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ABSTRACT

Exoskeletons, such as scales on fishes and snakes were a critical evolutionary adaptation. Honed by millions
of years of evolutionary pressures, they are inherently lightweight and yet multifunctional, aiding in protection,
locomotion and optical camouflaging. This makes them an attractive candidate for biomimicry to produce high
performance multifunctional materials with applications to soft robotics, wearables, energy efficient smart skins
and on-demand tunable materials. Canonically speaking, biomimetic samples can be fabricating by partially
embedding stiffer plate like segments on softer substrates to create a bi-material system, with overlapping scales.
Recent investigations on their mechanics have shown that the origins of many of these behaviors are not merely
due to load distribution but because of an intricate interplay of deformation, sliding and interfacial behavior.
Such interplay give rise to property combinations that are typically not visible in the parent material of either
the scales or the substrates. Here we review and present the origins of some of their fascinating behavior which
include nonlinear and directional strain stiffening in both bending and twisting, dual nature of friction which
combines both resistance as well as adding stiffness to motion, emergent viscosity in dynamic loading, and
non-Hertzian contact mechanics. We will provide derivation of simple mathematical laws that govern structure-
property relationships that can help guide design. We will also demonstrate possibilities in non-mechanical
properties such as elementary structural coloration and topography influenced mass deposition. We conclude by
providing perspectives of future development and challenges.

Keywords: biomimetic, fish scale, exoskeleton, tailorable stiffness

1. INTRODUCTION

Exoskeleton elements such as fish scales were an early evolutionary innovation.1–4 Appearing initially in fishes as
scales for protection against predators and rivals,5,6 their functions grew rapidly to aid locomotion, swimming,
camouflage and thermal regulation.7–11 It is therefore not surprising that the exoskeleton form not only survived
evolutionary honing but thrived in the form of variegated scales,8,12,13 furs,14,15 papillae on feline tongues,16 and
scales on hairs.17,18 Their mechanical advantages rest on not only their intricate material properties,19–21 but
also their orientation, overlap and distribution. This interplay between material and geometry lies at the heart of
high performance of this structural system. Prior research investigating the mechanics of simple one-dimensional
beams with embedded scales have shown the emergence of remarkable nonlinearity.

These nonlinearities are often emergent, i.e. not found in the individual parts but arise at the system
level form mutual interactions of discrete but regularly arranged exoskeleton elements. Such periodic mutual
reinforcement are also the hallmark of metamaterials, and like them the exoskeletal systems also exhibit unique
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property combinations. By harnessing such emergence, we can obtain hitherto unprecedented property ranges,
combinations, tailorability and tunability in performance, not possible by mere mixing or traditional composite
systems. These properties although not properly understood, were recognized by early humans. For instance,
the features of scales were an inspiration for principles of armor design,5,12,22 because overlapping scales can
resist penetration and provide additional stiffness.5,12,23 This inspiration is among the earliest interest in this
area, which is based on the direct mimicry of the scaled integument for making scaled armors in the ancient
times across the world.2,6, 23–25 Lamellar armors, fabricated out of lacing hard plates together, have been found
in the ancient Egypt,2,24 in the Scythian civilizations,24 and in the Persian empire.23,24 The scale armor also
have been used by the Assyrian and Mongolian armed forces,23,24 Roman troops,2,6 and Japanese Samurai.6,25

In spite of this early interest, little was known about the fundamental mechanics behind superior performance,
which resulted in similar designs reappearing over years.

