
Sequence Analysis

Comparative genome analysis using sample-specific

string detection in accurate long reads

Parsoa Khorsand 1,†, Luca Denti 2,†, Human Genome Structural Variant

Consortium, Paola Bonizzoni3,*, Rayan Chikhi2,* and Fereydoun Hormozdiari1,4,5,*

1Genome Center, UC Davis, Davis, CA 95616, USA, 2Department of Computational Biology, Institut Pasteur, Paris 75015, France,
3Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, 20126, Italy, 4UC Davis MIND

Institute, Sacramento, CA 95817, USA and 5Department of Biochemistry and Molecular Medicine, Sacramento, UC Davis, Sacramento,

CA 95817, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Alexandros Stamatakis

Abstract

Motivation: Comparative genome analysis of two or more whole-genome sequenced (WGS) samples is at the core
of most applications in genomics. These include the discovery of genomic differences segregating in populations,
case-control analysis in common diseases and diagnosing rare disorders. With the current progress of accurate
long-read sequencing technologies (e.g. circular consensus sequencing from PacBio sequencers), we can dive into
studying repeat regions of the genome (e.g. segmental duplications) and hard-to-detect variants (e.g. complex struc-
tural variants).

Results: We propose a novel framework for comparative genome analysis through the discovery of strings that are
specific to one genome (‘samples-specific’ strings). We have developed a novel, accurate and efficient computation-
al method for the discovery of sample-specific strings between two groups of WGS samples. The proposed ap-
proach will give us the ability to perform comparative genome analysis without the need to map the reads and is not
hindered by shortcomings of the reference genome and mapping algorithms. We show that the proposed approach
is capable of accurately finding sample-specific strings representing nearly all variation (>98%) reported across
pairs or trios of WGS samples using accurate long reads (e.g. PacBio HiFi data).

Availability and implementation: Data, code and instructions for reproducing the results presented in this manu-
script are publicly available at https://github.com/Parsoa/PingPong.

Contact: paola.bonizzoni@unimib.it or rayan.chikhi@pasteur.fr or fhormozd@ucdavis.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Whole-genome sequencing (WGS) has become the dominant ap-
proach in studying variations across genomes. Today, WGS data
continue to provide invaluable insight into every aspect of biology.
In particular, comparative analysis of multiple samples using WGS
data is fundamental in understanding the genetics of disorders, traits
and evolution. The comparison of differences found between exome
and genome of affected cases and unaffected controls has successful-
ly found genetic variants associated with disorders and guided pre-
dicting genes contributing to disorders (Cirulli and Goldstein,
2010). Population genomics studies benefit from WGS data by find-
ing shared or discriminative sequences and genomic variants be-
tween different populations (1000 Genomes Project Consortium
et al., 2015; Mallick et al., 2016). Furthermore, evolutionary studies

also benefit from such comparative studies in a multiple species set-
ting (Prado-Martinez et al., 2013; Genome 10K Community of
Scientists, 2009).

High-throughput short-read sequencing (i.e. Illumina) has been
the driving force behind most of the WGS studies in the past decade.
Short-read sequencing is cheap, provides high-throughput data and
has a low error rate (Shendure and Ji, 2008). However, it also has
several major drawbacks. First, the assembly of the eukaryotic
genomes using short-read sequencing data is nontrivial and compu-
tationally resource-intensive (Kingsford et al., 2010). Second, the
short length of the reads (generally below 250 bp) produced by these
technologies has caused significant complexity and ambiguity in
studying repeat regions of the genome (Chaisson et al., 2015;
Logsdon et al., 2020; Zook et al., 2020). Third, the quality of struc-
tural variation (SV) and other complex variant calls predicted using

VC The Author(s) 2021. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2021, 1–9

doi: 10.1093/bioadv/vbab005

Advance Access Publication Date: 31 May 2021

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

short-reads data has remained low despite significant bioinformatics
efforts and still requires orthogonal validations (Chaisson et al.,
2019; Soylev et al., 2019). Finally, several types of genetic variations
are hard to predict using short-read sequencing technologies due to
their repeat nature (e.g. VNTR expansions; Bakhtiari et al., 2020).

With the advent of long-read sequencing technologies (e.g.
PacBio or Oxford Nanopore), we have access to long reads (>10
kb) that can be used to overcome the above-mentioned shortcom-
ings of short-read sequencing (Bzikadze and Pevzner, 2020;
Chaisson et al., 2019; Miga et al., 2020). WGS data from long-read
sequencing technologies enable one to discover and further study
variants that were either hidden or unreliably predicted from short-
read data. For example, a recent benchmark showed that long-read
sequencing data enabled to find a large fraction (over 50% of SVs),
which were unreported from short-read sequencing data (Chaisson
et al., 2019, 2015; Zook et al., 2020).

One of the main objectives of performing WGS is the comparison of
two or more genomes. Such comparative genomics studies are concerned
with multiple individuals from the same species or from multiple species,
either in a case versus control setting or within population genomics
(Karlin et al., 1998). The discovery of differences between multiple sam-
ples using WGS is at the core of most genomic analysis.

The dominant framework for comparative variant analysis among
multiple sequenced samples is based on mapping the reads to the ref-
erence genome (Langmead and Salzberg, 2012; Li, 2018), predicting
variants in each sample and comparing the predicted loci (Albers
et al., 2011; Chaisson et al., 2015; Medvedev et al., 2009; Poplin
et al., 2017). The comparison of variants predicted between multiple
samples is based on overlapping the predicted variant locations. This
strategy is effective for comparing SNVs; however, for many SVs the
exact breakpoint position is hard to establish and ambiguities can
negatively affect accuracy. There are several heuristics used for com-
paring SVs in multiple samples by considering that the exact break-
point for the SV might not be known or ambiguous (https://
simpsonlab.github.io/2015/06/15/merging-sv-calls/). These are based
on merging SVs with approximately close breakpoints and consider-
ing reciprocal overlaps as a match (Chaisson et al., 2019). Such heu-
ristics tend to work for SVs in simple regions of the genome.
However, for more complex scenarios such as STR/VNTR expan-
sions (Bakhtiari et al., 2018; Gymrek et al., 2012), SVs with adjacent
single nucleotide polymorphism (SNP) variants (Cameron et al.,
2019) or SVs with breakpoints in repeats (e.g. segmental duplications)
will result in reduction of accuracy as these heuristics tend to fail
(Chaisson et al., 2019; Numanagi�c et al., 2018; Soylev et al., 2019).

