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Abstract

We study a first-order primal-dual subgradient method to optimize risk-constrained
risk-penalized optimization problems, where risk is modeled via the popular con-
ditional value at risk (CVaR) measure. The algorithm processes independent and
identically distributed samples from the underlying uncertainty in an online fashion
and produces an 7/+/K -approximately feasible and 71/+/K -approximately optimal
point within K iterations with constant step-size, where 1 increases with tunable risk-
parameters of CVaR. We find optimized step sizes using our bounds and precisely
characterize the computational cost of risk aversion as revealed by the growth in 7.
Our proposed algorithm makes a simple modification to a typical primal-dual stochas-
tic subgradient algorithm. With this mild change, our analysis surprisingly obviates
the need to impose a priori bounds or complex adaptive bounding schemes for dual
variables to execute the algorithm as assumed in many prior works. We also draw
interesting parallels in sample complexity with that for chance-constrained programs
derived in the literature with a very different solution architecture.
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1 Introduction

We study iterative primal-dual stochastic subgradient algorithms to solve risk-sensitive
optimization problems of the form

PEVaR minimize  F(x) := CVaRo[ /o (x)],
xXe

, , ey

subjectto  G'(x) := CVaRy; g, (x)]1 <0, i=1,...,m,
where w € £2 is random and o, B := (,31, ..., B™) in [0, 1) define risk-aversion
parameters. The collection of real-valued functions f,,, gi), ..., & are assumed con-

vex but not necessarily differentiable, over the closed convex set X C R”, where R and
R stand for the set of real and nonnegative numbers, respectively. Denote by G and
g,,» the collection of G'’s and gfu’s, respectively, fori = 1, ..., m. CVaR stands for
conditional value at risk. For any § € [0, 1), CVaRs[y,] of a scalar random variable
Yo With continuous distribution equals its expectation computed over the 1 — § tail
of the distribution of y,,. For y, with general distributions, CVaR is defined via the
following variational characterization

1
CVaR;[y,] = min {u + —— B[y, —ul*t, 2)
uelR 1-6

following [36]. For each x € X, assume that E[]| f,,(x)|] and E[|gé)(x)|] are finite,
implying that F' and G are well defined everywhere in X.

PCVaR offers a modeler the flexibility to indicate her risk preference in «, . With
« close to zero, she indicates risk-neutrality toward the uncertain cost associated with
the decision. With « closer to one, she expresses her risk aversion toward the same and
seeks a decision that limits the possibility of large random costs associated with the
decision. Similarly, B’s express the risk tolerance in constraint violation. Choosing ’s
close to zero indicates that constraints should be satisfied on average over §2 rather
than on each sample. Driving $’s to unity amounts to requiring the constraints to
be met almost surely. Said succinctly, PCV2R permits the modeler to customize risk
preference between the risk-neutral choice of expected evaluations of functions to the
conservative choice of robust evaluations.

There is a growing interest in solving risk-sensitive optimization problems with
data. See [3,20] for recent examples that tackle problems with generalized mean semi-
deviation risk that equals E[y,] + cE[|y, — E[ya,]|”]1/” for p > 1 for a random
variable y,. There is a long literature on risk measures, e.g., see [1,12,25,33,36,37].
We choose CVaR for three particular reasons. First, it is a coherent risk measure,
meaning that it is normalized, sub-additive, positively homogeneous and translation
invariant, i.e.,

CVaRs[0] = 0, CVaRs[y,, + y2] < CVaRs[y,]+ CVaRs[y2].
CVaR;[ry,] = tCVaRs[y,], CVaRs[y, + 1] = CVaR;[y,] + 1’
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for random variables y,,, y(}), yfu, t > 0 and ¢’ € R. An important consequence of
coherence is that F and G in PCV2R inherit the convexity of f,, and g, Convexity
together with the variational characterization in (2) allow us to design sampling based
primal-dual methods for P¢V2R for which we are able to provide finite sample analysis
of approximate optimality and feasibility. The popularity of the CVaR measure is our
second reason to study P¢V2R Following Rockafellar and Uryasev’s seminal work in
[36], CVaR has found applications in various engineering domains, e.g., see [22,27],
and therefore we anticipate wide applications of our result. Our third and final reason

to study PV is its close relation to other optimization paradigms in the literature as
we describe next.
PCVaR without constraints and & = 0 reduces to the minimization of [ fo(X)],

the canonical stochastic optimization problem. With « 1 1, the problem description
of PEV2R approaches that of a robust optimization problem (see [4]) of the form
mingex €sssup,co fw(x), where esssup denotes the essential supremum. Driving
B’s to unity, PCV2R demands the constraints to be enforced almost surely. Such robust
constraint enforcement is common in multi-stage stochastic optimization problems
with recourse and discrete-time optimal control problems, e.g., in [16,39,40]. CVaR-
based constraints are closely related to chance constraints introduced by Charnes and
Cooper in [12] that enforce Pr{g,(x) < 0} > 1 —e& where Pr refers to the probability
measure on §2. Evenif g, is convex, chance-constraints typically describe a nonconvex
feasible set. It is well known that CVaR-based constraints provide a convex inner
approximation of chance-constraints. Restricting the probability of constraint violation
does not limit the extent of any possible violation, while CVaR-based enforcement
does so in expectation. CVaR is also intimately related to the buffered probability of
exceedence (bPOE) introduced and studied more recently in [25,45]. In fact, bPOE is
the inverse function of CVaR, and hence, problems with bPOE-constraints can often
be reformulated as instances of PCVaR

It can be challenging to compute CVaR of f,(x) or g, (x) for a given decision
variable x with respect to a general distribution on §2 for two reasons. First, if samples
from £2 are obtained from a simulation tool, an explicit representation of the probability
distribution on §2 may not be available. Second, even if such a distribution is available,
computation of CVaR (or even the expectation) can be difficult. For example, with
fo as the positive part of an affine function and @ being uniformly distributed over a
unit hypercube, computation of [E[ f,,] via a multivariate integral is #P-hard according
to [17, Corollary 1]. Therefore, we do not assume knowledge of F and G but rather
study a sampling-based algorithm to solve PCVaR,

Solution architectures for PR via sampling come in two flavors. The first
approach is sample average approximation (SAA) that replaces the expectation in
(2) by an empirical average over N samples. One can then solve the sampled problem
as a deterministic convex program.! We take the second and alternate approach of
stochastic approximation and process independent and identically distributed (i.i.d.)
samples from £2 in an online fashion. Iterative stochastic approximation algorithms
for the unconstrained problem have been studied since the early works by Robbins

! For the unconstrained problem, variance-reduced stochastic gradient descent methods can efficiently
minimize the resulting finite sum as in [19,38].
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and Monro in [34] and by Kiefer and Wolfowitz in [21]. See [24] for a more recent
survey. Zinkevich in [46] proposed a projected stochastic subgradient method that can
be applied to tackle constraints in such problems. Without directly knowing G, we
cannot easily project the iterates on the feasible set {x € X | G(x) < 0}. We cir-
cumvent the challenge by associating Lagrange multipliers z € R’} to the constraints
and iteratively updating x, z by using f,, g, and their subgradients via a first-order
stochastic primal-dual algorithm for PCVaR along the lines of [30,42,44].

In Sect. 2, we first design and analyze Algorithm 1 for PCVR witha = 0, 8 = 0,
i.e., the optimization problem

PE . minimize F(x):= El f,(x)],
xeX ' ' (3)
subjectto  G'(x) :==E[g,(x)] <0, i=1,...,m.

