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Differential Privacy on the Unit Simplex via the Dirichlet Mechanism
Parham Gohari, Bo Wu, Calvin Hawkins, Matthew Hale∗, Ufuk Topcu

Abstract—As members of network systems share more infor-
mation among agents and with network providers, sensitive data
leakage raises privacy concerns. Motivated by such concerns, we
introduce a novel mechanism that privatizes vectors belonging to
the unit simplex. Such vectors can be found in many applications,
such as privatizing a decision-making policy in a Markov decision
process. We use differential privacy as the underlying mathe-
matical framework for this work. The introduced mechanism
is a probabilistic mapping that maps a vector within the unit
simplex to the same domain using a Dirichlet distribution. We
find the mechanism well-suited for inputs within the unit simplex
because it always returns a privatized output that is also in
the unit simplex. Therefore, no further projection back onto the
unit simplex is required. We verify and quantify the privacy
guarantees of the mechanism for three cases: identity queries,
average queries, and general linear queries. We establish a
trade-off between the level of privacy and the accuracy of the
mechanism output, and we introduce a parameter to balance the
trade-off between them. Numerical results illustrate the proposed
mechanism.

I. INTRODUCTION

In many decision-making problems, a policy-maker forms
a control policy based on data collected from individuals
in a network. The gathered data often contains sensitive
information, which raises privacy concerns, e.g., for smart
appliances [1]. In some applications, privatizing sensitive
data has been achieved by adding carefully calibrated noise
to sensitive data and functions thereof [2], [3], [4]. These
noise-additive approaches are well-suited to some classes of
numerical data, though sensitive data may take a form ill-
suited to them. For example, developments in [5] explored
symbolic control systems in which additive noise cannot be
meaningfully implemented.

In this work, we privatize data that belongs to the unit sim-
plex, i.e., the set of vectors with non-negative entries that sum
to one. We are primarily motivated by two uses of simplex-
valued data, both from Markov decision processes (MDPs): (i)
privatizing the decision policy and (ii) privatizing the transition
probabilities among states (technical details for each can be
found in Section II-A). Decision policies are computed to take
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actions that maximize a reward in the MDP [6], [7]. In many
cases, the optimal policy is a randomized function that maps
each of an MDP’s states to a probability distribution on the set
of actions available at that state, see, e.g., [8], [9], [10]. Finite
action sets give rise to discrete, finitely supported probability
distributions, which can be represented as vectors with non-
negative entries summing to one, which are elements of the
unit simplex. Policies of this kind arise in applications such
as autonomous driving [11] and the smart power grid [12],
and revealing them can therefore reveal individuals’ behaviors.
Thus, there is a need to privatize such policies, and this is one
application of privacy in the unit simplex.

The other motivating application in this work is privatizing
the transition probabilities among an MDP’s states. In each
state, transitions to other states are given by a probability
distribution. Finite numbers of states again give rise to discrete,
finitely supported probability distributions, which are typically
represented as elements of the unit simplex. We are interested
in providing privacy when data is used to inform these facets
of an MDP model. This data can be from individuals’ health-
care [13], travel patterns [11], and other sensitive information.
It is also vulnerable to privacy attacks [14], and we are
motivated to privatize it as well.

In this paper, we use differential privacy as the underlying
mathematical framework for privacy. Differential privacy, first
introduced in [15], is designed to protect the exact values
of sensitive pieces of data, while preserving their usefulness
in statistical analyses. Two desirable properties of differential
privacy are (i) that it is immune to post-processing [16], in the
sense that arbitrary post-hoc transformations of privatized data
do not weaken its privacy guarantees, and (ii) that it is robust
to side information, in that gaining additional information
about data-producing entities does not weaken its privacy
guarantees by much [17]. As a result, differential privacy
has been frequently used as the mathematical formulation
of privacy in both computer science and, more recently, in
control theory [18], [19], [20], [21], [22]. Existing noise-
additive approaches will not, in general, produce a privatized
vector in the unit simplex. Projecting these privatized vectors
back onto the simplex leads to poor accuracy of privatized data
(which we illustrate in Section II-D). We therefore propose a
new approach to privatization for this context.

As the main contribution of this paper, we introduce a novel
mechanism that privatizes a vector within the unit simplex.
A mechanism is a probabilistic mapping from some pre-
defined domain to a pre-defined range, and a mechanism is
used to privatize sensitive data. This paper develops a novel
mechanism using the Dirichlet distribution, and we therefore
call it the Dirichlet mechanism. The Dirichlet distribution is a
multivariate distribution supported on the unit simplex, which
makes it a natural choice for this setting because its outputs



2

are always elements of the unit simplex.
In our developments, we use probabilistic differential pri-

vacy, which is known to imply that the conventional form of
differential privacy also holds [23]. Then, we show that the
Dirichlet mechanism satisfies probabilistic differential privacy
for identity queries. By an identity query, we mean privatizing
a single vector within the unit simplex. In the course of
proving these privacy guarantees, based on the assumptions
we provide, we prove the log-concavity of the cumulative
distribution function of a Dirichlet distribution. The proof that
we present may be of independent interest in ongoing research
on convexity analysis of special functions such as [24].

Beyond identity queries, we further show that the Dirichlet
mechanism is differentially private for both average queries
and general linear queries, in which we privatize operations
over collections of vectors, each of which is contained in the
unit simplex. We derive analytic expressions for privacy levels
of both cases.

We also analyze the accuracy of the output of the Dirichlet
mechanism. In particular, we evaluate the accuracy of the
Dirichlet mechanism in terms of the expected value and the
variance of its outputs. Similar to additive noise methods,
the Dirichlet mechanism output has the same expected value
as its input, which implies that its privatized outputs obey
a distribution centered on the underlying sensitive data. We
show that there exists a trade-off between privacy levels and
the extent to which privatized data is concentrated around the
underlying sensitive data.

We emphasize that additive noise privacy mechanisms are
ill-suited to privacy on the unit simplex. The standard Laplace
and Gaussian mechanisms add noise of infinite support [16],
and these mechanisms will output vectors that do not belong
to the unit simplex. Projecting back onto the simplex leads
to poor accuracy, as we show in Section II. Recent work
has rigorously established that finite-support Laplacian noise
can be used for scalar-valued queries [25]. However that
distribution does not have a closed form in general, which
makes accuracy guarantees difficult to provide. An extension
to vector-valued queries with dependent coordinates (such as
summing to one for the simplex) appears quite difficult. It is
for these reasons that we develop the Dirichlet mechanism.

Although its form appears quite different from existing
mechanisms, they are related through membership in a broad
class of probability distributions. In particular, the Laplacian,
Gaussian, and exponential mechanisms all use distributions
belonging to a parameterized family of exponential distribu-
tions. The outputs of the Dirichlet distribution can be generated
using exponential distributions, which means the Dirichlet
mechanism also belongs to the same family. This connection
reveals why we should expect the Dirichlet mechanism to be
well-suited to differential privacy, and this paper formalizes
and confirms this intuition.

