indistinguishable with the autoscaler even being marginally
better than the manually scaled performance in the quick
work tests. This statistic follows our expected patterns as the
autoscaler and manually scaled tests should only differ in how
workers are created, not performance in executions.

In the second column of table II we see that the quick
work tests are 65.1% of theoretical performance, the slow
work tests are 67.7% of theoretical performance, and the
hashrate tests does not have a theoretical performance due to

The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

Ratio of Autoscaler Speed
to Manually Scaled Speed

TABLE II
PERFORMANCE RATIOS AT A NODE SIZE OF 89.

Ratio of Manually Scaled
Speed to Theoretical Speed

Ratio of Jetstream Speed
to Theoretical Speed

Ratio of Manually Scaled
Speed to Jetstream Speed

nglgs“gi 102.4% 65.1% 71.5% 80.2%
Fsg;gv;;l; 99.1% 67.7% 81.2% 94.7%
Hashrate 99.5% N/A N/A 92.5%
est

the empirical nature of hashrate testing. The third column of 30
table 1I glfj‘ans perspective on these numbers by comparing 25 ¥ :":;';::?’efca'ed : J_;:::f;'izal
the theoretical hardware performance to our Jetstream per-)
formance. In one case, Jetstream is 71.5% of the theoretical % 20 1
performance, while in the other it is 81.2% of the theoretical E 15 -
performance. In essence the theoretical hardware performance v
is an unreasonable metric to compare against when our testing s 107
hardware could only practically achieve around 75% of that s 5 -
performance. Thus the important metric to compare to is the 0
practical result, which is Jetstream performance. 30

In the fourth column of table II we see the manually W~ Manually Scaled -dfs- Jetstream
scaled speed as a percentage of Jetstream speed. In the quick 257 Autoscaler -@- Theoretical
work tests we see 80.2% of Jetstream speed. This is due a 20 1
to a combination of Docker overhead, Abaco overhead, and g
overhead due to the node. For instance, running a multitude of 157
quick tests means that the node’s CPU is constantly going in ¥ 10 4
and out of working and must constantly change clock speed g 5
from resting to turbo. In the other two tests performance is
92.5% and 94.7% of the Jetstream speed, which again can be 0
attributed to the same causes. 30

Figure 4 visualizes the results of table II. With this figure 25 ¥ rjt?;z:fefcalec’ - Jetstream
we see that performance increases linearly as more nodes are
added to the tests. and there’s not any irregularities when
executions are being ran. This gives us a sense of scale
in regards to the amount of work that the Abaco platform
is capable of running. At 89 nodes, the slow FLOPS test
reaches 19 TFLOPS of performance. This is equivalent to the

theoretical performance of 13 Stampede2[14] nodes.

To answer the research question, overall the performance
trade-off of using the Abaco platform is minor as compared
to the Jetstream performance and the trade-off of using the
Abaco autoscaler is non-existent once executions are actually
being ran.

C. The scaling limits of Abaco

A question that must be asked for a researcher is, how
far can the Abaco platform scale out before issues arise and
potentially affect usage? In our test setup we ran into several
hurdles, many were easily fixed, while others will need future
improvements made to the Abaco system to ensure peak
performance no matter the case.

The first issue that we faced came from Docker Hub.
When testing the performance of the platform, if too many
workers were requested at once, Abaco would eventually begin
receiving HTTP status codes 429, Too Many Requests”. This
would result in a platform error that attempted to scale back the

0 : : : : —

40 50 60
Nodes

70 80 90

Fig. 4. TFLOPS of different tests based on node size
Top: Lots of Quick Work Tests

Center: Slow Work Tests

Bottom: Hashrate Tests

number of workers to clear platform congestion. To alleviate
this issue going forward, Abaco should either set a capped
Docker requests rate or add an actor flag that bypasses pulling
worker images unless they are missing.

Two more issues seen were related to node resources. The
first was RabbitMQ restricting any incoming messages when a
node’s RAM was sufficiently in use. This was alleviated by set-
ting the RABBITMQ_VM_MEMORY_HIGH_WATERMARK en-
vironment variable to a higher percentage. The second re-
source issue came from MongoDB, also consuming a large

The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

amount of node RAM. This issue resulted in node slowdown
and eventual slow responsiveness, and was most likely the
cause of worker creation slowdowns in the case of very large
node sizes.

Another major issue that was observed involved Abaco’s use
of it’s Redis database. Abaco stores all runtime information for
a given actor under a single key in the Redis database. Initial
versions of the experiment sent all messages in a given test to
a single actor. At very high node counts, performance suffered
as a result of Redis optimistic locking when information was
being written to the actor record. This was alleviated by
changing the tests to use multiple actors (e.g., one actor per
node) and dividing the work evenly across the actors in the
experiment. Abaco is nearing completion of a set of changes
to it’s database usage to improve query and write performance
in the rare cases that one actor doing so much work could be
more beneficial.

Overall, the primary symptoms of scaling issues did not
come in any fatal outcomes, but in slowdowns of the Abaco
systems.

V. RELATED WORK

Abaco draws comparison to and inspiration from a number
of existing software systems.

A. Functions-as-a-service

There are commercial offerings from AWS Lambda [15],
Google Cloud Functions [16], Microsoft Azure Functions [17],
and IBM Apache OpenWhisk Functions [18]. However, many
of these offerings have limits on memory allocation and run-
time duration. Some also have limitations on which languages
can be used. AWS Lambda allows many different languages,
but limits users to 1536 MB of memory allocation and 300
seconds of runtime, while Google Cloud Functions only allows
Node.js and has a maximum duration of 540 seconds, and
Microsoft Azure functions has no limit on execution time limit
but limits the amount of functions running at once to 10.

