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A B S T R A C T

We develop the mechanics of combined bending and twisting deformation of a one-dimensional
filamentous structure with protruding stiff fish-scale-like plates embedded at an angle on the
surface. We develop a Cosserat kinematic formulation along with scale contact constraints. This
geometrically exact model allows us to bypass the limitations of small deflection finite element
computations, thereby preserving the accuracy of scale kinematics. The derived structure–
property relationships reveal, for the first time, the combined effect of bending and twisting
on a slender fish-scale inspired substrate. The model subsumes previous models on pure
bending and pure twisting, but also shows previously unobserved phenomena that arise due
to the coupled effects of these loads. These include a new interpretation of kinematic locking
behavior, multiple contact regimes, asymmetric sensitivities of one curvature over the other,
and discontinuous transitions in the nonlinear moment–curvature and torque–twist behaviors,
reflecting the complex scale engagement patterns.

1. Introduction

Fishes are synonymous with scales, Fig. 1(a), although scales are far more versatile in nature. They cover numerous reptiles
and can also be intermittently found in mammals such as in pangolins and armadillos (Wang et al., 2016; Chen et al., 2011).
More interestingly, there are scale-like features in the wings of butterflies, human hair and papillae on feline tongues (LaTorre
and Bhushan, 2006; Michielsen and Stavenga, 2008), indicating the singular importance of the scale morphology in enhancing
functions. One of the major advantages of scales architecture is that they are generally lightweight additions to a substrate due to
low volume fraction, but still enhance stiffness and multifunctionality (Buehler, 2006; Wegst et al., 2015). Several critical properties
including protection, locomotion, camouflaging, and thermal regulation have been attributed to scales (Kertész et al., 2008; Long
et al., 1996; Song et al., 2010). Thus, they are now intensely studied as material templates to make armors, smart skins, soft robotics
nd multifunctional surfaces (Sadati et al., 2015; Wei et al., 2016; Roche et al., 2017; Sire et al., 2009). Mechanically, scales give
rise to fascinating emergent behavior such as strain stiffening, evolving directionality and anomalous frictional response (Ghosh
et al., 2014, 2016, 2017; Ali et al., 2019a,c,b, 2020; Ebrahimi et al., 2019, 2020, 2021a,b). These behaviors can potentially aid
organisms in balancing multiple complex, and often contradictory functions such as locomotion with protection, and flexibility with
stiffness.

Such possibilities have resulted in numerous studies in the past, to understand the nature of enhancements to material properties
brought about by scales. Early research highlighted and confirmed the outstanding behaviors of 1-dimensional beam-like substrates
covered uniformly with scales using a combination of analytical and finite element (FE) models (Ghosh et al., 2014; Ebrahimi et al.,
019, 2020; Vernerey and Barthelat, 2010; Vernerey et al., 2014). These works established precise structure–property relationships
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Fig. 1. (a) Natural fish scales under deformation mode, adapted under CC BY 2.0 (Kemoole, 2017). (b) Fabricated biomimetic scale metamaterials under bending
deformation. (c) Fabricated biomimetic scale metamaterials under twisting deformation. (d) Fabricated biomimetic scale metamaterials under combined bending
and twisting deformation.

in pure bending loads for both smooth and rough sliding between scales, and for both rigid and flexible scales (Ghosh et al., 2014,
016; Vernerey and Barthelat, 2010, 2014; Martini et al., 2017; Shafiei et al., 2021). The essential characteristics of bending behavior
uch as strain stiffening and locked states were found to be universally valid even when stiff scales were not uniformly distributed
e.g. functionally graded (Ali et al., 2019c)) or loaded under non-uniform bending (Ali et al., 2019a).
The locked state is essentially a kinematic configuration beyond with scale motion would result in interpenetration leading

o rigid behavior. In reality, even before locking commences, the contact forces on the scales would be large enough to lead to
cales deformation. Thus, bending behavior would transition from substrate deflection (soft) to scale deformation (stiff), leading to
sharp increase in rigidity of the overall structure. Recent studies have further confirmed locking and nonlinear strain stiffening
henomena under pure torsion, thereby extending their validity even in twisting (Ebrahimi et al., 2019, 2020). However, calculations
of structure–property under torsion, while underlining the universality, also highlighted striking differences from bending. For
instance, the kinematic locking envelopes are complex nonlinear functions of geometry, unlike in bending where they are linear.
In addition, the tilt angle of the scales (see Fig. 1(b) to Fig. 1(d)), had a significant impact on the nature of locking, with some
angles even precluding locking behavior. When Coulomb friction was included between the sliding scales, more differences were
evident (Ghosh et al., 2016; Ebrahimi et al., 2020). For instance, while frictional locking was observed in both bending and twisting,
in the twisting case, locking envelopes were highly nonlinear without any closed form solution, unlike the bending case. Also, the
relative energy dissipated due to friction in one cycle of loading (i.e., from unloaded state to locked state) was found to monotonically
increase with the friction coefficient (𝜇) for twisting case, even though for bending case, increasing 𝜇 did not always increase the
dissipated energy in a cycle (Ebrahimi et al., 2020; Ghosh et al., 2016). Such differences are not unexpected as mechanical behavior
s dependent on the interplay of structure, load, and geometry with no intrinsic guarantees on universality. Thus, it is important to
nvestigate individual canonical loading cases carefully and rigorously, before declaring either generalities or anomalies.
It is surprising that the mechanics of combined bending and twisting has not been studied. There is virtually no knowledge of

he behavior of slender fish-scale inspired substrates in 3-D or spatial deflections for non-trivial load cases. 3-D deflection under
oupled loading is significantly more complex, but of great practical applications. This is both due to the nature of real world loads
nd also the possibility of geometrical defects in the biomimetic substrate, leading to cross curvatures (e.g. sagging or intrinsic
wist). Prior research noted above, indicate that existing models may not be universally valid, scale linearly or even hold similar
unctional forms across geometry and loading combinations (Ali et al., 2019a,c). Thus, entirely new models are necessary to arrive
t structure–property relationships.
We address this lacuna in this work, by developing the mechanics of a frictionless biomimetic scale-covered beam, which its

D-printed prototype is shown in Fig. 1(b) to Fig. 1(d). Using a Cosserat rod model, we obtain the structure–property relationships
nd reveal the nature and regimes of nonlinearity, the interplay of bending and twisting, relationships between global (substrate)
2

nd local (scale) deformations, and locking behavior. We use finite element (FE) simulations and prior results in the literature to
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validate our model. This paper is organized as follows: in Section 2, we develop the kinematics of the filament in bending and
wisting loads, and derive the moment–curvature relationships, assuming small strains and additive strain energies. In Section 3,
we briefly describe the finite element model we use to validate our theory. In Section 4, we conclude the paper with results and
discussion.

2. Contact mechanics of scales engagement

We develop a kinematic description of the scale-covered substrate, which is shown in Fig. 2(a) schematically. The inherent
challenge in describing kinematics of this system is the complex 3-D configuration of scales and their rotation with respect to the
substrate. We address this by using a Cosserat kinematic description, commonly used to model finite elasticity of rods. Although the
structure shown in Fig. 2 has a finite width, any variation of strains along the width (i.e., along the 𝑥-direction) has been neglected
and we model the substrate as an idealized rod. Cosserat kinematics is convenient, because it incorporates a natural director basis
at each point along the rod. We use this basis to describe the orientation of the scale relative to the substrate. In this way, the scales’
orientations naturally couple to the bending strain variables of the Cosserat model.

