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Abstract— The emerging vehicular edge computing (VEC)
technology has the potential to bring revolutionary development
to vehicular ad hoc network (VANET). However, the edge
computing servers (ECSs) are subjected to a variety of security
threats. One of the most dangerous types of security attacks is
the Sybil attack, which can create fabricated virtual vehicles
(called Sybil vehicles) to significantly overload ECSs’ limited
computation resources and thus disrupt legitimate vehicles’
edge computing applications. In this paper, we present a novel
Sybil attack detection system on ECSs that is based on the
design of a credibility enhanced temporal graph convolutional
network. Our approach can identify the malicious vehicles in
a dynamic traffic environment while preserving the legitimate
vehicles’ privacy, particularly their local position information.
We evaluate our proposed approach in the SUMO simulator.
The results demonstrate that our proposed detection system
can accurately identify most Sybil vehicles while maintaining a
low error rate.

I. INTRODUCTION

The development of edge computing has the potential
to bring revolutionary changes to intelligent transportation
systems. Compared with vehicular cloud computing, the
servers for vehicle edge computing (VEC) are deployed on
the roadside units (RSUs) in proximity to the vehicles, and
the processing and analysis of data collected by vehicles’
onboard units (OBUs) or RSUs themselves take place on
those edge computing servers (ECSs). Therefore, VEC has
the advantages of low latency and high context awareness,
which can substantially support the vehicular ad hoc network
(VANET) to enhance the driving safety applications [1].

However, ECSs are subjected to a variety of security
threats. The work in [2] summarizes the vehicular edge
security issues into five categories, which are sensor security,
operating system security, control system security, vehicle to
everything (V2X) security, and security for edge network
and platforms. In V2X security, the Sybil attack is one of
the most severe types of security attacks because the attacker
can create multiple fabricated vehicles, called Sybil vehicles,
with stolen IDs to launch various attacks such as information
forgery attacks. Furthermore, the attacker can use the Sybil
vehicles to maliciously overload RSUs’ computing and stor-
age capacity, which may disrupt the legitimate vehicles from
using ECSs for their applications. This may consequently
disrupt the traffic flow and increase the chance of accidents,
especially when the traffic is dense.
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Due to the hazard of Sybil attacks in vehicular networks
and applications, various Sybil detection schemes have been
proposed to defend against them. Received signal strength
indicator (RSSI) based scheme utilizes the RSSI value
obtained from Basic Safety Messages (BSMs) to identify
malicious nodes [3], [4]. Trajectory-based scheme captures
sequential characteristics of vehicular trajectories to filter
out malicious nodes [5]. Cryptography-based scheme as-
signs vehicles with pseudonyms and leverages signatures
or secrete keys to defend against Sybil attacks while pre-
serving privacy [6], [7]. However, one of the most signif-
icant schemes in general Sybil detection, the graph-based
schemes [8], [9] are rarely discussed in the context of
VANET. Graph-based schemes construct a graph based on
nodes’ social relationship, and then use both topological
and node embedding information to detect attacks. Further-
more, to achieve computationally efficient graph analysis,
Graph Convolutional Network (GCN) [10] is developed. It
has shown its powerful capability in generating meaning-
ful node embedding by fusing the structural information
aggregated from a node’s neighborhood with the node’s
self features to detect spammers in social networks [11],
[12]. When applied to VANET, graph-based schemes can
leverage connected autonomous vehicles (CAVs)’ inherent
connectivity to create the preliminary model but face the
challenge of CAVs’ highly dynamic mobility, which may
lead to volatile graph structures. Therefore, to fully leverage
GCN’s information aggregation capability while capturing
and utilizing the dynamic information brought by vehicle
s’ mobility, complementing the GCN with Gated Recurrent
Unit (GRU) [13] is a promising idea.

