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Abstract—False data injection attacks (FDIAs) can bypass 

conventional bad data detection methods. Recently developed 

FDIA detection methods based on statistical consistency of meas-

urement values may not work effectively when false data do not 

significantly deviate from historical trends. They may also mis-

takenly treat actual power grid events as FDIAs. In this paper, a 

highly discriminative FDIA detector named the k-smallest resid-

ual similarity (kSRS) test is proposed. The method is based on the 

rationale that perfect FDIAs can hardly be achieved in AC state 

estimation, and real-world imperfect FDIAs always lead to subtle 

changes in the probability distributions of measurement residuals. 

Therefore, the statistical consistency of measurement residuals 

can be carefully portrayed to detect practical FDIAs in AC state 

estimation. Herein, the Jensen-Shannon distance (JSD) is used to 

precisely quantify the similarity of measurement residual distri-

butions. Simulations on the IEEE 30-bus system demonstrate 

that the proposed method can achieve high detection rates and 

low false alarm rates under a variety of conditions where existing 

methods do not yield satisfactory results. 

 
Index Terms—Cyber attacks, state estimation, false data injec-

tion attacks, hypothesis testing, measurement residuals 

I. INTRODUCTION 

TATE estimation (SE) is an essential function for power 

system monitoring, which provides grid operators with 

real-time snapshots of system operating conditions [1]. SE is 

supported by the supervisory control and data acquisition 

(SCADA) system, which gathers the measurement data and 

network topology information from remote terminal units de-

ployed in substations. As conventional power systems are be-

ing transformed toward smart grids with pervasive information 

and communications technologies (ICT) [2], the cyber net-

work for sensing, communication, storage, and data analysis 

becomes a major vulnerability for system operation [3]-[6]. 

Cyber adversaries may stealthily access the computer net-

works in power plants, substations, or even control centers to 

disrupt service, manipulate data, or even disable the entire 
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monitoring and control system. Hence, it is of great signifi-

cance to investigate cyber security issues in power system 

operations.  

As a major type of potential cyber threat against power sys-

tem operations, false data injection attacks (FDIAs) against SE 

were first proposed by Liu et al. in [7]. It is found that adver-

saries may have the capability to introduce desirable errors to 

certain state variables by injecting well-designed false meas-

urements. As a result, the decision-making process may be 

interfered, leading to risky operating conditions such as biased 

locational marginal prices (LMPs) in real-time electricity mar-

kets, inefficient dispatch of generation and load, or even the 

loss of stability and system collapse [9]-[11]. Notably, FDIAs 

are capable of escaping conventional bad data detection 

schemes, such as the largest normalized residual (LNR) test 

and the Chi-square test [7], [8].    

Aiming to reliably detect FDIAs, a number of approaches 

have been proposed in the literature. Earlier approaches are 

typically based on the DC power flow model [12]-[18]. In 

[12]-[14], FDIA detection is enabled by deploying or securing 

a set of sensors such as phasor measurement units (PMUs). In 

[15], [16], the FDIA detection problem is formulated as a ma-

trix separation problem based on the low dimensionality of the 

measurement matrix and the sparsity of the attack matrix. In 

[17], [18], forecasting-aided methods are proposed to detect 

FDIAs by checking the statistical consistency between fore-

casted and gathered measurements. All these methods are 

formulated based on a linear DC power flow model. In prac-

tice, however, nonlinear state estimators with a complete AC 

power flow model are adopted by the power industry [19]. 

There is no guarantee that the DC model-based FDIA detec-

tion methods have equivalent performance under the nonlinear 

AC SE [20], [26].  

To overcome the limitations of DC model-based methods, a 

few categories of FDIA detection approaches based on the AC 

power flow model are developed recently [21]-[28]. In [21]-

[23], the Kullback-Leibler distance (KLD) is used to evaluate 

the similarity between two probability distributions derived 

from measurement variations. In [24], [25], the statistical con-

sistency between received measurements and the expected 

measurements derived from a limited number of secure PMUs 

is explored to detect FDIAs. In [26]-[28], several FDIA detec-

tion methods are proposed based on deep learning approaches.  

Among all existing works mentioned above [12]-[28], the 

core underlying logics of FDIA detection are either checking 
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statistical consistency of measurements (or states) against the 

information from secure PMUs [12]-[14], [24], [25], or check-

ing statistical consistency of measurements (or states) against 

the information derived from historical data [15]-[23], [26]-

[28]. In practice, several limitations are present for these exist-

ing concepts. For methods relying on secure PMUs, the under-

lying assumption that a specific set of PMUs is fully invinci-

ble may not hold all the time. Besides, the deployment of addi-

tional PMUs and/or cyber secure hardware/software inevitably 

results in additional costs. For methods relying on historical 

measurements, the performance may not be satisfactory if the 

false data do not significantly deviate from historical trends 

[21]-[23]. Furthermore, such methods can hardly differentiate 

between an actual grid event (such as generation or load 

switching) and an FDIA, as both may appear as anomalies 

concerning the probability distribution of historical data. As a 

result, actual events occurring in physical power systems may 

be mistakenly detected as FDIAs, leading to severely faulty 

decision-making in system operation. 

Instead of checking the statistical consistency of measure-

ment values, this paper takes a fundamentally different ap-

proach for FDIA detection: checking the statistical consistency 

of measurement residuals in AC SE. It will be reasoned that 

cyber attackers can hardly achieve perfect FDIAs against AC 

SE, and imperfect FDIAs inevitably result in subtle changes of 

measurement residual statistics. Remarkably, the probability 

distribution of measurement values changes with both system 

operating conditions and FDIAs, while the probability distri-

bution of measurement residuals only changes with FDIAs 

[29], [30]. Hence, statistical tests based on measurement re-

siduals can effectively discriminate between FDIAs and sys-

tem operating point variations, yielding very high detection 

capability. Compared with existing methods, the unique fea-

tures and original contributions of the proposed method based 

on measurement residual statistics are summarized as follows. 

1) Independent of secure sensors. The proposed method is 

generally applicable to all measurements, and no deployment 

of PMUs or cyber secure hardware/software is needed. 

2) Highly discriminative between actual operating condition 

changes and FDIAs. Unlike most existing methods, the pro-

posed method can easily discriminate FDIAs from actual op-

erating condition changes including unexpected grid events.  

3) Highly discriminative against sophisticated ramping 

FDIAs. While some existing methods relying on abrupt meas-

urement changes cannot detect gradually ramping false data, 

the proposed method remains highly sensitive in such cases. 

4) Implementation-friendly. The proposed method only re-

quires measurement residuals produced by SE, which is direct-

ly available in energy management systems without the need 

to deploy additional sensors or data collectors. 