First-order stochastic primal-dual algorithms have a long history, dating back almost
forty years, including that in [15,24,30-32]. The analyses of these algorithms often
require a bound on the possible growth of the dual variables. Borkar and Meyn in
[8] stress the importance of compactness assumptions in their analysis of stochastic
approximation algorithms. A priori bounds used in [31] are difficult to know in prac-
tice and techniques for iterative construction of such bounds as in [30] require extra
computational effort. A regularization term in the dual update has been proposed in
[23,26] to circumvent this limitation. Instead, we propose a different modification to
the classical primal-dual stochastic subgradient algorithm. With this simple modifica-
tion, we are able to circumvent the need to bound the dual variables in executing the
algorithm. As will become clear in Sect. 2, we rely on the existence of a saddle point
of the Lagrangian function for PE, which is typically guaranteed under Slater-type
constraint qualification. However, knowledge of that saddle point or a strictly feasi-
ble “Slater” point is not required to execute the algorithm nor derive its convergence
rate. While the classical primal-dual approach samples once for a single update of the
primal and the dual variables, we sample twice—once to update the primal variable
and then again to update the dual variable with the most recent primal iterate—thus,
adopting a Gauss—Seidel approach in place of a Jacobi framework. For Algorithm 1,
we bound the expected optimality gap and constraint violations at a suitably weighted
average of the iterates by 1/+/K for a constant 7 with a constant step-size algorithm.
Using these bounds, we then carefully optimize the step-size that allows us to reach
within a given threshold of suboptimality and constraint violation with the minimum
number of iterations. While we do not bound the dual variables to execute the algo-
rithm or to characterize the 1/+/K convergence rate, we do require an overestimate of
the distance of the dual initialization from an optimal point to calculate the constant
n that in turn is required to optimize the constant step-size. The additional sample
required in our update aids in the analysis; however, it comes at the price of mak-
ing the sample complexity double of the iteration complexity. Given the popularity
of decaying step-sizes in first-order algorithms, we also provide stability analysis of
our algorithm with such step-sizes. This analysis exploits a dissipation inequality that
we derive for our Gauss—Seidel approach. Such a stability analysis is crucial for our
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primal-dual algorithm, given that we do not explicitly restrict the growth of the dual
variables.

In Sect. 3, we solve PCV2R with general risk aversion parameters «, B using Algo-
rithm 1 on an instance of PF obtained through a standard reformulation via the
variational formula for CVaR in (2) from [36]. We then bound the expected sub-
optimality and constraint violation at a weighted average of the iterates for PCVaR
by n(e, B)/~/K. Upon utilizing the optimized step-sizes from the analysis of PE,
we are then able to study the precise growth in the required iteration (and sample)
complexity of PCV2R as a function of «, B. Not surprisingly, the more risk-averse a
problem one aims to solve, the greater this complexity increases. A modeler chooses
risk aversion parameters primarily driven by attitudes toward risk in specific appli-
cations. Our precise characterization of the growth in sample complexity with risk
aversion will permit the modeler to balance between desired risk levels and compu-
tational challenges in handling that risk. We remark that the algorithmic architecture
for the risk neutral problem may not directly apply to the risk-sensitive variant for
general risk measures. For example, the algorithm described in [20] for general mean-
semideviation-type risk measures is considerably more complex than that required for
the risk-neutral problem. We are able to extend our algorithm and its analysis for PF
to PCVaR thanks to the variational form in (2) that CVaR admits. See the discussion
after the proof of Theorem 3.1 for a precise list of properties a risk measure must
exhibit for us to apply the same trick. Using concentration inequalities, we also report
an interesting connection of our results to that in [10,11] on scenario approximations
to chance-constrained programs. The resemblance in sample complexity is surprising,
given that the approach in [10,11] solves a deterministic convex program with sampled
constraints, while we process samples in an online fashion.

We illustrate properties of our algorithm through a stylized example. Our exper-
iments reveal that the optimized iteration count (and sample complexity) for even a
simple example is quite high. This limitation is unfortunately common for subgradient
algorithms and likely cannot be overcome in optimizing general nonsmooth functions
that we study. While the bounds are order-optimal, our numerical experiments reveal
that a solution with desired risk tolerance can be found in less iterations than obtained
from the upper bound. This is an artifact of optimizing step-sizes based on upper
bounds on suboptimality and constraint violation. We end the paper in Sect. 4 with
discussions on possible extensions of our analysis.

Very recently, it was brought to our attention that the work in [7] done concurrently
presents a related approach to tackle optimization of composite nonconvex functions
under related but different assumptions. In fact, their work appeared at the same time
as our early version and claims a similar result that does not require bounds on the dual
variables. Our analysis does not require or analyze the case with strongly convex func-
tions within our setup and therefore Nesterov-style acceleration remains untenable. As
a result, our algorithm is different. Our focus on CVaR permits us to further analyze
the growth in optimized sample complexity with risk aversion and its connection to
chance-constrained optimization that is quite different.
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2 Algorithm for PE and Its Analysis

We present the primal-dual stochastic subgradient method to solve PF in Algorithm 1.

Algorithm 1: Primal-dual stochastic subgradient method for PF.

Initialization: Choose x| € X, z; = 0, and a positive sequence .
1 for k > 1do
2 Sample w; € §2. Update x as

m

. i ; 1

X1 < argmin (V fo (x0) + Y 2k Vel (ki) x —xp )+ — e — x| (4)
xeX i=1 2k

3 Sample w4 1/2 € £2. Update z as

1

2
" lz — zxll” (5)

Zf41 < argmax <gwk+l/2 (Xk+1), 2 — Zk)
zeRY

The notation (-, -) stands for the usual inner product in Euclidean space and || - ||
denotes the induced ¢>-norm. Here, VA (x) stands for a subgradient of an arbitrary
convex function & at x. For our analysis, the subgradient in Algorithm 1 for func-
tions f,(x) and g, (x) can be arbitrary elements of the closed convex subdifferential
sets 0 f,(x) and dg, (x), respectively. We assume that these subdifferential sets are
nonempty everywhere in X.

The primal-dual method in Algorithm 1 leverages Lagrangian duality theory.
Specifically, define the Lagrangian function for PF as

L(x,2) :=Fx)+z7"G(x) = E[L,(x, 2)], 6)

forx € X, z € R™, where L,(x,z) := f,(x) + z"g,(x). Then, PE admits the
standard reformulation as a min-max problem of the form

E .
:= min max L(x, 7). 7
Py xeX zeRY ( ) @

Denote its optimal set by X, € X. Define the dual problem of PF as

df := max min £(x, z). ®)
zeRY xeX

Denote its optimal set by Z, € R’}. Weak duality then guarantees pE > dF. When
the inequality is met with an equality, the problem is said to satisfy strong duality. A
point (x,, z,) € X x R% is a saddle point of £ if

E(x*, Z) < ;C(x*, Z*) =< ﬁ(x, Z*) (9)
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for all (x,z) € X x R’!. The following well-known saddle point theorem (see [6,
Theorem 2.156]) relates saddle points with primal-dual optimal solutions.

Theorem (Saddle point theorem) A saddle point of L exists if and only if PF satisfies
strong duality, i.e., p¥ = dF. Moreover, the set of saddle points of L is given by
Xy X Zy.

Our convergence analysis of Algorithm 1 requires the following assumptions.

Assumption 1 PF must satisfy the following properties:

(a) Subgradients of F and G are bounded, i.e., [VF(x)| < Cr, |[VG' (x)| < Cé;
foreachi =1,...,mandall x € X.

(b) Vfy, and Vgﬁu for i = 1,...,m have bounded variance, i.e., E||V f,(x) —
E[V f,(x)]|? < o} and E[| Vgl (x) — E[Vgl,(0)]|* < [0§]? forall x € X.

(c) g, (x) has a bounded second moment, i.e., E||gi)(x) 12 < [Dé;]2 forall x € X.

(d) The Lagrangian function £ admits a saddle point (x,, z,) € X x R}".

The subgradient of F' and the variance of its noisy estimate are assumed bounded.
Such an assumption is standard in the convergence analysis of unconstrained stochas-
tic subgradient methods. The assumptions regarding G are similar, but we additionally
require the second moment of the noisy estimate of G to be bounded over X. Bound-
edness of G in primal-dual subgradient methods has appeared in prior literature, e.g.,
in [42,44]. The second moment remains bounded if gfu is uniformly bounded over
X and £2 for each i. It is also satisfied if G remains bounded over X and its noisy
estimate has a bounded variance. Convergence analysis of unconstrained optimization
problems typically assumes the existence of a finite optimal solution. We extend that
requirement to the existence of a saddle point in the primal-dual setting, which by the
saddle point theorem is equivalent to the existence of finite primal and dual optimal
solutions. A variety of conditions imply the existence of such a point; the next result
delineates two such sufficient conditions in (a) and (b), where (a) implies (b).

Lemma 2.1 (Sufficient conditions for existence of a saddle point) For PE, the
Lagrangian function L admits a saddle point, if either of the following conditions
hold:

(a) X, is nonempty, pt is finite and Slater’s constraint qualification holds, i.e., there
exists x in the relative interior of X for which G(x) < 0.