In this paper, we propose a credibility enhanced Sybil
attack detection system based on temporal graph convolu-
tional network (TGCN) to secure ECSs while preserving the
CAVs’ local position information for privacy. As shown in
Fig. 1, the detection system uses the TGCN classifier to make
the real-time classification based on nearby traffic informa-
tion and physical characteristics reported in V2X messages.
Therefore, the commonly implemented features such as
trajectories, driving patterns are substituted with topologi-
cal information extracted from CAVs’ connectivity, which
reserves CAVs’ position information for privacy and enables
the proposed Sybil detection system to defend against a more
complicated attack model. The classification results are then
used for building up the CAVs’ local credibility. We also
introduce Bayesian inference to integrate a global credibility,
which is the vehicle’s accumulative credibility in previous
ECSs, with the vehicle’s local credibility. The updated final
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Fig. 1: Overview of our Sybil attack detection system design. The
ego vehicle travels in the region monitored by the current ECS
and sends the surrounding traffic information to it. TGCN based
classifier will use the reported information to classify the vehicle’s
identity continuously; the results will be used to build up local
credibility. The current ECS then combines the vehicle’s local
credibility with its global credibility from the previous ECS by
Bayesian inference to update final credibility. Then, the updated
final credibility will be used to make the final classification.

credibility will be used for final classification. Our contribu-
tion in this paper can be summarized as follows:

e We developed a novel Sybil attack detection system
implemented on ECSs to provide effective protection for
ECSs with graphs modeled by CAVs’ connectivity while
preserving CAVs’ local position information for privacy.

e We designed a credibility accumulation system and intro-
duce a handoff protocol to integrate the CAVs’ credibility
in the current server with accumulative credibility from
previous servers to further improve the detection system’s
performance.

e We implemented a prototype of the proposed detection
system in SUMO [14] and demonstrated its effectiveness
in defending against Sybil attacks in experiments.

II. RELATED WORKS

A number of methods have been proposed to defend
against Sybil attacks in VANET. Among them, learning-
based techniques are one of the most commonly implemented
approaches in the Sybil detection system. For instance, [15]
implements Naive Bayes classifier, Support Vector Machine
(SVM), Decision Tree with ten mobility features that are
extracted from the location information reported by vehicles.
The work in [16] uses edge base stations to collect each
vehicle’s location and mobility information within a certain
time period, and uses the data to define a matrix of move-
ment. The matrix is then processed and trained with extreme
learning machine to detect Sybil attacks. The works in [17],
[18] propose an SVM based and a k-nearest neighbors based
Sybil attack detection methods by utilizing the extracted
eigenvalues from the mobility matrix, which summarizes
vehicles’ location, velocity and acceleration information.
However, these mobility-based learning methods require
vehicles continuously reporting their position information to

RSUs, which is detrimental for maintaining vehicles’ privacy.
Besides, the methods are vulnerable to the hybrid attack
model, e.g., the Sybil vehicles launch the DoS attack or
information forgery attack, which is very common when a
Sybil attack is initiated. In addition to the learning-based
Sybil detection system deployed on RSUs, [19] proposes a
novel feature extraction algorithm deployed on the vehicles
to get the vehicles’ nearby traffic flow, distances between
each other, and reported position biases. The features are
then trained with an improved growing hierarchical self-
organizing map to assist the vehicles with detecting intrusion.
Although the proposed method can achieve a high detection
rate, it creates lots of computation burdens for vehicles’
OBUs and is unable to be deployed on RSUs as each
vehicle has prior knowledge of its identity while RSUs
don’t have such information. There are also non-learning
based detection systems. The work in [20] tries to filter
out Sybil vehicles by evaluating the similarity of physical
parameters such as distances and angles between the vehicle
and RSU. But the signal noises in the highly dynamic traffic
environment are not considered. [21] uses the neighboring
nodes tables exchanged among vehicles to help the legitimate
vehicles find Sybil vehicles. The nodes that are simultane-
ously observed for a period of time will be classified as Sybil
vehicles. However, this method is based on the assumption
that a vehicle will not keep following another vehicle beyond
a specific period. It is hard to establish such an assumption
for the one-way traffic scenario such as the highway. In [22],
Boolean constraints that are formed by mutually reported
information are added to a SAT solver, and the SAT solver
then outputs the sets of possible honest vehicles. The set
of vehicles with the minimum speed discrepancy between
the data reported by them and the data reported by trusted
sensors is used to compute the final traffic data. However,
the work does not consider that the attacker can acquire
nearby traffic information and then let the Sybil vehicles
report legitimate vehicles to further confuse the intrusion
detection system.