The rest of the paper is organized as follows. Section II pro-

vides the context by reviewing the formulations of SE, bad 

data detection, FDIA, and FDIA detection. Section III details 

the concept and implementation of the proposed k-smallest 

residual similarity (kSRS) test for FDIA detection. Section IV 

presents comparative simulation results between the proposed 

method and the conventional methods. Section V concludes 

the paper. 

II. PRELIMINARIES 

This section briefly reviews the background problem and 

typical existing solutions. The presented bad data detection 

and FDIA detection methods will be used as baselines for 

demonstrating the effectiveness of the proposed method in 

Section IV.  

A. AC Power System State Estimation  

 

Consider a power system with m measurements and n state 

variables. The non-linear relationship between measurements 

and state variables are shown as follows: 

 ( )= +z h x e  (1) 

where 1mz  is the measurement vector; 1nx  is the state 

vector; 1me  is the measurement error vector, which is as-

sumed to follow a Gaussian distribution with zero mean; ( )h   

represents the non-linear function between the state vector x 

and the measurement vector z.  

The solutions to state estimates can be obtained via the 

weighted least squares (WLS) criterion as follows: 

 ( ) ( )1ˆ argmin
T −=  −   −    x z h x R z h x  (2) 

where ( )2 2

1 , , m m

mdiag   = R  is the covariance of the 

measurement error vector; 1ˆ nx  is the state estimate vector; 
2

i is the variance of the measurement error of the ith channel.  

The solution to (2) can be obtained by performing the 

Gauss-Newton iterative algorithm [19]:  

 ( ) ( ) ( ) 
1

1 1l l l T l l
−

+ −   = + −
   

x x G x H x R z h x  (3) 

 ( ) ( ) ( )1l T l l−=G x H x R H x  (4) 

where l is the iteration index; l
x  is the solution vector at itera-

tion l; m nH  is the Jacobian matrix. The WLS SE is the 

mostly widely used method in power system, while there are 

some limitations. For example, the WLS SE is not robust 

against natural bad data, which will result in large-biased state 

estimates. In practice, therefore, the bad data detection proce-

dure will be implemented following the WLS SE. 

B. Bad Data Detection 

Conventional bad data detection methods such as the LNR 

test and the Chi-square test are performed based on the out-

comes of WLS SE.  

The Chi-square test detects bad data by checking the value 

of the SE objective function as follows: 

 ( ) ( ) ( )1ˆ ˆ ˆ
T

J −=  −   −    x z h x R z h x  (5) 

    In the Chi-square test, the null hypothesis 
0H  represents the 

case where there is no bad data. The detection criterion can be 

expressed as follows: 

 
( ) ( )

( ) ( )

2
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2
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m n p

m n p

J Reject H

J Accept H





−

−

 




x

x
 (6) 
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where ( )ˆJ x  is the objective function value of WLS SE evalu-

ated at the solution points x̂ , and ( )
2

,m n p


−
 is the threshold 

with confidence level p and (m-n) degrees of freedom. 

 The LNR test is another widely used bad data detection 

method. The core is to normalize the measurement residuals:  

 
( )ˆ

i iN

i

ii

z h
r

−
=



x
 (7) 

 ( )
1

1 1T T
−

− − = −
  
I H H R H H R R  (8) 

where 
iz  represents the ith measurement; ( )ih   is the non-

linear function relating the state vector to the ith measurement; 
N

ir  is the ith normalized residual; 
ii  is the ith diagonal entry 

of  ; m mI  is the identity matrix. If the largest normal-

ized residual is greater than a threshold ε, then the correspond-

ing measurement will be suspected as a bad data.  

    The Chi-square test and the LNR test are generally effective 

for detecting natural bad data which typically induces large 

measurement residual perturbation. However, for maliciously 

designed false data which only induces small residual pertur-

bation, these methods tend to be ineffective. 

C. AC-based False Data Injection Attacks  

On the condition that the attacker has the capability to ob-

tain accurate information about real-time state estimates, net-

work topology and parameters, a perfect FDIA can be 

launched, where the attack vector a is designed as follows: 

 ( ) ( )ˆ ˆ= + −a h x c h x  (9) 

where x̂  represents the state estimate vector without FDIAs; 

c represents a bias vector injected into the state estimates. 

    It has been readily shown that under such perfect infor-

mation availability, the attack vector a constructed as (9) will 

result in the same measurement residual vector as the attack-

free condition. As such, the false data can bypass the Chi-

square test and the LNR test [24]. In reality, the perfect attack 

vectors can hardly be achieved. Even so, the attackers may 

create attack vectors that are close enough to (9) such that the 

perturbation of the residual vector remains small. As the con-

ventional bad data detection methods are not designed for such 

malicious conditions, and they have very limited sensitivity 

under small residual perturbation. As a result, there is still a 

considerable chance that the imperfect FDIA will bypass these 

tests [24], [25].  

D. FDIA Detection based on Statistical Consistency of 

Measurements  

Due to the ineffectiveness of conventional bad data detec-

tors against FDIAs, a new category of detection methods 

based on statistical consistency of measurements are proposed. 

In [21]-[23], the KLD is used to compute the similarity be-

tween probability distributions of measurement variations be-

tween the current time step and historical time steps. If an 

FDIA is present in power systems, the distance metric will 

abnormally increase. Let 1cur mV  represent the measure-

ment variation vector of the current time step t, i.e., 

( ) ( )1cur t t= − −V z z . Let 
( ) 1hisN mhis  

V  represent the meas-

urement variation vector from historical data as follows:  

 ( ) ( ) ( ) ( )11
, , , ,his his

T
T T T T

his his his his his

f tt N t N −− − +

 =
  

V v v v v  (10) 

 ( ) ( )1 , , 1, , 1his his his

f f f f t N t N t= − − = − − + −v z z  (11) 

where
1his m

f

v  represents the measurement variation vector 

of the historical time step f; hisN  represents the number of 

measurement variation vectors from historical time steps. 

To obtain the probability density functions (PDFs) of  cur
V  

and his
V , the histogram consisting of cur

V  and his
V is divided 

into 
KLDS  bins. The approximate PDFs can be obtained as: 

 
( )

, 1,2, ,

cur

scur

s KLD

count
p s S

m
= =

V
 (12) 

 
( )

, 1,2, ,

his

shis

s KLDhis

count
p s S

N m
= =



V
 (13) 

where 
KLDS  is the number of bins of the histogram; 

cur

sV  and 
his

sV  contain the current and historical measurement variation 

samples located in the sth bin, respectively; ( )count   is a 

function that counts the entry of a vector; 
cur

sp  and 
his

sp  are 

the probabilities of the current and historical samples located 

in the sth bin, respectively. 