(b) PE admits a finite (x,, z,) € X x R’ that satisfies the generalized Karush—Kuhn—
Tucker (KKT) conditions given by

0 € 3 L(x4, 74) + Nx(x,), G'(x,) <0, Z.G'(x,) =0 (10)

fori =1,...,m, where Nx(x,) denotes the normal cone of X at x,.

Proof Part (a) is a direct consequence of [6, Theorem 1.265]. To prove part (b),
noti_ce that (10) ensures the existence of subgradients VF (x,) € 0 F(x,), VG'(x,) €
0G'(x,),i =1,...,mand n € Nx(x,) for which

VF(x,)+ Y VG (x,) +n=0. (1)
i=1
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Then, for any x € X, we have

(VF(x).x —x)+ Y (VG (x).x —x) + (n.x —x,) =0.  (12)

SF)—F.) ST e =0

The inequalities in the above relation follow from the convexity of F and G'’s, non-
negativity of z,, and the definition of the normal cone. From the above inequalities,
we conclude L(x, z,) > L(x,, z,) forall x € X. Furthermore, for any z > 0, we have

L(Xy,24) — L(Xx, 2) = 2] G(x,) —2"G(x,) > 0, (13)

where the last step follows from the nonnegativity of z and (10), completing the proof.
O

We now present our first main result that provides a bound on the expected distance
to optimality and constraint violation at a weighted average of the iterates generated by
the algorithm on PF under Assumption 1. Denote by C, D, and o G the collections
of C’é, Dg, and aé, respectively. We make use of the following notation.

Py i=2llxy — x, |17 + 41 + z.]I7,
Py :=8(4C% + 07) + 2| DG %, (14)
Py :=8m@&|CGl* + logl?).

Theorem 2.1 (Convergence result for PF) Suppose Assumption 1 holds. For a positive
sequence {yk },f:], if P3 Zle sz < 1, then the iterates generated by Algorithm 1
satisfy

i 1 P+ PyY i v7
E[FGEx )] - pf < — ( Z,’; ol (15)
43 e \ 1= P33 i v
P 1 P+ YR v
E[G (Xx+1)] < — ( Z,’; = (16)
4Zk:1 e \1—P3 Zk:l Vi

K
foreachi = 1,...,m, where Xgy| = % Moreover, if v = v/~ K for
k=1Yk

k=1,...,K withO <y < Py '/*, then

_ n i = U]
E[FFx+)] — pE < —, EG'Fki)] < ——= (17)
K+ JK K+ JK
s o _PitPy?
fori=1,...,m, wheren = La-PyY
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A constant step-size of n/ V'K over a fixed number of K iterations yields the O(1/ VK)
decay rate in the expected distance to optimality and constraint violation of Algo-
rithm 1. This is indeed order optimal, as implied by Nesterov’s celebrated result in
[32, Theorem 3.2.1].

Remark 2.1 While we present the proof for an i.i.d. sequence of samples, we believe
that the result can be extended to the case where w’s follow a Markov chain with geo-
metric mixing rate following the technique in [41]. For such settings, the expectations
in the definition of F', G should be computed with respect to the stationary distribution
of the chain. The results will then possibly apply to Markov decision processes with
applications in stochastic control.

Given that the literature on primal-dual subgradient methods is extensive, it is
important for us to relate and distinguish Algorithm 1 and Theorem 2.1 with prior
work. Using the Lagrangian in (6), Algorithm 1 can be written as

Xi41 = projx[xx — vk Vi Lo (XK, 201,

Ziet1 := Projrn [z + viVeLo (Xk+1, 201, (1%
where proj, projects its argument on set A. The vectors VL, and VL, are stochastic
subgradients of the Lagrangian function with respect to x and z, respectively. There-
fore, Algorithm 1 is a projected stochastic subgradient algorithm that seeks to solve
the saddle-point reformulation of 7F in (7). Implicit in our algorithm is the assumption
that projection on X is computationally easy. Any functional constraints describing X
that makes such projection challenging should be included in G.

Closest in spirit to our work on PE are the papers by Baesetal.in [2], Yuetal. in [44],
Xu in [42], and Nedic and Ozdaglar in [30]. Stochastic mirror-prox algorithm in [2]
and projected subgradient method in [30] are similar in their updates to ours except in
two ways. First, these algorithms in the context of PE update the dual variable z; based
on G or its noisy estimate evaluated at x, while we update it based on the estimate at
Xi+1. Second, both project the dual variable on a compact subset of R”! that contains
the optimal set of dual multipliers. While authors in [2] assume an a priori set to project
on, authors in [30] compute such a set from a “Slater point” that satisfies G(x) < O.
Specifically, Slater’s condition guarantees that the set of optimal dual solutions Z,
is bounded (see [6, Theorem 1.265], [18]). Moreover, a Slater point can be used to
construct a compact set that contains Z,, e.g., using [30, Lemma 4.1]. While one can
project dual variables on such a set in each iteration, execution of the algorithm then
requires a priori knowledge of such a point. We do not assume knowledge of such a
point (or any explicit bound on Z,) to execute Algorithm 1. Rather, our proof provides
an explicit bound on the growth of the dual variable sequence for Algorithm 1, much
in line with Xu’s analysis in [42]. Much to our surprise, a minor modification of
using a Gauss—Seidel style dual update as opposed to the popular Jacobi style dual
update obviates the need for this assumption in the literature for the proofs to work.
Unfortunately, our Gauss—Seidel style dual update comes at an additional cost of an
extra sample required per iteration of the primal-dual algorithm, making the sample
complexity double of the iteration complexity. The constant factor of two, however,
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does not impact the order-wise complexity. We surmise that the additional sample
and the Gauss—Seidel update of the dual variable helps to decouple the analysis of
the primal and dual updates and points to a possible extension of our result to an
asynchronous setting, often useful in engineering applications. We remark that while
we do not utilize a priori knowledge of a dual optimal solution to explicitly restrict the
dual variables within a set containing it, an overestimate of ||z] — z.|| is required to
compute 7 to calculate the precise bound in (17). In other words, gauging the quality
of the ergodic mean after K iterations still requires that knowledge. We suspect that
the distance of the ergodic mean Zx 1 to the dual optimal set is crucial to bound the
extent of expected suboptimality and constraint violation. While analysis such as that
in [2] achieves it by explicitly imposing a bound on the entire trajectory of z;’s, we
do so by assuming a bound on the distance of the initial point to the optimal set and
then characterizing the growth over that trajectory.

Our work shares some parallels with that in [42], but has an important difference.
Xu considers a collection of deterministic constraint functions, i.e., g is identical
for all w € §2, and considers a modified augmented Lagrangian function of the form
L(x,z) = F(x)+ % > ws(x, z'), where

Zgi@) + 3g 0 ifsgi(x) +7 >0,

ws(x, Zi) = i\2 . (19)
—%, otherwise
fori = 1,...,m with a suitable time-varying sequence of §’s. His algorithm is

similar to Algorithm 1 but performs a randomized coordinate update for the dual
variable instead of (5). To the best of our knowledge, Xu’s analysis in [42] with such a
Lagrangian function does not directly apply to our setting with stochastic constraints
that is crucial for the subsequent analysis of the risk-sensitive problem PCVaR,

Finally, Yu et al.’s work in [44] provides an analysis of the algorithm that updates
its dual variables using

1
Zkt1 o= argmax (vi, z — 2x) — 7—llz — 2|, (20)
ZeR" 2¥k
where v/ = gf‘)k(xk) + (ngvk (xr), Xk4+1 — xg) fori = 1,..., m. In contrast, our

z-update in (5) samples wy 11,2 and sets vy = 8w (xx+1) at the already computed

point x; . We are able to recover the O(1/+/K) decay rate of suboptimality and
constraint violation with a proof technique much closer to the classical analysis of
subgradient methods in [9,30]. Unlike [44], we provide a clean characterization of
the constant 1 in (17) that is crucial to study the growth in sample (and iteration)
complexity of Algorithm 1 applied to a reformulation of PCVaR |

2.1 Proof of Theorem 2.1
The proof proceeds in three steps.
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(a) We establish the following dissipation inequality that consecutive iterates of the
algorithm satisfy.

1 1
WBILGk11,2) = £66, 201+ SBllxes — x|+ SBllzet — z|I?
1)

< Yl —x12 4 SEpz - 217 + ! Ve + lP3y21E||zk||2
-2 2 4 kT RTk

forany x € Xand z € R.
(b) Next, we bound IE||zx||> generated by our algorithm from above using step (a) as

P+ P, Ak
o} 22T erR 22
llzell” < = PiAx (22)

fork=1,..., K, where Ag := Z,le ykz.
(c) We combine the results in steps (a) and (b) to complete the proof.