In addition to protection against external objects, which is mechanically an indentation type local deforma-
tion problem, global deformation modes such as bending and twisting of a substrate reveal equally interesting
properties, for example a host of applications that require a structural mode of deformation such as soft robotics,
prosthetics or morphing structures.26–29 In a scale-covered structure, it is the role of scale engagements in mod-
ifying the global deformation behavior of the underlying structure. These include reversible nonlinear stiffening
and locking behavior due to the sliding kinematics of the scales in one-dimensional substrates.30–36

1D substrates with stiff scales revealed strain stiffening due to sliding, scale deformation as well as friction
in the bending mode of deformation.30 Later simplification revealed the distinct nonlinear regimes of elasticity
even without scale deformation or friction.33,35 Nonlinearity due to frictional effects were further isolated and
their effect on locking and dissipation quantified.34,36 More studies revealed the limits of theoretical assumptions
underpinning the models and their effect on predicted relationships.37–39 Prior research has shown that bending
and twisting of a substrate show small strain reversible nonlinear stiffening and locking behavior due to the sliding
kinematics of the scales in one-dimensional substrates.30–39 The universality of these behavior across bending
of uniformly distributed scales, functionally graded scales and uniformly distributed twisting is an important
discovery for these structures.

Fabrication methods for these scale-covered structures have been recently developed in 2D and 1D config-
uration. These fabricated structures show almost ten times more puncture resistance than soft elastomers.
Generally, these scale-covered substrates can be fabricated in a number of ways. One strategy is using glue
to attach stiff scales to deformable substrates. Here, the scales could be 3D printed stiff plates,33,35,38,40 or
steel sheets,39 and the substrates could be made of Vinylpolysiloxane (VPS) elastomer,33,35,38,40 or 3D printed
flexible material,39 with prefabricated grooves for scales embedding, as shown in Figure 1 (a). Other strategies
comprise multi-material 3D printing with flexible and rigid material photopolymers associated to substrate and
scales respectively,41 a combination of laser engraving alumina strip for scales and stretch-and-release fabrication
method,42 and sewing cellulose acetate butyrate (CAB) scales on a polypropylene mesh using cotton thread.43

For emulating intricate and naturally inspired structures, additive manufacturing can be regarded,44 or a com-
bination method of using female mold to arrange scales in a 2D overlapped arrangement, and casting silicone
and then demolding can be utilized,45 as shown in Figure 1 (b). In addition, 3D printed mold to cast silicone,46

and multi-material 3D printing47 have been used to mimic the scaled-like shark skin.

(a) (b)
Figure 1. (a) Fabricated 1D scale-covered prototypes using glue the stiff scales into prefabricated grooves of deformable
substrate. (b) Fabricated 2D scale-covered prototypes using female mold to arrange scales in a 2D overlapped arrangement.
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Extending the dimensionality of the problem, two-dimensional substrates were also investigated.31,32,43,48

These showed several similarities with their one-dimensional counterparts in bending. In this paper, we represent
the emergent behavior scale-covered 1D structures under bending and twisting loads, including the frictional
effects, then we investigate the mechanics of fish scale exoskeletal under combined loading in one-dimensional
filamentous structure and two-dimensional plate with protruding scale-like features embedded on to the surface.
Then, we investigate the puncture response of these structures. Finally, we conclude the emergent behaviors in
the biomimetic exoskeletal metamaterials and discuss the future development and challenges in this area.

2. BENDING OF SCALE-COVERED 1D BEAM

2.1 Mechanics of global bending deformation

To study the bending response of a scale-covered 1D beam, a beam with partially-embedded inclined stiff or
rigid scales has been considered with the geometrical parameters shown in Figure 2 (a). By applying the bending
load to the structure, the bent shape of the substrate can be envisaged as a circular arc of a beam, as shown
in Figure 2 (a). A representative volume element (RVE) can be isolated by assuming the periodicity in scale
engagements. To characterize the kinematics of this structure, the following nonlinear relationship have been
established between the local angular deflection of the scales (scales’ inclination angle) θ, and the local substrate
angular deflection ψ:33,34

ηψ cosψ/2− sin(θ + ψ/2) = 0. (1)