In order to compare the similarity between two different 

PDFs, the KLD is defined as follows:  

 
1

ln
KLDS cur

cur s
KL s his

s s

p
d p

p=

=   (14) 

where 
KLd  represents the KLD from the PDF of cur

V  to the 

PDF of his
V , respectively. 

If an FDIA is launched, the distance 
KLd  will be abnormal-

ly large. To detect potential FDIAs, a distance threshold ς is 

set given a confidence level based on historical distance metric 

values without FDIAs.  

In this FDIA detection method, the null hypothesis 
0H  rep-

resents the case where there is no FDIA. The detection criteri-

on can be expressed as follows: 

 
0

0

,

,

KL

KL

d Reject H

d Accept H









 (15) 

    The FDIA detection method described above has some limi-

tations. For example, if an FDIA follows the historical meas-

urement distributions or is gradually ramped up, instead of 

abruptly launched, this method tends to be ineffective. Moreo-

ver, this method may mistakenly detect physical grid events as 

FDIAs, since the change of system operating conditions can 

also lead to large measurement variations. 

III. PROPOSED FDIA DETECTION METHOD 

    To overcome the limitations of FDIA detection method 

based on statistical consistency of measurement values, a nov-

el FDIA detection method based on the statistical consistency 

of measurement residuals is proposed in this section.  

A. Imperfect AC-based False Data Injection Attacks 

    The proposed method is based on the assumption that a per-

fect AC-based FDIA can hardly be achieved in the real world. 
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In particular, it is highly unlikely that attackers can obtain both 

accurate real-time state estimates and accurate model parame-

ters at the same time, especially the real-time state estimates.      

    1) The network parameters and state estimates are stored in 

the database of the control center, which are relatively well 

protected. For attackers, due to the communication or tech-

nique constraints, it is more difficult to hank into the control 

center than the substation-level network [1], [2], [5]. 

    2) Even if accurate network parameters are obtained by 

breaching into the control center [31]-[34], it is still difficult to 

obtain accurate state estimates. Power flows are time-varying 

because of the fluctuations of loads in real time. Consequently, 

up-to-date state estimates are necessary for launching perfect 

AC-based FDIAs. However, once the FDIAs are launched, the 

state estimates in the control center will be biased. Hence, 

attackers are faced with the dilemma that they cannot obtain 

accurate up-to-date state estimates from the control center 

anymore once the FDIAs are launched. 

3) The only possible avenue to launch perfect AC-based 

FDIAs is that attackers can obtain accurate network parame-

ters from the control center and accurate measurements from 

substations, then perform their own state estimation function 

in real time to derive the up-to-date state estimates. Further-

more, the attackers’ state estimation function should be exe-

cuted in the same time resolution at SCADA measurements 

(every 2-3 seconds) in order to determine how to manipulate 

the measurements perfectly. However, this is almost an im-

possible task for attackers, because it is dependent on the full 

availability of real-time measurements as well as powerful 

computing capabilities, which are not available for attackers. 

Please note that it does not require accurate up-to-date state 

estimates to launch a perfect DC-based FDIA. However, al-

most all existing state estimators in control centers are AC-

based, and it does require accurate up-to-date state estimates 

to launch an AC-based FDIA. 

For insider attacks, i.e., attacks launched or assisted by in-

siders, model parameters are easier to attain. However, attain-

ing up-to-date state estimates during the whole span of the 

attack may still be difficult due to the aforementioned reasons, 

and thus the FDIAs are still likely to be imperfect. 

    As it is almost impossible to satisfy both conditions above, 

it is reasonable to assume that AC-based FDIAs are imperfect. 

Consider an imperfect AC-based FDIA as follows [25]: 

 ( ) ( )ˆ ˆ= + + − +a h x c h x   (16) 

where a  is an imperfect attack vector; ( )h  represents the 

non-linear function with inaccurate model parameters;   

represents the error of state estimate vector guessed by attack-

ers. 

The measurement residual vector resulting from the imper-

fect AC-based FDIA is derived as follows: 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

a a

a

a

a

= + −

= + + + − + −

= − + + + − + + −

= + + + − + + −

r z a h x

z h x c h x h x

z h x h x c h x h x h x

r h x c h x h x h x

 

 

 

 (17) 

where ˆ
ax  and 

ar  are state estimate vectors and measurement 

residual vectors in the presence of the FDIA, respectively. 

    The estimated state vector is given by: 

 ˆ ˆ
a = + +x x c  (18) 

where η represents the state estimate bias vectors for system 

operators. Note that η and ξ are different since the model pa-

rameters obtained by attackers are inaccurate. 

Let Δ represent the bias vector of measurement residuals in-

duced by the imperfect AC-based FDIA, then: 

 
a = + r r  (19) 

where 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
a = + + − + + −h x c h x h x h x   (20) 

In this case, the PDFs of measurement residuals with imper-

fect FDIAs are different from those without FDIAs:  

 ( ) ( ),
a,ir a,i joint i a,i i if r f r r r dr= −  (21) 

where 
a,ir  and 

ir  represent the measurement residuals of the ith 

measurement channel with and without imperfect FIDAs, re-

spectively; ( )
a,ir a,if r  represents the PDF of measurement resid-

uals 
a,ir ; ( ),joint i a,i if r r r−  represents the joint PDF of measure-

ment residuals 
ir  and 

a,ir . 

    If 
i a,i ir r = −  is non-zero (imperfect AC-based FDIA), 

( )
a,ir a,if r  and ( )

ir if r  will be different. Such a nuance may not 

trigger the conventional LNR or Chi-square tests, but it is pos-

sible to design more dedicated and refined tests to pick it up.  

B. WLAV SE based on AC Power Flow Model 

To develop a statistical test based on measurement residu-

als, an SE should be selected first to produce the residuals. 

Here, the weighted least absolute value (WLAV) SE is adopt-

ed for the following two reasons. First, WLAV SE is robust 

against natural gross errors. Bad data will be automatically 

filtered out before FDIA detection. Second, due to its undif-

ferentiable objective function, the distribution of measurement 

residuals usually has a larger change from the original distri-

bution in the presence of an FDIA compared with WLS SE. 

The WLAV estimator aims to minimize the sum of 

weighted absolute residual errors, stated as follows: 

 

( )
1

min

s.t.

m

i i

i

i i i

w r

r z h

=

= −



x

 (22) 

where 
iw  and 

ir  are the weight and residual of the ith meas-

urement, respectively. 

The WLAV problem given by (22) can be transformed into 

a successive set of linear programming (LP) problems [19]. 

The LP problem to be solved at iteration l is given by: 

 

( )

( ) ( )
1

, ,

min

s.t.