Another advantage of the Cosserat framework is that modeling the mechanics of these structures is straightforward; we add the
strain energies of the substrate and the homogenized energy for scales (see Section 2.4). In this work, we will assume small strains
in the substrate and use a linearly elastic constitutive law for it. This has been found to be sufficient in the practical contexts of
relatively thin substrates that tend to lock before very large strains are permitted (Vernerey and Barthelat, 2014; Ghosh et al., 2014;
Martini et al., 2017; Shafiei et al., 2021). More complicated constitutive models can be easily incorporated (Antman, 1995; Audoly
and Pomeau, 2010) within our framework. Other simplifying assumptions and the general validity of the energy formulation have
been discussed elsewhere (Ebrahimi et al., 2019; Ghosh et al., 2017).

2.1. Global cosserat kinematics

Consider the system shown in Fig. 2(a). We model the substrate as a Cosserat rod (Antman, 1995; Audoly and Pomeau, 2010)
whose centroidal curve in its undeformed reference configuration is defined by 𝐑(𝑠), where 𝑠 represents the arc-length along the
undeformed configuration. As shown in the figure, the planar undeformed substrate points along the 𝑧-direction, i.e., 𝐑(𝑠) = 𝑠𝐞3,
where 𝐞1, 𝐞2, and 𝐞3 are the standard Cartesian basis vectors along the 𝑥, 𝑦, and 𝑧 directions, respectively. We identify the reference
directors of the undeformed rod (𝐃𝑖, 𝑖 = 1, 2, 3) with the cartesian basis vectors, i.e., 𝐃𝑖 = 𝐞𝑖. Let 𝐫(𝑠) denote the deformed position
of the centroidal curve (shown in Fig. 2(b)), and 𝐝1(𝑠), 𝐝2(𝑠), and 𝐝3(𝑠) are the orthonormal directors moving along the deformed
rod. In the Cosserat description, the directors of the deformed configuration are related to those of the undeformed configuration
by an orthogonal (rotation) matrix 𝐐(𝑠):

𝐝𝑖(𝑠) = 𝐐(𝑠)𝐞𝑖, for 𝑖 = 1, 2, 3. (1)

Differentiating (1) with respect to 𝑠 and substituting for 𝐞𝑖 using the same, we obtain

𝐝′𝑖(𝑠) = 𝐊𝐝𝑖, for 𝑖 = 1, 2, 3, (2)

where

𝐊 ∶= 𝐐′(𝑠)𝐐𝑇 (𝑠), (3)

is a skew-symmetric matrix that depends on the bending and twisting strains in the rod. We can associate 𝐊 (written with respect
to the basis {𝐝1,𝐝2,𝐝3}) with an axial vector, 𝜿 ∶= 𝜅1𝐝1 + 𝜅2𝐝2 + 𝜅3𝐝3, i.e.,

𝐊 =
⎛

⎜

⎜

⎝

0 −𝜅3 𝜅2
𝜅3 0 −𝜅1
−𝜅2 𝜅1 0

⎞

⎟

⎟

⎠

. (4)

Thus, we can rewrite (2) as

𝐝′𝑖 = 𝜿 × 𝐝𝑖, for 𝑖 = 1, 2, 3. (5)

The strain variable 𝜅3 is interpreted as the twisting strain in the rod, while 𝜅1 and 𝜅2 as the bending strains about the 𝑥 and 𝑦 axes,
respectively. Note that the definition of bending and twisting strains in the Cosserat sense described above is distinct from the actual
3D strains in the substrate. In Cosserat kinematics, the rod is modeled as a 1D curve, and Cosserat strains can be interpreted as the
(3D) strains averaged over the cross-section of the substrate (Antman, 1995). This approximation is justified for thin structures. In
the cases of pure bending (Ghosh et al., 2014) or pure twisting (Ebrahimi et al., 2019), we can identify the Cosserat strains with
the curvature of the rod or twist rate, respectively. However, the matrix description of the strains, noted in (4), is more appropriate
for the general case considered here. Henceforth, we use the term ‘strains’ strictly in this Cosserat sense.

We assume spatially homogeneous strains in this model analogous to prior studies (Ghosh et al., 2014; Vernerey and Barthelat,
2010). This makes 𝐊 independent of 𝑠 and helps set up periodicity conditions to extract structure–property relationships. For sharp
gradients in strains or functionally graded structures, either local periodicity (Ali et al., 2019c) or a discrete scale-by-scale approach
can be used (Ali et al., 2019a). The periodicity condition allows us to study the kinematics using a representative volume element
(RVE) of a pair of scales (Ghosh et al., 2014; Vernerey and Barthelat, 2010).
3
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Fig. 2. (a) Schematic of flat reference configuration of the scale-covered rod with arc length variable along the length. (b) Schematic of deformed configuration
f the same rod under coupled bend–twist load.

In an RVE, the strain variables 𝜅1, 𝜅2, and 𝜅3 are constant and viewed as parameters. Eq. (3) can be explicitly integrated to solve
for 𝐐(𝑠), and we obtain

𝐐(𝑠) = 𝑒𝑠𝐊, (6)

where without loss of generality, we have assumed that the scale at 𝑠 = 0 is fixed and does not change its orientation as the substrate
deforms. That is, 𝐐(0) = 𝐈.

Besides bending and twisting, the rod would, in general, experience shearing in 𝑥 and 𝑦 directions, and stretching in the 𝑧-
direction (we neglect other stretching and shear modes due to the substrate’s thin cross-section). In Cosserat kinematics, strain
variables associated with the above three modes of deformation are denoted by 𝜈1, 𝜈2, and 𝜈3, respectively. These are related to the
deformation by

𝐫′(𝑠) =
3
∑

𝑖=1
𝜈𝑖(𝑠)𝐝𝑖(𝑠). (7)

If we use (1) to express 𝐝𝑖 in terms of 𝐐(𝑠) and 𝐞𝑖, and after integrating the resulting equation, we obtain

𝐫(𝑠) =
3
∑

𝑖=1
∫

𝑠

0
𝜈𝑖𝐐(𝜏)𝐞𝑖 𝑑𝜏, (8)

where we have used the boundary condition 𝐫(0) = 𝟎, because the rod is fixed at the origin 𝑠 = 0. In this work, we assume
inextensibility and unshearability of the rod and accordingly set 𝜈1 = 𝜈2 = 0 and 𝜈3 = 1. These are reasonable approximations
for the current case as soft polymers under small to moderate loads tend to be incompressible (Chang et al., 1976; Yang et al.,
021). Although some limited warping can take place, their overall effect on the kinematics (but not mechanics) is negligible
nd has little influence on in-plane shear. For very large twisting, such effects would need to be taken into account (Ebrahimi
t al., 2019). In the FE simulations presented in Section 3, we approximate inextensibility by choosing the Poisson’s ratio 𝜈 = 0.49.
umerical simulations presented in Section 4 seem to confirm this approximation, as we observed no appreciable length change of
he rod under the combined loading. Neither was any significant change in cross-sectional area observed. Note that despite these
ssumptions, there is little loss of generality in the Cosserat framework described below. If the framework were applied in the design
nd optimization of compressible substrates, the incompressiblity and unshearability assumptions could be easily relaxed. Then, the
osition of the rod must be determined using (8) with appropriate values for parameters 𝜈1, 𝜈2, and 𝜈3.