Define the filtration W) C Wi41/2 C Wh C ..., where W is the o-algebra gener-
ated by the samples wy, ... wy_12 for k being multiples of 1/2, starting from unity.
Then, {x1, 21, ..., Xk, Zx} becomes Wj,-measurable, while {x1, 21, ..., Xk, Tk, Xk+1}
iS W1 1/2-measurable.

e Step (a)—Proof of (21): We first utilize the x-update in (4) to prove

1
E[F (xi11) — F(x) + 2 G(xi11) — 2 G(xX)| W] + EE[lekH — x|*M]

<i||x — x|I> + 20 (ACE 4+ 02) 4+ 2m A C 11> + lloclP)llzx 1
= Kk—X Yk FTOF Yim G oG Zk

(23)
for all x € X. Then, we utilize the z-update in (5) to prove
1
Elz7G(xir1) — 2] G )| W] + 5—Elllziet — 2| W]
2yk 24)

<z — 212+ Y iDo12
_zyk”Zk 2"+ S IDal

forall z € R. The law of total probability is then applied to the sum of (23) and (24)
followed by a multiplication by y; yielding the desired result in (21).
Proof of (23): The x-update in (4) yields

m
L 1
<xk+1 —x,Vf,(xp) + E 7 Vg, (xr) + %(xk+l - xk)> <0. (25)
i=1
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We now simplify the inner product. The product with V f,,(xx) can be expressed as

(X1 — X, Vfu(xp) = (xpe1 — Xk, VF(xpg1)) Hxp — x, V fo(xp))
>F () —F (xp) (26)
—{Xp11 — Xk, VF(xp1) — V fu(xp)),

where V F (x;+1) denotes a subgradient of F at xj41. The inequality for the first
term follows from the convexity of F. Since E[V f,, (x)|Wi] € 0 F (x;) from [5], the
expectation of the second summand on the right-hand side (RHS) of (26) satisfies

El(xr —x, Vo) M = (X —x, VF(xi)) = F(xp) — F(x).  (27)
Taking expectations in (26), the above relation implies

El{(xrs1 —x, V fo(xp)) [ 7} ] (28)
> E[F (xk41) — F(x) = (g1 — Xp, VF(xp51) — V foo (x0)) [ 7]

Next, we bound the inner product with the second term on the RHS of (26). To that
end, utilize the convexity of member functions in g, and G along the above lines to
infer

m

Y Ellxisr — x, 7 Vel (x0) | W]
i=1
> Y Flg G (xxs1) — 734G (0| W]
i=1

o o (29)
— Bl(xiq1 — Xk, 2 VG (xk41) — 2, Vg, (X)) | W]

= Elz{ G(xk+1) — 2] G(x)|Mk]

m
= El(xir1 — %k 2k VG (arr) — 24 Vel (i) W]

i=1

To tackle the inner product with the third term in the RHS of (25), we use the identity

1
<xk+1 —x, —(Xpq1 — xk)>
Vi 30)

_ 1 2 2 2
= —[llxxs1 — xlI7 = llxx — x|I" + llxx1 — xx 7]
2y
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The inequalities in (28), (29), and the equality in (30) together give

E[F (xk+1) — F(x) + 2] G(xk41) — 2] G(x)|Mk]
— E[{xg+1 — Xk, VF(xr41) — V foo (i) | W]

m
= Bl — Xk, 24 VG (Xrr1) — 24 Vel (x0)) [ 94
i=1 31

1
+ —E[llxp1 — X7 + X1 — el 4]
2vk

1 2
< —llxr —x|”.
2y

To simplify the above relation, apply Young’s inequality to obtain

El{xg+1 — Xk, VE(Xkp1) = V fo (1)) W]

1
4— Elllxcs1 — xx 2 W] + nEIVF (exg1) — Vo) 171 94]
(32)

EE[”xk—&-l — xi [P k] + 20 B VF (xg41)

— BV foo(x) 1> + IEV fo(xx) — V fi (i) 12| W]

Recall that E[V f,,(xx)|Wi] € 0 F (xy), subgradients of F are bounded and V f,, has
bounded variance. Therefore, we infer from the above inequality that

El{xk+1 — Xk, VF(Xk41) = V fo (X)) | Wi ]

1 2 2 2 (33)
< ME[llka = xi 17| W] + 27 (4Cp + o).

Appealing to Young’s inequality m times and a similar line of argument as above gives

m

D Bl — Xk 2 VG (Xeq1) — 24 Vel (x0)) M4
i=1 (34)

1
< gy Bl —xl |wk]+2ykm2(4 [CEI + oG 1) 1zl
i=1
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Leveraging the relations in (33) and (34) in (31), we get

E[F (xk+1) — F(x) + 2] G(xk41) — 2] G(x)|M}]

1
+ EE[””“ — x|+ X1 — xe ]2

1 P (35)
2—lek —x|*+ 4—1E[|ka+1 — Xk |2 W] + 23 (ACF + 07)

1 .
g Ellleie = i 21 Mk] + 2pm 2(4 Col + o6 lzel?,
i=1

that upon simplification gives (23).
Proof of (24): From the z-update in (5), we obtain

1
<Zk+1 =2, —8,(Xkt1) + %(Zk+1 - Zk)> <0 (36)

for all z > 0. Again, we deal with the two summands in the second factor of the inner
product of (36) separately. The expectation of the inner product with the first term
yields?

El{(zk+1 — 2, =80 Xk+ D) Wet1/2]
= E[{zk+1 — 2k, =80 Xkt ) Wit 1/2] + B2k — 2, —& o Xkt 1)) Wht1/2]

1 Vi
> —ﬂm[nzm — 2P Wis1/2] — 7E[||gw<xk+1)||2|wk+1/z]

+ El(zk — 2, =84 *k+ D) Wht1/2]

1 Vi
> —Q—VklE[nzkH — 2l W12 — 5||DG||2 + (zx — 2 —G(x111))

1 k
= —EE[nzkH — 2P Wies1/2] — %IIDGIIZ +2TG(xpt1) — 2] G(Xps1).
37)

In the above derivation, we have utilized Young’s inequality and the boundedness of
the second moment of g,,. Since Wy C Wi41,2, the law of total probability can be
used to condition (37) on W rather than on %41,2. To simplify the inner product
with the second term in (36), we use the identity

1 1
2 2 2
<Zk+1 -z, E(Zkﬂ - zk)> = —[llzk+1 — 2l — llzk — zlI” + Nzk+1 — 2 lI7]-

2y
(38)

2 Elg,(xk+1)|MWk+1/2]1 = G(xf+1) requires that we sample o once more for the z-update.
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Utilizing (37) and (38) in (36) gives (24). Adding (23) and (24) followed by a multi-
plication by y4 yields

1
AELLerr1,2) = L6 201 W] + 5B [t — %1% + Nz — 212194
(39)
< Sl —xl 4 gl — 2+ Py + Pl
-2 2 4 4

Taking the expectation and applying the law of total probability completes the proof
of (21).

e Step (b)—Proof of (22): Plugging (x, z) = (x4, Z,) in the inequality for the one-step
update in (21) and summing itover k = 1, ...,k fork < K gives

K

K
1
> A BLLGet 20) = L0 201 +5 Y [Bllxir = %l + Elzert - 2. ]

k=1 >0 from (9) k=1
| « R R
2 2 2 2 2
=3 2 [Blvk = %P + Bl — 2|+ P Y72 + 2Py Y 7Bl
k=1 k=1 k=1
(40)
fork = 1,..., K. The above then yields
2 2
Ellxetr1 — Xull* +E[ze+1 — 24l
— ————
>0
41

R R
<ler—x P+ lz =zl + 5P ) v+ 5P ) Wil
k=1 k=1

Notice that 2IE||z,4+1 — Zell? + 201z > Ellze+1 2. This inequality and z; = 0 in
(41) gives

K K
Elzet1l? < 2% — x> + 4llzal> + P2 Y _vd + P3 Y wiElzl?

k=1 k=1 42)
K K
SP+P Y yE+ Py vElzd’
k=1 k=1
We argue the bound on E||zx||> fork = 1, ..., K inductively. Since z; = 0, the base
case trivially holds. Assume that the bound holds for k = 1, ..., x for k < K. With

the notation Ax = Zle ykz, the relation in (42) implies

P K
Py + PyA

5 2 2 71 24K
Bllcntl” < Pk P 3 vf 4 Py Do T
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P+ P Ak
P PA Pi————A
1+ P2Ag + 31—P3AK K