An alternative approach for comparative genome analysis is not
to directly compare the predicted variants among multiple samples
but rather to find the sequences containing breakpoints that are dif-
ferent between samples. This approach can be implemented without
the need to map the reads to the reference genome and predict var-
iants per sample (i.e. mapping-free approaches). Examples of map-
ping-free approaches for studying genomes are DiscoSNPþþ
(Peterlongo et al., 2017), Scalpel (Narzisi et al., 2014), VarGeno
(Sun and Medvedev, 2019), MALVA (Denti et al., 2019), Nebula
(Khorsand and Hormozdiari, 2021) and HAWK (Rahman et al.,
2018) for detection and genotyping of variants in WGS data, and
DE-Kupl (Audoux et al., 2017) for detecting RNA-Seq variations.
These mapping-free approaches have the advantage of not being
impacted by the possibility of ambiguity in SV breakpoints or inac-
curacies in the reference genome itself. The mapping-free
approaches developed for studying short-read sequencing data are
mostly based on finding k-mers that distinguish one sample from
other samples. The idea of computing k-mers that are unique to a
target w.r.t. a background set of genomes is also proposed in
Phillippy et al. (2007). In general, the length of k-mers (i.e. k) is a
fixed constant and usually short. However, for long and accurate
reads, we are not limited by the length of the short reads and can se-
lect arbitrarily long k-mers if needed. This flexibility on the length
of sequences selected can be advantageous for comparative studying

of repeat regions of the genome. The tools mentioned above are fun-
damentally unable to deal with variable-length k-mers and therefore
novel developments are needed to fully explore this direction.

We propose a novel method for comparative analysis of multiple
WGS samples using accurate long-read sequencing data (e.g. HiFi
reads from PacBio; Wenger et al., 2019), without the need to map
the reads to a reference genome or choose a fixed k value. The
advantages of utilizing flexible length strings (e.g. adaptive seeds) in
pattern matching have been previously demonstrated (Kiełbasa
et al., 2011). The main novelty is the formulation and the resolution
of a new computational problem concerned with enumerating sam-
ple-specific strings, while avoiding a combinatorial explosion due to
the quadratic size of the set of potential candidates. We show that
this approach enables identifying nearly all sequences spanning var-
iants between two human genomes on actual PacBio HiFi data.
Some of the applications of the proposed comparative genome ana-
lysis framework include finding de novo variants, sequences segre-
gating in a pedigree or markers distinguishing between populations
(e.g. cases and controls).

2 Problem definition

Consider two sets of strings: T (targets) and R (references). Here by
references, we mean either (i) a reference genome or (ii) a set of
unassembled reads that are coming from an unknown reference gen-
ome or (iii) a heterogeneous set of reads and genomes that are taken
together to be the reference pangenome of some population of inter-
est. We are interested in enumerating substrings of the targets that
do not appear as exact substrings of the references.

As a motivating example consider two individuals and their re-
spective sets of sequencing reads T and R. We define a variant as a
genomic event that can be described by a single line in the VCF for-
mat, such as an SNP, an insertion or deletion or a structural variant
such as a duplication or a translocation. More complex forms of
genomic variation, e.g. inversion-duplications, can be seen as combi-
nations of variants and therefore are not further considered here.
The intuition is that for each variant, there should exist at least one
substring of the genome of T spanning this variant that is not found
within the genome of R. Indeed, the whole genome of T would be
one such substring, but there also likely exist shorter strings than
that. Translating this observation to reads, there should exist for
each variant at least one substring of T that is not found in R. We
postulate, and will later experimentally verify, that with long and
accurate enough reads virtually all variants can be found in sub-
strings of T that do not appear in R.

We are now returning to the abstract formulation of our initial
problem of finding substrings of the targets not found in the referen-
ces. For two strings s and t, we will use the notation s@t to indicate
that s is a substring of t (and s 6 @t for s is not a substring of t).
Formally, we want to enumerate the set fST of all strings s such that

1. there exists t 2 T where s@t, and

2. for all r 2 R; s 6 @r.

In the worst case, the size of fST can be quadratic in the total length
of strings in T, which is too large to be stored or even enumerated.
Therefore, we will instead seek a reduced set of strings ST that can
be seen as a minimal representation of fST that do not consider
strings having proper substrings in fST (the substring-free property).
This is formalized as the following problem:

PROBLEM 1 [Substring-Free Sample-specific (SFS) strings]. Let T and R be

two sets of strings, targets and references, respectively. Let fST be the set

of all strings satisfying conditions 1 and 2 above. Return the largest sub-

set ST � fST such that for all s 2 ST, there does not exist s0 2 ST ; s
0 6¼ s,

where s0@s; i.e. ST is the set of all strings from fST for which no shorter

string of fST is a substring of them.

2 P.Khorsand et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

A string s 2 ST is then called a T-specific string w.r.t. references R, or

simply specific string when T and R are clear from the context.

Furthermore, a T-specific string s that is a substring of t 2 T, will be also

called a t-specific string. In the following, we will sometimes omit recall-

ing that T-specific (and t-specific) strings are substring-free.

We will refer to Problem 1 as the ‘SFS problem’, and an instance is

illustrated in Figure 1a. It is easy to see that SFS can be (inefficiently)

solved in Oðn3Þ worst-case time and Oðm3Þ memory, where n and m are

the total lengths of strings in T and R, respectively. The set fST can be

constructed by enumerating all substrings of T and checking their mem-

bership in a hash table containing all substrings in R; then another pass

over fST constructs ST in linear time and space over the total length of

strings in fST , e.g. through indexing fST using an FM-index . In this paper,

we will propose a novel and more efficient quadratic-time Oðn2Þ algo-

rithm (Algorithm 1 in Section 4) using linear space O(m) for solving the

SFS problem. We will also propose a heuristic version of the algorithm

that solves a relaxed variant of Problem 1 in linear time O(n). All these

complexities are on top of the FMD-index construction (Li, 2012),

which in our case can be done in O(m) time and space (Belazzougui

et al., 2020).

The following property shows that it is sufficient to consider
instances of the SFS problem where T is reduced to a single string.

PROPERTY 1 (Local substring-free property). Let T and R be two sets of

strings (targets and references, respectively). The set ST of T-specific

strings w.r.t. R, i.e. the solution of SFS problem can be computed as the

union of the sets St with t 2 T, where St is the set of t-specific strings.

PROOF. For the sake of simplicity, assume that T ¼ ft1; t2g. Let St1 be the

set of t1-specific strings obtained as a solution of the SFS problem on in-

stance ðft1g;RÞ and similarly let St2 be the set of t2-specific strings on in-

stance ðft2g;RÞ. We need to prove that given ST the solution of the SFS

problem on instance ðft1; t2g;RÞ, then ST ¼ St1 [St2 . Let us first observe

that ST � St1 [St2 as indeed each string s in ST must be a substring of t1
or of t2 and thus s is a t1-specific string or is a t2-specific string. Hence let

us now prove that St1 [St2 � ST . By construction, any t1-specific string

(as well as any t2-specific string) is a substring of a string in T (condition

1) and it is not a substring of any string in R (condition 2). Moreover,

strings in St1 (St2 , respectively) are substring-free in the sense that each

string is not a substring of another one in the same set. We have to prove

that any t1-specific string x cannot be a substring of any t2-specific string

y, and vice versa (substring-free property). We will prove this by contra-

diction. Let us assume that x is a substring of y. By definition y is not a

substring of R, which implies that x is a substring of R: indeed y being

substring-free, it holds that any substring of y is a substring of R. But x

being a t2-specific string, we obtain a contradiction. At this point, the

vice versa is trivial to prove. h

3 Preliminary concepts

The FMD-index (Li, 2012) is a data structure based on the FM-
index (Ferragina and Manzini, 2000), which indexes a set of strings
and their reverse complements at the same time, allowing to perform
search operations on the index. Differently from the bidirectional
Burrows–Wheeler Transform (BWT; Lam et al., 2009), which builds
two FM-indices, the FMD-index builds a single FM-index for both
strands. The FM-index of the collection fr1; . . . ; rng of strings of
sample R is essentially made of the BWT of R, which is itself a per-
mutation B of the symbols of R obtained from the Generalized
Suffix Array (GSA) SA of R. Indeed, recalling that SA½i� is equal to
(k, j) if and only if the k-suffix of string rj is the i-th smallest element
in the lexicographic ordered set of all suffixes of the strings in R,
then B½i� ¼ rj½jrjj � k�, if SA½i� ¼ ðk; jÞ and k < jrjj, or B½i� ¼
$otherwise.