2.2. Local kinematics of scales

We assume that the scales are identical in shape (rectangular with scale width 2𝑏 and scale length 𝑙𝑠 = 𝑙 + 𝐿, where 𝑙 is the
exposed length, and 𝐿 is the length of embedded section into substrate), equally spaced along the rod, and are much stiffer than
the underlying substrate. The scales are therefore assumed to be rigid. In addition, the assumption of periodicity of contact (i.e., the
use of RVEs) is also common (Ghosh et al., 2014; Ebrahimi et al., 2019). Non-periodic or functionally graded systems have been
nvestigated previously for the cases of pure bending and have indicated the salient features of these systems are still preserved
nder periodicity (Ali et al., 2019a,c). In the reference configuration, the scales are oriented parallel to each other with orientation
escribed by the dihedral angles 𝛼0 and 𝜃0; see Fig. 2(a). Here, 𝜃0 is the angle made by the scale with the 𝑧-axis, and 𝛼0 is the
cale’s tilt angle made by its base with the 𝑥-axis. The spacing of two adjacent scales measured along the centroidal curve of the
ndeformed configuration is 𝑑. As the rod deforms, the scales rigidly rotate with the rod (maintaining orientations 𝜃0 and 𝛼0 with
he deformed centerline) until contact between adjacent scales occurs. When the scales are in contact, they continue to remain
4
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rigid due to their high stiffness, but the contact induces a change in their orientations, viz., to 𝜃 and 𝛼 due to scale rotation on the
ubstrate.
We now derive conditions for contact between adjacent scales. Let 𝑠𝑖 represent the position of the scale 𝑖 along the arc-length of

the undeformed rod. Let 𝛺𝑖 ⊂ R3 be the set of all points constituting scale 𝑖 in the reference configuration, and 𝜔𝑖 ⊂ R3 be the set
of all points on the same in the deformed configuration. These are shown schematically in Figs. 2(a) and Figs. 2(b), respectively.
he midpoint of the base of the scales are located at 𝐑𝑖 ∶= 𝐑(𝑠𝑖) in the reference configuration and at 𝐫𝑖 ∶= 𝐫(𝑠𝑖) in the deformed
onfiguration. Note that for given prescribed strains 𝜅𝑖 (𝑖 = 1, 2, 3), 𝐫(𝑠𝑖) is given by (8) where 𝑠𝑖 = 𝑖 ⋅ 𝑑. It is clear from Fig. 2 that
or any given 𝐗𝑖 ∈ 𝛺𝑖 and 𝐱𝑖 ∈ 𝜔𝑖, the vectors 𝐗𝑖 −𝐑𝑖 and 𝐱𝑖 − 𝐫𝑖 lie on 𝛺𝑖 and 𝜔𝑖, respectively. Let 𝐍 be a unit normal to the scale
(in its reference configuration), it then follows that

𝐍 ⋅ [𝐗𝑖 − 𝐑𝑖] = 0. (9)

ince the scales rotate rigidly under deformation, we have

𝐱𝑖 − 𝐫𝑖 = 𝐐𝑖
[

𝐗𝑖 − 𝐑𝑖
]

, (10)

here 𝐐𝑖 ∶= 𝐐(𝑠𝑖) = 𝐐(𝑖 ⋅ 𝑑) is the rotation matrix given by (6), evaluated at 𝑠 = 𝑖 ⋅ 𝑑. Two adjacent scales (say, 𝑖 = 0 and 𝑖 = 1)
n their deformed configurations intersect if and only if they have at least one common point. That is, if and only if the following
quation:

𝐱1 − 𝐱0 = 𝟎, (11)

as at least one solution. Using (10), the previous equation can be equivalently written as

𝐫1 +𝐐1[𝐗1 − 𝐑1] − 𝐗0 = 𝟎, (12a)

here we have used 𝐐0 = 𝐈, and 𝐑0 = 𝐫0 = 𝟎 to account for the fixed boundary condition of scale 𝑖 = 0. Since 𝐗0 and 𝐗1 lie on
finite) planes 𝛺0 and 𝛺1, respectively, these points must satisfy

𝐍 ⋅ 𝐗0 = 0, for 𝐗0 ∈ 𝛺0, (12b)

𝐍 ⋅
[

𝐗1 − 𝐑1

]

= 0, for 𝐗1 ∈ 𝛺1. (12c)

Note that solutions 𝐗0 and 𝐗1 of (12) are the 3D coordinates of the points of intersection of the scales, pulled back to the reference
onfiguration. From a computational viewpoint, while it is easy to solve linear system of equations, verifying if the solutions lie on
inite planes 𝛺0 and 𝛺1 is not as straightforward. This is because of two factors: (a) finiteness of 𝛺1 and 𝛺2, and (b) their complicated
D orientations in R3. We circumvent both of them by employing the following change of coordinates:

𝐗̂𝑖 ∶= 𝐓[𝐗𝑖 − 𝐑𝑖], 𝑖 = 0, 1, (13)

here 𝐗̂0 and 𝐗̂1 are rotated coordinate variables and

𝐓 =
⎛

⎜

⎜

⎝

cos 𝛼 0 sin 𝛼
0 1 0

− sin 𝛼 0 cos 𝛼

⎞

⎟

⎟

⎠

, (14)

s a rotation matrix. The transformation rule (13) maps 𝛺𝑖 to 𝛺̂𝑖 ∶= 𝐓(𝛺𝑖), where the latter’s projection on the 𝑋̂𝑖-𝑍̂𝑖 plane is shown
n gray in Fig. 3. Thus, 𝐓 rotates the scales such that

𝛺̂0 = 𝛺̂1 =  ∶= [−𝑏, 𝑏] × [0,∞] × [0, 𝑙 cos 𝜃]. (15)

Rewriting (12) in terms of 𝐗̂0 and 𝐗̂1 and using (13), we obtain the following equivalent conditions for the intersection of the
wo adjacent scales:

𝐓𝑇 𝐗̂0 −𝐐1𝐓𝑇 𝐗̂1 = 𝐫1, (16a)

𝐍𝑇𝐓𝑇 𝐗̂0 = 0, (16b)

𝐍𝑇𝐓𝑇 𝐗̂1 = 0, (16c)

where 𝐗̂0, 𝐗̂1 ∈  and superscript 𝑇 denotes matrix transpose. Thus, transformed variables 𝐗̂𝑖 lie in a simple rectangular domain .
ransforming the variables in this manner also resolves the issue of finiteness noted above, because it is straightforward to check if
5

olutions lie in  by checking the bounds on the variables.
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Fig. 3. Schematic showing the coordinate system for 𝐗̂𝑖. The dashed lines represent the edges of the substrate and the gray region is the projection of the scale
n the 𝑋 −𝑍 plane. For each scale 𝑖, matrix 𝐓 is a coordinate transformation from 𝑋𝑌𝑍 to 𝑋̂𝑖𝑌𝑖𝑍̂𝑖.

Fig. 4. Various possibilities for two finite rectangles to intersect. The left-most figure shows no contact between scales, the next shows interpenetration of scales.
The last three are a non-exhaustive sampling of possible modes of contact. Intersections are shown in red.

2.3. Contact conditions

Observe that (16) is an under-determined linear system with five equations in six unknowns. If 𝐗̂0 and 𝐗̂1 remain unrestricted
i.e., 𝐗̂𝑖 ∈ R3, instead of ), then we have two possibilities—no solutions, when the two planes containing the scales are parallel,
r infinitely many solutions with a line of intersection. However, since the scales constitute finite planes, since 𝐗̂0 and 𝐗̂1 are
estricted to . When finite planes intersect, there are the following possibilities: (a) no solution, when the planes are either parallel
r do not intersect within the domain, (b) infinitely many solutions when the two planes interpenetrate each other with a line-
egment intersection (c) unique or infinitely many solutions (depending on the relative orientation of the scales), but the scales do not
nterpenetrate each other. The third case is of interest here as such configurations correspond to physically realizable configurations
f scales making contact. A schematic for these configurations is shown in Fig. 4 with intersections (if any) shown in red.
There are various ways in which the third case of intersecting yet non-penetrating scales may be realized. Note that for any such

onfigurations there is at least one point of intersection that falls into the following two cases: (1) it is either a corner of one of the
cales (corner-contact ) or 2) it is a point of intersection of two edges of different scales (edge-contact ). See last three figures in Fig. 4.
o find the intersection points for the first case, we prescribe corner coordinates 𝑋̂𝑖 and 𝑍̂𝑖 (for scale 𝑖) and for the second case, we
ix two coordinates but from different scales, for instance, 𝑋̂𝑖 and 𝑍̂𝑗 (𝑖 ≠ 𝑗) are prescribed. We use the bounds for the corresponding
ariables appearing in (15) to fix these values. Since 𝑌𝑖 is unbounded we do not fix this coordinate. The two cases are not mutually
xclusive, as some configurations can be both. This happens, for instance, in the third schematic in Fig. 4, where a corner-contact
s also an edge-contact. Note that the two cases described above do not automatically exclude interpenetrating configurations. For
xample, the second schematic in Fig. 4 is an edge-contact. In computations presented below, we exclude such cases by explicitly
hecking for interpenetration.
There are eight possible corner-contacts depending on which of the eight edges (of the two scales) makes contact with the other.