In Equation 1, η = l/d is called overlap ratio, where d and l are the scales spacing and the scales exposed
length, respectively.33,34 Here, the curvature of the beam κ is defined as κ = ψ/d. By plotting this relationship
for various η, a kinematic mechanisms map is obtained as shown in Figure 2 (b) for a particular case. This
map shows the performance of the system under three kinematic regimes of operations including the “linear
behavior” before the scale engagement (the horizontal part of each η’s curve), the “nonlinear stiffening” after
the scale engagement (the ascending curved part of each η’s curve), and finally reach to a kinematically locked
configuration, which the connection of these locked configurations for various η’s curve is formed the kinematic
locking border (shown with black curve in Figure 2 (b)). The locking envelope obtained mathematically by
satisfying ∂ψ/∂θ = 0. To find the moment–curvature response, the energy approach has been utilized. The
applied work is W = LB

∫ κ
0
Mdκ where LB , M , and κ are the substrate length, applied moment, and substrate

curvature, respectively. The work is absorbed by the system as the beam strain energy 1
2EBILBκ

2, and scales–
substrate joint rotation resistance 1

2NKB(θ − θ0)2, where EBI, N = LB/d, θ0, and KB are the beam’s bending
rigidity, number of scales, initial inclination of scales, and scales torsional stiffness, respectively.33,34 Finally, the
moment–curvature response is derived by the energy–work balance on the beam as follows:

M(κ) = EBIκ+KB(θ − θ0)
∂θ

∂ψ
H(κ− κe). (2)

Here, κe and H(κ−κe) are the engagement curvature and Heaviside step function, respectively. The Heaviside
step function distinguishes the scales engagement by adding the nonlinear stiffening term KB(θ − θ0) ∂θ∂ψ , just

after the scales engagement to the moment response. Figure 2 (c) displays the moment response of the structure
for a particular case with varying overlap ratio η. The developed model showed good agreements with finite
element (FE) simulations for both kinematic and mechanic plot shown in Figure 2 (b) and (c).

2.2 Frictional effects in bending

The effect of friction can be quantified in bending by considering force balance on the RVE assuming ffr = µN
where ffr, N , and µ > 0 are the friction force, normal force, and coefficient of friction, respectively as shown
in Figure 2 (a). This force balance leads to highly nonlinear relationship for the frictional force dependence on
the nondimensionalized curvature κ/κe,

34 as shown in Figure 2 (d) for a particular case with varying coefficient
of friction µ. Clearly, there is a sharp rise in friction forces for each µ and the frictional force is singular at a
certain curvature, which indicates configuration of “frictional locking” where the system behaves rigid at this
point because the friction force between scales approaches to the infinite value. The friction locking is occurring
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earlier than the kinematic, leads to advance locking envelope with increasing µ, as shown in Figure 2 (e). In
addition to the role of friction in the kinematic characteristics of the system by advancing the locking, the
frictional dissipation work is involved in the energy–work balance of the system leads to extending the energy
balance mentioned in Equation (2) to the following form:

M(κ) = EBIκ+

(
KB(θ − θ0)

∂θ

∂ψ
+ ffr

dr

dψ

)
H(κ− κe). (3)

Here, dr is the relative differential displacement of the friction force in the direction of sliding, which is
discussed thoroughly in.34 By adding the frictional dissipation work to the energy–work balance, the friction
will have additional nonlinear stiffening effect after scales engagement as shown in the Figure 2 (f), as the
post-engagement moment–curvature for a particular case with varying friction coefficients.
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Figure 2. (a) The isolated RVE and free body diagram for bending load. (b) The kinematic mechanisms map. (c)
The moment–curvature response. (d) nondimensionalized friction force vs curvature for various friction coefficients. (e)
The kinematic mechanisms map with frictional effects. (f) The post-engagement moment–curvature for various friction
coefficients.