, , , 0

m
l l

i i i

i

l l l l l l l

u v

l l l l

u i v i i i

w u v

x x u v

=

+

 −  + − = 

  



H x x H x x u v z  (23) 

where ( ) ( ) ( )l l l l l l l l− = − −  =  − u v z h x H x x z H x x  is the 

measurement residual vector at the lth SE iteration, and 
l l l

u v =  − x x x .  

C. Similarity Metric for Measurement Residual Distributions 

As discussed in section III-A, the measurement residual dis-

tribution based on WLAV SE will be reshaped when an im-
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perfect AC-based FDIA is launched. In this subsection, a nov-

el AC-based FDIA detection approach will be proposed, 

which checks the statistical consistency of measurement resid-

ual distributions between two consecutive time intervals. The 

time interval containing measurement data that is assumed to 

be free of FDIAs is defined as the reference interval. The time 

interval containing the latest gathered measurement scans 

which needs to be examined is defined as the detection inter-

val. The lengths of the reference interval and the detection 

interval are denoted as refT  and detT , respectively. To deter-

mine the statistical consistency of measurement residuals in 

the two intervals, the similarity between the residual probabil-

ity distributions of the reference interval and the detection 

interval should be evaluated for each measurement channels.  

In this paper, the Jensen-Shannon distance (JSD) [35]-[37] 

is introduced to evaluate the similarity of measurement residu-

al distributions. JSD has advantages over KLD used in [21]-

[23] in two aspects. First, JSD is a symmetric distance, i.e., the 

order of two distributions does not affect the results. On the 

contrary, KLD is asymmetric due the result based on Eq. (14) 

is changed when the positions of two distributions are 

swapped. Second, JSD can process discontinuous data. In real-

ity, the computed probability using actual sample data may be 

equal to zero for certain ranges. In such a case, KLD cannot be 

evaluated, but JSD is still feasible. Therefore, JSD is chosen as 

a similarity metric in this paper. 

Define the residual matrices of the reference interval and 

the detection interval as follows:  

 1 2, , , , , 1,2, ,ref

ref ref ref ref ref ref

j N
j N = = r r r r  (24) 

 1 2, , , , , , 1,2, ,det

det det det det det det

j N
j N = = r r r r  (25) 

where 
1ref m

j

r  represents the residual vector of the jth 

measurement scan in the reference interval; 
1det m

j

r  repre-

sents the residual vector of the jth measurement scan in the 

detection interval; 
refref m N  and 

detdet m N  represent 

the measurement residual matrices in the reference interval 

and the detection interval, respectively; refN  and detN  repre-

sent the numbers of measurement scans in the reference inter-

val and the detection interval, respectively.  

    Let 
ref

i  and 
det

i  represent the measurement residual vec-

tors of the ith measurement channel in the reference interval 

and the detection interval, respectively. To obtain the PDFs of  
ref

i  and 
det

i , the histograms consisting of 
ref

i  and 
det

i  are 

divided into 
JSDS  bins. The approximate PDFs for the corre-

sponding histograms are obtained as follows [35]: 

 
( ),

, , 1,2, , ; 1,2, ,

ref

i sref

i s JSDref

count
p i m s S

N
= = =


 (26) 

 
( ),

, , 1,2, , ; 1,2, ,

det

i sdet

i s JSDdet

count
p i m s S

N
= = =


 (27) 

where ,

ref

i s  and ,

det

i s  represent the measurement residual vec-

tors of the ith channel located in the sth bin within the refer-

ence interval and the detection interval, respectively; ( )count   

is a function that counts the entry of a vector; ,

ref

i sp  and ,

det

i sp  

represent the probabilities corresponding to ,

ref

i s  and ,

det

i s  

located in the sth bin, respectively.  

    The similarity metric JSD, denoted as ,JS id , is computed as: 

 , ,

, , ,

1 1, , , ,

2 21
ln ln

2

JSD JSD
ref detS S
i s i sref det

JS i i s i sref det ref det
s si s i s i s i s

p p
d p p

p p p p= =

    
= +       + +     

   (28) 

 
,1 ,2 , ,, , , , ,

T

JS JS JS JS i JS md d d d =  d  (29) 

where 
JSDS   represents the number of bins in the histogram 

consisting of 
ref

i  and 
det

i ; ,JS id  is the JSD, i.e., the similarity 

metric, of measurement residual distributions of the ith chan-

 
Fig. 1. Threshold estimate for a certain false alarm rate setting. 

 
Fig. 2. Flow chart of the kSRS test.  
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nel; 
JSd  represents the JSD vector for all measurement chan-

nels. 

D. k-smallest Residual Similarity Test 

    Based on the components developed in the previous subsec-

tions, the proposed FDIA detection method will be constructed 

in this subsection. 

    To construct a test variable, it should first be determined 

how many measurement channels should be reflected in the 

test variable. On the one hand, creating a test variable using 

the residual of only one measurement channel, like the LNR 

test which takes the largest residual as the test variable, can 

make the test non-robust against disturbances and result in 

false alarm. On the other hand, creating a test variable based 

on the residuals of all measurement channels, like the Chi-

square test which takes the weighted sum of squares of all 

residuals as the test variable, can make the test insensitive, 

especially for large-scale systems where numerous normal 

measurements may suppress the effects of a few anomalies. 

To achieve a reasonable trade-off between sensitivity and ro-

bustness, the kSRS test is proposed, wherein the k measure-

ment channels with the smallest similarities (i.e., largest JSDs) 

are selected to construct the test variable shown as follows:  

 ( )JS JSrank=d d  (30) 

 ,

1

1
, 1,2, ,

k

JS JS q

q

d d q k
k =

= =  (31) 

where ( )rank   is a function that reorders the entries of a vector 

in descending order; JSd  represents the reordered vector from 

JSd ; ,JS qd  represents the qth entry of vector JSd ; JSd  is the 

average of the k chosen JSDs, and it is used as the test variable 

to check the statistical consistency of measurement residuals 

between the reference interval and the detection interval. 

In the proposed kSRS test, the null hypothesis 
0H  represents 

the case where there is no FDIA. The relationship between the 

false alarm rate setting and the detection threshold is formulat-

ed as follows: 

 

( )

( )

( ) ( )

( )

0

1

JSP d H

f d

F F

F



 

 







= 

=

=  −

= −

  (32) 

 ( )1 1F −= −  (33) 

where   represents the false alarm rate setting;   represents 

the detection threshold; ( )f   is the PDF of JSd ; ( )F   is the 

cumulative density function (CDF) of JSd . 