nd there are sixteen edge-contacts depending which one of the four edges of first scale makes contact with the four of the other. Of
hese twenty four possibilities most correspond to configurations with extreme twist or bending that leads to appreciable material
onlinearities, or even cause the scales to debond from the substrate. Therefore, we only consider the following four cases, shown
chematically in Fig. 5:

1. Corner-contact: Either of the two top corners of scale ‘0’ makes contact with scale ‘1’. For such a configuration, we set
(𝑋̂0, 𝑍̂0) = (±𝑏, 𝑙 cos 𝜃). The plus and minus signs signify the two corners. This is shown as red in our schematic Fig. 5(a).
In practice, 𝑋̂ = −𝑏 is found only when 𝛼 < 0.
6
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Fig. 5. Modes of contact for an RVE considered in this work: (a) Corner contact (red) (b) Top-left edge contact (black) (c) Top-right edge contact (green) (d)
Top edge contact (blue). Contact point is highlighted as a red dot.

2. Top-Left edge contact: This happens when the top edge of scale ‘0’ makes contact with left edge of scale ‘1’. For this, we set
(𝑋̂1, 𝑍̂0) = (−𝑏, 𝑙 cos 𝜃). This is shown as black in our schematic; see Fig. 5(b).

3. Top-Right edge contact: This happens when the top edge of scale ‘0’ makes contact with left edge of scale ‘1’. For this, we
set (𝑋̂1, 𝑍̂0) = (𝑏, 𝑙 cos 𝜃). This is shown as green in our schematic; see Fig. 5(c).

4. Top edge contact: This happens when the top edge of scale ‘0’ makes contact with top edge of scale ‘1’. For this, we set
(𝑍̂0, 𝑍̂1) = (𝑙 cos 𝜃, 𝑙 cos 𝜃). This is shown as blue in our schematic; see Fig. 5(c).

These color codes will be used in Section 4 . All the above cases can be expressed mathematically as the conditions

𝐚𝑇0 𝐗̂0 + 𝐚𝑇1 𝐗̂1 = 𝐴, (17a)

𝐛𝑇0 𝐗̂0 + 𝐛𝑇1 𝐗̂1 = 𝐵, (17b)

where 𝐚0, 𝐚1, 𝐛0, 𝐛1 are 3D vectors that select appropriate coordinates of 𝐗̂0 and 𝐗̂1 that we wish to fix, and 𝐴 and 𝐵 are
the bounds on the coordinates. For example, for the case of corner-contact (Case 1) for the choice (𝑋̂0, 𝑍̂0) = (𝑏, 𝑙 cos 𝜃), we set
𝐚0 = (1, 0, 0) 𝐚1 = (0, 0, 0)𝑇 , 𝐛0 = (0, 0, 1), 𝐛1 = (0, 0, 0)𝑇 , 𝐴 = 𝑏, and 𝐵 = 𝑙 cos 𝜃 in (17a) and (17b). This choice picks coordinates 𝑋̂0
nd 𝑍̂0, respectively. For Case 2, i.e., (𝑋̂1, 𝑍̂0) = (−𝑏, 𝑙 cos 𝜃), we set 𝐚0 = (0, 0, 1), 𝐚1 = (0, 0, 0)𝑇 , 𝐛0 = (0, 0, 0), 𝐛1 = (1, 0, 0)𝑇 , 𝐴 = −𝑏,
nd 𝐵 = 𝑙 cos 𝜃.
To obtain an implicit expression for the dependence of 𝐊 (and therefore, 𝜅1, 𝜅2 and 𝜅3) on 𝜃, we solve (16) simultaneously with

17a) and (17b). We do this in the following steps. First, we solve (16a) for 𝐗̂1, i.e., 𝐗̂1 = 𝐓𝐐𝑇
1 𝐓

𝑇 𝐗̂0 − 𝐓𝐐𝑇
1 𝐫1. We then plug the

revious expression for 𝐗̂1 into (17a) and (17b) and obtain equations only involving 𝐗̂0. Taking the resulting equations together
with (16b), we obtain a 3 × 3 system of linear equations 𝐀𝐗̂0 = 𝐜, where

𝐀 =
⎛

⎜

⎜

⎝

(𝐓𝐍)𝑇
(𝐚0 + 𝐓𝐐1𝐓𝑇 𝐚1)𝑇
(𝐛0 + 𝐓𝐐1𝐓𝑇 𝐛1)𝑇

⎞

⎟

⎟

⎠

, 𝐜 =
⎛

⎜

⎜

⎝

0
𝐴 + 𝐚𝑇1 𝐓𝐐

𝑇
1 𝐫1

𝐵 + 𝐛𝑇1 𝐓𝐐
𝑇
1 𝐫1

⎞

⎟

⎟

⎠

. (18)

Plugging the solution 𝐗̂0 = 𝐀−1𝐜 along with the solution 𝐗̂1 = 𝐓𝐐𝑇
1 𝐓

𝑇𝐗1 − 𝐓𝐐𝑇
1 𝐫1 in (16c), we obtain the following implicit

ependence of 𝜃 in terms of 𝐊:

𝑓 (𝐊, 𝜃) = 𝐍𝑇𝐐𝑇
1 𝐓

𝑇𝐀−1𝐜 − 𝐍𝑇𝐐𝑇
1 𝐫1 = 0. (19)

The dependence of 𝑓 on 𝐊 and 𝜃 can be noted by observing that 𝐐1 and 𝐫1 depend on 𝐊 (cf. (6) and (8)), and 𝐍, 𝐴, and 𝐵 depend
on 𝜃. Parameter 𝛼 appears in 𝐓, while 𝑙 and 𝑏 appear in 𝐴 and 𝐵. Eq. (19) is a highly nonlinear ‘bridging’ law, linking the local to
he global kinematics, thus completing the multiscale kinematics description of the system. We solve this equation numerically to
btain the dependence of 𝜃 on the bending strains, 𝜅1, 𝜅2, and 𝜅3. Solutions corresponding to interpenetrating configurations are
iscarded.