3. TWISTING OF SCALE-COVERED 1D BEAM

3.1 Mechanics of global twisting deformation

In contrast to bending, the case of twisting is somewhat more complex because of the out of plane deformation.
Early studies on the torsional response of the 2D scaled system seemed to indicate no significant stiffening like
the bending,31 because they considered the scales arrangement as parallel to the torsion axis, which leads to
excessive torsion for scales engagement.35 Thus, in a recent work we focused on oblique scales with oblique
angle α (in addition to inclination angle θ) under twisting load,35 as shown in the RVE in Figure 3 (a). Here,
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in addition to the overlap ratio η = l/d, we define additional dimensionless geometrical parameters including
the dimensionless scale width β = b/d, and dimensionless substrate thickness λ = t/d, where b and t are the
half width of scale, and half thickness of substrate, respectively. The following nonlinear relationship is obtained
between the scales’ inclination angle θ, and the substrate’s local twist angle ϕ using periodicity assumption on
the twisting deformation:35,36

(cosϕ− 1)
(
β sin 2α sin θ + ηcos2α sin 2θ + 2λ cos 2α cos θ

)
− 2 cosα cosϕ sin θ + (4)

2 sinα sinϕ(η + λ sin θ) + 2 cosα sinϕ cos θ(β − sinα) = 0.

Here, the twisting curvature of the beam is called twist rate Φ, which is defined as Φ = ϕ/d. By plotting
this relationship for various η, a kinematic mechanisms map is obtained as shown in Figure 3 (b) for a particular
case, similar to bending case. Clearly, here again three distinct regimes of operation emerged including linear,
nonlinear and kinematic locking. Using energy balance approach, similar to the bending, a nonlinear torque–twist
rate relationship is derived:35

T (Φ) = CfCwGBIΦ +Kθ(θ − θ0)
∂θ

∂ϕ
H(Φ− Φe). (5)

Here, Cw is the warping coefficient for non-circular cross section under twisting,49 and Cf is the inclusion
correction factor which accounts for the additional appreciable stiffness gain due to embedded parts of the rigid
scales into deformable substrate.35,36
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Figure 3. (a) The isolated RVE and free body diagram for twisting load. (b) The kinematic mechanisms map. (c)
The torque–twist rate response. (d) non-dimensionalized friction force vs twist rate for various friction coefficients. (e)
The kinematic mechanisms map with frictional effects. (f) The post-engagement torque–twist rate for various friction
coefficients.
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Also in this relationship, Kθ, Φe, and H(Φ−Φe) are the rotational spring constant for change in inclination
angle θ, engagement curvature, and Heaviside step function to track the scales engagement, respectively. This
relationship creates the plot shown in Figure 3 (c), as the torque–twist rate response of the structure for a
particular case with varying overlap ratio η, which shows a nonlinear stiffening after scales engagement same as
the bending case.

3.2 Frictional effects in twisting

To study the effect of friction in twisting, similar method to the bending case is considered for the RVE force
balance with the friction force ffr, and the normal force N represented in Figure 3 (a). This leads to an expression
for the frictional force as discussed in detail in a recent work.36 From this expression, a highly nonlinear plot is
obtained for different coefficient of friction µ, which displays the dependence of nondimensionalized friction force
f̄0 and nondimensionalized twist rate Φ/Φe, as shown in Figure 3 (d) for a particular case. The singularity in the
friction force curves for each µ indicates the frictional locking configuration same as bending case. Figure 3 (e)
shows that the frictional locking happens earlier than kinematic locking with increasing the coefficient of friction
µ, leads to advance the locking envelope. By developing the energy–work balance of the system, an extended
form is obtained for the equation (5) as followed:

T (Φ) = CfCwGBIΦ +

(
Kθ(θ − θ0)

∂θ

∂ϕ
+ ffr

dr

dϕ

)
H(Φ− Φe). (6)

The value and direction of the relative differential displacement dr has been discussed in a recent work.36

The additional term ffr
dr
dϕ is involving the frictional dissipation work to the energy–work balance of system. This

leads to the additional nonlinear stiffening effect to the post-engagement torque–twist rate, which is shown for
a particular case with varying friction coefficients in Figure 3 (f).