We also point out here that the exponential mechanism is
another widely used differential privacy mechanism which can
be used for sensitive data ill-suited to additive approaches [16].
However, the exponential mechanism can be computationally
demanding to implement for privacy applications with many
possible outputs. The output space here is the unit simplex,

which contains uncountably many elements. The resulting
complexity of such an implementation therefore makes it
infeasible [26], especially in large dimensions, and we avoid
it here.

A preliminary version of this work appeared in [27]. The
current paper develops additional privatization techniques for
general linear queries, provides concentration bounds to assess
the accuracy of the Dirichlet mechanism, and provides full
proofs of all results.

The rest of the paper is organized as follows. Section II
establishes the privacy preliminaries needed in the rest of
the paper. Then, Section III establishes privacy guarantees
for identity queries, Section IV establishes privacy guaran-
tees for averaging queries, and Section V establishes privacy
guarantees for general linear queries. Section VI provides
accuracy bounds on the Dirichlet mechanism’s outputs, and
Section VII provides simulations to illustrate our results.
Finally, Section VIII concludes the paper.

II. MOTIVATION AND PRELIMINARIES

We begin by briefly providing technical details associated
with privacy concerns for simplex data. Then we establish
the mathematical preliminaries needed for our developments.
Below, we represent the real numbers by R and the positive
reals by R+. As described in the introduction, we consider
privacy over the unit simplex. We denote the unit simplex in
Rn by ∆n where

∆n :=

{︄
x ∈ Rn |

n∑︂
i=1

xi = 1, xi ≥ 0 for all i ∈ [n]

}︄
.

A. Technical Motivation: Sequential Decision-Making

Privacy concerns for simplex data arise, for example, in se-
quential decision-making problems. In particular, we consider
decision-making problems that model their environment as a
Markov decision process (MDP). An MDP M = (S,A,P, r)
models an environment with state space S, action space A,
transition probabilities P , and reward function r : S×A → R.
The goal with an MDP is to find a reward-maximizing
policy π : S → A that specifies the probability of taking
each action in a particular state.

In a given state s, the probability of transitioning to a
new state s′ when taking action a is P (s, a, s′). Given the
pair (s, a), we use the vector P (s, a) to denote the vector of
all transition probabilities to other states when taking action a
in state s. This vector is in the simplex: by virtue of being a
finitely supported, discrete probability distribution, its entries
are non-negative and they sum to one. Then P (s, a) ∈ ∆n

and P ⊆ ∆n. As for the decision policy π, in a state s, the
probability of taking action a is given by π(s, a). Using π(s)
to denote the vector of all such probabilities, it too is in the
unit simplex: it is a discrete probability distribution on a finite
set, and thus its entries are non-negative and sum to one. Then
for all MDPs we find π(s) ∈ ∆n.

Both P and π are sensitive. The transition probabilities in P
can reveal the internal dynamics of an MDP or the knowledge
that drove modeling decisions for its environment. In fact, [14]
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defines an attack for inferring P in an MDP appearing in a
reinforcement learning context. In addition, a decision policy
can reveal the intentions of an agent modeled as an MDP,
and [28] outlines this concern. These vulnerabilities and the
wide use of MDPs motivate our developments for privacy over
the unit simplex.

B. Notation
For a positive integer n, let [n] := {1, . . . , n}. As above, we

use ∆n to denote the unit simplex in Rn, and we use ∆◦
n to

represent the interior of ∆n. Letting W ⊆ [n−1] with |W | ≥ 2
we then define the set

∆
(η,η̄)
n,W :=

{︄
p ∈ ∆◦

n |
∑︂
i∈W

pi ≤ 1− η̄, pi ≥ η for all i ∈W

}︄
.

We impose the following assumption on η and η̄ that will
be used below to ensure that ratios of Dirichlet distributions
remain bounded when showing that they provide differential
privacy.

Assumption 1. In ∆
(η,η̄)
n,W , η > 0, η̄ > 0, and η + η̄ < 1

2 .

Letting p be a vector in Rn, we use the notation p(i,j) to
denote the vector (pi, pj)T ∈ R2, where (·)T is the transpose
of a vector, and p−(i,j) ∈ Rn−2 to denote the vector p with
ith and jth entries removed. P[·] denotes the probability of
an event. For a random variable, E[·] denotes its expectation
and Var[·] denotes its variance. We use the notation | · | for
the cardinality of a finite set. || · ||1 denotes the 1-norm of a
vector. We also use the special functions

Γ(x) =

∫︂ ∞

0

zx−1 exp (−z)dz, x ∈ R+

beta(a, b) =
∫︂ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
, a, b ∈ R+

ψ(0)(x)=
d

dx
log
(︁
Γ(x)

)︁
, ψ(1)(x)=

d2

dx2
log
(︁
Γ(x)

)︁
, x ∈ R+

which are the gamma, beta, digamma, and trigamma functions,
respectively.

C. Differential Privacy
Intuitively, differential privacy guarantees that two nearby

pieces of sensitive data will have statistically similar priva-
tized values. In differential privacy, the notion of “nearby”
is formally defined by an adjacency relation, and we define
adjacency over the unit simplex as follows.

Definition 1. For a constant b ∈ (0, 1] and fixed set W ⊆
[n− 1], two vectors p, q ∈ ∆

(η,η̄)
n,W are said to be b-adjacent if

there exist indices i, j ∈W such that

p−(i,j) = q−(i,j) and ||p− q||1 ≤ b.

We express this condition with the binary symmetric adjacency
relation

Adjb(p, q) =

{︄
1 p and q are adjacent
0 otherwise

.

In words, two vectors are adjacent if they differ in two
entries by an amount not more than b. Conventional differential
privacy considers sensitive data differing in a single entry, e.g.,
one entry in a database [16]. However, it is not possible to do
so for an element of the unit simplex because changing only
a single entry would violate the condition that vectors’ entries
sum to one. We therefore consider privacy with the above
adjacency relation. Differential privacy itself is defined next.

Definition 2. (Probabilistic differential privacy; [29]) Let b ∈
(0, 1] and W ⊆ [n − 1] be given. Fix a probability space
(Ω,F ,P). A mechanism M : ∆

(η,η̄)
n,W × Ω → ∆n is said to be

probabilistically (ϵ, δ)-differentially private if we can partition
the output space ∆n into two disjoint sets Ω1,Ω2, such that,
for all p ∈ ∆

(η,η̄)
n,W ,

P[M(p) ∈ Ω2] ≤ δ,

and for all q ∈ ∆
(η,η̄)
n,W b-adjacent to p and for all x ∈ Ω1,

log

(︃
P[M(p) = x]

P[M(q) = x]

)︃
≤ ϵ.