.4. Mechanics of biomimetic scales on slender substrate

In order to understand the mechanics of this structure, we take recourse to energy balance between the global loads and local
eformation. We model the underlying substrate as an Euler elastica whose strain energy is given by:

𝑏𝑒𝑎𝑚 = ∫

𝐿

0

[1
2
𝐵1𝜅

2
1 + 1

2
𝐵2𝜅

2
2 + 1

2
𝐷𝜅2

3

]

𝑑𝑠. (20)

here 𝐵1, 𝐵2 and 𝐷 are, respectively, the bending and twisting rigidities. For beams with circular cross sections, 𝐵1 = 𝐸𝐼1, 𝐵2 = 𝐸𝐼2
nd 𝐷 = 𝐺𝐽 where 𝐸 is the Young’s modulus, 𝐼1, 𝐼2 are the respective area moments, 𝐺 is the shear modulus, and 𝐽 is the polar
oment. In our case, two complications arise. The embedding of the scales lead to an inclusion effect on the beam contributing
7
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to additional stiffness (composite effect). For bending deformation, we postulate a scaling parameter 𝐶𝑓 to the bending rigidities,
i.e., 𝐵1 = 𝐶𝑓𝐸𝐼1, 𝐵2 = 𝐶𝑓𝐸𝐼2. The values of the parameter 𝐶𝑓 can be obtained using FE simulations (Ebrahimi et al., 2019). For
wisting deformation, a non-circular cross section also introduces a warping effect. Although warping is not substantial to affect the
inematics of the scales engagement, it does have an effect on the energy. This is addressed using another multiplicative factor 𝐶𝑤,
hich is readily available in handbooks (Ugural and Fenster, 2011), and is often scaled with respect to 𝐸𝐼1 rather than 𝐺𝐽 . Thus,
he twisting rigidity takes the form 𝐷 = 𝐶𝑓𝐶𝑤𝐸𝐼1.
To include the strain energy contribution due the scales, we note that a scale’s rotation is captured by the angles 𝜃 and 𝛼. As

he substrate deforms under applied strain, the scales rotate freely until a critical threshold of curvatures is reached when the scales
ngage. Let 𝛤𝑒 ⊂ R3 denote the bending strains (𝜅1, 𝜅2, 𝜅3), for which the scales are engaged. This engagement region can be determined
y solving (19) for 𝜅1, 𝜅2 and 𝜅3 for which 𝜃 > 𝜃0, i.e., when scales are in contact. We determined this region numerically. In Fig. 10
f Section 4, we show a plot for a slice of 𝛤𝑒 along 𝜅2 = 0. It is clear that the region depends on geometric parameters 𝑙, 𝑏, 𝜃0,
tc. Since the scales are built into the substrate, under engagement (i.e., when scales make contact), their rotations are resisted by
he substrate. We model the substrate resistance using linear torsional springs with the elastic energy stored in the springs for each
cale given by:

𝑠𝑐𝑎𝑙𝑒(𝜃, 𝛼) =
1
2𝑑

[

𝐾𝜃(𝜃 − 𝜃0)2 +𝐾𝛼(𝛼 − 𝛼0)2
]

𝐻𝛤𝑒 (𝜅1, 𝜅2, 𝜅3), (21)

where 𝐾𝜃 and 𝐾𝛼 are spring constants of the torsional springs, and 𝐻𝛤𝑒 is the indicator function on 𝛤𝑒 (i.e., 𝐻𝛤𝑒 (𝜅1, 𝜅2, 𝜅3) =
1, if (𝜅1, 𝜅2, 𝜅2) ∈ 𝛤𝑒, and zero, otherwise). The total energy per RVE can be additively written as:

(𝜅1, 𝜅2, 𝜅3) = 𝑏𝑒𝑎𝑚(𝜅1, 𝜅2, 𝜅3) + 𝑠𝑐𝑎𝑙𝑒(𝜃, 𝛼). (22)

The change in 𝛼, has been quantified previously for pure twisting, in both frictional and frictionless sliding, and was found to
be < 0.8%, which is assumed to hold here as well. This is borne out of our current FE simulations which also show similar trends
( 𝛼−𝛼0𝛼0

≈ 0.8%). (Ebrahimi et al., 2019). Therefore, our FE simulations show that the change in 𝛼 from 𝛼0 is minimal even when the
scales are engaged. This observation is in agreement with our earlier findings for the cases of pure bending and twisting (Ghosh
et al., 2014; Ebrahimi et al., 2019). We therefore drop its dependence from  and henceforth fix 𝛼 to 𝛼0. Note that in light of (19),
is itself a function of (𝜅1, 𝜅2, 𝜅3), hence the dependence of  on the same.
𝐾𝜃 is related to the Young’s modulus of the substrate (𝐸), scale thickness (𝑡𝑠), inclusion length (𝐿) and 𝜃0. As we have shown

n Ghosh et al. (2014), Ebrahimi et al. (2019) the following non-dimensional scaling exists:
𝐾𝜃

𝐸𝑡2𝑠
= 𝐶𝐵

(

𝐿
𝑡𝑠

)𝑛
𝑓 (𝜃0), (23)

where 𝑛 is non-dimensionless constant, 𝐶𝐵 is a constant, and 𝑓 (𝜃0) is function of angle 𝜃, that we estimate using 𝐹𝐸 simulations.
For the results presented below, these were 𝐶𝐵 = 3.62, 𝑛 = 1.55, 𝑓 (𝜃0) ≈ 1 (Ebrahimi et al., 2019, 2020).

The bending moments are obtained by differentiating (22) with respect to 𝜅1, 𝜅2, and 𝜅3:

𝑀1 = 𝐶𝑓𝐸𝐼1𝜅1 +
𝐾𝜃
𝑑

(𝜃 − 𝜃0)
𝜕𝜃
𝜕𝜅1

𝐻𝛤𝑒 (𝜅1, 𝜅2, 𝜅3), (24a)

𝑀2 = 𝐶𝑓𝐸𝐼2𝜅2 +
𝐾𝜃
𝑑

(𝜃 − 𝜃0)
𝜕𝜃
𝜕𝜅2

𝐻𝛤𝑒 (𝜅1, 𝜅2, 𝜅3), (24b)

𝑀3 = 𝐶𝑓𝐶𝑤𝐺𝐼1𝜅3 +
𝐾𝜃
𝑑

(𝜃 − 𝜃0)
𝜕𝜃
𝜕𝜅3

𝐻𝛤𝑒 (𝜅1, 𝜅2, 𝜅3). (24c)

Once 𝜃(𝜅1, 𝜅2, 𝜅3) is computed numerically by solving (19), the moments are also computed numerically using (24) to obtain
the moment–curvature relationships. Note that the derivative of the indicator function, 𝐻𝛤𝑒 is the (surface) Dirac Delta distribution
which is zero everywhere except on the boundary of 𝛤𝑒. This term does not appear in (24) because it is multiplied by 𝜃 − 𝜃0, which
regularizes to zero precisely on the boundary of 𝛤𝑒.

3. Finite element analysis

We build Finite Element (FE) models on ABAQUS/CAE 2017 (Dassault Systèmes) to validate the (semi-)analytical model
developed above. In simulations, we model the substrate and scales as 3D deformable solids. The substrate is a rectangular prismatic
beam (length 𝐿𝐵 = 200 mm) onto which a row of 19 identical scales are embedded on one side. In this assembly, scales are spaced
𝑑 = 10 mm apart, oriented with angle of 𝜃0 = 5◦ with respect to the substrate’s top surface, and angle of 𝛼0 = 30◦ with respect to
the substrate’s rectangular cross section. Since our analytical model applies to an RVE, where strains are constant, we chose the
substrate to be sufficiently long so as to avoid edge effects. The substrate was modeled as a linear elastic material with an elastic
modulus 𝐸𝐵 = 2.5 MPa and Poisson’s ratio 𝜈 = 0.49. Thus, the shear modulus of the substrate is 𝐺𝐵 = 𝐸𝐵