    In reality, however, λ is difficult to derive from Eqs. (32)-

(33) because ( )f   is unavailable. Hence, one way to estimate 

the threshold is to obtain the frequency distribution of JSd  

under 
0H  using historical measurements. Select the reference 

interval and the detection interval randomly from historical 

measurements, calculate JSd , and collect the results as: 

 
,1 ,2 ,, , ,

T
his his his his

JS JS JS JS Md d d =  d  (34) 

where 
his

JSd  represents the vector of the averages of k-smallest 

similarities taken from historical measurement residuals; M is 

the number of samples used to estimate the threshold λ [38]. 

    To estimate the threshold λ, the entries of vector 
his

JSd  are 

reordered as follows: 

 
( )

,1 ,2 ,, , ,

his his

JS JS

T
his his his

JS JS JS M

rank

d d d

=

 =
  

d d

 (35) 

where his

JSd   represents the reordered vector of 
his

JSd  in de-

scending order based on the values of all entries.  

    From this frequency distribution, the threshold λ corre-

sponding to a given false alarm rate setting can be estimated as 

follows: 

 o M=   (36) 

 
,

ˆ his

JS od =  (37) 

where 
,

his

JS od  represents the oth entry of vector his

JSd , and ̂  is 

the estimated threshold. As an illustrative example, Fig. 1 

shows the frequency distribution of JSd  from a set of histori-

cal measurements on the IEEE 30-bus test system, where the 

detection threshold is estimated as ˆ 0.0524 =  based on a false 

alarm rate setting of 2%. 

    With the estimated threshold ̂ , the criterion of FDIA de-

tection can be set as:  

 0

0

ˆ,

ˆ,

JS

JS

d Reject H

d Accept H





 




 (38) 

The flow chart of the proposed kSRS test is shown in Fig. 2, 

which consists of two sub-procedures, i.e., the off-line proce-

dure and the on-line procedure. In the off-line procedure, the 

detection threshold corresponding to a specified false alarm 

rate setting is estimated using the historical data. It should be 

noted that the threshold estimate does not need to be updated 

frequently. With the detection threshold set up, in the on-line 

procedure, the kSRS test is executed to detect potential FDIAs 

within the detection interval by means of comparing the resid-

ual similarity between the detection interval and the reference 

interval. The reference interval can be the interval that imme-

diately precedes the detection interval. The detection frequen-

cy is dependent on the length of the detection interval, i.e., 
detT .  

E. Discussions on the Advantages of Using Measurement 

Residuals Over Measurement Values (Variations) in 

FDIA Detection 

There are several advantages to detect FDIA based on the 

probability distribution of measurement residuals instead of 

based on the probability distribution of measurement values 

(or variations). The rationale is discussed in two aspects be-

low.  

1) The proposed measurement residual-based kSRS test 

produces less false-positive results than the measurement var-

iation-based MS test under actual operating condition chang-

es. 

Define two consecutive measurement scans as follows: 
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 ( ) ( )( ) ( )
,

t t t
= +z h x e  (39) 

 ( ) ( )( ) ( )1 1 1
,

t t t+ + +
= +z h x e  (40) 

where ( )tz  and ( )1t +
z  represent the measurement vectors at in-

stant t and t+1, respectively; ( )t
x  and ( )1t +

x  represent the state 

variable vectors in instant t and t+1, respectively; ( )h  repre-

sents the non-linear function between the state variable x and 

the measurement z; ( )te  and ( )1t +
e  represent the measurement 

error vectors in instant t and t+1, respectively. The variations 

of measurement values between two consecutive measurement 

scans are as follows: 

 

( ) ( )

( )( ) ( )( )

1

1

t t

t t
.

+

+

 = −

= − + 

z z z

h x h x e
 (41) 

Measurement residuals of two consecutive measurement 

scans can be defined as follows: 

 ( ) ( ) ( )( )ˆ ,
t t t

= −r z h x  (42) 

 ( ) ( ) ( )( )1 1 1ˆ ,
t t t+ + +

= −r z h x  (43) 

where ( )t
r  and ( )1t +

r  represent the measurement residual vectors 

at instant t and t+1, respectively; ( )ˆ t
x  and ( )1ˆ t +

x  represent the 

state estimate vectors in instant t and t+1, respectively. The 

variations of measurement residuals between two consecutive 

measurement scans are as follows: 

 

( ) ( )

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

1

1 1

1

ˆ ˆ

ˆ ˆ .

t t

t t t t

t t

+

+ +

+

 = −

= − − +

 =  − −
 

r r r

z h x z h x

z h x h x

 (44) 

    When the power system is under steady-state operations, the 

power flow is steady, i.e., 
( ) ( )1t t+

=x x . Under this situation, 

( ) ( )1ˆ ˆt t+
x x , thus,   r z . In this case, the MS test will have a 

similar false alarm rate to the kSRS test (Please refer to the 

simulation results in Fig. 3 and Table III).  

However, when the power system is under physical switch-

ing events, the power flow will suddenly change. For example, 

suppose that the power flows have fluctuations such that 
( )( ) ( )( )1t t+

−  0h x h x . In this case, it is straightforward to have  

( )( ) ( )( ) ( )( ) ( )( )1 1ˆ ˆt t t t+ +
− −h x h x h x h x  when the magnitude of 

measurement noise is negligible compared with the operating 

point change. Thus, ( )( ) ( )( ) ( )( ) ( )( )1 1ˆ ˆt t t t+ +    − − −
   

0 h x h x h x h x  

( )( ) ( )( )1t t+
−h x h x  and ( )( ) ( )( )1ˆ ˆt t+   =  − − 

 
0 r z h x h x z . 

In other words, variations of measurement residuals will be 

much smaller than that of measurements under physical 

switching events. This conclusion has been discussed in the 

published papers [29], [30]. Therefore, the MS test will have a 

significant larger false alarm rate than the kSRS test, i.e., the 

MS test can easily misidentify an actual switching event in the 

power grid as an FDIA, while the proposed kSRS test can dis-

tinguish the two very well. 

    2) The proposed measurement residual-based kSRS test is 

more sensitive than the measurement variation-based MS test 

under ramping FDIAs. 

    The ramping attack vector 
t
a  is given as follows: 

 
,0

,

det

det
t

det det

t
t T

T

T t T


  

 = 
  

a
a

a

 (45) 

where detT  represents the time required for increasing the at-

tack vector to its full extent a ; detT  represents the length of 

the detection interval. 

    When the FDIA is ramping-type, the measurement varia-

tions between two consecutive measurement scans will be 

smaller than the full extent a , since 
detT a a . The longer 

the detT , the smaller the measurement variations. In the case 

of a very long ramp (i.e., detT → + ), the measurement varia-

tions will be too small to trigger the MS test (i.e., 
detT → 0a ). 