In summary, the existing studies either make strong as-
sumptions on Sybil vehicles’ driving patterns and trajectories
or do not consider a more comprehensive attack model.
In our work, we propose a graph-based Sybil detection
system to identify malicious CAVs with CAVs’ nearby traffic
information and their physical characteristics; therefore, our
method relies on the latent pattern unearthed from the
topological information instead of the similarity of driving
patterns between the attacker and the Sybil vehicle to detect
Sybil attacks. Hence, the CAVs’ local position information
is substituted with topological information to preserve their
local privacy. Furthermore, we assume that Sybil vehicles
behave the same as legitimate vehicles and report the in-
formation similar to the information reported by legitimate
vehicles to avoid having a specific similarity in driving
patterns or trajectories with the attacker. We also discuss a
more comprehensive Sybil attack model, as well as attackers’
and Sybil vehicles’ possible strategies in falsifying V2X
messages.
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Fig. 2: Attack model considered in our work. The vehicles with
different identities will take different reporting strategies to report
the existence of the other vehicles in their communication range.
The solid line indicates that the reporting information must exist,
while the dashed line indicates the existence of the reporting
information depends on the vehicle’s reporting tactic. The solid
arrow points from vehicle L to vehicle M means the legitimate
vehicle L must report the existence of the Malicious vehicle M. The
dashed line from S1 to L means the Sybil vehicle S1 can choose
to report or ignore the legitimate vehicle L. The dashed line from
S2 to S1 means the Sybil vehicle S2 can choose to report or ignore
the Sybil vehicle S1.

III. ATTACK MODEL

In Sybil attacks, a malicious vehicle on the road will
report the existence of fabricated virtual vehicles, i.e., Sybil
vehicles, to ECSs. Moreover, those Sybil vehicles will com-
pete for edge computing resources by sending requests to
ECSs. When the traffic becomes heavy and demand on edge
computing becomes more extensive, the attacker and its
fabricated Sybil vehicles may be able to overload the limited
resources on the ECSs. Consequently, the legitimate vehicles’
computing requests to the ECSs could be disrupted, and they
may have to slow down for safety concern. The efficiency
of the traffic flow could be significantly reduced, and the
chance for accidents may increase.

Fig. 2 represents the structure of the graph modeled by
the vehicles with different identities. During Sybil attacks,
the attacker may attempt different strategies to disguise the
Sybil vehicles’ identities. In our assumption, the RSUs and
ECSs are attack-resilient, so the attackers cannot access the
data reported to the infrastructures, but they can falsify
the messages’ information. Therefore, Sybil vehicles can
intentionally choose the vehicles which they want to report
to RSUs, but they are incapable of obtaining information
beyond what the attacker can access. With all these as-
sumptions, we can summarize attacker’s and Sybil vehicles’
possible reporting tactics in Table 1. Attackers can choose
to report or ignore the Sybil vehicles fabricated by it or the
legitimate vehicles which it can detect. Meanwhile, the Sybil
vehicles can be instructed by the attacker to report or ignore
the attacker, the other Sybil vehicles launched by the same
attacker, and the legitimate vehicles which the attacker can
detect.

It is assumed that legitimate vehicles will report and only
report what they observe. We also assume perfect perception
and communication for legitimate vehicles. Thus if there is
any inconsistency, there should exist attacks. However, note
that any inconsistency between reported information cannot
be used to identify attackers [22]. For example, a legitimate
vehicle L honestly reports an attacker M, but the attacker M

TABLE I: REPORTING TACTICS FOR ATTACKER AND SYBIL
VEHICLES

Report / Not Report
« Sybil vehicles launched by it

Attacker o Legitimate vehicles it can detect
o The other Sybil vehicles launched by the same attacker
Sybil o The attacker launched it

« Legitimate vehicles that the attacker can detect

chooses to ignore L, and it also instructs Sybil vehicles S1
and S2 launched by it to ignore L in the messages. L cannot
detect S1 and S2 and therefore cannot mention them in its
message. As a result, L may be mistakenly identified as a
Sybil vehicle while the real attacker violates the rules with
impunity because Sybil vehicles become the majority.