4. COMBINED LOADS IN SCALE-COVERED 1D BEAM

The case of combined bending and twisting loads is much more challenging due to the mathematical complexity
introduced by the three-dimensional nature of contact between scales. It is further compounded by their various
possible modes of contact, as we shall see in this section. The kinematics of contact for this general case can
be captured by strain variables κ1 and κ2, which denote the bending curvature strains about the X-axis and
Y-axis, and κ3, the torsional strain due to the twist about the Z-axis. In this notation, for the cases discussed in
Section 2 and 3, we have κ = κ1 and Φ = κ3, respectively. For prescribed and constant (bending and torsional)
strains, the beam configuration is shown in Figure 4 (a). Scales engage for specific values of θ that depend on
the bending and torsional strains. Unlike the cases of pure bending and pure twisting as discussed in Section 2
and 3, the mathematical complexity inherent in the general case precludes a relatively straightforward algebraic
relationship between θ and the strain measures (akin to Equation (1) and (4)). Nevertheless, the dependence
can be computed using the following steps:

1. We relate the beam’s strains (κ1, κ1, κ1) to the rotation of the scales via a rotation matrix.

2. We use the rotation matrix to map the equations of the two planes (containing the scales) back to their
undeformed orientations.

3. Next, we compute the planes’ intersection point(s). Due to the pull-back operation of step 2, the points’
coordinates are in the reference configuration of the scales.

4. We determine if an intersection point falls within the (finite) scale’s confines.

5. We rule out configurations that correspond to interpenetrating scales.

Using this procedure, we obtain Figure 4 (b), where we plot θ at contact as a function of κ3 (for κ1 = 0.2,
κ2 = 0, η = 3, β = 1.25, and α = 30◦). We observe four distinct modes of contact which are color coded in the
figure as follows:

a) Black: Left edge of the first scale makes contact with top edge of the second. Configuration is shown as
scheme A in Figure 4 (b).

b) Red: Corner of the first scale makes contact with face/edge of the second scale. Configurations are shown
as the scheme B, and C in Figure 4 (b).
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c) Green: Right edge of the first scale makes contact with top edge of the second. Configurations are shown
as the scheme D and E in Figure 4 (b).

d) Blue: Top edges of the first and second scales make contact. Configurations are shown as the scheme F
and G in Figure 4 (b).

(a)

Combined 
Loading

(b)

B
A

C D

E

F

G

Figure 4. (a) Schematics showing the substrate beam with rectangular scales in the undeformed and deformed configura-
tions under combined loading. (b) κ3 vs θ for different values of κ1 = 0.2 showing various contacts. Here κ2 = 0, η = 3,
β = 1.25, and α = 30.

Note that the change in slopes as the modes of contact changes. This feature manifests as a discontinuity in
the moment-strain relationship, a novel emergent behavior not observed in our earlier works.33–36

In Figure 5 (a), we plot scales’ inclination angle θ as a function of κ3 for various values of bending strains,
κ1. We note from the figure that depending on κ1, different modes of engagement dominate the behavior of the
system. Observe that scales lock at the same angle θ ≈ 1.47, irrespective of κ1. For small non-zero κ1, the slope
discontinuity in the curves as we transition from red to green curves suggests a sudden stiffening behavior of the
system. This feature seems to vanish at larger κ1 values.