In other words, the signature used by the MS test to detect 

FDIA will vanish as the ramp of the FDIA becomes sufficient-

ly long. By contrast, the kSRS test is dependent on the meas-

urement residuals within two different time intervals. As long 

as the FDIA is not perfect (please see the explanation regard-

ing the practicality of imperfect AC-based FDIA at the begin-

ning of Section III-A), it will change the probability distribu-

tions of measurement residuals sufficiently when it ramps to 

the full scale and the kSRS test will be triggered. In other 

words, the performance of the MS test is strongly dependent 

on the process of the FDIA, but the performance of the kSRS 

test is only dependent on the final outcome of the FDIA and is 

effective against any sophisticated processes of launching 

FDIAs. Therefore, the kSRS test is more sensitive than the MS 

test when discriminating against sophisticated ramping FDIAs. 

IV. SIMULATION RESULTS 

In this section, the effectiveness of the proposed FDIA de-

tection method is verified using the IEEE 30-bus standard test 

system. In order to emulate the realistic operation in power 

systems, the variation trend of the loads for the IEEE 30-bus 

system is derived from the actual real-time electricity usage of 

the ISO New England in Dec. 2020 [39]. It is assumed that the 

test system is measured by SCADA measurements including 

10 voltage magnitude measurements, 25 pairs of (active and 

reactive) bus injection measurements, and 40 pairs of (active 

and reactive) branch flow measurements. The performances of 

the proposed method and baseline methods will be evaluated 

in two aspects: robustness and sensitivity.  

1) Robustness implies that the test should not produce a 

false positive result when there are other disturbances in the 

system instead of an FDIA. High robustness of a test translates 

into a low false alarm rate when there is no FDIA. This aspect 

of the performances will be examined in Section IV-A. 

2) Sensitivity implies that the test should not produce a false 

negative result when there is an FDIA. High sensitivity of a 

test translates into a high detection rate. This aspect of the 

performances will be examined in Section IV-B. 

In both Sections IV-A and IV-B, the LNR test, the Chi-

square test, and the measurement similarity (MS) test will be 

simulated as baselines for comparison. In Section IV-C, be-

sides the above three tests, two existing machine learning-

based algorithms [40]-[44], i.e., the support vector machines 

(SVM) and the k-nearest neighbors (KNN), will be applied 

for further comparisons. The LNR test and the Chi-square test 
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are both well-known bad data detection tests [19], [45], [46]. 

The MS test refers to the recently developed FDIA detection 

test based on the statistical consistency of measurement varia-

tions [21]-[23]. The SVM and KNN are the most widely used 

classification algorithms in the machine learning area. They 

can train the model using labeled samples and perform the 

classification for the latest received measurements based on 

the trained model. In comparison, the proposed kSRS test is 

based on the statistical consistency of measurement residuals. 

A Gaussian distribution with zero mean and variance of 

1×10-4 p.u. is used to synthesize the measurement errors in 

Cases 1, 3, and 4. Moreover, to evaluate the FDIA detection 

methods under complex measurement error distribution [47], a 

Gaussian Mixture Model (GMM) with 3 Gaussian components 

is explored to synthesize the measurement errors in Cases 2 

and 5. The standard deviations of the three components are 

0.01 p.u., 0.004 p.u., and 0.005 p.u., respectively. The means 

of the three components are -0.025 p.u., 0, and 0.0167 p.u., 

respectively. The proportions of the three components are 0.2, 

0.5, and 0.3, respectively. Considering trade-off between the 

accuracy of the similarity test and the reporting frequency, the 

length of the reference interval (i.e., refT ) is set to 20 minutes, 

and the length of the detection interval (i.e., detT ) is set to 3 

minutes based on empirical evidences. As the sampling rate of 

SCADA is assumed to be one measurement scan per second, 

there are 1200 measurement scans and 180 measurement scans 

in the reference interval and the detection interval, respective-

ly. The parameter k is selected as 5. Each simulation is repeat-

ed 3,000 times with the average result reported.  

A. Absence of False Data Injection Attacks 

    In this subsection, the power system is assumed to be free 

of FDIAs. By definition, false positives (FP) and true nega-

tives (TN) are the cases where the detection method falsely 

detects an FDIA and correctly detects no FDIA when there is 

actually no FDIA, respectively. The false alarm rate is defined 

as the ratio of FP to the total negatives, i.e., false alarm rate = 

FP/(FP+TN). The FP, the TN, and the false alarm rate are 

standard metrics that are commonly used in existing works 

[13], [17], [18], [21], [22], [24], [25], [27]. In the following 

two cases, the false alarm rate is evaluated to verify the ro-

bustness of the proposed kSRS test.  

Case 1) Steady-State Operation: In this case, it is assumed 

that the power system is under normal operating conditions, 

and no major event takes place. The actual false alarm rates of 

different FDIA detection methods under a range of false alarm 

rate settings are shown in Fig. 3. Noticeably, the actual false 

alarm rate of the LNR test is the highest among the four 

methods, and it does not match its own false alarm rate set-

ting. The reason is related to an inherent limitation of the LNR 

test: only the largest residual is chosen as the test variable, 

while the threshold setting is based on the residuals of all 

measurement channels. Due to this inconsistency, the false 

alarm rate is considerably underestimated. In contrast, the 

Chi-square test, the MS test, and the proposed kSRS test all 

have relatively low actual false alarm rates, and they are con-

sistent with the corresponding false alarm rate settings. There-

fore, the simulation results of Case 1 verify that the proposed 

kSRS test, the Chi-square test, and the MS test all have satis-

factory robustness when the power system operates under 

steady-state conditions. 

Case 2) Physical Grid Switching Event: In this case, while 

no FDIA is present, an actual load switching event takes place 

in the physical power grid. Specifically, a major load is sud-

denly connected to bus 24, changing the active power from 

0.087 p.u. to 0.1305 p.u., and the reactive power from 0.067 

p.u. to 0.1005 p.u. This actual event abruptly changes the 

power flow profile as well as the corresponding measurements, 

but the measurements remain authentic.  

Fig. 4 shows the actual false alarm rates of all four detec-

tion methods. Compared with Case 1, the most noticeable 

change is that the MS test now has very high false alarm rates. 

Clearly, the MS test mistakenly detects an actual switching 

event in the physical grid as an FDIA. This is a highly risky 

error, since it may lead to the mistaken correction of authentic 

measurements, covering up an actual operating condition 

change from system operators. By contrast, the proposed 

kSRS test still maintains fairly low false alarm rates. The es-

sential reason for the drastically different performances of the 

two methods can be revealed by plotting the PDFs of meas-

urement variations and measurement residuals of a channel, as 

in Figs. 5-a and 5-b, respectively. It can be observed that the 

 
Fig. 3. False alarm rates under steady-state operation (Case 1). 