2(1+𝜈) = 0.84 MPa. Scales were
odeled to be rigid with respect to the substrate by imposing rigid body constraints. The contact between the scales was modeled
sing ‘Surface to Surface Contact’ algorithm in ABAQUS (Abaqus, 2014). This algorithm is commonly used for biomimetic scale
roblems of this type (Ghosh et al., 2014; Ali et al., 2019a,c; Ebrahimi et al., 2019).
The mechanical loads for bending and twisting were applied as boundary conditions quasi-statically to the system. In our

numerical studies, we set 𝜅2 = 0. That is, we do not explore bending in the transverse direction to the substrate, which is considered
trivial in the current context. To compare the combined effect of bending (with strain 𝜅1) and twisting (with strain 𝜅3) with the
8

analytical model presented above, we performed the simulation in two static steps with nonlinear geometry option (NLGEOM
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on) (Abaqus, 2014). In the first step, bending rotations with the equal magnitude but opposite directions were prescribed to cross-
sections at either ends. The magnitude of these rotations were increased linearly from 0 to (approximately) 𝜅1𝐿𝐵∕2, where 𝐿𝐵 is the
length of the substrate. Due to edge effects, the final value was only approximately a constant throughout the beam. To ameliorate
these effects we extracted an averaged strain in the beam far from the ends. More details on this procedure will be explained in
A. In the second step, bending rotations were fixed at the final value (≈𝜅1𝐿𝐵∕2) and the twisting rotations were applied to the
cross-section at either ends with reverse directions, again linearly increasing from 0 to (approximately) 𝜅3𝐿𝐵∕2 during the step
time. A frictionless surface-to-surface contact was applied to the scales surfaces. To test the reliability of the numerical results, we
carried out a mesh convergence study.

Sufficient mesh density was found for different regions of the model confirming computational accuracy. Mesh convergence led
to a total number of about 230,000 elements. Because of the complex geometry of the system particularly due to scale-inclusions in
the substrate, the top layer of substrate was meshed with tetrahedral quadratic elements C3D10 and other regions were meshed with
quadratic hexahedral elements C3D20. We used nearly incompressible assumption to approximate the behavior of silicone rubbers.
In this study we used a combination of C3D20 and C3D10 fully integrated elements in ABAQUS which could be prone to volumetric
locking. However, we checked for the classic checkerboard pattern of pressure that is typically a good indicator for the onset of
numerical locking (Sheen et al., 2021). Furthermore, we repeated some of our simulations of scale covered beam using reduced order
elements (C3D20R), and hybrid (mixed) formulation elements (C3D20H and C3D10H), which also gave nearly identical results.

4. Results and discussion

In this section we present results exploring cross-curvature effects, with various types of scales contact color-coded differently
in the plots. Without loss of generality, we take the initial scale angle 𝜃0 = 0◦ (grazing scales) since we are more interested in scale
engagement behavior. Scales with 𝜃0 > 0 would only shift the plots horizontally until engagement occurs, with the curves thereafter
following the same trajectories (Ghosh et al., 2014; Ebrahimi et al., 2019). We use the non-dimensional parameters, 𝜂 = 𝑙∕𝑑, 𝛽 = 𝑏∕𝑑,
and 𝜅̂𝑖 = 𝜅𝑖𝑑, 𝑖 = 1, 2, 3, to explore the effects.

A typical 𝜅̂3 (twist) versus 𝜃 (scale angle) behavior (for a given 𝜅̂1) is shown in Fig. 6. In this figure, we set 𝜅̂1 = 0.23, 𝜂 = 3,
𝛽 = 1.25 and 𝛼 = 30◦. The presence of an initial bending leads to additional scale contact types, not observed for pure twisting
investigated previously (Ebrahimi et al., 2019, 2020). The curves representing various contact regimes, which are color coded in
the figure as follows: the black curve is the contact type where the top edge of the first scale makes contact with the left edge of the
second, the red curve represents configurations where the corner of the first scale makes contact with the face of the second scale,
green curve is the configuration where the top edge of the first scale makes contact with the right edge of the second scale, and the
blue curve represents the configuration where the top edges of the two scales make contact; see Fig. 5 for a schematic representation
of these various modes. We also provide animations of the contact kinematics (see Supplementary data in Appendix B) for better
visualization of this system.

Recall that in the case of pure twisting (Ebrahimi et al., 2019) or pure bending (Ghosh et al., 2014), the kinematic locking is
typically identified when the slope of the curve in the strain (curvature/twist)–angle plot goes to infinity. However, in the case of
combined load, locking occurs when the slopes changes sign abruptly from positive to negative. This critical point is indicated by a
blue triangle in Fig. 6, where the curve is predicted to transition from green to red. Continuously increasing the strain 𝜅̂3 at this point
would cause the scales to interpenetrate each other. This critical point is thus interpreted as locking. This non-orthogonal condition
of locking is a unique artifact of combined load system, not found in pure bending or twisting (Ghosh et al., 2014; Ebrahimi et al.,
2019). In the subsequent analysis, we treat post-locking configurations as forbidden. For the parameter values explored in this work,
we find that the blue curves (which correspond to configurations with top edge contact) always occur as locked states. Hence, they
are not explicitly shown in the figures below. In addition, contact regimes that correspond to very high twisting strains are also not
considered as they are of little practical significance and difficult to achieve without introducing significant material nonlinearity.

We now explore in detail the cross-coupling effects of the two bending strains. In Fig. 7(a), we show the effect of bending (𝜅̂1)
on the twisting (𝜅̂3) versus scale angle (𝜃). The various values of 𝜅̂1 are shown beside their corresponding curves. This figure is
fundamentally different from pure bending (Ghosh et al., 2014) or twisting (Ebrahimi et al., 2019) kinematics. Here, there are
distinct regions of kinematics, and they are dependent on the existing bending curvature, with distinct contact regimes emerging
throughout the engagement. Thus the existence of bending can result in an entirely new type of kinematic behavior in twisting.
The color-coded plots are an indication that there would be kinks in twisting rigidity as contact regimes between scales change as
depicted in Fig. 6 (inset C and D). This plot can also be used to note the sensitivity of twisting to existing bending strains. We find that
the sensitivity is quite high, and thus any unintended bending either due to sample processing or loading asymmetries can drastically
change the overall kinematics. Another remarkable feature is that the locking angle for the scale seems to be insensitive to bending.
Hence, the locking envelopes computed from pure twisting would still hold in this case. Overall, bending strains have a differential
effect on the twisting kinematics, affecting the kinematics trajectory substantially while leaving the locked state unchanged.

In the same spirit, in Fig. 7(b), we highlight the effect of twisting on the bending behavior of the biomimetic scale beam. Here,
we find that a twist in the system also significantly impacts the bending behavior. The bending engagement occurs earlier with an
increasing positive twist, whereas the opposite occurs with a negative twist. This trend reflects that twisting on one side has an
‘opening’ effect on the scale, where they move apart from each other compared to the other side, leading to a ‘closing’ effect. The
slopes also change significantly, indicating a potential impact on the overall stiffness of the system. The abrupt changes correspond
to sudden changes in contact regimes and are shown with different colors. Interestingly, the presence of twist does not affect the
locking angle, analogous to the twisting case.