Furthermore, we do not assume that the attacker and the
Sybil vehicles will have any distinctive physical character-
istics such as speed, acceleration, driving pattern, i.e., they
are assumed to perform similarly to the legitimate vehicles
on the road.

IV. METHODOLOGY
A. Vehicular Ad Hoc Networks Model

1) Privacy-Preserving Vehicle-to-Infrastructure Commu-
nication Protocol: In VANETSs, we assume that all ve-
hicles use dedicated short range communication (DSRC)
but are not limited to DSRC to communicate with ev-
erything. Each vehicle periodically communicates with its
neighbors via beacon messages, allowing the vehicles to
know the information such as velocity and pseudonyms of
their surrounding vehicles. Furthermore, in our protocol, for
preserving privacy, each vehicle will use the pseudonym
assigned by ECS to make both V2V communications and
V2I communications; also, vehicles do not need to report
their local position information. Besides, we discuss the
Sybil detection system’s performance with partial-privacy
communication protocol (PPCP) and full-privacy commu-
nication protocol (FPCP). The difference between PPCP
and FPCP is that PPCP will require vehicles to report
the distance between themselves and their neighbors in the
communication range, whereas FPCP will not have such a
requirement. Therefore, at time t, each vehicle i is able to
acquire a list LI = {{i, j,distance; ;},{i,k,distance;;}, -}
in PPCP or L! = {{i, j},{i,k},---} in FPCP to indicate its
neighbors’ pseudonyms, the number of its neighbors N,
and possibly the distances between itself and its neighbors
depending on the communication protocol.

Furthermore, based on the Green-shield’s model [23],
which describes the relationship between speed and density,
each vehicle i can also obtain its nearby traffic flow flow!
at time t with:

Vieyi _ o i 1

t = "max X max ( )
'max

Flow! = V! x p} (2)

where p! is the traffic density in i’s communication range
at time t, V! is i’s theoretical average speed at density p;,



Vi is i's speed when traffic density is 0, and pma is the
traffic density when all vehicles’ speed become 0 on the
road. We assume that the attackers and Sybil vehicles will
honestly report Flow! because only p/ can be falsified in
Equation (1), whereas ECSs can quickly identify the falsified
p! with N'. Besides, each vehicle can request the computation
resource allocation from the ECS in the message. We use of
to denote the amount of the resource vehicle i requests or
holds from the ECS at time t. And we also use Velocity! to
denote vehicle i"s velocity at time t. Overall, the format of
message M' that each vehicle i is required to periodically
send to ECS,; is shown in Equation (3).

M:! = {LLffﬂHiﬂLNLVEfOC&}{} (3)

So each ECS; will have a message list M = {Mf,Mf,-~ -}
from all vehicles in its monitored region at time t

B. Credibility-Enhanced Temporal Graph Convolutional
Network based Sybil Detection Svstem

1) Vehicle-to-Vehicle based Graph: For the vehicles run
on the road, each vehicle’s behavior is more likely to be
influenced by a closer vehicle, which means each wehicle's
behavior is inversely related to the distance between itself
and its neighbors. Thus, if vehicles are using PPCP, ECS,
will use the message list M to construct the edge-weighted
graph G = (V7. E7) with edge weights W (ei;) = gmee
g;j € EF to describe the spatial and temporal relationship
among the vehicles at time t, where V,® is the set of vehicles
that request resources or hold resources from ECS, at time t,
and Ef is the set of detection information reported to ECS; at
time t. If vehicles are using FPCP, G will be an unweighted
graph.

For vehicley € V2 and vehicle; = V2, they will form an
undirected edge e; 2 € E, when either vehicle, or vehicle;
reports the other’s existence in L! or L. As we assume that
attackers and Sybil vehicles can take any sirategy to disguise
their identities or disturb the ECSs" operation. Forming
undirected edges by this method can make sure that the
legitimate vehicles” information can always be aggregated
with malicious vehicles, as well as being aggregated with
Sybil vehicles if they choose to report the legitimate vehi-
cles. For example, if an attacker M chooses to ignore the
legitimate wehicle L, L's features will still be passed to M
while implementing GCN. Then for time t, an adjacency
matrix A7 € RY*¥ can be extracted from G?, and an initial
node feature matrix X € RV*? can be extracted from M?.