We note that (ϵ, δ)-probabilistic differential privacy is
known to imply conventional (ϵ, δ)-differential privacy [29],
which requires that

P[M(p) ∈ S] ≤ eϵP[M(q) ∈ S] + δ

for all measurable subsets S of the range of M and all
adjacent p and q. Probabilistic differential privacy has a
complicated interpretation under post-processing (and may not
hold for the same ϵ and δ depending on the post-processing
steps undertaken), while conventional differential privacy is
immune to post-processing. We are interested in providing
privacy guarantees that hold regardless of what analysis is un-
dertaken on private data, and thus we are primarily interested
in conventional differential privacy. Proving that probabilistic
differential privacy holds is one way to show that conventional
differential privacy holds, and we are able to use this fact in
this work.

Specifically, in Sections III-V we prove that the Dirichlet
mechanism satisfies Definition 2 as a means of showing that
it provides conventional differential privacy. Regarding the
relative strength between the two forms of privacy, it has been
noted in the literature [30, Section 4] that providing (ϵ, δ)-
probabilistic differential privacy implies (ϵ, δ′)-differential pri-
vacy is also provided for some δ′ < δ. Therefore, the differen-
tial privacy guarantees provided by the Dirichlet mechanism
are strictly stronger than what is implied by the probabilistic
differential privacy parameters we derive. The parameters we
derive lie in conventionally desirable ranges for privacy, and
hence we provide ordinary differential privacy of convention-
ally desirable strength as well.

D. On Additive Noise Approaches

It was noted in the Introduction that differential privacy (in
both its probabilistic and ordinary forms) can be enforced with
additive Gaussian or Laplacian noise. For simplex-valued data,
adding noise with infinite support can perturb data outside
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(a) Vectors in the unit simplex (b) Vectors after adding Gaussian noise (c) Projections of noisy vectors

Fig. 1: Left-hand figure: a random sampling of 1, 000 vectors from the unit simplex in R3. Center figure: the privatized forms
of all data points after adding Gaussian noise from the distribution N (0, 0.25I). Right-hand figure: the results of projecting
all privatized vectors back onto the unit simplex. Adding Gaussian noise and projecting back onto the simplex results in many
points accumulating at the boundary of the simplex, which harms accuracy.

the simplex, and some form of projection would be required
to ensure membership in the unit simplex after privatization.
However, we show in Figure 1 that adding Gaussian noise
to elements of the simplex and projecting back onto the
simplex results in biases in private data. Specifically, Figure 1
shows elements of the simplex to which Gaussian noise has
been added, after which the projection algorithm in [31] is
used to project them onto the simplex. The variance of noise
added is σ2 = 0.25. Using [32, Theorem 3], this level of
noise provides (1, 0.01)-differential privacy (for an adjacency
relation that classifies vectors as adjacent if their 2-norm
distance is bounded above by 0.1).

It can be seen that the privatized-then-projected forms of
many elements of the simplex are simply mapped to its
boundary. The reason is that adding infinite-support noise to
a point in the simplex will almost always move it out of
the simplex, and the projection step maps such points to the
boundary of the simplex. We note here that the projection
back onto the simplex is necessary for the data to be valid.
For example, for Markov decision processes (discussed in
Section II-A), the data of interest is vectors of transition
probabilities and decision policies, and both must have their
privatized forms contained in the simplex, which requires
projecting onto it. This both impairs the accuracy of the
mechanism itself, because the privatized forms of data points
can be far from their original, sensitive values, and harms any
downstream uses of this data. Rather than taking this approach,
accuracy could be improved by effectively utilizing the interior
of the simplex to enforce the approximate indistinguishability
required by differential privacy, and that is the subject of the
next subsection.

E. Dirichlet Mechanism

One contribution of this paper is to present a differentially
private mechanism that, without any need of projection, maps
elements of ∆n to ∆n. In order to do so, we first introduce the
Dirichlet mechanism. A Dirichlet mechanism with parameter
k ∈ R+, denoted by M(k)

D , takes as input a vector p ∈ ∆◦
n

and outputs x ∈ ∆n according to the Dirichlet probability
distribution function (PDF) centered on p, i.e.,

P[M(k)
D (p) = x] =

1

B(kp)

n−1∏︂
i=1

xkpi−1
i

(︄
1−

n−1∑︂
i=1

xi

)︄kpn−1

,

(1)
where

B(kp) :=

n∏︁
i=1

Γ(kpi)

Γ

(︃
k

n∑︁
i=1

pi

)︃ (2)

is the multi-variate beta function. For brevity, we will use the
notation Dirk to denote the PDF on the right-hand side of (1).
We impose the following assumption on the parameter k.

Assumption 2. For the Dirichlet mechanism M(k)
D , the pa-

rameter k satisfies

k ≥ max

{︃
1

η
,

1

1− η − η̄

}︃
.

We later use the parameter k to adjust the trade-off that
we establish between the accuracy and the privacy level
of the Dirichlet mechanism. Next, we establish the privacy
guarantees that the Dirichlet mechanism provides.

III. DIRICHLET MECHANISM FOR DIFFERENTIAL PRIVACY
OF IDENTITY QUERIES

We begin by analyzing identity queries under the Dirichlet
mechanism. Here, a sensitive vector p is directly input to
the Dirichlet mechanism to make it approximately indistin-
guishable from other adjacent sensitive vectors. The space of
sensitive data of interest is ∆(η,η̄)

n,W , and it is over this space that
we provide privacy. To show the level of privacy that holds,
we first bound δ, then bound ϵ.

A. Computing δ
Fix W ⊆ [n − 1]. In accordance with Definition 2, we

partition the output space of the Dirichlet mechanism into two
sets Ω1,Ω2 defined by

Ω1 := {x ∈ ∆n | xi ≥ γ for all i ∈W} (3)
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and Ω2 := ∆n\Ω1, where γ ∈ (0, 1) is a parameter that
defines these sets, upon which we impose the following.

Assumption 3. Fix W ⊆ [n− 1]. Then γ ≤ 1
|W | .

Next, our goal is to show that the Dirichlet mechanism
output belongs to Ω1 with high probability. Let p be a
vector in ∆

(η,η̄)
n,W . In the next lemma we show how to

calculate P[M(k)
D (p) ∈ Ω1]. As in Definition 2, we will

bound P[M(k)
D (p) ∈ Ω2] by δ and use ϵ to bound the ratios of

distributions of outputs in Ω1. Changing γ changes Ω1 and Ω2,
and its role in determining ϵ and δ will be elaborated upon
below.

Lemma 1. Let Assumptions 1 and 3 hold. Let W ⊆ [n− 1],
let p ∈ ∆

(η,η̄)
n,W , and let

Ar :=

⎧⎨⎩x ∈ Rr−1 |
∑︂

i∈[r−1]

xi ≤ 1, xi ≥ γ for all i ∈W

⎫⎬⎭ ,

for all r ≥ |W | + 1. Then, for a Dirichlet mechanism with
parameter k ∈ R+, we have that P[M(k)

D (p) ∈ Ω1] equals∫︁
A|W |+1

∏︁
i∈W

xkpi−1
i

(︃
1− ∑︁

i∈W

xi

)︃k(1−
∑︁

i∈W

pi)−1∏︁
i∈W

dxi

B(kp̃W )
,

where p̃W ∈ ∆|W |+1 is equal to p after removing entries
with indices outside W and with an additional entry equal to
1− ∑︁

i∈W

pi appended as its new final entry.