The validation of these analytical results using FE models is discussed next. Fig. 7(c) and (d) are the counterparts of Fig. 7(a)
9

and (b), respectively. In Fig. 7(c), we compare the FE results (shown as solid lines with point markers) with the results of our
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Fig. 6. 𝜅̂3 vs 𝜃 with different modes of contact. Here the fixed parameters are: 𝜅̂1 = 0.23, 𝜂 = 3, 𝛽 = 1.25 and 𝛼 = 30◦. Modes of contact have been depicted with
different colors: Red color in the plots shows the corner contact. Black color in the plots shows the Top-left edge contact. Green color in the plots shows the
top-right edge contact. Blue color in the plots shows the Top edge contact.

model (shown as dotted lines) for various values of pre-set bending strains (𝜅̂1) in the substrate. The kinks seen in the curves (close
to 𝜅̂3 = 0.05) are precisely the transition from red to green curves shown in Fig. 7, when the mode of contact changes. Analogous
results for 𝜃 versus 𝜅̂1 for different values of pre-set twisting strains 𝜅̂3 are shown in Fig. 7(d). Note that the pre-set strains for
the two sets of simulations are approximate. This is because when the second quasi-static step (see Section 3) is performed, the
train values fixed during the first quasi-static step do not remain exactly fixed. That is, as we twist a pre-bent beam, the bending
urvatures change mildly under the twisting deformation. In Fig. 7(c) and (d), we account for this change by interpolating over the
hanging values of 𝜅̂1 and 𝜅̂3, respectively.
We now use our model to explore the twisting kinematics at a given bending strain, with changing geometric parameters, 𝛼 and

. These parameters have shown to be critical in dictating the overall kinematics of pure twisting (Ebrahimi et al., 2019). For this,
e fix the bending curvature at 𝜅̂1 = 0.1. First, we probe the significance of overlap ratio 𝜂 on the overall kinematics of the system.
n Fig. 8(a), we plot 𝜃 vs 𝜅̂3 for different values of 𝜂 (for 𝛽 = 1.25, 𝛼 = 30◦ and 𝜅1 = 0.15). Here, we first note the similarities with the
ure twisting case. Like pure twisting, increasing 𝜂 leads to steeper slopes in the 𝜃− 𝜅̂3 plots. However, the twist completely changes
he kinematic trajectories by introducing two distinct contact regimes. The abrupt changes in contact are more apparent for lower
verlap ratio but are ameliorated at higher overlaps. Note that the plots continue to increase in steepness on the right side until
he locked states are reached. On the other hand, on the left side (negative twist), they decrease in slope (flatten) till they collapse
nto a point. This is the point of disengagement (𝜅3 = 𝜅∗

3 ) of the scales beyond which they no longer remain in contact. A surprising
utcome of this plot is that the disengagement point seems to be independent of the overlap ratio. This can be understood if this
oint is visualized for an RVE, Fig. 9 (intersection between the two scales is shown in red). Evidently, at this point, the nature of
ontact is the entire edge of one scale moving over the adjacent one. Thus at 𝜅∗

3 , 𝜂 is not well defined, and the scale angle is purely
etermined by the dihedral angle of two adjacent intersecting planes dependent only on the applied strains.
We see here again that 𝜂 influences the angle of locking. Furthermore, we find that this parameter has a significant role in

etermining the system’s overall kinematics. Increasing 𝜂 leads to an overall stiffer nonlinearity but at the same time can potentially
hange the overall contact regime sequence up until scales lock.
Next, In Fig. 8(b), we plot 𝜃 vs 𝜅̂3 for different values of 𝛼 (for 𝛽 = 1.25, 𝜂 = 3 and 𝜅̂1 = 0.1). The effect of the tilt angle 𝛼 is

ramatic for relatively small angles, i.e., 𝛼 < 20◦, there is a relatively ‘stiff’ response on either direction of twisting. These reflect
cales sliding in either direction of twisting. However, there is a marked anisotropy between the directions in both magnitude and
ontact regimes. More interestingly, such bi-directionally distinct stiffness disappears altogether at higher tilt angles, indicating the
cales do not or only weakly engage in other directions. The lack of engagement in the other direction can be seen as ‘opening’ of
he scales in one direction versus closing. The effect of 𝛼 on locking is also pronounced. At lower tilt angles, the stiffening effect
isappears into a lockless behavior. This is due to scales sliding past each other without ever satisfying the contact constraints.
ocking behavior emerges again for higher tilt angles.
10
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Fig. 7. (a) Analytical results of 𝜃 versus 𝜅̂3 for different values of bending strains (𝜅̂1). (b) Analytical results of 𝜃 versus 𝜅̂1 for different values of twisting strains
(𝜅̂3). (c) FE results (solid line with point markers) vs analytical results (dotted lines) of 𝜃 versus 𝜅̂3 for different values of bending strains (𝜅̂1). (d) FE results
(solid line with point markers) vs analytical results (dotted lines) of 𝜃 versus 𝜅̂1 for different values of twisting strains (𝜅̂1). Given parameters are 𝜂 = 3, 𝛽 = 1.25
and 𝛼 = 30◦. In subfigures (a) and (b), modes of contact have been depicted with different colors: Red color shows the corner contact. Black color shows the
Top-left edge contact. Green color shows the top-right edge contact.

In Fig. 8(c), we now look at the sensitivity of the bending kinematics in the presence of twist. For these plots, we keep the
geometry of the substrates the same and now impose a twist of 𝜅̂3 = 0.1 before bending and keep the tilt angle 𝛼 = 30◦. Here, we
see that the overall impact of higher 𝜂 is to increase the slope of 𝜃− 𝜅̂1 plot, similar to pure bending (Ghosh et al., 2014). However,
the presence of twist changes the nature of the 𝜃 − 𝜅̂1 curve by introducing different contact regimes, very similar to the twisting
case discussed earlier (Fig. 8(a)). Similar to that case, the abruptness of the kinks diminish at higher 𝜂, disappearing altogether
when 𝜂 = 5. Thus, the higher-scale overlap has a suppressing effect on contact regime transitions. Interestingly, the scales remain
engaged even at a negative bending strains, due to the ‘closing’ effect on the scales due to twisting, where they are pushed closer
to each other. However, eventually, the scales again lose contact as bending in the other direction increases sufficiently, once again
exhibiting the ‘convergence’ at the point of disengagement described previously.

We also investigate the effect of an existing twist on 𝜃− 𝜅̂1 relationship for various tilt angles 𝛼 but with fixed 𝜂 = 3 in Fig. 8(d).
Here, we find that the contact regime transition is absent at a lower tilt angle, appearing as the tilt angle increases. This shows that
the tilt angle is an important parameter that controls the complexity of contact regimes. Overall, the effect of pre-twist in bending
is muted at lower tilt angles and higher overlap and more pronounced otherwise.

The investigation above set the stage to investigate the positive–negative effects of twist–bend combinations. Next, we compute
the curvature dependence of scale angles for a biomimetic scale beam of fixed geometric parameters to put these bend–twist
11

kinematics in a more general context. This results in a phase plot as shown in Fig. 10. The curvature limits are taken to maintain
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𝜅

e

Fig. 8. (a) 𝜃 versus 𝜅̂3 for different values of 𝜂 (for 𝛽 = 1.25, 𝛼 = 30◦ , 𝜅̂1 = 0.1). (b) 𝜃 versus 𝜅3 for different values of 𝛼 (𝜂 = 3, 𝛽 = 1.25, 𝜅1 = 0.1). (c) 𝜃 versus
1 for different values of 𝜂 (for 𝛽 = 1.25, 𝛼 = 30◦ , 𝜅3 = 0.1). (d) 𝜃 versus 𝜅1 for different values of 𝛼 (𝜂 = 3, 𝛽 = 1.25, 𝜅3 = 0.1). In the plots, modes of contact
have been depicted with different colors: Red color shows the corner contact. Black color shows the Top-left edge contact. Green color shows the top-right edge
contact.

self-consistency for contact regimes studied. For higher twist levels, more contact possibilities would need to be included. The
phase plot in Fig. 10 is by solving the kinematic relationships developed earlier connecting scale angles and curvatures numerically
at various values of bending and twisting strains.

The phase boundary on the left is the limit of engagement, i.e., we do not have any scales engagement beyond this boundary.
The phase boundary on the right-hand side is the locking boundary. Any (𝜅̂1, 𝜅̂3) combination is forbidden in this region. Thus, the
region in between indicates the region of engagement. It is interesting to note that there is no inherent symmetry between bending
and twisting. In other words, the effect of bending on twisting is fundamentally different from the converse. In addition, one can
see that multiple bend–twist combinations can give rise to the same scale angles. This angular degeneracy is quite remarkable and
could have significance for inverse designs.