(a) (b) (d)

θ

Figure 5. (a) θ vs κ3 for different values of κ1. Here η = 3, β = 1.25, and α = 30◦. (b) θ vs κ3 for different values of α.
Here η = 3, β = 1.25, and κ1 = 0.1. (c) θ vs κ3 for different values of η. Here κ1 = 0.15, β = 1.25, and α = 30◦.
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In Figure 5 (b), we plot θ vs κ3 for different values of α (for η = 3, β = 1.25, and κ1 = 0.1). We observe that
for small values of α, there is a stiffening behavior as κ3 ≈ 0 is either increased or decreased, with a minimum
stiffness at κ3 = 0. This behavior disappears for larger α as can be inferred from the monotonic curves in the
figure for these values. We also observe that locking angle θlock is influenced by α with no locking below a critical
α. In Figure 5 (c), we plot θ vs κ3 for different values of η (for κ1 = 0.15, β = 1.25, and α = 30◦). We see here
again that η influences the angle of locking, which is similar to our earlier findings for pure bending and twisting.

5. MECHANICS OF SCALE-COVERED 2D PLATE

In this section we consider a deformable plate with scales covering its surface. The scales are partially embedded
on the top surface of the plate with staggered arrangement as shown in Figure 6 (a). We consider the deformable
plate as a square shape (Wsub = Lsub) with thickness 2t. The exposed length of scales and the width of them
are l and 2b, respectively. The longitudinal and transverse distance between the scales are d and c. Therefore,
in addition to previous dimensionless parameters η = l/d, β = b/d, and λ = t/d, we will define δ = c/d, as the
dimensionless clearance between the scales. According to classical plate theory or the Kirchhoff plate theory,50

the moment–curvature response of two in-plane directions (here Z and X direction) are as follows:

Mz(κz, κx) =
EBI

1− ν2
(κz + νκx), (7)

Mx(κx, κz) =
EBI

1− ν2
(κx + νκz).
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Figure 6. (a) The geometry and two directional bending loads of scale-covered plate. (b) The moment–curvature response
for various η in Z direction. (c) The moment–curvature response for various η in X direction. (d) The moment–curvature
response for first load case (Mz > 0 and Mx > 0). (e) The moment–curvature response for second load case (Mz > 0 and
Mx < 0). (f) The moment–curvature response for third load case (Mz > 0 and Mx = 0).
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Similar to the pure bending and pure twisting case, adding the rigid scales to the surface of the plate with
provide additional stiffness response after scales engagement which can be modeled as rotational springs, here
for two different in-plane direction as Kθ,z and Kθ,x. Also, here we have the inclusion effect as the additional
appreciable stiffness gain due to the scales inclusion into the substrate similar to the twisting case.35,36 This
effect will model as the inclusion correction factors for two in-plane directions Cf,z and Cf,z. According to these
considerations, the moment–curvature response of scale-covered 2D plate for two in-plane directions will model
as follows:

Mz(κz, κx) =
Cf,zEBI

1− ν2
(κz + νκx) +

Kθ,z

d
(θ − θ0)

∂θ

∂κz
H(κz − κz,e), (8)

Mx(κx, κz) =
Cf,xEBI

1− ν2
(κx + νκz) +

Kθ,x

d
(θ − θ0)

∂θ

∂κx
H(κx − κx,e).

In Figure 6 (b) and (c), the moment–curvature responses are displayed for a particular case with various η
in Z and X directions, which is obtained from finite element analyses. The emergent stiffness gain after scales
engagement is clearly observed which is dependence on η value, and this stiffness gain has higher effect in Z
direction moment. In this first load case the applied moments in both in-plane directions are positive (Mz > 0
and Mx > 0). In Figure 6 (d), the moment–curvature response of the first load case has been compared with
the response of counterpart plane plate without scales. Clearly, the stiffness gains due to the inclusions (dashed
curves) and emergent stiffness due to scales engagement can be observed. Figure 6 (e) and (f) display the
moment–curvature response of the second load case (Mz > 0 and Mx < 0), and the third load case (Mz > 0 and
Mx = 0). In these plots similar to the first load case, inclusion effect and scales engagement have been observed.
The results shown in Figure 6 (b)-(f) are obtained from finite element simulations, and only the results of plain
plate have been compared with theoretical results from Equation (7), which shown a great agreements.