Proof. For concreteness we set W = [n−1], though the proof
is identical for other cases. In order to find P[M(k)

D (p) ∈ Ω1],
we need to integrate the Dirichlet PDF over the region An.
Therefore, we need to evaluate the (n− 1)-fold integral∫︁

An

(︃
n−1∏︁
i=1

xkpi−1
i

)︃(︃
1−

n−1∑︁
i=1

xi

)︃kpn−1

dxn−1 . . . dx1

B(kp)
.

(4)

Using a method similar to the one adopted in [33], let y :=
n−2∑︁
i=1

xi. Then we can rewrite (4) as

1

B(kp)

∫︂
An−1

∫︂ 1−y

0

(︄
n−1∏︂
i=1

xkpi−1
i

)︄
(1− y − xn−1)

kpn−1

dxn−1 . . . dx1. (5)

Now let u := xn−1

1−y and take the inner integral with respect to
u. Then (5) becomes

1

B(kp)

∫︂
An−1

n−2∏︂
i=1

xkpi−1
i (1− y)k(pn−1+pn)−1

∫︂ 1

0

ukpn−1−1

(1− u)kpn−1du dxn−2 . . . dx1.

From the definition of the beta function, we have∫︂ 1

0

ukpn−1−1(1− u)kpn−1du = beta(kpn−1, kpn).

Using the gamma function representation of beta functions,
i.e.,

beta(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, a, b ∈ R+, (6)

and (2), we find that P[M(k)
D (p) ∈ Ω1] is equal to

1

B(kp)
Γ(kpn−1)Γ(kpn)

Γ(k(pn−1 + pn))

∫︂
An−1

n−2∏︂
i=1

xkpi−1
i(︄

1−
n−2∑︂
i=1

xi

)︄k(pn−1+pn)−1

dxn−2 . . . dx1.

Using the same idea, for the next step, let y :=
n−3∑︁
i=1

xi and

u := xn−2

1−y . Then P[M(k)
D (p) ∈ Ω1] is equal to

1

B(kp)
Γ(kpn−2)Γ(kpn−1)Γ(kpn)

Γ(k(pn−2 + pn−1 + pn))

∫︂
An−2

n−3∏︂
i=1

xkpi−1
i(︄

1−
n−3∑︂
i=1

xi

)︄k(pn−2+pn−1+pn)−1

dxn−3 . . . dx1.

We continue to adopt the same change of variable strategy
until we are left with an integral over the region A|W |+1,
which concludes the proof. ■

Lemma 1 shows that instead of an (n−1)-fold integral of the
Dirichlet PDF, the computations can be reduced to a |W |-fold
integral. However, the expression still depends on the input
vector p, which is undesirable and generally incompatible
with differential privacy. The reason is that (ϵ, δ)-differential
privacy must be a guarantee for all adjacent input data and
not for a specific data point. In the next lemma, we show that
P[M(k)

D (p) ∈ Ω1] is a log-concave function of p over ∆(η,η̄)
n,W ,

which we will use to derive a bound for δ that holds for all p
of interest.

Lemma 2. Let Assumption 1 hold, fix W ⊆ [n − 1], and
let M(k)

D be the Dirichlet mechanism with parameter k. Then
P[M(k)

D (p) ∈ Ω1] is a log-concave function of p over the
domain ∆

(η,η̄)
n,W .

Proof: See Appendix A. ■
Revisiting the definitions of Ω1,Ω2 above, we find that

P[M(k)
D (p) ∈ Ω2] = 1− P[M(k)

D (p) ∈ Ω1] (7)

≤ 1−min
p

P[M(k)
D (p) ∈ Ω1] = δ

is the smallest possible choice of δ, and we use this value for
the remainder of the paper. From this, we see that bounding δ
can be done by minimizing P[M(k)

D (p) ∈ Ω1], an explicit form
of which was given in Lemma 1. In Lemma 2, we established
the log-concavity of the function that we seek to minimize.
As a result, instead of minimizing P[M(k)

D (p) ∈ Ω1] over the
entirety of ∆

(η,η̄)
n,W , we can only consider the extreme points.

Note that the points within ∆
(η,η̄)
n,W form a polyhedron with

at most |W |(|W | + 1)/2 vertices. As the minimum of an
unsorted list of n entries can be found in linear time, the time
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complexity of finding minP[M(k)
D (p) ∈ Ω1] is O(|W |2). This

analytical bound will be further explored through numerical
results in Section VII. Next, we develop analogous bounds
for ϵ.

B. Computing ϵ
As above, fix η, η̄ ∈ (0, 1) satisfying Assumption 1, b ∈

(0, 1], and W ⊆ [n−1]. Then, for a given k ∈ R+, bounding ϵ
requires evaluating the term

log

(︄
P[M(k)

D (p) = x]

P[M(k)
D (q) = x]

)︄
for all x ∈ Ω1, where p and q are any b-adjacent vectors
in ∆

(η,η̄)
n,W . Let i, j ∈W be the indices in which p and q differ.

Using the definition of the Dirichlet mechanism, we find

log

(︄
P[M(k)

D (p) = x]

P[M(k)
D (q) = x]

)︄
= log

⎛⎜⎜⎝B(kq)
n∏︁

i=1

xkpi−1
i

B(kp)
n∏︁

i=1

xkqi−1
i

⎞⎟⎟⎠
= log

(︄
Γ(kqi)Γ(kqj)x

kpi−1
i x

kpj−1
j

Γ(kpi)Γ(kpj)x
kqi−1
i x

kqj−1
j

)︄

= log

(︃
Γ(kqi)Γ(kqj)

Γ(kpi)Γ(kpj)
x
k(pi−qi)
i x

k(pj−qj)
j

)︃
.

Since p and q are b-adjacent, we have that pi + pj = qi + qj .
Therefore, we can compute ϵ by evaluating the term

log

(︄
Γ(kqi)Γ(kqj)

Γ(kpi)Γ(kpj)

(︃
xi
xj

)︃k(pi−qi)
)︄
. (8)

Note that if either xi or xj goes to 0, then the term in (8) would
be unbounded. Recalling that the indices at which p and q can
differ are restricted to the set W , we find that the values at
these indices must be bounded below by η, and therefore the
ratios of interest remain bounded as well.

Lemma 4 below will provide an explicit value of ϵ, aided
in part by the following lemma.