Finally, we discuss the mechanical behavior of these systems. In Fig. 11(a), we plot bending moment vs. bending strains and
discover the role played by the presence of twist for a given 𝜂. Higher values of positive twists shift the engagement to earlier parts,
whereas higher values of negative twists shift it in the opposite direction. Interestingly, unlike smooth plots seen for pure bending
earlier (Ghosh et al., 2014), twist effectively changes the contact regime in terms of discontinuities and jumps in the plot indicating
sudden changes in bending rigidity. When a twist is added in the positive direction, the neutral position (no bending strain) is fully
engaged (due to the engagement brought about by the twist). The FE comparison with these plots is shown in Fig. 11(b). Notice
the validation region is for much smaller values of bending and twisting. This is due to the inherent limitation of traditional FE
software in simulating this type of system and already well known in literature (Ghosh et al., 2014; Ebrahimi et al., 2019; Shafiei
t al., 2021). The agreements are excellent with respect to the theoretical values. The observed deviations are expected due to
12
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Fig. 9. Visual depiction of the scales in contact at the point of disengagement as scales ‘open’ up at 𝜅3 = 𝜅∗
3 . (for 𝛽 = 1.25, 𝛼 = 30◦ , 𝜅̂1 = 0.1).

Fig. 10. Slice of the engagement region, 𝛤𝑒, as defined in (21) for 𝜅̂2 = 0. Points lying inside the shaded region correspond to configurations where scales are
in contact. The color bar shows the scale angle 𝜃 (in radians) for the corresponding configuration. Here 𝜃0 = 5◦ and 𝛼 = 30◦, 𝜂 = 3, and 𝛽 = 1.25.

the complex nature of the contact, imposing global periodicity, and the difficulties in keeping one curvature constant in an actual
numerical simulation due to edge effects.

We see similar and even more dramatic effect in the twist–torque diagram in Fig. 12 (a). Here again, we see the role of the bending
strains as the torque–twists, which are smooth nonlinear plots in pure twisting case (Ebrahimi et al., 2019), now turn into highly
iscontinuous plots with disparate twist modulus. Yet again, an existing bending strain can cause the neutral position (zero-twist
train) to be pre-engaged due to bending. This highlights the appreciable differences that can be brought about from cross-coupling
ffects. Fig. 12(b) shows the companion FE torque–twist plots that also indicate excellent agreement with the analytical results. As
n the case of bending, the deviations are mainly because of the difficulties in keeping the cross curvatures fixed for the simulation
uration. The other errors are possibly due to assuming fixed curvatures as opposed to spatially varying curvatures arising in a FE
imulation. Analogous to bending case, imposing global periodicity in scale engagements also leads to some differences in behavior.
lease note that many of these non-ideal effects and sources of discrepancies have been discussed earlier (Ghosh et al., 2017; Ali
t al., 2019a).

. Conclusions

In this work, we addressed the cross coupling effects of bending and twisting in a biomimetic scale elastic beam for the first
ime. Here the scales were plate like rectangular inclusions protruding at an angle from the surface of the elastic substrate. We find
13

ighly intricate and often surprising effect of one over the other across the kinematics and mechanics. We quantified these effects
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Fig. 11. Bending moment 𝑀1 versus 𝜅̂1 for various values of 𝜅̂3: (a) Plots for the analytical model. (b) Plots using FE analysis as solid lines with point markers
ines comparing with theoretical results as dotted lines.

Fig. 12. Twisting moment 𝑀3 versus 𝜅̂3 for various values of 𝜅̂1: (a) Plots for the analytical model. (b) Plots using FE analysis as solid lines with point markers
lines comparing with theoretical results as dotted lines.

by developing analytical relationships within the framework of Cosserat kinematics and global–local energy balance. This model
reduced to the earlier developed model for pure bending (Ghosh et al., 2014), and twisting (Ebrahimi et al., 2019) in literature and
as also validated with FE simulations. This current study therefore comprehensively considers the effect of combined bending and
wisting on scaled elastic beams. The study explains the previously unknown cross-coupling effects. These include novel locking states
nd greater stiffness gains via cross terms. Specifically, we find that contacts modes can abruptly change, that lead to discontinuous
hanges in the moment–curvature behavior. We also found that the cross-coupling sensitivities were not symmetric and there exists
distinct engagement regime of operation sandwiched between region of no contact and kinematically forbidden region. Such cross-
oupling terms significantly open design space and at the same time warn us of unwanted stiffness changes due to geometric defects.
hese models can thus help in both design and optimization of these structures for specific applications that depend on variable
tiffness beams and filaments such as soft robotics. At the same time this study does not cover inhomogeneous scale distributions.
ending behavior of substrates with of inhomogeneous stiff scale distributions including functional gradation has been covered
arlier (Ali et al., 2019a,c). In those studies, it was shown that although calculations are significantly more complicated, the results
is-à-vis locking and nonlinear stiffening still hold.
This study also does not consider scale deformation in combined loading. However, the effect of some scale deformation has been

onsidered earlier for bending and twisting individually (Ghosh et al., 2017; Vernerey and Barthelat, 2014; Vernerey et al., 2014). We
onsider the current paper as an important starting point for extension into more complex scale materials and deformations. We have
14
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also neglected inter-scale friction for this study, which will be treated in a future work. The contact algorithm used in this problem
has been chosen for ease of formulation, and other techniques can be used for this purpose, although the ultimate mechanics results
may not change appreciably. Finally, the computational tools that can handle fish scale type problems that involve large number of
contacts are still lagging behind. Commercial FE has severe limitations which prohibit large deflection simulations. Several advances
have been made in the recent past which could eventually help this problem (Vernerey et al., 2014; Shafiei et al., 2021). Of specific
significance are the approaches that homogenize the scale interactions with periodic constraints resulting in nonlinear membrane
response in bending or twisting suitable for FE implementation (Vernerey et al., 2014).
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Appendix A. Extracting cosserat strains from FE data

To compare the FE simulations with the analytical model presented in Section 2, we extract the Cosserat bending strains 𝜅1,
𝜅2, and 𝜅3 from the FE data through the following steps. First, we extract the position vector for the mid-point of the top face
of the beam from the numerical simulations. This vector is an estimate for 𝐫(𝑠) as given in (8). The information of the directors
𝐝1(𝑠) and 𝐝2(𝑠) is extracted by subtracting the position vectors of center-line and the right-edge of the beam, respectively, from the
estimate for 𝐫(𝑠) and normalizing the resulting quantities to produce unit vectors. After validating inextensibility by verifying that
the change in length of the rod is small (with typical percentage relative error 𝛥𝐿𝐵∕𝐿𝐵 ≈ 1%), we compute the third director using
𝐝3 = 𝐫′(𝑠), estimating the right hand side using finite differences along the beam. It follows from (1) that rotation matrix mapping the
cross-sections of the beam is given by 𝐐(𝑠) = [𝐝1(𝑠),𝐝2(𝑠),𝐝3(𝑠)] where the directors are taken to be the column vectors of the matrix.
The skew-symmetric matrix 𝐊 containing the bending strains 𝜅1(𝑠), 𝜅2(𝑠), 𝜅3(𝑠) (cf. (4)) along the length of the beam is computed
using the formula 𝐊 = 𝐐′(𝑠)𝐐−1(𝑠), where 𝐐′(𝑠) is estimated using finite differences. To avoid boundary effects, we average the
bending strains over the middle half of the beam to obtain estimates for average bending strains in the beam (see Fig. A.13).

Fig. A.13. Extracting Cosserat strain from FE Data.
15
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Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2021.104711.
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