2) Temporal Graph Convelutional Network: V2V based
eraph has its distinctions in several aspects: 1) traveling vehi-
cles frequently changing their positions results in the highly
inconstant graph; 2) each node’s embedding information
varies with time, such as speed, acceleration; 3) new nodes
keep joining in, while previous nodes keep leaving out. To
fully utilize these dynamic features, a TGCN module is intro-
duced in our detection system. Evolving Graph convolution
network (EvolveGCN) [24] consists of the graph convolution
unit [10] and a gated recurrent unit (GRU). The principle of
the model is to use a recurrent architecture for updating the

weight matrix with historical information and then use the
updated weight matrix for updating the current time step's
node feature matrix. Hence, in our application, the GCN is
only used to extract the meaningful weight matrix at the
specific time step; GCN’s function is thereby not limited to
the V2V based graph’s changes with the time anymore. The
graphical changes will be learned via GRU. By applying our
W2V based graph to the model, the layer-wise propagation
rule can be mathematically written as:

W/ =GRU(X] W\ ) @
X!*! = ReLU(A,D;'X{W/) (5)

where A, = A, + Iy is the adjacency matrix A, of graph G? at
time t added with identity matrix Iy, b, is the degree matrix,
X! and W! are respectively the node embedding matrix and
the weight matrix at the [-th layer. In Equation (4), GRU
updates the hidden state W, with weight matrix W'  in the
last step and X/ at the current time step. Next, W' is fed into
GCN’s propagation rule and output a new node embedding
X*! for (14 1)-th layer in Equation (5). Finally, X/*' can
be either further updated by weight matrix W' to X42 or
directly output for classification depending on the setting of
GCN’s layer number.

Moreover, in Equation (4), the input X's dimension has to
match the hidden state W' |’s dimension to implement GRU,
s0 we use the same method described in [24], [25] to choose
top-k nodes to achieve that. The expression is given below:

scores; =X/ p'/|1P'|| (6)

topk, = (scores! k) 0]

X! = (X! @ tanh(scores')|(topk,,:))T (8)
Z, =o(VeX! + Uz W! ) )]

R = o(VeX! + UgW' ) (10)

W! = tanh(VyX! + Uy (R, W' ) (11)
W =(1-Z)oW +Z oW (12)

where p' is a trainable vector at layer [, || /|| is L, norm of ',
= is element-wise multiplication, o (-) is sigmoid function, Z
and K, are respectively update and reset gates, mairices [/, V'
are trainable parameters which are adjusted during training.
In Equation (7), the indices of the £ nodes with largest values
in scores' are chosen and output as ropk,. In Equation (8),
the transpose of the matrix consisting of the nodes in X! with
corresponding indices in fopk, are subsequently output As
k is equal to the number of columns of W' |, X! thereby has
the same dimension as W' .

3) Credibility Enhanced Detection System: The ECS will
classify the vehicles” identities every second with the TGCN
model in our design. Accordingly, at time t, ECS,; will use
the classification results to evaluate and credit Prediﬁian':rm"
points to vehicle VID, based on the messages reported
by VID,; in the last 5 seconds. If VID, is classified as
a legitimate vehicle at time t, Predicrion’™®= will be 1;
otherwise, it will be 0. We also denote by Local) P ECS,'s



confidence in VID,’s legitimate identity since VID, enters
ECS,’s monitored region; the closer LocalX[D “ approaches 1,
the more system is confident in VID,’s legitimate identity.
Besides, both Prediction;/ Da and local{m 4 are confidential
to VID,. Local,‘jm ¢ is computed as:
VID 1 ¢
Local; "™ = ;(Z Prediction)'Pe) (13)
n=1

Algorithm 1 Handoff Protocol
Result: Global) """, Local]"™"", VID,,

Input: VID,,;, current time: ¢, CV/Pold

if VID,;, starts receiving the beacon message from ECSy,,

then
VID,,; sends leaving message to ECS,;4;