IA

_ Pi+ P Ak 43)
T 1= PAg ]

completing the proof of step (b).
e Step (c)—Combining steps (a) and (b) to prove Theorem 2.1: For any z > 0, the
inequality in (21) with x = x, from step (a) summed over k =1, ..., K gives

K K

1
> HBLLGk+1, ) — L2015 D [Ellvirs = %l + Bzt — 2]
k=1 k=1

=

K K
1 1
2 2 2 2 2
) [Ellxe — %12 + Bllzy — 21| + 7 P2 IR EONELT

N =

(44)

Using z1 = 0 and an appeal to the saddle point property of (x., z.) yields

K
1 1
D WEILG1 D) = La 2]+ 5Bl — 2 + S Ellzg — 2

k=1
1 1 & 1 & 1
2 2 2 2 2
SEEIIJH—X*II +ZP2§ Vi +ZP3§ v Ellzill +§|IZ||
k=1 k=1
1 1 1 & P+ PAr
<P —|1+2z]*+-PAg + - 2 R z)?
= Pl 1"+ g P2Ak + 7 3kE—lyk I Pidg 5 llzll
1 1 1 Pi+PAx 1 )
— P+ -PAg +-PsAg— 2K iz =11+ 2,
41+42K+43K1—P3AK+2||ZH 1T+ z.|l
1 (P + PAg 1 5 2
— (TR L g2 - . 45
4<1_P3AK + 51207 = 1L+l (45)

In deriving the above inequality, we have utilized the bound on IE||z« ||2 from step (b)
and the definition of P; and Ag. To further simplify the above inequality, notice that
the saddle point property of (x,, z,) in (9) yields

F(x,) = L(x,, 0) < L(x4,2,) = F(x,) + 2] G(x,), (46)

which implies z] G (x,) > 0. However, the saddle point theorem guarantees that x, is
an optimizer of PE, meaning that x, is feasible and G (x,) < 0, implying zI G(x,) <0
as Z, € Rﬂ. Taken together, we infer

21G(x,) =0 = L(x,,2.) = F(x,) = pt. (47)
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Since L(x, z) is convex in x, Jensen’s inequality and (47) implies

K K
> WEIL(k41.2) — Lk, 22)] = (Z n) BIL(Ek41,2) — pyl, (48)

k=1 k=1

where recall that x g 1| is the y-weighted average of the iterates. Utilizing (48) in (45),
we get

K
- 1 ( P+ P,Ag 1
> v | BILGk11.2) — pEl < i (1—) + =zl = 11+ zll*.
P — P3Ag 2

(49)

The above relation defines a bound on E[L(X g1, z)] for every z > 0. Choosing
z = 0 and noting || 1 + z, I >0, we get the bound on expected suboptimality in (15).
To derive the bound on expected constraint violation in (16), notice that the saddle
point property in (9) and (47) implies
E[L(Zg 1.1 +2,) — pf]
= E[L(XKk+1,24) — L(xs, 2)] + E [[]li]TG(J?K+1)] (50)
> E[G' (Fx+1)],

where‘]l" € R™ is a vector of all zeros except the i-th entry that is unity. Choosing
z = 1" + z, in (49) and the observation in (50) then gives

E[G (Xk11)] <

1 P+ P,A .
( L2 K+2||1'+z*||2—4||1+z*||2)

45 e \ 1= DAk

1 P+ PA
< = ( 1 2 K) (51)

4Zk=l Yk 1 — P3AK
for each i = 1,...,m. This completes the proof of (16). The bounds in (17) are
immediate from that in (15)—(16). This completes the proof of Theorem 2.1. O

Remark 2.2 The bound in (16) can be sharpened to

S PN 1 Pi+ P Y v
S E[GGkin]| = ( Z,ﬁ—l : (52)
i—1 42 hmi vk \ 1= P33 v

using z defined by 7= zi + ]I{G,- (Fx11)>0} fori =1,...,min (49). Here, [ 4 is the
indicator function, evaluating to 1 if A holds and 0 otherwise. This improved bound
was suggested to us by an anonymous reviewer. Notice that (52) is a much tighter
bound on the expected constraint violation per constraint than (16) when m is large.
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In what follows, we offer insights into two specific aspects of our proof. First, we
present our conjecture on where the Gauss—Seidel nature of our dual update obtained
with an extra sample helps us circumvent the need for an a priori bound on the dual
variable. Notice that our dual update allows us to derive the third line of (37) that
ultimately yields the term —z,IG(xk_ir 1) in (24). This term conveniently disappears
when (24) is added to the inequality in (23) obtained from the primal update. We
conjecture that this cancellation made possible by our dual update makes the theoretical
analysis particularly easy. We anticipate that the classical Jacobi-style dual iteration
derived with one sample shared within the primal and the dual steps will not lead to
said cancellation and yield a term of the form z,I [G(xk_H) - G(xk)]. Bounding the
growth of such a term might prove challenging without an available bound on ||z ||
and will likely require a different argument. A detailed comparison between the proof
techniques of the Jacobi and the Gauss—Seidel updates is left for future endeavors.

Second, we comment on the presence of a dimensionless constant 1 in P together
with z,. We use the inequality in (21) to establish (49) that is valid at all z > 0. Inspired
by arguments in [42], we then utilize (49) not only at the dual iterate zx—that is often
the case with many prior analyses—but also at z = 0 and z = 1 + z,. Specifically, the
nature of the Lagrangian function £(x, z) in z permits us to relate these evaluations
atz = 0 and z = 1’ + z, to the extents of suboptimality and constraint violation,
respectively, using

L(x,0)=F(x), Lx,1' +2)=L(x,z)+ G (x). (53)

The deliberate inclusion of ||1 + z,||? in constant P; aids in drowning the effect of the
term %||z||2 in (49) evaluated at z = 1" + z, when deriving the bound on the extent
of constraint violation, without impacting the same when evaluated at z = 0, used in

deriving the bound on the extent of suboptimality.

2.2 Optimal Step Size Selection

We exploit the bounds in Theorem 2.1 to select a step size that minimizes the iteration
count to reach an e-approximately feasible and optimal solution to PF and solve?

minimize K,
K, y>0

P+ Pz)/2 (54)

subject to T <e, P3)/2 < 1.

VK 4yJK( - Py?)

The following characterization of optimal step sizes and the resulting iteration count
from Proposition 2.1 will prove useful in studying the growth in iteration complexity
in solving PCVaR with the risk-aversion parameters «, B in the following section.

3 The integrality of K is ignored for notational convenience.
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Proposition 2.1 For any ¢ > 0, the optimal solution of (54) satisfies

2 _ 2p;! Kk -t Pyy2)? (55)
Y24 y+2+8y 16y (1 — Pyy})?e?’
where y = 1 + %.

Proof 1t is evident from (55) that yf < P3_1. Then, it suffices to show that y, from
(55) minimizes

P| + P,y?
VK= —--—-———"—— 56
4y(1 — P3y?)e (56)

over y > 0. To that end, notice that

i( Pi + Poy? ) _ PPyt + (P + 3PPy — Py 57
dy \y(1 - P3y?) y2(1 — P3y?)? ‘

The above derivative is negative at y = 0™ and vanishes only at y, over positive values
of y, certifying it as the global minimizer. O

Parameter P; is generally not known a priori. However, it is often possible to
bound it from above. One can calculate y, and K, using (55), replacing P; with its
overestimate. Notice that

dK, . 0K, 0K.dy. dy
dPy " 9P, ' dy. dy dPy’

(58)

It is straightforward to verify that 0K, g, 4y < 0, and a’;‘ < 0, and hence,

d Py > dPy
overestimating Pj results in a smaller y,. Finally, 331;* > 0 for y > y,, implying that
K, calculated with an overestimate of Pj is larger than the optimal iteration count—the
computational burden we must bear for not knowing P;. Our algorithm does require
knowledge of P3 to implement the algorithm that in turn depends only on the nature

of the functions defining the constraints and not a primal-dual optimizer.