Given a string Q, all suffixes that have Q as a prefix appear con-
secutively in GSA, where they induce an interval ½b; eÞ which is
called Q-interval. Note that the difference e—b, also called the
width of the Q-interval is equal to the number of occurrences of Q
as a substring of some string r 2 R. The backward extension oper-
ation of an arbitrary character r applied to the Q-interval of a string
Q allows to determine the rQ-interval in the index. The FMD-index
also allows to apply a forward extension operation of an arbitrary
character r to a Q-interval of a string Q to determine the Qr-inter-
val in the index. The implementation of both forward and backward
operations in the FMD-index is realized by constructing an FM-
index for the collection R concatenated with the reverse-comple-
ment of each string in R.

By adopting the same notations as in Li (2012), we keep a triple
½i; j; l� (called bi-interval) that encodes for the Q-interval ½i; iþ l� and
the Q-interval ½j; jþ l�, where Q is the reverse complement of string
Q. Whenever l¼0 the Q-interval (respectively, Q-interval) is empty
and string Q (respectively, Q) does not occur in IR. We will use no-
tation t½b : e� to denote an interval on string t, i.e. t½b : e� is a sub-
string of t, whereas ½ib; jb; lb� to denote the corresponding t½b : e�-
interval on the index IR.

4 Algorithm for sample-specific string detection

We present a novel algorithm (Algorithm 1, Ping-Pong search) to
solve the SFS problem between a set of reference strings and a single
target string t 2 T. Our algorithm computes substring-free t-specific

r = ACATGAG
t = ACAGAG

ST = { CAG,
 AGA,
 ACAG,
 CAGA,
 AGAG,
 ACAGA,
 CAGAG,
 ACAGAG}
ST ={ CAG,

AGA}

r

ST ST

t

~

~

A

B

Fig. 1. (a) Illustration of the SFS framework. Consider a target string t and a refer-

ence string r, each represented by a circle symbolizing all substrings. Blue area: sub-

strings of t not in r; pink: substrings of r not in t; purple: substrings common to both

t and r. We start by enumerating fST , consisting of all strings s that satisfy conditions

1 and 2 of Section 2 (i.e. s is a substring of t and not a substring of r). Then, the set

ST (result of SFS) is the largest substring-free subset of fST . (b) The Ping-pong search

algorithm (top) starts from the end of the input string t and alternates between back-

ward and forward extensions. When the backward extension (blue arrows) ends

due to a mismatch (red cross), the algorithm starts a forward extension (green

arrows) until another mismatch is found. After a single iteration (outer while loop

of the pseudocode), a t-specific string t½b� 1 : eþ 1� is found and the algorithm

restarts the search from position e, allowing solutions to ‘overlap’ on t. A dashed

blue line represents bi-intervals that were already computed during a forward search

(and therefore not recomputed in the next iteration). In the relaxed version of the al-

gorithm (bottom side), solutions cannot overlap and the search restarts from pos-

ition b—2 instead of e. We note that Algorithm 1 outputs substring t½b : e� since b

(resp. e) has been already decremented (resp. incremented)

Comparative genome analysis 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

strings with respect to the reference sample R using the FMD-index
of R, from now on denoted IR.

LEMMA 1. Let R be a collection of strings with FMD-index IR and let t be

a string that does not exist in R. Let x be the rightmost t-specific string

currently found in t, where x ¼ t½bx : ex�. It must then be the case that

any other t-specific string must begin before bx. Assume such a specific

string y exists and starts at by, it must then be the case that y is the short-

est prefix of t½by : ex � 1� that does not occur in the index.

PROOF. By definition, two specific strings cannot start at the same pos-

ition as one cannot be a substring of the other. Thus given x the right-

most occurrence of a specific string in t, the second rightmost occurrence

y of a specific string must start to the left of bx, i.e. given y ¼ t½by : ey� it
must be that by < bx. By the substring-free property t½by : ex� will not

occur in the index as it contains the substring x, which does not occur in

the index. On the other hand, it must be that ey < ex otherwise y includes

x as by < bx, which is not possible by definition of x and y as substring-

free specific strings. Thus ey < ex which implies that y is a prefix of

t½by : ex � 1�. Now, y must be the shortest such prefix not in the index,

otherwise, it includes another specific string contradicting the substring-

free property, thus concluding the proof of the Lemma. h

Based on the previous Lemma, given the interval ½bx : ex� of the
last detected specific string, the algorithm will start looking for a
new occurrence of a specific-string from the end position ex � 1.

More precisely, the algorithm keeps track of two search posi-
tions b and e inside t which, respectively, represent the start and end
of a substring of t that may or may not exist in IR and uses the con-
stant-time forward and backward extension operations defined on
the FMD-index (Li, 2012).

Given the index IR and a triple ½i; j; l� encoding a Q-interval and
Q-interval, the algorithm alternates between extending the Q-inter-
val backward (step 1, lines 5–7) and forward (step 2, lines from 11
to 14) to find t-specific strings. Figure 1b illustrates how the algo-
rithm iterates over an input string t.

During each iteration of step 1, the algorithm backward extends
the t½b : e�-interval of IR with t½b� 1� until the backward extension
in the index IR with t½b� 1� is not possible. In other words, this is
equivalent to finding the left maximal match ending at position e

and extending it one base on the left. Now t½b� 1 : e� is a substring
of t that is specific to t. However, such a substring is not necessarily
the shortest, since one of its prefixes may also be specific.

Step 2 initializes e to b—1 and then keeps incrementing e by one
position at a time, and performs a forward extension in IR for the
prefix t½b� 1 : e� for each increment. If the forward extension with
t½eþ 1� is not possible in IR, the algorithm stops and returns t½b�
1 : eþ 1� as the shortest string beginning from position b—1 that’s
not in IR. In other words, we are looking for the longest right max-
imal match starting at position b—1 and then we are extending it
one base to the right. We note that Algorithm 1 outputs substring
t½b : e� since b (resp. e) has been already decremented (resp. incre-
mented) previously in the corresponding while (i.e. step 1 for b and
step 2 for e). Finally, since substring t½b� 1 : e� is not t-specific and
is in the index, it could be extended to the left to compute a new t-
specific which will eventually overlap the last computed t-specific
t½b� 1 : eþ 1�. Line 16 initializes this process. Observe that
Algorithm 1 may compute the same SFS multiple times when proc-
essing a string t; however, the output is still a set of t-specific strings
without duplicates.

THEOREM 1. Algorithm 1 solves the SFS problem for a string t w.r.t. a ref-

erence set R in time
P

s2St Oðjsj � occs þ jtjÞ, where occs is the number of

times a string s is output by Algorithm 1 when processing t.