ECS, e assigns VIDy,,, to VID,,;

if ECS,;y receives the leaving message then
1=t

ECS,;4 sends the key to ECS,,, and VID,, CV'Pold
to ECSpen;
GlobalLVIDnew — CVIDald;

if Global) """ == 0 then
| Global] ™ =0.1;

end

if Global; """ == 1 then
‘ Globalz/m”eW =0.9;

end

while VID,;; has not been recycled do
if VID,,; offloads service on ECS,;; then
VID,;, continues offloading computations on
ECSo14;
end
Pre-LocalXID new — ZZ:T, Prediction,, P74
end
ECS,;, frees the resources occupied by VID,;4;
Tf =1,

ViDpew _ 1 VIDyew .
I 77 = w——(Pre-Local; """");

Loca T T,

end

end

For a large traffic network, multiple ECSs will be
distributed to cover all regions comprehensively. Therefore,
the offloaded computation should be moved to a new
ECS [26] when the vehicle drives away from its current
ECS. As shown in Algorithm 1, we define a handoff region
communication process' to ensure that our detection system

The techniques to migrate the offloaded work from a server to a new
server is beyond the scope of this paper, which focuses on designing handoff
communication process to enable distributed ECSs’ cooperation.

seamlessly performs its function while vehicles are traveling
from the current ECS to a new ECS and further enable
servers’ cooperation in detecting Sybil attacks. We assume
that the current server ECS,;; and the next server ECS,.,,
have a 1 km mutually covered area named the “handoff”
region. All the vehicles driving from the region monitored
by ECS,;; to the region monitored by ECS,,,, are required
to submit the request of changing server in this region. Also,
handoffs can be categorized into hard handoff, soft handoff,
horizontal handoff, vertical handoff [27]. In our design,
we assume that all vehicles use soft handoff, which means
that the connection between ECS,;; and the vehicle breaks
after ECS,,, establishes the connection with the vehicle.
Therefore, at time 7;, for the vehicle VID,;; has offloaded
service on ECS,y, it starts sending the leaving message,
which contains the information of ECS,,,,, to ECS,;; when
it builds up the connection with ECS,e\,. ECS,), Will assign
the vehicle a new pseudonym VID,,,,, then the vehicle will
use VID,., to communicate with ECS,.,. Furthermore,
ECS,, starts migrating the offloaded service to ECSy,y,, as
well as sending VID,;;’s final credibility CY/Poid,| which will
be converted to Globalz/’ Dnew by ECS,ey as VID,,,,’s global
credibility, to ECS,,,, at T;, and a key to both VID,; and
ECS,,,. After the migration process is finished, the vehicle
will use the key to match the migrated offloaded service
and CV/Pold on ECS,e,, and this time is denoted by 1.
During (7y —T;), ECS,e\ starts computing Pre-LocalZID""w,
and the vehicle still connects with ECS,;; to offload the
computations. After Ty, ECS,;; will release the resources
occupied by VID,; and recycle the pseudonym VID,,,
then ECS,,.,, will use pre-Local{ID " and VIDye,’s previous
final credibility to compute C"Prew for classification. For
vehicle VID,;;, which does not offload service on ECS,;,,
ECS,;; will directly send the vehicle’s final credibility and
the key to ECS,.,. The vehicle can still send the request
of offloading computations at this time, but the request
will not be reviewed by ECS,,, until the match process is
completed. Overall, this process can ensure any resources
allocated by the previous ECS will eventually be released,
and all honest vehicles will eventually transfer from one
server to another server without service interruption.