2.3 Asymptotic Almost Sure Convergence with Decaying Step-Sizes

Subgradient methods are often studied with decaying nonsummable square-summable
step sizes, for which they converge to an optimizer in the unconstrained setting. The
result holds even for distributed variants and for mirror descent methods (see [13]).
Establishing convergence of Algorithm 1 to a primal-dual optimizer of PF is much
more challenging without assumptions of strong convexity in the objective. With such
step-sizes, we provide the following result to guarantee the stability of our algorithm,
which is reminiscent of [28, Theorem 4].
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Proposition 2.2 Suppose Assumption 1 holds and {y}7° | is a nonsummable square-
summable nonnegative sequence, i.e., Z,fil Ve = 00, Z,fil ykz < oo. Then, (xi, zx)
generated by Algorithm 1 remains bounded and limy_, oo L(Xk, 24) — L(X4, 21) =0
almost surely.

This ‘gap’ function L(x, z.) — L(x, z) looks notoriously similar to the duality gap at
(x, 2), but is not the same. We are unaware of any results on asymptotic almost sure
convergence of primal-dual first-order algorithms to an optimizer for constrained con-
vex programs with convex, but not necessarily strongly convex, objectives. A recent
result in [43] establishes such a convergence in primal-dual dynamics in continuous
time; our attempts at leveraging discretizations of the same have yet proven unsuc-
cessful.

The proof of Proposition 2.2 takes advantage of the one-step update in (21) that
makes it amenable to the well-studied almost supermartingale convergence result by
Robbins and Siegmund in [35, Theorem 1].

Theorem (Convergence of almost supermartingales) Let my, ng, ri, sk be Fi-
measurable finite nonnegative random variables, where F1 C F, C ... describes
a filtration. If Y 72 sk < 00, Y gy Ik < 00, and

Elmgy1|Fe] < me(1 + s) +ri — ng, (59)

then limy_, oo my exists and is finite and Z,fil nx < oo almost surely.

Proof of Proposition 2.2 Using notation from the proof of Theorem 2.1, (23) and (24)
together yields

1
MBLL 1. 20) = £, 20l W] + 5B [ I = 22 4 21 = 201219

1 1 1
< 5 [l = 2P+ zi = 2] + 2 Povd + g PRz
(60)

We utilize the above to derive a similar inequality replacing E[L(x41, Z+)| W] with
L(xg, z,) by bounding the difference between them. Then, we apply the almost super-
martingale convergence theorem to the result to conclude the proof. To bound said
difference, the convexity of £ in x and Young’s inequality together implies

L(xk,24) — E[L(x kg1, 20| W]
<AVLXk41,Z), Xk — Xi1)

(61)
Vk 2 1 2
< EE[IIVx/S(ka,z*)II [ Mk] + o Elllxx — Xg+1 1717l
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where V, L denotes a subgradient of £ w.r.t. x. To further bound the RHS of (61),
Assumption 1 allows us to deduce

m
IVLGx. 20> < 2IVF@))? +2m Y IZLVG ()]

2 2 - 2 62)
<2C} + 2z PICa]

= 2Q1.

for any x € X. Furthermore, the x-update in (18) and the nonexpansive nature of the
projection operator yield

1

— Blllxr1 — xil*| W]

Vi

2

<E | Wk (63)

V fulxr) + Y 2 Vel (i)

i=1

< 2B(IV fo ) 2] + 2m Y B[ (@)1 Vgl (e 1219k ]

i=1

From Assumption 1, we get

E[IV foxO 12 < 2BV fo(xx) — EV fi, eI + IEV £, (e 12 W]

<202 42C%, (64)
and along similar lines
m
i\2 i 2 2 2 2
SB[Vl @0l ] < 2lo6l? + ICa Pzl (65)

i=1

that together in (63) yield

1
FE[””“ — xi [P < 4(0% + CE) +am(locl* + 1ICc 1) llzkll*.  (66)
k

=207 =203
Combining the above with (62) in (61) gives
Yk (LG, 20) — BILG 1, 20| WE]) < vE(Q1 + 02 + O3lzil®). (67
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Adding (67) to (60) and simplifying, we obtain

Ik Xkt — x4l — 21?1,
> k1 — Xull” + zr1 — 2171 Pk

1
< 3 [l =2l la = 2] = Lk 20 — Lzl (69)

2 (1 2 (1 2
+ Vi ZP2+Q1+Q2 + ¥ ZP3+Q3 Izl

The above inequality with
lzell® < 201xk — %1% + 2llzk — zol1? + 201241 (69)

becomes (59), where

1 1
me = =Ellxg — x> + sEllzx — z.l1%, 1k = il Lk, 22) — L, 201,
2 2

1 1 1
e = v} [ZPZ +01+ 02+ (Eps + 2Q3> ||Z*||2} . sk=vE (§P3 + 2Q3> .
(70)

Each term is nonnegative, owing to (9), and y defines a square-summable sequence.
Applying [35, Theorem 1], my converges to a constant and Y -, ny < 0o. The latter
combined with the nonsummability of y implies the result. O

3 Algorithm for PR and Its Analysis

We now devote our attention to solving P<Y2R via a primal-dual algorithm. To do so, we

reformulate it as an instance of PF and utilize Algorithm 1 to solve that reformulation

with constant step-sizes under a stronger set of assumptions given below. In the sequel,

we use L to denote the Lagrangian function defined in (6), but with F and G as defined

in PEVaR,

Assumption 2 PCVaR must satisfy the following properties:

(a) Subgradients of F and G are bounded, i.e., |V f,(x)|| < Cr and ||Vg£o(x) | < Cé;
almost surely for all x € X.

(b) g, (x)is bounded, i.e., ||gfu(x)|| < DiG for all x € X, almost surely.

(c) The Lagrangian function £ admits a saddle point (x4, z,) € X x Rﬁ.“

Using the variational characterization (2) of CVaR, rewrite PCVaR 4¢

minimize min E[y/ , 0; ,
nim min [V, (x,u”; a)]
; o (71)
subject to min E[y§ (x,u'; )1 <0, i=1,...,m,
uteR

4 Lemma 2.1 provides sufficient conditions for the existence of such a saddle point.
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where gﬁc’; (x,u;8) .= u+ ﬁ[hw(x) — u]™ for any collection of convex functions
he : R" — R, w € 2. Coupled with Assumption 2, we will show that we can bound
|u'| < Dg; foreachi =1,..., m? that allows us to rewrite PCY2R ag

’ o
PE . minimize E[I//a]; (x, u’; a)],
xEX,uOER,

lu|<D¢ (72)
subject to ]E[l/f(ii (x,u'; )] <0, foreachi=1,...,m,

where | - | denotes the element-wise absolute value. Call the optimal value of PCVaR

as pSVR in the sequel.

Theorem 3.1 (Convergence result for PVR) Suppose Assumption 2 holds. The iter-
ates generated by Algorithm 1 on PE’ for PEVR with parameters a, B satisfy

E[CVaR, (fo (¥ k+1))] — pS VR < "(%), (73)
E[CVaR g1 (g], (% 41))] = ”(jg) (74)

fori = 1,...,m with step sizes vy = y/K fork = 1,...,K with0 < y <
P 2 (a, B), where n( = PP .,
3 &P @ B) = 5 has)

16(C% + 1 2
ﬁ +2 |diag(1 + B)diag(1 — )~ Dg | .

diag(1 — B)~'C¢
diag(1 — g)~ 1

Py(a, B) :=

2 (75)

P3(a, B) := 16m H(

Proof We prove the result in the following steps.

(a) Under Assumption 2, we revise P> and P; in Theorem 2.1 for PE.

(b) We show that if f,, g, satisfy Assumption 2, then %’: and wf)l di=1,...,m
satisfy Assumption 2, but with different bounds on the gradients and function
values. Leveraging these bounds, we obtain P («, 8) and P3(«, B) for PE’ using
step (a).

(c) Using Assumption 2, we prove that the Lagrangian function £’ : X x R x U x
R — R defined as

Ll u,2) =By e, u® o)l + Y LBy, w0l (76)

i=1

admits a saddle pointin X x R x U x R, where U := {u € R" | |u| < Dg}.