The closest in spirit to Abaco would be the open source
project OpenFAAS [19], which provides functions-as-a-service
based on Docker images. Unlike Abaco, however, it requires
the function container to run an HTTP server. It also does not
include the Actor model and several other features that are
part of Abaco.

B. Containers-as-a-service

Commercial examples of containers-as-a-service include
Amazon’s Elastic Container Service (ECS) [20]and Google’s
Container Engine [21]. Although these services allow the
use of arbitrary container images, they lack the Actor-based
architecture that is part of Abaco’s design, making them better
suited for long-running server daemons.

C. Distributed Computing Platforms
Platforms such as Apache Spark [22], Apache Storm [23],

iPython parallels [24]Jand AWS Kinesis [25] provide features
similar to Abaco’s scientific functions. These systems even

support additional paradigms such as inter-process commu-
nication (IPC) and provide better performance. For Abaco,
scientific functions only ever attempt to achieve pleasantly
parallel compute jobs and its goal is to make them more
accessible.

VI. CONCLUSION

In this study, we tested the actual performance of Abaco
to compare it with the theoretical bounds of the system. We
measured the differences in performance and worker creation
rate between manually scaled workers and the autoscaler, and
evaluated the scaling limits of Abaco and their causes. From
our findings we conclude that the Abaco platform greatly
automatizes additional set up and frees up valuable user time
at little to no extra cost compared to a manually scaled setup.
If we were to improve upon this experiment we would want to
overhaul Abaco in order to optimize scaling to more compute
nodes. Before this experiment the scalability of Abaco was
unknown. However, with the fixes mentioned before and
hardening of some systems, Abaco has the potential to grow to
an even greater extent and give researchers an even better tool
to make use of HPC resources. Overall the study demonstrates
the practicality of using Abaco to simplify workflow and using
the Abaco autoscaler to further reduce user time needed.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation Office of Advanced CyberInfrastructure,
award number 1740288. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE) Jetstream
resource at the TACC through allocation CCR190017.

REFERENCES

[1] J. Stubbs et al., “Rapid development of scalable, distributed computation
with Abaco,” Science Gateways Community Institute. 10th International
Workshop on Science Gateways, 2018.

[2] G. Agha, Actors: a model of concurrent computation in distributed
systems. Cambridge, MA, USA: MIT Press, 1986.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[4] A. Wood, Rabbit MQ: For Starters. North Charleston, SC, USA:
CreateSpace Independent Publishing Platform, 2016.

[5] Prometheus, “Prometheus,” Feb. [Online]. Available:
https://github.com/prometheus/prometheus

[6] (2020) Docker hub flops image. [Online]. Available:
https://hub.docker.com/repository/docker/abacosamples/abaco_perf_flops

[7] (2020) Numpy dot product. [Online]. Available:
https://www.tutorialspoint.com/numpy/numpy_dot.htm

[8] (2020) ‘What is hashrate? [Online]. Available:
https://www.buybitcoinworldwide.com/mining/hash-rate/

[9] (2020) Docker hub hashrate image. [Online]. Available:

https://hub.docker.com/repository/docker/abacosamples/abaco_perf_hashrate

[10] D. M. R. Fernandez. (2020) Nodes, sockets, cores and flops, oh, my.
[Online]. Available: https://www.shorturl.at/kUZ12

C. A. Stewart, T. M. Cockerill, 1. Foster, D. Hancock, N. Merchant,
E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke, G. Turner,
M. Vaughn, and N. I. Gaffney, “Jetstream: A self-provisioned,
scalable science and engineering cloud environment,” in Proceedings
of the 2015 XSEDE Conference: Scientific Advancements Enabled
by Enhanced Cyberinfrastructure, ser. XSEDE ’15. New York,
NY, USA: ACM, 2015, pp. 29:1-29:8. [Online]. Available:
http://doi.acm.org/10.1145/2792745.2792774

[11]

[12]

[13]
[14]
[15]
[16]

[17]
[18]

The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

A. Shrivastwa, S. Sarat, K. Jackson, C. Bunch, E. Sigler, and T. Camp-
bell, OpenStack: Building a Cloud Environment. Packt Publishing,
2016.

(2020) Github - abaco autoscaling. [Online]. Available:
https://github.com/tacc/abaco-autoscaling

(2020) Stampede?2. [Online]. Available:
https://www.tacc.utexas.edu/systems/stampede2

(2020) Aws lambda. [Online]. Available:

https://aws.amazon.com/lambda/

(2020) Google cloud foundation. [Online]. Available:
https://cloud.google.com/foundation-toolkit/

(2020) Microsoft azure. [Online]. Available: https://azure.microsoft.com/
(2020) Apache openwhisk. [Online]. Available:

[19]
[20]

[21]
[22]
[23]
[24]

[25]

https://openwhisk.apache.org

(2020) Openfaas. [Online]. Available: https://www.openfaas.com
(2020) Amazon elastic container service. [Online]. Available:
https://aws.amazon.com/ecs/

(2020) What is gke? [Online]. Available:
https://www.aquasec.com/wiki/display/containers/Google+Container+Engine
(2020) Apache spark. [Online]. Available: https://spark.apache.org
(2019) Apache storm. [Online]. Available: http://storm.apache.org
(2020) Ipython parallel. [Online]. Available: https://ipython.org/ipython-
doc/stable/parallel/parallel_intro.html

(2020) Amazon kinesis. [Online]. Available:
https://aws.amazon.com/kinesis/