To compute the final credibility of a vehicle for classifi-
cation and further strengthen distributed ECSs’ cooperation
in filtering out Sybil vehicles, Bayesian Inference [28] is
introduced in our design. Bayesian Inference takes prior in-
formation to establish trust and has been widely implemented
to build a reputation system [29]. In our design, each ECS
integrates the vehicle’s local credibility with its prior global
credibility by Bayesian Inference to get VID,,’s CV/Pnew,
then CV/Prev is used to make the final classification. CV/Prew
is computed as:

GlobalZ[D”"“’ X LocalZ'D’“’W

Yi-rs Global}lm”"‘“’ X Local}/lD””“

CV1Pnew — (14)

where Global{m’“’w is the prior probability equal to CV/Poid,



which can be obtained from the message sent from ECS,;; to
ECSye; Globaly ™ = 1 — Global) "™ and Localy " =
1 —Local{m "ew are respectively global and local confidence
in VID,,,’s Sybil identity. We also set a threshold o € [0, 1]
to offer system the adjustability. The closer ¢ approaches 1,
the more sensitive the system will be. For instance, when
o is set to 0, only the vehicle classified as Sybil vehicle
since it enters the current monitored region will finally
be classified as the Sybil vehicle. The ECS’s classification
process discussed above is summarized in Algorithm 2.

Algorithm 2 ECS Detection Process
Result: Resource Allocation Approval Result

Input: VID,,,, current time: ¢, GlobalZID nev o,
while VID,,,, in the region do

if VID,,,, is classified as Sybil vehicle at time t then

. VIDyew
‘ Prediction; """ = 0;

end

if VID,,, is classified as Legitimate vehicle at time t
then
‘ Prediction}”D”ew =1;

end

Local) P = %( ! _, Prediction)Pnev);
Globaly "Prew x Local) "Prew

Yi-Ls Global}/m”"’w xLocal}/lD"gw ’

if CVPrev > G then
VID,,, is classified as legitimate vehicle;

CVI Diew —

Approve the resource allocation request from

VIDev;
else
VID,,,, is classified as Sybil vehicle;

Reject the resource allocation request from VID,,,;

end

end

V. EXPERIMENTAL RESULTS
A. Dataset and Parameters

To validate the effectiveness of the proposed detection
system, we use the SUMO simulator to simulate the traffic
and V2I, V2V communications in the highway scenario. We
assume that each 10 km will be equipped with an ECS, and
we focus on analyzing the performance of the proposed Sybil
detection system on this server. Simulation parameters are
listed in Table II. The vehicles run on a 2-lane highway with
a maximum speed of 112 km/h. The total lane length is set to
10 km. Each vehicle can communicate with its surrounding
vehicles within 300 meters transmission range [30].

B. Implementation

Within SUMO, we dispatch vehicles requesting different
amounts of the resource with an arrival rate of 0.2 vehicle/s.

TABLE II: SIMULATION PARAMETERS

Parameters Values
Simulation Scenario Highway
Simulation Time 6000 seconds

Lanes Number 2

Vehicles Maximum Speed | 112 km/hr
Vehicle Arrival Rate 0.2 vehicle/s
Communication Range 300 m

Percentage of Attacker 1% 3% 5% 8% 10% 20%

Each attacker runs in the simulation scenario and launches
the Sybil attacks by generating five Sybil vehicles once it
starts sending messages to the ECS. The Sybil vehicles also
start sending the messages based on the traffic information
detected by the attacker. Therefore, the attacker’s behavior
is similar to any other legitimate vehicles except that the
attacker will fabricate reporting information. Moreover, to
follow the attack model we discussed in III, the amount
of requested resource and velocity reported by the Sybil
vehicles varied in a reasonable range to avoid the consistent
pattern with the attacker. Moreover, two reporting strategies
are implemented in the simulation and analyzed separately.
The first one is named inconsistent attackers. For this type
of attackers, both Sybil vehicles and attackers randomly
choose the reporting targets in the communication range;
thus, the Sybil cluster patterns in our experiments are thereby
comprehensive and unpredictable. The second one is named
silent attackers that all Sybil vehicles pretend there are no
other vehicles in their communication range.

We also implement the simulations in both FPCP and
PPCP, and focus on analyzing the percentage of attackers’
influence by observing the results of testing group with the
same size but with different attacker percentages. Also, we
analyze the effectiveness of different o values in detecting
Sybil vehicles. The TGCN module will make the classi-
fications based on last 5 time steps’ information. Due to
imbalanced datasets, the results are evaluated with precision,
recall and F1 scores [31]:

TP
Precision = ——— (15)
TP+ FP
TP
Recall = —— (16)
TP+FN
Fle2x Precision x Recall a7

Precision+ Recall
where TP, FP, FN are respectively true positives, false
positives and false negatives.