PROOF. We start by proving correctness and then time complexity. Based

on Lemma 1, the Algorithm searches for a new specific string starting

from the end position ex of the last detected specific string x. The cor-

rectness relies on the fact that Algorithm 1 visits from right to left each

position b of the prefix of length ex of the input string t maintaining the

following invariant property: the Algorithm outputs the shortest prefix

t½b : e� of t½b : ex � 1� which does not occur in the index IR (if such a

string exists). Based on Lemma 1, this invariant property allows us to

state that the Algorithm for any position b outputs the t-specific string

starting at that position (which is unique by the substring-free property)

if any; since all positions of the input string are processed by the algo-

rithm, all possible specific strings are output in the end. We now show

the invariant by analyzing a single iteration. Assume that b is a position

such that t½b : e� is a t-specific string computed when the algorithm visits

such a position of t. Now, let k be the smallest integer (with k< b) such

that t½b� k : e� 1� is the next string x not in the index. This is easily

detected by backward extension, i.e. by iterating k times the loop from

line 5 to 7 of the Algorithm. After finding k, the algorithm sets k0 ¼ 0

and computes whether t½b� k : b� kþ k0� is in the index for increasing

values of k0 and stops as soon as t½b� k : b� kþ k0� is not in the index

thus computing the shortest prefix of t½b� k : e� 1� not in the index.

This concludes the proof of the invariant.

To prove Algorithm 1 time complexity, observe that it performs a num-

ber of backward extensions which is equal to the length of the string t,

while it performs a number of forward extensions that is OðlbÞ for lb
being the length of the specific string retrieved from position b of t. Thus

the time complexity easily follows from the above observation. h

4.1 Relaxed Ping-pong Search: a faster heuristic search

algorithm
Observe that by Theorem 1 the worst-case time required to solve the
SFS problem on a single string t is Oðn2Þ for n being the length of
the string t, assuming that the index I is already available. Note that
in the formula

P
s2St Oðjsj � occs þ jtjÞ; jsj can be O(n) in the worst

case and
P

s2St OðjsjÞ can achieve the bound of Oðn2Þ since the
strings in St span positions of the string t that are overlapping and
we can have O(n) strings in St each of length O(n). See
Supplementary Section S1.1 for an example. This clearly implies a
quadratic time for solving the SFS problem when the input is no lon-
ger a single string t but a collection T of strings of total length n.

Algorithm 1: Computing t-specific strings from FMD-index

IR
1 Function PingPongSearch(t, IR)

2 b jtj � 1

3 ½i; j; l� initðIR; t½b�Þ//init function initializes an FMD-Index

bi-interval representing a single character

4 while b � 0 do

5 while l 6¼ 0 ^ b > 0 do//Step 1 - Backward extension

6 b b� 1

7 ½i; j; l� backwardExtensionðIR; ½i; j; l�; t½b�Þ
8 if l 6¼ 0 ^ b ¼ 0 then return

9 e b

10 ½i; j; l� initðIR; t½e�Þ
11 while l 6¼ 0 do//Step 2 - Forward extension

12 ½ib; jb; lb� ½i; j; l�
13 e eþ 1

14 ½i; j; l� forwardExtensionðIR; ½i; j; l�; t½e�Þ
15 Output t½b : e�
16 ½i; j; l� ½ib; jb; lb�
The following main property that is a direct consequence of

the substring-free property of specific strings is used to define

the generic iteration step of Algorithm 1.

4 P.Khorsand et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

We consider a simple variant of Algorithm 1 that leads to a lin-
ear time complexity by avoiding the computation of specific strings
that occur in overlapping positions of the original string t. The vari-
ation is simply obtained from the pseudo-code of Algorithm 1 by
deleting instruction 12 and replacing line 16 with the instruction
½i; j; l� initðIR; t½b� 1�Þ. This implies that the search procedure of
t-specific strings starts from one position to the left of the beginning
of the last detected string in t. We call this procedure the relaxed
Ping-pong Search.

It is easy to verify that the relaxed version of Algorithm 1 is lin-
ear in the size of string t. Indeed, in the worst case, it performs two
index queries per symbol of the input string: each character is
searched in the index one time during the backward extension and
one time during the forward extension (see Fig. 1b). Formally, when
estimating the formula

P
s2St Oðjsj � occs þ jtjÞ of Theorem 1 in this

variant, strings in St occur in positions of t that are disjoint and thus
in the worst case the sum of the sizes of strings in St isP

s2St Oðjsj � occsÞ ¼ OðjtjÞ, thus proving that the time complexity
of the algorithm is linear in the size of the input string.

4.2 Relaxed output set upper-bounded by the edit distance
The edit-distance is a well-known measure in the comparison of two
genome sequences. By counting the minimum number of nucleotide
insertions, deletions and changes that transform a genome t into r,
the edit distance between t and r, denoted by D(t, r) is clearly an
upper bound for the number of positions with variations in t w.r.t.
to r. In the following, we show that for a pair of strings t and r, each
t-specific string returned by the relaxed version of Algorithm 1 cor-
responds to at least one edit operation that changes t into r, thus
showing that D(t, r) is an upper bound on the size of its output set.
Observe that the relaxed version of Algorithm 1 computes a subset
of the T-specific strings w.r.t. R that has the substring-free property.

THEOREM 2. Given two strings t and r, jSt j the size of the set of strings St
returned by the relaxed Ping-pong search with respect to r, then

jStj � Dðt; rÞ.

PROOF. Since the set St consists of string induced by nonoverlapping intervals

of sequence t, any edit operation changes jSt j by at most 1. The minimum set

of edit operations to convert t to r [i.e. D(t, r)] will transform t ¼ t0 into suc-

cessive strings t1; t2; . . . ; tDðt;rÞ and eventually tDðt;rÞ ¼ r. For each operation,

the successive sets of relaxed Ping-pong strings for t2; . . . change in cardinality

by at most 1, i.e. jjSti j � jStiþ1
jj � 1 for 0 � i < Dðt; rÞ. Observe that

Dðt; rÞ ¼ 0 implies jStj ¼ 0 thus jStDðt;rÞ j ¼ 0. Thus, total size of jStj could

not have been more than D(t, r) to start. h

4.3 Implementation details
We implemented Algorithm 1 in Cþþ based on code from
ropeBWT2 (Li, 2014). After creating the index of the reference set
R, our code executes Algorithm 1 on each target string t 2 T while
also keeping track of the number of times each specific string is seen
(Fig. 2). As each target, string can be processed independently, our
code is embarrassingly parallel. Once all target strings have been
analyzed, a postprocessing step combines the smaller solutions into
the final solution of the SFS problem. In order to remove specific
strings produced by sequencing errors when our method is run on

WGS data, the postprocessing step can filter out all the specific
strings occurring less than s times, with s being a user-defined cutoff.
Our implementation is freely available at https://github.com/Parsoa/
PingPong.