6. NON-PENETRATIVE CONTACT RESPONSE

As described earlier, some of the earliest uses of scaly substrates have been for armor protection. However, non-
penetrative contact typically possible in the robotic gripping applications are equally fascinating. One way to
highlight the interplay of scales and indenter, is by carrying out indentation experiments with different indenter
nose radius, representing various types of contacts ranging from the very sharp to blunt. As seen in Figure 7,
a sharp indenter can induce an anisotropic contact area, which is mitigated as the indenter radius increases.
The origin of the anisotropy is due to the arrangement and orientation of the scales. A sharp indenter induces
preferential engagement of scales on one side (right in the figure) compared to other. This breaks the symmetry
of the contact area.51
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Figure 7. (a) Decrease in loading surface anisotropy with increasing indenter radius, where R = 2.5, 25, 37.5, and 50 mm.
(b) Strain concentration, and propagation from embedded scale tips, displayed in finite element and DIC analyses. (c)
Plain, η = 1.2, η = 1.6, and η = 2.4 samples shown under equal loading of 80 N show reduced strain concentrations with
increasing η.
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It is observed that as the indenter radius increases, for a given scale length, the anisotropy in the contact
surface decreases. This is due to the ability of larger indenters to come into contact with additional scales to the
left as the substrate deforms. From this, it is anticipated that larger indenters, capable of contacting multiple
scales at the onset, could become significant in the force-displacement response. This requires further study.

We compare our FE simulations experimentally with full field 3D Digital Image Correlation (DIC) measure-
ments. The 3D DIC analyses were run to confirm the finite element simulation results for the experimental
configurations, where R = 37.5 mm and η = 1.2, 1.6 and 2.4. The strains in the samples were observed to follow
the same distribution, with the strain propagating from the embedded scale ends, as shown in Figure 7 (b).
Additionally, it is shown that the addition of scales, with increasing η, increases the distribution and reduces
strain concentration, as shown in Figure 7 (c), where the four experimental samples are shown under a load of
80 newtons.

7. EMERGENT DYNAMIC BEHAVIOR OF SCALE-COVERED 1D BEAM

In this section, we provide an emergent dynamical behavior that arises due to the free oscillation of scale-covered
1D beams. The equation of motion of such beams can be obtained using the variational energy equation that
is derived from Hamilton principle of least action δ

∫ t2
t1

(T̄ − V̄ )dt = 0. In this formula, T̄ refers to the kinetic

energy per unit length and V̄ denotes the strain energy per unit length of both substrate and scales.40 The

resulting equation of motion can be written as m ∂2ỹ
∂x̃2 + ∂2M(κ)

∂x̃2 = 0, where m is the mass of scale-covered beam
and M(κ) was presented earlier in Equation 3. Without loss of generality, we assume a simply supported beam
and an initial velocity conditions that ensures the activation of only the first mode of vibration.40 We solve
the equation of motion numerically using the direct numerical integration method called Newmark along with
Newton-Raphson.52

We plot the deflection of the middle point of the beam, ȳ normalized by the radius of gyration against the
time which is also normalized by the undamped period of a plain beam, t̄ for the case of η = 10 and various
coefficients of frictions, µ as shown in Figure 8. The free oscillation response highlights that the most interesting
feature of the simple structure is the exponential decay, Figure 8, that arises due to the interfacial friction
between scales unlike the most common spring-mass system, which indicates a linear decay in the response due
to dry friction.53
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Figure 8. Free vibration of the midpoint of a simply supported biomimetic scale-covered beam with 25 scales, θ0 = 3◦,
η = 10, and various coefficients of frictions µ. The deflection is normalized by vertical length scale (radius of gyration)
and the time is normalized by the natural frequency and time period of the plain elastic substrate. The increase in the
interfacial friction between neighboring scales leads an anisotropy in the exponential decay of both smooth and scaled
side of the beam, illustrated by exponential decay δ1 and δ2. Inset illustrates the case study tested.
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The difference in response implies a geometric regime transformation of damping from dry friction to viscous
drag. The revealed dampening phenomena, also called ”viscous emergence”, which resembles viscous dumping
behavior of vibrating structures, was pronounced with postulation of only dry Coulomb friction. However, the
similarities with viscously damped system is limited. For conventional damped oscillators, the decaying behavior
continues forever until motion stops, but in this biomimetic system the decay will not lead to a complete stop of
the system but rather until deflection is small enough that scales may not engage any more, returning the system
to a conservative system (i.e., the slightly artificially damped system). Note that the increase in interfacial
friction provides different stiffening mechanisms on each side of the beam due to the steady loss energy in each
cycle. Thus, the topology-induced nonlinearity brought about the overlapping of scales provides a significant
anisotropy of frictional behavior, giving rise to emergent behavior tailorability through interfacial and geometric
parameters, here the control parameters can be the overlap ratio of scales η and the coefficient of friction between
neighboring scales µ.