5 CVaR of any random variable can only vary between the mean and the maximum value that random
variable can take.
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(d) We then apply Theorem 2.1 with P> («, B) and P3(«, B) from step (b) on PE to
derive the bounds in (73) and (74).

e Step (a)—Revising Theorem 2.1 with Assumption 2: Recall that in the derivation of
(33) in the proof of Theorem 2.1, Assumption 1 yields

IVFxi+1) — V fo(xi)|I* < 2(4C% +0p). (77)

Assumption 2 allows us to bound the same by 4C2., yielding P, = 16C% +2||Dg|>.
Along the same lines, we get P3 = 16m|Cg||>.
° Step (b)—Deriving properties of Y,: Consider the stochastic subgradient of

Ww (x,1; ) given by

1
AV £ ) H{fw(x)zu}> ’ (78)

VL (x,u; @) = ( !
¢ I — 1 Lp0=u)

where Il is the indicator function. Recall that ||V f,,(x)|| < Cr for all x € X almost
surely. Therefore, we have

1 2 1 :
VY w1 = | =V fu®) I f,mzm| + |1 = = Tpwzu
-« -«
) (79)
Cp+1
T (-
Proceeding similarly, we obtain
|[vve PGl (80)
¢ T (=g
We also have
i ) N i l 1 i
W8 (e, uls B = 'max{gw(f) ff H' +’3 . @B

Then, (75) follows from step (a) using (79), (80), and (81).
e Step (¢ )—Showmg that ﬁ admits a saddle point: According to [36, Theorem 10], the

minimizers of ]E[xpw (x, u? ;)] over u0 define a nonempty closed bounded interval
(possibly a singleton). Thus, we have

F(x) = B[y (x,u’(x); )] (82)
for some u”(x) € R for each x € X. Similarly, we infer

G'(x) = Bly& (x,u (x): )] (83)
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for some u’ (x) € R for each x € X. Moreover, for all u* > D., we have
ElvE (x,u's Bl =o', (84)

and for u! < —D’é, we have

ElyS (x.u'; p1)] = (Blgl,e) = B'u'). 85)

1
1 - pi
Thus, E[lﬂf,l (x, u'; ,Bi )]is nonincreasing in u' below —DiG and increasing in it beyond
Dé;. Hence, at least one among the minimizers of E[I//f), (x, u'; ﬂi )] must lie in
[—Dy;, Dg;]. In the sequel, let u' (x) refer to such a minimizer.

Consider a saddle point (x,, z.) € X x R of PCEVaR we argue that (x,, u0(x,),

u(x,), z+) is a saddle point of £’. From the definitions of £, £, (82), (83), and the
saddle point property of (x., z.), we obtain

L (0 1 (2), 14(x2), 24) = L(X, Z4)
< ﬁ(x» Z*)

= B[y (e, u’(0): )] + Y 2L E[WE (e ul (x); p)]
i=1
<L'(x,u’ u,z,)
(86)

forall (x, u%, u) € X x R x U. Also, for all z € R™”, we have

L (x40, u®(x,), u(x4), 2) = L(X4, 2) < L(Xx, 24) = L (00, 10 (x,), w(x,), 22).
(87)

e Step (d)—Proof of (73) and (74): By the saddle point theorem and (86), we have
L(x4, z,) = pSVR that also equals the optimal value of PE’. Applying Theorem 2.1

with revised P, and P; from step (b) to PE’ for which X0, ...,Xxg+1 and ug, R ”(I)(+1
are Wk +1/2-measurable, we obtain

E[CVaRq(fo(¥k+1)] = E [Igi% DILZACTSENTE a)|wK+1/z]}
uve

<E I:E[’»”c{;(i'l(+ls TR Ot)IWK+1/2]]
= B[y @xnif )]

SvaR n n(e, .3) 38
<p a (88)
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Following a similar argument fori = 1, ..., m, we get
B [CVaR 6L G r+10)] = B | min EI Gl i | < 272
u'eR \/E
(89)
completing the proof. O

Our proof architecture generalizes to problems with other risk measures as long as
that measure preserves convexity of f,,, g, admits a variational characterization as in
(2), and a subgradient for this modified objective can be easily computed and remains
bounded. We restrict our attention to CVaR to keep the exposition concrete.

Opposed to sample average approximation (SAA) algorithms, we neither compute
nor estimate F(x) = CVaR[f,(x)], G(x) = CVaR[g,,(x)] for any given decision x
to run the algorithm. Yet, our analysis provides guarantees on the same at X g1 in
expectation. If one needs to compute F at any decision variable, e.g., at X g1, one
can employ the variational characterization in (2). Such evaluation requires additional
computational effort. Notice that Theorem 3.1 does not relate F(Xg 1) to pSVR in
an almost sure sense; it only relates the two in expectation according to (73), where
the expectation is evaluated with respect to the stochastic sample path.

CVaR of a random variable depends on the tail of its distribution. The higher the
risk aversion, the further into the tail one needs to look, generally requiring more
samples. Even if we do not explicitly compute the tail-dependent CVaR relevant to
the objective or the constraints, it is natural to expect our sample complexity to grow
with risk aversion, which the following result confirms.

Proposition 3.1 Suppose Assumption 2 holds. For an e-approximately feasible and
optimal solution of PCV*®R with risk aversion parameters «, B using Algorithm I on
PE' then vi(at, B) and K (a, B) from Proposition 2.1, respectively, decreases and
increases with both o and B.

Proof We borrow the notation from Proposition 2.1 and tackle the variation with «
and S separately.

.. . . . . . . dy?
e Variation with «: P> increases with o, implying y, decreases with o because dyy' <0

a a

dy . K. K, :
and a5 = 0. Furthermore, using e < 0 for y < y, and ar = 0in

dK, 0K, 0K, dy.

= 90
dpP P Yy dP> ©0
we infer that K, inpreases with «. .
e Variation with B': Both P, and Ps increase with 8’ and
dy? 9y}dP, dy}dP
Ve 0V dlr Vi 413 ©1)

dpi ~ aP,dpi ' aPsdpi

Following an argument similar to that for the variation with «, the first term on the RHS
of the above equation can be shown to be nonpositive. Next, we show that the second
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term is nonpositive to conclude that y, decreases with ﬂi, where we use 423 > 0.

dpi
Utilizing % =y — 1, we infer

ay? 2 dy2 dy
9P P2ty a8y | oy 0P
~ 2 ) 445+ +8y P
PI2+y+Vy2+8y) Py +8yQ+y+ )2 +8y)2 PiP;
S 5y +4+3/y2+8y
P2/Y2+8yQ2+y +/y2 +8y)>

<0.

(92)
To characterize the variation of K, notice that

dK. _ 0K, P> 0K, 0P;
dBi — aP, aB1  aP3 Apt

93)

Again, the first term on the RHS of the above relation is nonnegative, owing to an
argument similar to that used for the variation of K, with «. We show ‘31;3* < 0to
conclude the proof. Treating K, as a function of P3 and y,, we obtain

dK* _ BK* aK* 3)/*
dPy 9Py | dy, 0P;

(94)

It is straightforward to verify that the first summand is nonnegative. We have already
argued that y, decreases with P3, and % < 0 for y < y,, implying that the second
summand is nonnegative as well, completing the proof. O

It is easy to compute the optimized iteration count K, (c, ) and the optimized
constant step-size v, (a, B)/+/Kx(a, B) from Proposition 2.1. The formula is omitted
for brevity. Instead, we derive additional insight by fixing 8 and driving o towards
unity. For such an «, 8, we have

Py, B) ~ (1 —a) 72, yule, B) ~ (1 — ), Ku(t, B) ~ 2 95)

(I-a)?
With « approaching unity, notice that P°V2R approaches a robust optimization prob-
lem. Thus, Algorithm 1 for PE’ is aiming to solve a robust optimization problem
via sampling. Not surprisingly, the sample complexity exhibits unbounded growth
with such robustness requirements, since we do not assume §2 to be finite. Also,
this growth matches that of solving the SAA problem within e-tolerance on the
unconstrained problem to minimize F(x) := % Zle l/f(‘: ;(x, u; ). To see this,

apply Theorem 2.1 on F (x) with optimized step size from Proposition 2.1, where
P~ |[VFxX)|>?~ (1 —a)%and P; = 1.
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Parallelization can lead to stronger bounds. More precisely, run stochastic approx-
imation in parallel on N machines, each with K samples and compute (X)g+1 =
% Z?’zl Xg+1[jlusing xx+1[1], ..., Xx+1[N] obtained from the N separate runs.
Then, we have

Pr{G (@ ke = (L + e, B/VE]

N
l . i - . ’7(01» ﬂ)
=rris ;CVaRﬂ, [ Gl ] = 0T 22 06)
N7’n* (e, B)
R R
K[DL]
fori = 1,...,m and T > 0. The steps combine coherence of CVaR, convexity

and uniform boundedness of gfu, Hoeffding’s inequality and Theorem 3.1. A similar
bound can be derived for suboptimality. Thus, parallelized stochastic approximation
produces a result whose O(1/+/K)-violation occurs with a probability that decays
exponentially with the degree of parallelization N.