5 Results

5.1 Specific string detection in simulated human HiFi

trio
We used simulations to test the performance of our proposed
method in detecting de novo SVs in WGS trios (i.e. proband, mother
and child). We mutated the GRCh38 genome randomly with 6115
insertions and deletions from the 1KG project (Chaisson et al.,
2019) to produce two haplotypes for each parent. We limited the
simulations to chromosomes 1–5. We then simulated the child gen-
ome by inheriting variants from the parents and considering recom-
bination inside each chromosome. Finally, we introduced an
additional 17 595 randomly generated de novo structural variants
equally divided between insertions, deletions and inversions into the
child genome impacting 7 913 593 base-pairs. See Supplementary
Figure S1 for the distribution of lengths of simulated SVs.

We simulated reads from the father, mother and child genomes
at different coverage levels (5�, 10�, 20� and 30�) for each haplo-
type using PBSIM (Ono et al., 2013) with sequencing error rate and
read length distribution similar to real HiFi data. Specifically, we
sampled these parameters from the HGSVC2 PacBio HiFi reads for
the HG00733 sample (Porubsky et al., 2020) with the error rate
averaging at 0.1%. All three samples were error corrected using
ntEdit (Warren et al., 2019) to remove sequencing errors. The com-
bined reads of the father and mother were indexed using FMD-index
and we searched for child-specific strings using Algorithm 1 (exact
version).

We measured the accuracy of the method using two metrics of
recall and precision. Recall is defined as the percentage of de novo
variants that are covered with child-specific strings and precision is
defined as the percentage of child-specific strings that cover a de
novo variant. We test the performance of the method for different s
cutoff values (2 � s � 6) to study the relationship between this
parameter and sequencing coverage levels and to measure our meth-
od’s sensitivity (Fig. 3). While the high coverage simulations (30�,
20� and 10�) have constantly high recall rates regardless of s, the
low-coverage 5� sample’s recall drops significantly with larger cut-
off values.

We analyzed the child-specific strings from the 30� simulation
using s¼5 in more detail. A total of 14 381 350 child-specific
strings were retrieved with 2 052 144 remaining after filtering low-
abundance strings. The selected child-specific strings achieved
>98% recall and 82% precision at recovering simulated de novo
SVs. To better demonstrate the usefulness of child-specific strings,
we compared the performance of the strings generated using both
the exact and relaxed versions of Algorithm 1 on the 30� simulation
against child-specific k-mers of fixed sizes 32 and 101 bp with abun-
dance of at least 5. Child-specific k-mers were calculated using
KMC3 (Kokot et al., 2017) by subtracting the set of parent k-mers
from the set of child k-mers. We calculated precision and recall by
mapping the k-mers and SFS strings to the child haplotypes with
BBMap (Bushnell, 2014). We observe that SFS consistently performs
better than fixed-length k-mers. The results can be seen in Table 1.

Fig. 2. Illustration of sample-specific string detection. Two genomes R and T are depicted. With respect to genome R, site 1 has no variation in T, site 2 is a heterozygous inser-

tion in T, and site 3 is a heterozygous deletion in T. Our pipeline aims to detect T-specific strings by (a) indexing the reads sequenced from R with an FMD-Index and (b) ana-

lyzing the reads sequenced from T with our novel Ping-pong search algorithm. We note that, for ease of presentation, we depict at the end of the pipeline a single T-specific

string per site even though multiple T-specific strings may actually be reported for each site

Comparative genome analysis 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

We further analyzed the qualities of the alignments of child-specific
strings against all three genomes in the trio (Supplementary Fig. S2).
Alignment quality is evaluated based on the number of bases that do
not match. More than 83% of child-specific strings map perfectly to the
child genome, and no (zero) string has a mismatch-free mapping to ei-
ther parent genomes, indicating that the strings are truly child-specific.

Finally, we re-ran the simulation at 30� coverage without incor-
porating any sequencing errors in the trio. In this scenario, the simu-
lated SVs are the sole source of novel sequences in the child
compared to the parents and therefore we expect every recovered
SFS to cover a variant. Analyzing the 1 720 395 child-specific strings
retrieved in this scenario indeed yields a precision of 100.0%.
However, the recall remains the same as in the case with sequencing
errors, at 98.70%. This is because some variants do not produce
novel sequences and thus cannot be captured with our approach.

5.2 Specific string detection in real human HiFi data
We performed an extensive evaluation of sample-specific strings
using real HiFi data to assess their ability to compare two individu-
als of different populations. We considered the HG00733 child
(Puerto Rican trio) and the NA19240 child (Yoruba trio). For both
these individuals, the HGSVC2 (Porubsky et al., 2020) provides a
PacBio HiFi 30� sample. Supplementary Figure S3 reports the
length distribution of the considered samples.

After correcting both samples with ntEdit (Warren et al., 2019),
we indexed the NA19240 sample and we searched for HG00733-
specific strings (from now on we will refer to these strings simply as
‘specific’) using both the exact and the relaxed version of our algo-
rithm. Supplementary Table S1 reports the running times and the
peak memory usage of our pipeline; the creation of the FMD-Index
was the most time-consuming step. Based on the results on simu-
lated data (Fig. 3) and the coverage of the two samples (30�), we
considered all specific strings occurring more than five times. The
main goal of this postfiltering is to remove from downstream analy-
ses specific strings that with high probability are the result of
sequencing errors. Using the exact (relaxed, respectively) version of
our algorithm, we retrieved 34 219 149 (7 125 436, respectively)
strings. Supplementary Figure S4 reports information on the lengths
and the abundances of these strings. As expected, the exact version
of our algorithm is slower and retrieves more strings than the
relaxed one.

5.2.1 Contigs-based analysis
We first analyzed the quality of HG00733-specific strings by check-
ing whether they are effectively specific to the HG00733 child. To

Fig. 3. Precision (a) and recall (b) calculated for different coverage levels (5�, 10�, 20� and 30� per haplotype) and cutoff values 2 � s � 6 in simulation

Table 1. Comparison of performance of SFS and fixed-length k-

mers in the 30� simulation with s¼ 5

Sequences Variants

Method Total Covering Precision (%) Covered Recall (%)

Alg. 1 (exact) 1 690 675 2 052 144 82.38 17 367 98.70

Alg. 1 (relax) 377 007 366 390 97.18 17 365 98.69

32-mers 5 089 147 3 053 969 59.91% 17 317 98.42

101-mers 7 060 167 3 453 211 48.91% 17 348 98.59

The bold values represent the best performance in each column.

Fig. 4. Results on exact HG00733-specific strings. (a, b) Comparison of the quality of specific strings alignments computed against the HG00733 contigs (a) and the NA19240

contigs (b). (c) Comparison of the qualities of the specific string alignments representing (Haplo-compatible) and not representing (Nonhaplo-compatible) a specific portion of

HG00733 haplotypes. (d) Comparison of the qualities of nonhaplo-compatible specific string alignments computed against the HG00733 contigs and the NA19240 contigs.