 
Fig. 4. False alarm rates under an actual grid switching event (Case 2). 

 
Fig. 5. PDFs of a) measurement variations before and after an actual grid 

switching event; b) measurement residuals before and after an actual grid 

switching event. 
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distribution of measurement variations, which the MS test 

relies on for detecting FDIAs, exhibits a major change before 

and after the switching event. This is easily understandable, 

since the power flow profile changes significantly during the 

event. In contrast, the distributions of measurement residuals 

remain almost unchanged, because the measurement residuals 

are strongly related to measurement errors. They do not 

change significantly in the presence of an accrual event in the 

grid, since the measurements are still authentic after the event. 

This feature ensures the agile discrimination between an FDIA 

and a physical grid event, and defuses a major risk of false 

alarm suffered by the existing method.  

B. Presence of False Data Injection Attacks 

In this subsection, the power system is assumed to be com-

promised by FDIAs. By definition, false negatives (FN) and 

true positives (TP) are the cases where the detection method 

falsely detects no FDIA and correctly detects an FDIA when 

there is actually an FDIA, respectively. The detection rate is 

defined as the ratio of TP to the total positives, i.e., detection 

rate = TP/(FN+TP). The FN, the TP, and the detection rate 

are standard metrics that are commonly used in existing 

works [13], [17], [18], [21], [22], [24], [25], [27]. In the 

following three cases, the detection rate is evaluated to verify 

the sensitivity of the proposed kSRS test.  

Case 3) Attacks with Inaccurate Model Parameters: In this 

case, it is assumed that attackers cannot attain accurate power 

system model parameters, and their estimates have -10%~10% 

random biases. In addition, 8 state variables randomly chosen 

are attacked with random biases following uniform distribu-

tions. The values of bias vector injected into state estimates 

are shown in Table I, where ci represents the ith entry of bias 

vector c. The attack vector (i.e., a ) is computed by Eq. (16). 

In this Case 3, the number of manipulated measurements is 72. 

In the presence of an FDIA, the detection rates of all four 

methods are shown in Fig. 6.  Note that the detection rates of 

the proposed kSRS test are the highest among the four meth-

ods. Especially, when the false alarm rate setting is 0.1%, the 

kSRS test reaches a detection rate of 98.2%, implying that a 

low false alarm rate and a high detection rate can be achieved 

at the same time. At the same level of false alarm rate setting, 

the MS test only achieves a 79.3% detection rate, implying a 

considerable risk of missing an FDIA. The LNR test and the 

Chi-square test are even less sensitive against FDIAs. Notice-

ably, the Chi-square test performs very poorly, partially be-

cause it takes the residuals of all measurement channels to 

construct the test variable, and the subtle evidence of the 

FDIA can be overwhelmed by numerous good measurements.  

Case 4) Attacks with Inaccurate State Estimates: In this 

case, it is assumed that attackers cannot attain accurate real-

time state estimates, and their estimates have -7%~7% random 

biases. The bias vector c in Case 4 is the same as that in Case 

3. The FDIA detection rates of all four methods are shown in 

Fig. 7. Compared with Case 3 (Fig. 6), the superiority of the 

proposed kSRS test is even more significant. When the false 

alarm rate setting is 0.1%, the kSRS test reaches a detection 

TABLE I 

ATTACKED STATE VARIABLES IN CASE 3 AND CASE 4 

i 7 12 15 18 

ci -0.2636 deg. 1.0485 deg. 0.0413 deg. 2.8820 deg. 

i 21 49 54 55 

ci -1.3063 deg. -0.0040 p.u. -0.0178 p.u. 0.0292 p.u. 

 

TABLE II 

ATTACKED STATE VARIABLES IN CASE 5 

i 17 30 33 36 40 

ci 
1.0256 

deg. 

2.8075 

deg. 

-0.0061 

p.u. 

0.0026 

p.u. 

-0.0129 

p.u. 

i 44 53 54 55 56 

ci 
0.0243 

p.u. 

-0.0161 

p.u. 

-0.0239 

p.u. 

0.0087 

p.u. 

0.0288 

p.u. 

 

 
Fig. 6. Detection rates under inaccurate model parameters (Case 3). 

 
Fig. 7. Detection rates under inaccurate state estimates (Case 4). 

 
Fig. 8. Detection rates under a ramping FDIA (Case 5). 

 
Fig. 9. PDFs of a) measurement variations before and after the start of a 

ramping FDIA; b) measurement residuals before and after the start of a 

ramping FDIA. 
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rate of 100%, while the MS test has a detection rate of 63.5%. 

Again, the results show superior sensitivity of the developed 

kSRS test compared with other existing methods.  

Case 5) Ramping FDIAs: This case considers a more realis-

tic situation where the attackers attain neither accurate model 

parameters nor accurate state estimates. The biases of model 

parameters and state estimates are the same as those in Cases 3 

and 4, respectively. In addition, 10 state variables randomly 

chosen are attacked with random biases following uniform 

distributions. The values of bias vector injected into state es-

timates are shown in Table II, where ci represents the ith entry 

of bias vector c. In this Case 5, the number of manipulated 

measurements is 91. Meanwhile, instead of an abrupt start, the 

attackers aim to inject gradually increasing errors to avoid 

detection. The ramping attack vector 
t
a  is given by Eq. (45) 

in Section III-E. In this case, detT  is set to 20s.  

The detection rates of all four methods are shown in Fig. 8. 

Compared with Cases 3 and 4, the MS test performs poorly 

under in this case. The reason is that there is no significant 

change of measurement values between any two consecutive 

time instants, thus the MS test cannot capture evidence of the 

FDIA. In contrast, the proposed kSRS test keeps the highest 

detection rates among all four methods. The reason can be 

revealed by plotting the PDFs of measurement variations and 

measurement residuals before and after launching the ramping 

FDIA, as shown in Fig. 9-a and Fig. 9-b, respectively. The 

distribution of measurement variations does not change much 

due to the lack of abrupt changes, while the distribution of 

measurement residuals changes significantly.  

Theoretically, the performance of the kSRS test is satisfac-

tory as long as the ramp of the attack is not significantly long-

er than the detection interval. This holds true for most FDIAs 

with limited resources, as false data should be derived from 

the up-to-date system state. During a long ramp, the operating 

state of the system can vary significantly, the attackers need to 

keep track of these changes and carefully recompute the attack 

vector in order to make the ramp smooth and consistent with 

the system model and state. Thus, making the ramp longer 

introduces higher risks of “imperfection” in the FDIA, and 

attackers may not opt to implement it unless they have strong 

capability of data processing and control over measurement 

streams. 