The bound in (96) reveals an interesting connection with results for chance
constrained programs. To describe the link, notice that CVaRs[y,] < 0 implies
Pr{y, < 0} > 1 — § for any random variable y,, and § € [0, 1). Therefore, (96)
implies

Pr {Pr {gi) (Fra1) < C/«/E} > 1—Bis Violated} < exp (—C'/K) < v,(97)

for constants C, C’. Said differently, our stochastic approximation algorithm requires
O(log(1/v)) samples to produce a solution that satisfies an O(1/y/log(1//v))-
approximate chance-constraint with a violation probability bounded by v. This result
bears a striking similarity to that derived in [11], where the authors deterministically
enforce O(log(1/v)) sampled constraints to produce a solution that satisfies the exact
chance-constraint Pr {g’, (x) <0} > 1 — g’ with a violation probability bounded by
v. This resemblance in order-wise sample complexity is intriguing, given the signifi-
cant differences between the algorithms.

3.1 An lllustrative Example

We explore the use of our algorithm on the following example problem

1 1

1 1\2
minimize CVaR, |:§ (x —w— —) :| , subject to CVaRg [x + w] < 0. (98)

Letw ~ %beta (2, 2) and consider the specific choice of risk parameters @ = 0.3, 8 =
0.2. To gain intuition into the optimal solution for this example, we numerically esti-
mate F(x) and G!(x) for each x and plot them in Fig. 1a. To that end, we first obtain
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1.5

Feasible —F(z) 10-1 — |F(zy) — F(z,)|
[ resion —G'@ K G (@) — G
|z |
N
<)

Error

N 'Z "
0F \ 1 '

05r ¥~ —0.1929
-1 L
0.5 0 0.5 .
x Iteration, k x10°
(a) (b)
Fig. 1 Plots of a numerically estimated F and Gl overX =[-1, l], and b convergence of the running

ergodic mean and F, G evaluated at the mean for the example problem (98) witha = 0.3, 8 = 0.2

a million samples of w. Then, for each value of the decision variable x, we sort the
objective function value f;,(x) and the constraint function value g,(x) with these
samples. We then estimate F and G as the average of the highest I — & = 70% and
1 — B = 80% among f,(x)’s and g, (x)’s, respectively, at each x with those samples.
The unique optimum for (98) is numerically evaluated as x, ~ —0.1929 for which
F(x,) ~ 0.4042 and G'(x,) ~ 0.

For this example, it is easy to show that Cr = g‘, Cg =1land Dg = g that yields
P»(0.3,0.2) = 3276 and P3(0.3, 0.2) = 50. To run Algorithm 1 on P&’ derived from
(98), we can use constant step-size yx = v/ \/? with a pre-determined number of
172 0.3,0.2) = f With any given K, Theorem 3.1

guarantees that the expected distance to F(x,) and the expected constraint violation
evaluatedat xx 41 decaysas 1/+/K.Foragiven K and y < 7 , calculating the precise

bound (0.3, 0.2)/+/K requires the knowledge of P; or its overestimate. For this
example, |x,| < % and |ul| < Dg = %. Also, |u9| is bounded above by the maximum

steps K forany 0 < y < P;

value that | f,,(x)| can take, that is given by g. Since we cannot determine z, a priori,
we assume |z,| < 2 (that will later be shown to be consistent with our result). Starting
from (xo, u8, u(l), z0) = 0, we then obtain P; = 3197 . To solve PCVaR (or equivalently

PE/) with a tolerance of ¢ = 5 x 1073, we requlre n(0.3, 0.2)/\/E < 5x 1073,
With this tolerance and the values of Py, P>, P3, Proposition 2.1 yields an optimized
¥, = 0.0808 and K, ~ 1.35 x 10°. We run Algorithm 1 on PE’ with constant step-
size ¥,/+/K, and plot F and G! at the running ergodic mean of the iterates, i.e., at
Xp 1= % ZIJ‘: 1 x; for each k. Again F and G! are evaluated numerically using the
CVaR-estimation procedure we outlined above.

Notice that Theorem 3.1 only guarantees a bound on F(xk,+1) — F(x,) and
G'(¥k,11) in expectation. Thus, one would expect that only the average of the CVaR
of F and G! evaluated at Xg, ;| over multiple sample paths to respect the e-bound.
However, our simulation yielded xg,+1 = —0.1926 and 7k, 1 = 0.8976, for which
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g oY
Fig. 2 Plot of the optimized number of iterations K,(c«, 8) on the left and the optimized step size

v« (at, B)/+/K«(a, B) on the right to achieve a tolerance of ¢ = 5 x 1073 for the example problem in
(98)

F(Zk.+1) ~ 0.4040 < F(x,) + & ~ 0.4042 + 0.0050 = 0.4092,

(99)
G'(¥g,+1) ~ 0.0002 < G'(x,) + & ~ 0 + 0.0050 = 0.0050,

i.e., the ergodic mean after K, iterations respects the e-bound over the plotted sample
path. The same behavior was observed over multiple sample paths. The ergodic mean
of the dual iterate is indeed consistent with our assumption |z,| < 2 made in deriving
17(0.3, 0.2). We point out that the ergodic mean in Fig. 1b moves much more smoothly
than our evaluation of F and G' at those means, especially for large k. The noise in
F in G' emanates from the finitely many samples we use to evaluate F and G'. The
errors appear much more pronounced at larger k, given the logarithmic scale of the
plot.

The optimized iteration count K, (o, §) from Proposition 2.1 with a modest « =
0.3, B = 0.21s quite high even for this simple example. This iteration count only grows
with increased risk aversion as Fig. 2 reveals. Figure 1b suggests that the e = 5x 1073
tolerance is met earlier than K, iterations. This is the downside of optimizing upper
bounds to decide step-sizes for subgradient methods. Carefully designed termination
criteria may prove useful in practical implementations. In Fig. 2, we calculate K,
and y, with P = % obtained using |z,| < 2; extensive simulations with various
(o, B) €10, 0.99]2 suggest that this over-estimate indeed holds.

We end the numerical example with a remark about the comparison of Algorithm 1
that uses Gauss—Seidel-type dual update in (5) and another that uses the popular
Jacobi-type dual update on PE’ for (98) with « = 0.3, B = 0.2. This alternate dual
update replaces g, P (*k+1) in (5) by g, (x). That is, the same sample wy is used
for both the primal and the dual update. And, the primal iterate xy is used instead of
X+1 toupdate the dual variable. We numerically compared this primal-dual algorithm
with Algorithm 1 with various choices of step-sizes (consistent with the requirements
of Theorem 3.1) and iteration count for our example and its variations. For each
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run, we found that the iterates from both these algorithms moved very similarly. The
differences are too small to report. The Jacobi-type update requires half the number of
samples compared to Algorithm 1. While the extra sample helps us in the theoretical
analysis, our experience with this stylized example does not suggest any empirical
advantage. A more thorough comparison between these algorithms, both theoretically
and empirically, is left to future work.

4 Conclusions and Future Work

In this paper, we study a stochastic approximation algorithm for CVaR-sensitive opti-
mization problems. Such problems are remarkably rich in their modeling power and
encompass a plethora of stochastic programming problems with broad applications.
We study a primal-dual algorithm to solve that problem that processes samples in
an online fashion, i.e., obtains samples and updates decision variables in each itera-
tion. Such algorithms are useful when sampling is easy and intermediate approximate
solutions, albeit inexact, are useful. The convergence analysis allows us to optimize
the number of iterations required to reach a solution within a prescribed tolerance on
expected suboptimality and constraint violation. The sample and iteration complexity
predictably grows with risk-aversion. Our work affirms that a modeler must not only
consider the attitude toward risk but also consider the computational burdens of risk
in deciding the problem formulation.

Two possible extensions are of immediate interest to us. First, primal-dual algo-
rithms find applications in multi-agent distributed optimization problems over a
possibly time-varying communication network. We plan to extend our results to
solve distributed risk-sensitive convex optimization problems over networks, bor-
rowing techniques from [14,29]. Second, the relationship to sample complexity for
chance-constrained programs in [11] encourages us to pursue a possible exploration
of stochastic approximation for such optimization problems.
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