8. MASS DEPOSITION ON TOPOGRAPHIC SURFACES

Surfaces of semi-aquatic mammals are highly vulnerable to biofilm growth, yet furry mammals that reside at
the interface of water and sunlight practically escape this burden, despite the available provisions for micro-
organism proliferation. The complex but conspicuous scaly structures on the surface of the furs, as evidenced by
scanning electron microscope images have long been hypothesized to be a very important factor mediating this
behavior.15 Hence, surfaces with topographic features, like biomimetic scales, provide a promising avenue for
antifouling strategies. In light of this, a simple model at quiescent flow is described which can shed some light
on the role of deformation and topology. Here, a steady state model is constructed where the external fouling
transport is assumed to be diffusive in nature. The steady-state diffusion is modeled by the Laplacian ∇2C = 0
in an infinite domain surrounding the fur. The fouling is assumed to be a general first order rate equation. This
means the flux of mass deposited on the surface q is proportional to its concentration C, i.e., q = kC. Using
these assumptions, the role of deformation and topology of a beam with scale-like topography on its surface can
be seen in Figure 9. The plot illustrates the total mass aggregated per unit length along the surface against
various configurations of deformation.
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Figure 9. Mass deposition per unit length along the upper and lower surface of plain beam and scale-like topographic
beam with various scales density surrounded by infinite media and the concentration at the far-filed is constant C∞ = 10
while k = 1. The cases presented include 20 and 40 scales arranged on the surface with an initial angle of 5◦.
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Here it is assumed that the beam deforms in a sinusoidal shape, where the amplitude of the shape function
of the beam is normalized by the thickness Ā and varied from convex to concave. The total mass is expressed as
Mt = 1

LS

∫
LS
qds , where ds is a line element length of either the topographic or smooth surface, Ls refers to the

total arc length of the surface, and q represents the flux of deposited mass. The figure evidently ensures that mass
deposition per unit length can be significantly reduced on the upper surface of convex configuration. In particular,
we notice that density of topography (i.e., more scales added to the surface) also leads to less deposition when
presented along the the upper surface of convex configuration and the opposite is true for concave configurations.
Interestingly, the imposition of topography on only one surface provides anisotropy in the amount of deposited
mass as compared to smooth surfaces on both sides of the beam. In summary, topography and deformation
provide an imperative bearing on mass deposition or biofouling of surfaces, giving rise to antifouling surface
design tailorability through topographic surfaces and deformation.

9. CONCLUSION

we have demonstrated a new paradigm of designing bioinspired tailorable/tunable structures – leveraging the
phenomena of emergence to generate remarkable properties. And most importantly, these properties can be
accessed systematically from building blocks and specific emergent processes can be activated, leading to a new
class of smart structures. These synthetic materials can provide tailorable mechanical and physical response
in different loading and material conditions. This outstanding feature could be useful in different applications
including soft robotic, camouflage, substrate design, deployable structures, protective wearables, etc.
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