Lemma 3. Let Assumptions 1 and 2 hold. Let W be a given
set of indices which is used to construct ∆(η,η̄)

n,W and let p, q be
any b-adjacent vectors in ∆

(η,η̄)
n,W with their ith and jth entries

different. Then, for a constant k ∈ R+, we have that
beta(kqi, kqj)
beta(kpi, kpj)

≤ beta(kqi, k(1− η̄ − qi))

beta(kpi, k(1− η̄ − pi))
.

Proof: See Appendix B. ■

Lemma 4. Let Assumptions 1, 2, and 3 hold, let Ω1 be as
defined in (3), let W ⊆ [n− 1], and let M(k)

D be a Dirichlet
mechanism with parameter k. Then, for all adjacent p and q
and for all x ∈ Ω1 we have that

log

(︄
P[M(k)

D (p) = x]

P[M(k)
D (q) = x]

)︄
≤

log

(︄
beta(kη, k(1− η̄ − η))

beta(k(η + b
2 ), k(1− η̄ − η − b

2 ))

)︄

+
kb

2
log

(︃
1− (|W | − 1))γ

γ

)︃
,

where the parameter γ ∈ (0, 1) defines the set Ω1 as in
Section III-A.

Proof. Because p and q are adjacent, we suppose they differ
in indices i, j ∈W . Then from (8) we know that

log

(︄
P[M(k)

D (p)=x]

P[M(k)
D (q)=x]

)︄
=log

(︄
Γ(kqi)Γ(kqj)

Γ(kpi)Γ(kpj)

(︃
xi
xj

)︃k(pi−qi)
)︄
.

Let

v := max
p,q,x∈Rn

log

(︄
Γ(kqi)Γ(kqj)

Γ(kpi)Γ(kpj)

(︃
xi
xj

)︃k(pi−qi)
)︄

subject to |pi − qi| ≤
b

2
,

pi + pj = qi + qj ,

pi + pj ≤ 1− η̄,

p(i,j) ∈ [η, 1− η̄ − η]2,

q(i,j) ∈ [η, 1− η̄ − η]2,

x(i,j) ∈ [γ, 1− (|W | − 1)γ]
2
,

(9)

and let C denote the set of feasible points of the optimization
problem in (9); we note that the first two constraints enforce
adjacency, while the others encode p, q ∈ ∆

(η,η̄)
n,W and x ∈ Ω1.

Assumptions 1-3 ensure that all intervals above are non-empty.
By sub-additivity of the maximum, we have

v ≤ max
p,q,x∈C

log

(︃
Γ(kqi)Γ(kqj)

Γ(kpi)Γ(kpj)

)︃
+

max
p,q,x∈C

log

(︃
xi
xj

)︃k(pi−qi)

. (10)

Now, with

v1 := max
p,q,x∈C

log

(︃
xi
xj

)︃k(pi−qi)

,

we find

v1 ≤ max
p,q,x∈C

|k(pi − qi)|
⃓⃓⃓⃓
log

(︃
xi
xj

)︃⃓⃓⃓⃓
≤ kb

2
log

(︃
1− (|W | − 1)γ

γ

)︃
.

The fact that |pi − qi| ≤ b
2 follows from adjacency in

Definition 1, and the definition of Ω1 directly implies both
that xi ≤ 1− (|W |−1)γ and that xj ≥ γ. Assumption 3 then
ensures that the argument of the logarithm is positive.

Next, let c := pi + pj = qi + qj and substitute qj , pj with
c− qi and c− pi respectively. Let

v2 := max
pi,qi,c∈R

log

(︃
Γ(kqi)Γ(k(c− qi))

Γ(kpi)Γ(k(c− pi))

)︃
subject to |pi − qi| ≤

b

2
,

c ∈ [2η, 1− η̄],

pi ∈ [η, 1− η̄ − η],

qi ∈ [η, 1− η̄ − η],

where the constraints again encode adjacency of p and q and
their containment in ∆

(η,η̄)
n,W .
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Next, either qi < pi or qj < pj , and we assume without
loss of generality that qi < pi. Then, from Lemma 3 and (6),
we have that

v2 ≤ max
pi,qi∈R

log

(︃
beta(kqi, k(1− η̄ − qi))

beta(kpi, k(1− η̄ − pi))

)︃
subject to |pi − qi| ≤

b

2
,

pi ∈ [η, 1− η̄ − η],

qi ∈ [η, 1− η̄ − η].

(11)

Evaluating the gradient of the objective function in the opti-
mization problem in (11), it can be shown that the Karush-
Kuhn-Tucker (KKT) conditions of optimality are not satisfied
in the interior of the set of feasible points except for points
that lie on the line pi = qi, which are minima. Thus, since the
KKT conditions are only necessary conditions (see Chapter
11 of [34]), satisfying them does not imply optimality, and
we exclude points where pi = qi from the set of possible
maximizers.

Evaluating points on the boundary of the feasible region
shows that KKT conditions are also not satisfied. Thus, we
need only to consider the extreme (pi, qi)’s in the set{︃(︃

η +
b

2
, η

)︃
,

(︃
1− η̄ − η − b

2
, 1− η̄ − η

)︃
,(︃

η, η +
b

2

)︃
,

(︃
1− η̄ − η, 1− η̄ − η − b

2

)︃}︃
, (12)

which are the vertices of the feasible region. Note that
since beta(a, b) = beta(b, a), the points in the first row give
equal positive objectives and the points in the second row have
equal negative objectives. Hence, we can choose the first point
in (12) to find

v2 = log

(︄
beta(kη, k(1− η̄ − η))

beta(k(η + b
2 ), k(1− η̄ − η − b

2 ))

)︄
.

Substituting v1 and v2 in (10) concludes the proof. ■

We now state the main theorem of this section, which for-
mally establishes the (ϵ, δ)-differential privacy of the Dirichlet
mechanism for identity queries.

Theorem 1. Fix η, η̄ ∈ (0, 1), b ∈ (0, 1], and W ⊆ [n − 1],
and let Assumptions 1-3 hold. Let the adjacency relation
in Definition 1 hold. Then the Dirichlet mechanism with
parameter k ∈ R+, defined as M(k)

D (p) = Dirk(p), is (ϵ, δ)-
differentially private, where

ϵ = log

(︄
beta(kη, k(1− η̄ − η))

beta(k(η + b
2 ), k(1− η̄ − η − b

2 ))

)︄
+

kb

2
log

(︃
1− (|W | − 1)γ

γ

)︃
,

and
δ = 1− min

p∈∆
(η,η̄)
n,W

P[M(k)
D (p) ∈ Ω1].

Proof. The expression for ϵ results immediately from Lemma
4 and the expression for δ is a direct result of (7). ■

The expression given for ϵ in Theorem 1 contains a loga-
rithm of a ratio of beta functions, which can be difficult to
reason about intuitively. In the following lemma we present
upper and lower bounds for beta functions in terms of simpler
functions, which we will use to provide a simplified upper
bound for ϵ.