C. Comparisons with Machine Learning-based Methods 

In Section IV-A and IV-B, the performances of the pro-

posed kSRS test have been compared with the LNR test, the 

Chi-square test, and the MS test for different cases. In this 

subsection, the SVM and KNN algorithms along with the 

aforementioned three tests are compared with the proposed 

kSRS test.  

 To emulate realistic operation conditions, the variation 

trend of the loads for the IEEE 30-bus system follows the ac-

tual load data of the ISO New England in Dec. 2020 [39]. For 

the training data, 1000 samples are manipulated by FDIAs and 

labeled with “-1”, and the other 1000 samples are free of 

FDIAs and labeled with “+1”. Note that the training samples 

are generated by system operators, while the testing samples 

represent actual FDIA conditions. As system operators do not 

really have the knowledge of FDIA distributions, the training 

samples and testing samples will inevitably be inconsistent. 

Herein, this is assumed that system operators have a correct 

guess on the sign of the bias vectors, but an incorrect guess on 

the magnitude of the bias vectors. The bias vector c for train-

ing samples and testing samples follows the uniform distribu-

tions in the range of [0.8∙cbase, 1.3∙cbase] and [0.4∙cbase, 

0.7∙cbase], respectively. cbase is the maximum variation range of 

the power flows in one day, and 
base max min= −c x x , where xmax 

and xmin are the state variables when the loads are heaviest and 

lightest, respectively.  

Cases 1 and 2 designed in Section IV-A and Cases 3, 4, and 

5 designed in Section IV-B still will be used in this subsection. 

It should be noted that the FDIAs used in Section IV-C are 

different from that in Section IV-B in two senses.  

1) In Section IV-B, only one attack vector a is utilized for 

each case. In Section IV-C, however, 1000 FDIA vectors (i.e., 

1000 attack vectors a) are utilized for evaluating the perfor-

mances of different methods. 

2) In Section IV-B, the values of the bias vector c are de-

terministic, i.e., Tables I and II. In Section IV-C, however, the 

bias vector c follows the uniform distribution in the range of 

[0.4∙cbase, 0.7∙cbase]. 

The performances of all six detection methods for different 

cases are summarized in Table III. The 0.5% false alarm rate 

setting is used to estimate detection thresholds for the first 

four detection methods. For the machine learning-based meth-

ods, they do not need to set thresholds. Noticeably, the LNR 

test and the Chi-square test are neither robust nor sensitive for 

different cases. By contrast, the proposed kSRS test manifests 

both robustness and sensitivity as it has low false alarm rates 

in Cases 1 and 2 and high detection rates in Cases 3, 4, and 5, 

respectively. Similar to the results in Section IV-B, the MS 

test has a higher false alarm rate and a lower detection rate 

compared with the kSRS test in Case 2 and Case 5, 

respectively. For the SVM and the KNN methods, they have 

higher false alarm rates in Cases 1 and 2 and lower detection 

rates in Cases 3, 4, and 5 compared with the kSRS test. In 

other words, the kSRS test has advantages over the SVM and 

the KNN methods for all cases. This owes to the fact that the 

machine-learning-based methods are, in essence, check the 

measurement value distributions, not the measurement residu-

al distributions. Therefore, they still bear the limitations of the 

measurement-value-based methods. In particular, when these 

methods do not have knowledge on the degree of mismatch 

between the power flow model and the measurement data. 

When the measurement value distribution changes, they are 

TABLE III 

PERFORMANCES OF ALL SIX DETECTION METHODS WITH 0.5% FALSE 

ALARM RATE SETTING 

Methods False alarm rate (%) 

(the smaller the better) 

Detection rate (%) 

(the larger the better) 

Case 1 Case 2 Case 3 Case 4 Case 5 

LNR test 44.65 50.15 69.58 75.14 56.38 

Chi-2 test 0.4889 0.6500 7.428 15.15 1.915 

MS test 0.5112 18.34 100 100 15.22 

kSRS test 0.5020 0.8333 100 100 100 

SVM 7.600 9.300 80.30 82.20 46.23 

KNN 5.500 8.200 78.40 78.50 44.46 
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unable to correctly determine whether the change is due to an 

FDIA or an actual operating condition change. 

There is no method to have the best of both worlds. The 

comparison between model-based methods and machine-

learning-based methods can be viewed from a higher perspec-

tive. Model-based methods do not need training samples and 

processes, but require system model and parameters along 

with detection threshold settings. Machine learning-based 

methods are independent of the system model and parameters, 

and allow FDIA detection even prior to power system state 

estimation. However, the need of abundant and representative 

training samples to characterize the true FDIA conditions in 

power system applications may be quite challenging. Ma-

chine-learning methods usually perform well when training 

samples have similar distributions as testing samples. As 

FDIAs are rare in power systems, system operators do not 

really have the knowledge of FDIA distributions, and the 

training samples they generate will inevitably be inconsistent 

with testing samples. Under such circumstances, the perfor-

mances of machine-learning methods cannot be guaranteed. 

On the other hand, accurate model and parameters of power 

systems, which are required by model-based methods, are 

relatively more attainable to system operators. The simulation 

cases presented in this subsection exactly reflect the conse-

quences of such realistic situations. 

D. Computational Efficiency 

The simulations are executed using a PC with Intel Core i7-

9700K CPU, 32GB RAM, and Windows 10 64-bit operating 

system. The proposed kSRS test procedure is implemented 

using MATLAB version R2020b. The average computational 

cost for SE based on the WLAV estimator is 0.0578 seconds, 

and the average total computational cost for the kSRS test in-

cluding SE and similarity calculation is 0.0589 seconds. Note 

that the SCADA reporting rate is assumed to be 1 Hz in this 

paper, and the average total computational cost (i.e., 0.0589 

seconds) is far less than 1 second. Therefore, the on-line pro-

cedure of the proposed kSRS test is feasible. 

V. CONCLUSION 

    Based on the reasonable assumption that real-world AC-

based FDIAs can hardly be perfect, a highly discriminative 

detector, i.e., the kSRS test, is developed by checking the sta-

tistical consistency of measurement residuals to detect the 

imperfect AC-based FDIAs. Compared with the bulk of the 

existing FDIA detection methods based on measurement val-

ues, the kSRS test achieves better robustness and sensitivity in 

a variety of situations. Specifically, it does not produce a high 

false alarm rate under normal operating conditions or physical 

grid events, while achieves high detection rate in the presence 

of FDIAs, including sophisticated ramping attacks. The pro-

posed kSRS test is easy to implement since it only requires 

measurement residuals from SEs as inputs, and therefore is 

highly applicable in energy management systems today. The 

validations of the proposed method based on real-world sys-

tems and data deserve more investigations in the future. 
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