Quality is expressed as number of base differences (mismatches, insertions, deletions and clips)

6 P.Khorsand et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

do so, we aligned the strings to the contigs provided by the
HGSVC2 consortium of the two individuals and we counted base
differences (substitutions, insertions, deletions and clips) within
alignments. We mapped strings shorter than 500 bp with BBMap
(Bushnell, 2014) and longer ones with minimap2 (Bushnell, 2014).
We used two different aligners since BBMap showed higher sensitiv-
ity in mapping short (<50 bp) strings. Figure 4a and b shows the
results of this analysis for the exact version of our algorithm (see
Supplementary Fig. S5 for the relaxed results). A total of 33 964 009
specific strings were mapped to the HG00733 contigs and 27 326
747 (80%) of these were aligned perfectly, i.e. without any base dif-
ference. On the other hand, 33 932 307 specific strings were mapped
to the NA19240 contigs but only 158 094 (0.4%) of these were
aligned perfectly.

To summarize the results of this contigs-based analysis, we intro-
duced the C-precision (contigs-based precision) metric. Based on the
alignments to the contigs, it computes the fraction of HG00733-spe-
cific strings that align perfectly to HG00733 contigs and not perfect-
ly to NA19240 contigs. Out of 27 326 747 specific strings aligned
perfectly to HG00733 contigs, 132 031 aligned perfectly also to
NA19240 contigs. The exact version of our algorithm therefore
achieved a C-precision of 79.47%. On the other hand, the relaxed
version achieved a C-precision of 90.61%. This was expected since
the relaxed version of our algorithm retrieves a lower number of spe-
cific strings easily achieving a higher precision at the expense of, as
we will see in the next section, a lower recall (see Table 2). This ana-
lysis shows that the strings output by our algorithm are effectively
specific to the HG00733 and may be effectively used to characterize
differences between the two individuals.

5.2.2 Haplotypes-based analysis
We evaluated the effectiveness of HG00733-specific strings in cover-
ing variant alleles that are specific to the considered individual. To
do so, we considered the phased callset provided by the HGSVC2
consortium (Ebert et al., 2020) and, after filtering out overlapping
variations, we extracted for each variation and for each haplotype
the set of alleles that are present in the HG00733 child but not in
the NA19240 (we will refer to these alleles as HG00733-specific or
simply specific alleles). Therefore, each variation may have 0, 1 or 2
specific alleles. For instance, if a variation has genotype 0j2 in the
HG00733 child and 1j1 in the other child, we considered alleles 0
and 2 as specific to the HG00733. Table 2 (column Total) reports
the number of specific alleles we considered in our analysis. We clas-
sified each allele with respect to the type of its originating variant
[following the classification in Ebert et al. (2020)]: SNPs, indels
(insertions and deletions of 1–49 bp), and SVs (insertions and dele-
tions of �50 bp), which include copy number variants and balanced
inversion polymorphisms.

Considering the entire set of known variations, we built the hap-
lotypes of the HG00733 individual using BCFtools and then we
aligned the HG00733-specific strings (occurring more than five
times) to them using BBMap (strings �500 bp) and minimap2
(strings > 500 bp). Finally, we used BEDtools (Quinlan and Hall,
2010) (intersect sub-command) to find the overlaps between the
alignments and the considered alleles.

We evaluated the quality of our specific strings in terms of recall,
i.e. number of specific alleles effectively intersected by at least one
alignment, and H-precision (Haplotype-compatible precision), i.e.
the number of specific strings representing a specific portion of a
haplotype of the HG00733 child. By ‘specific portion’, we mean a
subsequence of an HG00733 haplotype induced by a set of varia-
tions that is different from the subsequence of any NA19240 haplo-
type induced by the same set. Table 2 reports the results of this
analysis. We introduced the H-precision measure since close alleles
(especially SNPs) on a haplotype of one individual may result in a
specific string even when neither alleles are specific. Indeed, a set of
close alleles may be shared between two individuals but in one indi-
vidual they may be on the same haplotype whereas in the other one
on different haplotypes. Consider for instance two nearby variants
with genotypes 0j1 and 0j1 in one individual and 1j0 and 0j0 in the
other. In this case, the haplotype containing alleles 1 and 1 is specific
to the first individual even though single alleles are not.

Remarkably, the set of specific strings computed by our method
(exact version) intersect most of the HG00733-specific alleles
(>98%), covering nearly all alleles coming from SNPs and indels
(>98% and >95%, respectively) and most of alleles coming from
SVs (>92%). We observed that a majority of the variants not cov-
ered by the sample-specific strings were indels in stretches of A or T
sequences, likely addressable through improvements in homopoly-
mer error correction.

Out of the 34 219 149 specific strings retrieved by the exact ver-
sion, 73.43% of them represent a specific portion of the HG00733
haplotypes (H-precision). Figure 4c reports the comparison in terms
of base differences between the alignments representing specific por-
tions of the haplotypes (denoted as ‘haplo-compatible’) and those
that do not (denoted as ‘non haplo-compatible’). As expected, the
vast majority of the haplo-compatible strings are aligned perfectly to
the haplotypes whereas the vast majority of nonhaplo-compatible
strings are aligned with errors.

To better investigate why 	27% of the specific strings align well
to the HG00733 haplotypes but do not represent a specific portion
of them (accordingly to the considered VCF), we aligned those
strings to the contigs of the two individuals. Figure 4d reports the
results of this analysis. 2 885 356 strings were aligned perfectly to
the HG00733 contigs whereas only 208 330 were mapped perfectly
to the NA19240. Moreover, 	1.8 million specific strings align per-
fectly to the HG00733 contigs but not to its haplotypes. This leads
us to conjecture that a portion of those strings corresponds to true
variants missing from the VCF.

Results on strings retrieved by the relaxed algorithm follow the
same trend (see Supplementary Fig. S5). They, however, achieve

Table 2. Variant analysis on real human HiFi data

Metric Method Missed Total Hits (%)

Recall SNPs Alg. 1 (exact) 39 354 3 147 410 98.75

Alg. 1 (relaxed) 112 940 96.41

31-mers 243 363 92.27

101-mers 46 143 98.53

indels Alg. 1 (exact) 31 426 716 226 95.61

Alg. 1 (relaxed) 120 313 83.20

31-mers 131 591 81.63

101-mers 32 944 95.40

SVs Alg. 1 (exact) 1 521 20 775 92.68

Alg. 1 (relaxed) 2 948 85.81

31-mers 4 912 76.36

101-mers 1 978 90.48

All Alg. 1 (exact) 72 301 3 884 411 98.14

Alg. 1 (relaxed) 236 201 93.92

31-mers 379 866 90.22

101-mers 81 065 97.91

H-precision Alg. 1 (exact) 9 093 407 34 219 149 73.43

Alg. 1 (relaxed) 1 583 684 7 125 436 77.77

31-mers 28 561 768 97 975 734 70.85

101-mers 120 109 600 387 221 925 68.98

C-precision Alg. 1 (exact) 7 024 433 34 219 149 79.47

Alg. 1 (relaxed) 669 324 7 125 436 90.61

31-mers 23 170 031 97 975 734 76.35

101-mers 84 211 940 387 221 925 78.25

Note: Recall is the fraction of known alleles specific to HG00733 (w.r.t.

NA19240) overlapped by at least one HG00733-specific string (or specific k-mer).

For the sake of completeness, we reported the recall values for alleles coming from

SNPs, indels (2–49 bp), and SVs (�50bp), as well as all considered specific alleles.