Lemma 5. Let a, b ∈ R. Then

exp (2− a− b) ≤ beta(a, b) ≤ a+ b− 1

(2a− 1)(2b− 1)
.

Proof: See Appendix C. ■
Using Lemma 5, we can provide a simplified bound on ϵ

in exchange for that bound being somewhat looser.

Corollary 1. Let all conditions of Theorem 1 hold. Then, for
identity queries over ∆(η,η̄)

n,W , the Dirichlet mechanism is (ϵ, δ)-
differentially private, with

ϵ = 2k(1− η̄)− 3 +
kb

2
log

(︃
1− (|W | − 1)γ

γ

)︃
and

δ = 1− min
p∈∆

(η,η̄)
n,W

P[M(k)
D (p) ∈ Ω1].

Proof: The value of δ is the same as that in Theo-
rem 1. For ϵ from Theorem 1, we need to upper bound
the term beta

(︁
kη, k(1 − η̄ − η)

)︁
and lower bound the

term beta
(︁
k(η+ b

2 ), k(1−η̄−η− b
2 )
)︁
. We thus apply Lemma 5

to find

beta(kη, k(1− η̄ − η))

beta(k(η + b
2 ), k(1− η̄ − η − b

2 ))

≤ k − kη̄ − 1

(2kη − 1)(2k − 2kη̄ − 2kη − 1)

1

exp(2− k + kη̄)
.

Then, taking the logarithm of both sides, we find that

log

(︄
beta(kη, k(1− η̄ − η))

beta(k(η + b
2 ), k(1− η̄ − η − b

2 ))

)︄

≤ log

(︃
k − kη̄ − 1

(2kη − 1)(2k − 2kη̄ − 2kη − 1)

1

exp(2− k + kη̄)

)︃

≤ log(k − kη̄ − 1)− log(2kη − 1)

− log(2k − 2kη̄ − 2kη − 1)− 2 + k − kη̄. (13)

Then, using the fact that log(x) < x in (13), the first term
satisfies

log(k − kη̄ − 1) ≤ k − kη̄ − 1.

Next, using the fact that

k ≥ max

{︃
1

η
,

1

1− η̄ − η

}︃
from Assumption 1, the next two logarithm terms are both
non-positive and an upper bound is furnished by eliminating
them. Then we find

log

(︄
beta(kη, k(1− η̄ − η))

beta(k(η + b
2 ), k(1− η̄ − η − b

2 ))

)︄
≤ 2k − 3.

Combining this result with Theorem 1 completes the proof. ■
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Fig. 2: An example where |W | = 3 to compare the values of ϵ using Theorem 1 with those computed using Corollary 1. For
each value of δ, first γ is optimized according to the optimization problem in (14), then the optimal γ is substituted in the
expressions for values of ϵ.

Because this bound on ϵ is linear in k, it offers a more
intuitive understanding of how changing k affects privacy.

In Figure 2, for three instances of (η, η̄, k) and b = 0.1, we
show how Theorem 1 and Corollary 1 capture the behavior
of ϵ. All three cases show that Corollary 1 overestimates the
value of ϵ relative to Theorem 1, and the size of overestimate
decreases as ϵ grows.

Remark 1. Note that if a mechanism is ϵ1-differentially
private, it is also ϵ2-differentially private for all ϵ2 ≥ ϵ1.
Therefore, if the upper bound for ϵ after simplification of beta
functions is still within an acceptable range, e.g., δ ≤ 0.05 and
ϵ ≤ 5 [35], [36], [37], then using an over-approximation of ϵ
does not substantially harm our interpretation of the Dirichlet
mechanism’s protections.

Next, we point out that the parameter γ, which is used in
the definition of Ω2, is not a parameter of the mechanism,
in the sense that changing γ does not change the mechanism
itself. Instead, γ balances the trade-off between privacy level
and the probability of failing to guarantee that privacy level,
i.e., changing γ can decrease ϵ in exchange for increasing δ
and vice versa.

In some cases, we are given the highest probability of
privacy failure, δ, that is acceptable, and one must maximize
the level of privacy, ϵ, subject to that upper bound. Let δ̂ denote
the maximum admissible value of δ. Then we are interested
in minimizing ϵ while obeying δ ≤ δ̂. Using Theorem 1, we
note that ϵ is a strictly decreasing function of γ. Letting V

be the set of vertices of ∆
(η,η̄)
n,W , we then can minimize ϵ by

solving the problem

max
γ

γ

subject to P[M(k)
D (p) ∈ Ω1] ≥ 1− δ̂ for all p ∈ V.

(14)

Note that the feasible region of the optimization problem
(14) is a convex set because the function P[M(k)

D (p) ∈ Ω1] is a
strictly decreasing function of γ. Therefore, ϵ can be optimized
for a given δ̂ using off-the-shelf convex optimization tool-
boxes, and this will be done in Section VII. Next, we apply
the Dirichlet mechanism to average queries.

IV. DIRICHLET MECHANISM FOR DIFFERENTIAL PRIVACY
OF AVERAGE QUERIES

In this section we consider a collection of N vectors
indexed over i ∈ [N ], with the ith denoted pi ∈ ∆

(η,η̄)
n,W . The

goal is to compute the average of the collection {pi}i∈[N ]

while providing differential privacy. Accordingly, the space of
sensitive data under consideration is now

S :=
{︂
{pi}i∈[N ] : N ∈ N and pi ∈ ∆

(η,η̄)
n,W

}︂
.

We next re-define the adjacency relationship for the average
query setting.

Definition 3. Fix a scalar b ∈ (0, 1]. Two collections in S,
denoted {pi}i∈[N ] and {qi}i∈[N ], are b-adjacent if there is
some j such that

1) pi = qi for all j ̸= i,
2) there exist indices m and l such that pj−(m,l) = qj−(m,l)

and ||pj − qj || ≤ b.

With adjacency defined over collections, we have a corre-
sponding definition of probabilistic differential privacy.

Definition 4. (Probabilistic differential privacy for collec-
tions) Let b ∈ (0, 1] and W ⊆ [n−1] be given. Fix a probabil-
ity space (Ω,F ,P). A mechanism M :

(︁
∆

(η,η̄)
n,W

)︁N ×Ω → ∆n

is said to be probabilistically (ϵ, δ)-differentially private if
we can partition the output space ∆n into two disjoint sets
Ω1,Ω2, such that, for all P := {pi}i∈[N ] ∈ S,

P[M(P) ∈ Ω2] ≤ δ,

and for all Q := {qi}i∈[N ] ∈ S b-adjacent to P and for all
x ∈ Ω1,

log

(︃
P[M(P) = x]

P[M(Q) = x]

)︃
≤ ϵ.

As with Definition 2, we use Definition 4 simply as a means
to show that ordinary (ϵ, δ)-differential privacy holds.

The query we now consider is the average. Set P =
{pi}i∈[N ] and Q = {qi}i∈[N ]. Mathematically we define the
average operator A via

A(P) :=
1

N

N∑︂
i=1

pi,
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with A(Q) defined analogously. The next theorem formalizes
the privacy protections of the Dirichlet mechanism when
applied to such averages.