Fig. 3 shows F1 scores reached by our proposed Sybil
detection system on detecting silent attackers. Broadly speak-
ing, our system can accurately find almost all Sybil vehicles
which implement the silent strategy with any ¢ values, and
reach maximum performance when sigma is set in a range
from O to 0.3.

For inconsistent attackers, we compare the F1 scores
between the detection systems that implement PPCP either
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Fig. 3: F1 scores for Sybil detection system on datasets with
different percentages’ silent attackers.

TABLE III: F1 SCORE COMPARISON BETWEEN CREDIBIL-
ITY ENHANCED TGCN AND TGCN

1% 3% 5% 8% 10% | 20%

Credibility
Enhanced TGCN 0.937 | 0.904 | 0.921 | 0.924 | 0.899 | 0.923
TGCN 0.658 | 0.717 | 0.770 | 0.822 | 0.814 | 0.873

with the inconsistent strategy when o is set to a relatively
small value, for both FPCP and PPCP. For the detection
system that implements FPCP, its detection performance is
slightly lower than the system that implements PPCP due to
the lack of distances as the feature. The detection system
that implements PPCP also reaches its best performance
when o is set in a range from O to 0.3; after the range,
the system’s performance decreases with the increase of
o value. As we discussed regarding the usage of o, the
larger o is, the more sensitive the system will be; therefore,
the detection system tolerates fewer uncertainties on the
vehicles’ legitimate identities with a large ¢ value.

precison and recall values for detecting inconsistent attackers
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in Table III. The table shows the system’s performance with
different percentages of attackers. It can be observed that the
smaller the percentage of attackers is, the more helpful the
credibility system will be.
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Fig. 4: F1 scores for Sybil detection system that implements PPCP
or FPCP with different percentages’ inconsistent attackers. For
simplicity, we only plot the result for the simulation that implements
FPCP with 5% attacker. Generally speaking, the best F1 score for
the simulation that implements FPCP is lower than the simulations
that implement PPCP.

In addition, as illustrated in Fig. 4, our proposed Sybil de-
tection system can also accurately detect most Sybil vehicles

0.1 W recall
Il precision

0.0 -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sigma

Fig. 5: Recall and precision values for Sybil detection system
that implements PPCP with different percentages of inconsistent
attackers. The presented recall or precision values are averaged
results for the six testing groups with different ¢ values. The error
bar is the standard deviation of the results for the six testing groups.

Besides, as shown in Fig. 5, for the simulations that
implements PPCP, both recall and precision reach high values
with certain ¢ values and have the expected changes with
the increase of ¢ value. The precision decreases signif-
icantly with the increase of o value because more and
more legitimate vehicles are classified as Sybil vehicles by
an increasingly sensitive detection system. It can also be
observed that a notable expansion in the precision values’
standard deviations. That is because for the testing group
with the small percentage of attackers, e.g., 1%, 3%, even if
a small proportion of legitimate vehicles is classified as Sybil
vehicles, it will result in a disproportionately higher number
of false positives than the number of true positives. That also
explains the phenomenon that the smaller percentage of the
attackers is, the more significantly the f1 score drops when &
is large in Fig. 4. Furthermore, the number of false negatives
decreases remarkably, and recall values reach more than 90%
when o is set greater than or equal to 0.1.

VI. CONCLUSION

In this paper, we present a novel credibility enhanced
TGCN based Sybil attack detection system to defend ECSs



against Sybil attacks. A TGCN based classifier uses CAVs’
reporting information and physical characteristics to make
real-time classifications. A local credibility module sum-
maries the local classification results and update the current
system’s confidence in the CAV’s identity. Bayesian infer-
ence is then introduced to integrate the accumulative global
credibility summarized by the previous ECSs with the cur-
rent ECS’s local credibility to make the final classification.
Simulation results show that our proposed Sybil detection
system can effectively defend against different quantities of
Sybil vehicles with low error rates. As future work, we
plan to implement the detection system in an urban traffic
network and set up several servers to observe the system’s
performance, and further improve the design of the system’s
structure as well as the implementation of different modules.
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