H-precision (Haplotype-aware precision) is the fraction of HG00733-specific

strings (or HG00733-specific k-mers) representing a portion of its haplotypes that

is specific w.r.t. the NA19240 haplotypes. C-precision (Contig-based precision) is

the fraction of HG00733-specific strings (or k-mers) aligning perfectly only to

HG00733 contigs (and with errors to NA19240 contigs).

The bold values represent the best performance in each column.

Comparative genome analysis 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

higher H-precision and lower recall than the exact version (see
Table 2), likely due to a lower number of strings returned.
Moreover, the relaxed algorithm may fail in covering close varia-
tions: if two variations are too close to each other, strings retrieved
by our relaxed algorithm may cover only the right-most variation
(due to its right-to-left traverse of input strings). See Supplementary
Figure S6 for an example.

To put our results in perspective, we compared them with a k-
mer method. Similarly to an HG00733-specific string, an
HG00733-specific k-mer is a k-mer occurring in the HG00733 sam-
ple and not in the NA19240. To compute the set of specific k-mers,
we first counted all k-mers occurring more than five times in the two
samples independently with KMC3 (Kokot et al., 2017) and then we
retrieved the k-mers present only in the HG00733 sample by sub-
tracting the two sets (kmc_tools kmers_subtract operation). A total
of 97 975 734 HG00733-specific k-mers (k¼31) were retrieved.
We then mapped those to HG00733 haplotypes with BBMap and
evaluated their recall and H-precision similarly to HG00733-specific
strings. Table 2 reports the results of this analysis. HG00733-specif-
ic 31-mers achieved lower recall and H-precision than HG00733-
specific strings, although their computation is faster (8 h for k-mers
versus 28–37 h for Ping-Pong, see Supplementary Table S1). The
poor performance of 31-mers can be explained by their length: a 31-
mer located at a variant position might occur elsewhere in the gen-
ome, whereas a longer string would be unique. We note that long
(>500 bp) HG00733-specific strings retrieved by the exact algo-
rithm cover 	1.5% of indels and SVs not covered by shorter ones,
proving that longer strings are sometimes needed to effectively cover
a variation.

For this reason, we also performed an analysis using longer k-
mers (k¼101). A total of 387 221 925 101-mers were retrieved.
However, BBMap failed to align that many k-mers in reasonable
time. We therefore aligned them with BWA-MEM (Li, 2013) and
computed their recall and H-precision. Results of this analysis can
be found in Table 2. Thanks to their length, 101-mers are able to
cover more variations than 31-mers but not as many as our (exact)
specific strings which are of variable length, sometimes longer than
101 bp. For instance, Supplementary Figures S7 and S8 show two
examples of variants covered by specific strings and not by specific
101-mers, highlighting the biological usefulness of our method.
Moreover, 101-mers are less precise than (exact) HG00733-specific
strings: indeed, due to their overlapping nature, a false variant (e.g.
a sequencing error) will in the worst case yield 101 false specific
101-mers. We therefore mapped the specific k-mers to the contigs of
the two individuals and we computed their C-precision (fraction of
specific k-mers mapping perfectly only to HG00733 contigs).
Similarly to specific strings, C-precision of 31-mers and 101-mers is
higher than their H-precision (see Table 2), proving one more time
that the considered VCF may be incomplete.

Finally, in an attempt to reduce the number of strings obtained
using the k-mer method, we assembled the 31-mers and the 101-
mers into unitigs [which correspond to maximally extending k-mers
using their ðk� 1Þ-overlaps and stopping at any variation] using
BCALM2 (Chikhi et al., 2016) and we computed their recall and H-
precision. Results of this analysis can be found in Supplementary
Table S2. Surprisingly, assembling the k-mers into unitigs did not
improve their overall accuracy.

6 Discussion

We have here presented a novel algorithm called Ping-Pong search for
finding SFS strings with the primary objective of performing compara-
tive genome analysis between two groups of whole-genome sequenced
samples. We have shown that these SFS strings capture a comprehen-
sive representation of genomic variation between samples of interest.
In practice, the proposed approach is capable of finding sequences
that span the breakpoints of most variants specific to each sample.

The proposed approach improves upon using fixed-length
sequences (i.e. k-mers) for comparative genome analysis in three
aspects: (i) higher recall: SFS sequences cover a higher fraction of
true difference between two genomes than fixed-length k-mers. This

is mainly due to their variable-length nature which increases our
power in finding strings representative of differences between
genomes in repetitive regions (e.g. segmental duplications). (ii)
higher precision: our experiments have indicated that SFS sequences
have a higher precision than fixed-length k-mers (k¼31 or 101).
(iii) specificity: our exact algorithm returned between 3� and 10�
less strings than k-mers, making results more amenable to further
analysis. As a motivating example, we could not exhaustively map
the results of the 101-mer analysis in reasonable time (<1 week).

Our method also has several major advantages over traditional
mapping-based approaches for comparative genome analysis. First,
it is not dependent on a prior knowledge of variants in each sample
and thus, its performance is not impacted by the biases in variant
prediction methods. Second, the proposed approach does not re-
quire mappings of the reads, hence, ambiguities in read mappings or
biases in mapping algorithms will not impact the results of the pro-
posed method.

One of the main limitations of the proposed method is its reli-
ance on reads with low sequencing error (e.g. HiFi reads). To be
able to accurately predict SFS strings from reads with sequencing
errors, we need to utilize an error correction tool such as ntEdit.
This method is not expected to translate well to higher error-rate
long reads, unless correction yields nearly perfect reads. Another
downside is the 3� longer running time of the relaxed algorithm
compared to k-mers. This longer runtime is mainly due to the over-
head of building the FMD index. We note that the FMD index can
be replaced by a more efficient implementation that offers the same
backwards and forward extension operations, if such a data struc-
ture or implementation becomes available, thus improving the per-
formance of the method.

We believe there are many applications and possible future re-
search directions for SFS. An obvious application of the experiments
presented in this manuscript would be the discovery of de novo var-
iants in the child-sample in genomic trios (Section 5.1). Another poten-
tial application would be the discovery of somatic variants between
whole-genome sequences of tumor and normal tissues. Furthermore,
as SFS strings will capture any variant as long as it produces a genomic
sequence not present in the FMD index, our method could be used as
an orthogonal approach to catalog all variants in a given sample
against the reference genome. Note that, this mapping-free variant
calling approach against reference genome would be significantly
faster than the comparative analysis scenario as only the reference gen-
ome needs to be FMD-indexed. Another application of the proposed
approach is the discovery of variants between two samples that are
missed using traditional mapping-based approaches. The SFS remain-
ing after filtering the strings covering the predicted variants using map-
ping-based approaches may indicate potential novel variants missed
by traditional mapping-based approaches.

Furthermore, a potential venue for more theoretical research
could be to investigate the connection between SFS strings and other
related but different concepts in stringology, such as maximal exact/
unique matches, minimum unique substrings (Ye et al., 2010) and
shortest uncommon superstrings.

Funding

This project has received funding from the European Union’s Horizon 2020

research and innovation program under the Marie Skłodowska-Curie grants

agreements numbers [872539] and [956229], ANR Inception (ANR-16-

CONV-0005) and ANR Prairie (ANR-19-P3IA-0001). This work has also

been supported in part by NSF award DBI-2042518 to F.H.

Conflict of Interest: The authors declare no conflicts of interest.