Theorem 2. Fix η, η̄ ∈ (0, 1), let b ∈ (0, 1], let W ⊆ [n− 1],
and let Assumptions 1-3 hold. Let the adjacency relation
in Definition 3 hold. Then the Dirichlet mechanism with
parameter k ∈ R+ defined as M(k)

D

(︁
P
)︁
= Dirk

(︁
A(P)

)︁
is

(ϵ, δ)-differentially private, where

ϵ = log

(︄
beta(kη, k(1− η̄ − η))

beta(k(η + b
2N ), k(1− η̄ − η − b

2N ))

)︄
+

kb

2N
log

(︃
1− (|W | − 1)γ

γ

)︃
, (15)

and
δ = 1− min

p∈∆
(η,η̄)
n,W

P[M(k)
D (A(P)) ∈ Ω1].

Proof. We proceed by showing that Definition 4 is satisfied.
Let x ∈ Ω1. Then, we are interested in the quantity

P[M(k)
D (A(P)) = x]

P[M(k)
D (A(Q)) = x]

=

B(kA(Q))
n∏︁

i=1

x
kAi(p)−1
i

B(kA(P))
n∏︁

i=1

x
kAi(q)−1
i

. (16)

Based on the definition of the adjacency relationship for
collections in Definition 3, A(p) and A(q) will differ only in
their mth and lth entries. Taking the logarithm of both sides
of (16) and using the same approach as in Theorem 1, we
have that

log

(︄
P[M(k)

D (A(P)) = x]

P[M(k)
D (A(Q)) = x]

)︄
≤

max
A(P),A(Q)

log

(︃
B(kA(Q))

B(kA(P))

)︃
+ (17)

max
A(P),A(Q)

log

(︃
1− (|W | − 1)γ

γ

)︃k|Am(p)−Am(q)|

.

Because P and Q are b-adjacent, and each entry of A(·)
represents the average of a component, we have that

|Am(p)−Am(q)| ≤ b

2N
. (18)

Combining (17), (18) and Lemma 4 completes the proof for
the value of ϵ. For δ, the same approach for calculating δ in
identity queries applies to average queries. ■

Remark 2. As seen in (15), the level of privacy increases with
the number of vectors present in the collection. In particular,
ϵ → 0 as N → ∞. This can be seen by taking the limit
as N → ∞ in the expression for ϵ. Noting that the second
term is proportional to 1

N , we observe that the first term is
continuous over the positive reals and taking the limit drives
the argument of the logarithm to one. This limiting behavior is
consistent with the intuition that it should be harder to uncover
the sensitive information of an individual in a population when
their data is mixed together in an average.

As with Corollary 1, we provide simplified bounds on
the value of ϵ to ease the interpretation of each parameter’s
influence upon privacy.

Corollary 2. Let all conditions of Theorem 2 hold. Then,
for average queries, the Dirichlet mechanism M(k)

D

(︁
P
)︁

=
Dirk

(︁
A(P)

)︁
is (ϵ, δ)-differentially private with

ϵ = 2k(1− η̄)− 3 +
kb

2N
log

(︃
1− (|W | − 1)γ

γ

)︃
and

δ = 1− min
p∈∆

(η,η̄)
n,W

P[M(k)
D (A(P)) ∈ Ω1].

Proof: The proof is similar to that of Corollary 1 and is
therefore omitted. ■

V. DIFFERENTIAL PRIVACY FOR GENERAL LINEAR
QUERIES

In this section, we derive privacy guarantees for arbitrary
linear queries over collections of vectors in the unit simplex.
Examples of such queries are weighted averages of vectors
of transition probabilities, e.g., in the smart power grid. In
particular, with a variety of smart devices and smart buildings
modeled as MDPs, one may wish to compute average behav-
iors, with the weights encoding the importance of a device
or size of a building. We begin by establishing the class of
queries to be considered, then we derive privacy guarantees
provided by the Dirichlet mechanism for this class.

A. General Linear Queries over the Simplex

As above, we consider privacy over the set S, which
contains N -element collections of vectors in the unit simplex.
We again consider P = {pi}i∈[N ], with pi ∈ ∆

(η,η̄)
n,W . The

collection P can also be represented as an n × N matrix,
where column i is equal to pi. With an abuse of notation,
we also use P to denote this matrix representation, and we
note that Pij = pji . With P ∈ Rn×N , we can represent the
linear queries of interest by vector multiplication on the right.
Namely, a linear query L : S → ∆n can be represented via

L
(︁
P
)︁
= Pℓ =

⎛⎜⎜⎝
∑︁N

j=1 p
j
1ℓj

...∑︁N
j=1 p

j
nℓj

⎞⎟⎟⎠ , (19)

where ℓ ∈ RN . The following lemma establishes the stronger
statement that ensuring L(P) ∈ ∆n for arbitrary P ∈ S in
fact requires ℓ ∈ ∆N .

Lemma 6. Let L : S → ∆n be a linear query identified with
the vector ℓ ∈ RN . Then ℓ ∈ ∆N .

Proof: Using (19), for L(P) ∈ ∆n, we require that

n∑︂
i=1

N∑︂
j=1

pji ℓj =

N∑︂
j=1

n∑︂
i=1

pji ℓj =

N∑︂
j=1

ℓj

n∑︂
i=1

pji =

N∑︂
j=1

ℓj = 1,

where the third equality follows from pj ∈ ∆n. We also must
have ℓj ≥ 0 for all j ∈ [N ]. ■
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We also incorporate additional boundedness of the entries
of ℓ in the following definition.

Definition 5. Fix α ∈ (0, 1]. A vector ℓ ∈ ∆N is said to
be α-bounded if ∥ℓ∥∞ ≤ α.

With a slight abuse of terminology, we will refer to a
query L as α-bounded if it is identified with an α-bounded
vector ℓ. All vectors ℓ ∈ ∆N are trivially 1-bounded, though
the inclusion of α-boundedness allows for additional bounds
on the entries of ℓ to be used in our privacy analysis. This
inclusion in turn enables us to make stronger statements
about the Dirichlet mechanism’s guarantees, which we explore
further in the next section.

B. Privacy Guarantees for Linear Queries

With this characterization of ℓ in hand, we now quantify the
privacy guarantees afforded to such queries by the Dirichlet
mechanism. As above, determining these privacy guarantees
will require bounding ratios of Dirichlet distributions, a com-
ponent of which is a term involving gamma functions. The
next lemma provides a bound on this term.

Lemma 7. Fix η, η̄ ∈ (0, 1) and W ⊆ [n − 1], and let
Assumptions 1-3 hold. Fix b ∈ (0, 1] and let P,Q ∈ S be
adjacent according to Definition 3. Let L : S → ∆n be an α-
bounded linear query over S identified with ℓ ∈ ∆n. Then

B
(︁
kQℓ

)︁
B
(︁
kPℓ

)︁ ≤ beta(kη, k(1− η̄ − η)

beta
(︁
k(η + bα

2 ), k(1− η̄ − η − bα
2 )
)︁ .