References

1000 Genomes Project Consortium et al. (2015) A global reference for human

genetic variation. Nature, 526, 68–74.

Albers,C.A. et al. (2011) Dindel: accurate indel calls from short-read data.

Genome Res., 21, 961–973.

8 P.Khorsand et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

Audoux,J. et al. (2017) DE-kupl: exhaustive capture of biological variation in

RNA-seq data through k-mer decomposition. Genome Biol., 18, 243.

Bakhtiari,M. et al. (2018) Targeted genotyping of variable number tandem

repeats with advntr. Genome Res., 28, 1709–1719.

Bakhtiari,M. et al. (2021) Variable number tandem repeats mediate the ex-

pression of proximal genes. Nature Communications,

12(1), 1–12.

Belazzougui,D. et al. (2020) Linear-time string indexing and analysis in small

space. ACM Trans. Algorithms, 16, 1–54.

Bushnell,B. (2014). BBMap: a fast, accurate, splice-aware aligner. Technical

Report. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA.

Bzikadze,A.V. and Pevzner,P.A. (2020) Automated assembly of centromeres

from ultra-long error-prone reads. Nat. Biotechnol., 38, 1309–1308.

Cameron,D.L. et al. (2019) Comprehensive evaluation and characterisation of

short read general-purpose structural variant calling software. Nat.

Commun., 10, 1–11.

Chaisson,M.J. et al. (2015) Resolving the complexity of the human genome

using single-molecule sequencing. Nature, 517, 608–611.

Chaisson,M.J. et al. (2019) Multi-platform discovery of haplotype-resolved

structural variation in human genomes. Nat. Commun., 10, 1–16.

Chikhi,R. et al. (2016) Compacting de Bruijn graphs from sequencing data

quickly and in low memory. Bioinformatics, 32, i201–i208.

Cirulli,E.T. and Goldstein,D.B. (2010) Uncovering the roles of rare variants in

common disease through whole-genome sequencing. Nat. Rev. Genet., 11,

415–425.

Denti,L. et al. (2019) MALVA: genotyping by Mapping-free ALlele detection

of known VAriants. Iscience, 18, 20–27.

Ebert,P. et al. (2020) De novo assembly of 64 haplotype-resolved human

genomes of diverse ancestry and integrated analysis of structural variation.

bioRxiv,

Ferragina,P. and Manzini,G. (2000). Opportunistic data structures with appli-

cations. In Proceedings 41st Annual Symposium on Foundations of

Computer Science, pp. 390–398. IEEE.

Genome 10K Community of Scientists. (2009) Genome 10k: a proposal to ob-

tain whole-genome sequence for 10 000 vertebrate species. Journal of

Heredity, 100, 659–674.

Gymrek,M. et al. (2012) lobstr: a short tandem repeat profiler for personal

genomes. Genome Res., 22, 1154–1162.

Karlin,S. et al. (1998) Comparative DNA analysis across diverse genomes.

Ann. Rev. Genet., 32, 185–225.

Khorsand,P. and Hormozdiari,F. (2021) Nebula: ultra-efficient mapping-free

structural variant genotyper. Nucleic Acids Res., 49, e47.

Kiełbasa,S.M. et al. (2011) Adaptive seeds tame genomic sequence compari-

son. Genome Res., 21, 487–493.

Kingsford,C. et al. (2010) Assembly complexity of prokaryotic genomes using

short reads. BMC Bioinformatics, 11, 21.

Kokot,M. et al. (2017) Kmc 3: counting and manipulating k-mer statistics.

Bioinformatics, 33, 2759–2761.

Lam,T.W. et al. (2009). High throughput short read alignment via bi-direc-

tional bwt. In 2009 IEEE International Conference on Bioinformatics and

Biomedicine, pp. 31–36. IEEE.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with bow-

tie 2. Nat. Methods, 9, 357–359.

Li,H. (2012) Exploring single-sample SNP and INDEL calling with whole-ge-

nome de novo assembly. Bioinformatics, 28, 1838–1844.

Li,H. (2013). Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv preprint arXiv:1303.3997.

Li,H. (2014) Fast construction of fm-index for long sequence reads.

Bioinformatics, 30, 3274–3275.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics, 34, 3094–3100.

Logsdon,G.A. et al. (2020) Long-read human genome sequencing and its

applications. Nat. Rev. Genet., 21, 518–597.

Mallick,S. et al. (2016) The simons genome diversity project: 300 genomes

from 142 diverse populations. Nature, 538, 201–206.

Medvedev,P. et al. (2009) Computational methods for discovering structural

variation with next-generation sequencing. Nat. Methods, 6, S13–S20.

Miga,K.H. et al. (2020) Telomere-to-telomere assembly of a complete human

x chromosome. Nature, 585, 79–84.

Narzisi,G. et al. (2014) Accurate de novo and transmitted indel detection in

exome-capture data using microassembly. Nat. Methods, 11, 1033–1036.

Numanagi�c,I. et al. (2018) Fast characterization of segmental duplications in

genome assemblies. Bioinformatics, 34, i706–i714.

Ono,Y. et al. (2013) PBSIM: PacBio reads simulator—toward accurate gen-

ome assembly. Bioinformatics, 29, 119–121.

Peterlongo,P. et al. (2017) DiscoSnpþþ: de novo detection of small variants

from raw unassembled read set (s). BioRxiv, doi: 10.1101/209965.

Phillippy,A.M. et al. (2007) Comprehensive DNA signature discovery and val-

idation. PLOS Comput. Biol., 3, e98.

Poplin,R. et al. (2017) Scaling accurate genetic variant discovery to tens of

thousands of samples. BioRxiv, doi:10.1101/201178.

Porubsky,D. et al. (2020) Fully phased human genome assembly without par-

ental data using single-cell strand sequencing and long reads. Nat.

Biotechnol., 39, 1–7.

Prado-Martinez,J. et al. (2013) Great ape genetic diversity and population his-

tory. Nature, 499, 471–475.

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Rahman,A. et al. (2018) Association mapping from sequencing reads using

k-mers. Elife, 7, e32920.

Shendure,J. and Ji,H. (2008) Next-generation DNA sequencing. Nat.

Biotechnol., 26, 1135–1145.

Soylev,A. et al. (2019) Discovery of tandem and interspersed segmental dupli-

cations using high-throughput sequencing. Bioinformatics, 35, 3923–3930.

Sun,C. and Medvedev,P. (2019) Toward fast and accurate SNP genotyping

from whole genome sequencing data for bedside diagnostics.

Bioinformatics, 35, 415–420.

Warren,R.L. et al. (2019) ntedit: scalable genome sequence polishing.

Bioinformatics, 35, 4430–4432.

Wenger,A.M. et al. (2019) Accurate circular consensus long-read sequencing

improves variant detection and assembly of a human genome. Nat.

Biotechnol., 37, 1155–1162.

Ye,K. et al. (2010) Mining unique-m substrings from genomes. J. Proteomics

Bioinf., 3, 099–103.

Zook,J.M. et al. (2020) A robust benchmark for detection of germline large

deletions and insertions. Nat. Biotechnol., 38, 1–9.

Comparative genome analysis 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/1/1/vbab005/6290003 by guest on 30 January 2022