Proof: The proof is similar to those of Lemmas 3 and 4 and
is therefore omitted. ■

It is using this lemma that we next state the privacy
guarantees afforded to arbitrary linear queries over S.

Theorem 3. Let L : S → ∆n be α-bounded. Fix an adjacency
parameter b ∈ (0, 1] and let Assumptions 1-3 hold. Then, for
adjacency as defined in Definition 3, the Dirichlet mechanism
applied to L, denoted MD

(︁
L(·)

)︁
: S → ∆n, is (ϵ, δ)-

differentially private, where

ϵ = log

(︄
beta

(︁
kη, k(1− η̄ − η)

)︁
beta

(︁
k(η + bα

2 ), k(1− η̄ − η − bα
2 )
)︁)︄

+
kbα

2
log

(︃
1− (|W | − 1)γ

γ

)︃
and

δ = 1− min
p∈∆

(η,η̄)
n,W

P
[︁
M(k)

D (p) ∈ Ω1

]︁
.

Proof: This proof is similar to that of Theorem 2, but with
an arbitrary α-bounded query instead of the average. ■

Remark 3. Setting α = 1
N in Theorem 3 recovers Theorem 2

because the average is a 1
N -bounded query.

As above, we provide a simplified bound on ϵ that offers a
straightforward dependence of ϵ upon other parameters in the
problem.

Corollary 3. Let all conditions of Theorem 3 hold. Then,
for an arbitrary α-bounded linear query L, the Dirichlet

mechanism MD

(︁
L(·)

)︁
: S → ∆n is (ϵ, δ)-differentially

private with

ϵ = 2k(1− η̄)− 3 +
kbα

2
log

(︃
1− (|W | − 1)γ

γ

)︃
and

δ = 1− min
p∈∆

(η,η̄)
n,W

P
[︁
M(k)

D (p) ∈ Ω1

]︁
.

Proof: This proof is similar to Corollaries 1 and 2 and is
therefore omitted. ■

VI. ACCURACY ANALYSIS

We analyze the accuracy of the Dirichlet mechanism in two
ways: first in terms of its moments and concentration about
its mean, and second by comparison to the existing Gaussian
mechanism for differential privacy.

A. Analytical Accuracy
Proposition 1. Let x ∈ ∆n be the output of a Dirichlet
mechanism with input p ∈ ∆

(η,η̄)
n,W and parameter k ∈ R+.

Then we have that E[xi] = pi and

Var[xi] =
pi(1− pi)

k + 1
. (20)

Proof. Let p̄ =
n∑︁

r=1
kpr. Equation (49.9) in [38] gives

E[xi] =
kpi
p̄

= pi and Var[xi] =
kpi(p̄− kpi)

p̄2(p̄+ 1)
.

Since the input p belongs to the unit simplex, we have that
p̄ = k. Substituting p̄ with k concludes the proof. ■

Remark 4. As seen in (20) the variance of the output depends
on the input data pi. However, we can find the worst-case
variance by maximizing the expression for the variance which
occurs at pi = 0.5. Hence, we have that

Var[xi] ≤
1

4(k + 1)
.

It is this form of upper bound that we use to establish
the concentration of the Dirichlet mechanism’s output about
its input. In particular, we bound the probability of a large
deviation of the private output from the sensitive input.

Theorem 4. Fix η, η̄ ∈ (0, 1) and W ⊆ [n − 1], and let
Assumptions 1 and 2 hold. Let M(k)

D denote a Dirichlet
mechanism with parameter k ∈ R+. Let µ ∈ (0, 1) and θ ∈
(0, e−2µ2

) be given. Then a sufficient condition to ensure

P
[︂⃦⃦

M(k)
D (p)− p

⃦⃦
∞ ≤ µ

]︂
≥ 1− θ

is to select k = − log(θ)
2µ2 − 1.

Proof: Lemma 2 in [28] implies that, for any β > 0,

P

[︄
∥M(k)

D (p)− p∥∞ ≥
√︄

log(1/β)

2(k + 1)

]︄
≥ 1− β.

The result follows by setting β = θ, setting µ =√︁
log(1/β)/2(k + 1) and solving for k. ■
Theorem 4 provides both the means to assess accuracy of

the Dirichlet mechanism for a given k, as well as a prescriptive
tool for selecting k based on desired accuracy.
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Fig. 3: Histogram of L1-norm error when simulating
(2.30, 0.05)−differentially private identity queries using the
Dirichlet and Gaussian mechanisms over 10, 000 random input
vectors. This plot shows that on average, the Dirichlet mecha-
nism produces a much smaller error compared to the Gaussian
mechanism while providing identical privacy guarantees.

B. Numerical Comparison to the Gaussian Mechanism

In this section we compare the accuracy of the Dirichlet
mechanism to the Gaussian mechanism. The Dirichlet mecha-
nism is designed to provide (ϵ, δ)-differential privacy for data
on the unit simplex, and a state-of-the-art method for (ϵ, δ)-
differential privacy is the Gaussian mechanism. We therefore
use the Gaussian Mechanism and project the outputs back onto
the unit simplex [16], [39] to provide a benchmark for the
accuracy of the Dirichlet mechanism.

To compare the two mechanisms, we consider identity
queries over inputs in ∆3. Let δ̂ = 0.05 and k = 3. Then The-
orem 1 implies that the queries are (2.30, 0.05)−differentially
private. For an (ϵ, δ)-differentially private Gaussian mech-
anism for identity queries, added noise must satisfy σ >√︁

2 ln(1.25/δ)/ϵ [16]. Thus for (2.30, 0.05)-differential pri-
vacy we require σ > 1.103 and we use σ = 1.120.

We have simulated the two mechanisms over 10, 000 ran-
dom vectors in the unit simplex and measured the mecha-
nisms’ L1-norm error, defined as ∥e(p)∥1 = ∥M(p) − p∥1.
The Dirichlet mechanism had a mean L1-norm error of
0.478 and the Gaussian mechanism’s mean error was 0.981,
which is more than double the average error of the Dirichlet
mechanism. A histogram of the results is shown in Figure 3,
which illustrates that the Dirichlet mechanism is significantly
more accurate than a comparable Gaussian mechanism while
providing the same privacy guarantees.

VII. SIMULATION RESULTS

In this section, we simulate the output of the Dirich-
let mechanism for identity and average queries. We con-
sider a reinforcement-learning agent that trades stocks in the
AnyTrading environment from Open AI Gym [40]. In the
simulations we use Google’s stock data that the dataset in
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(a) Distribution of private outputs for identity queries of stock trading
policies with k = 5.
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(b) Distribution of private outputs for identity queries of stock trading
policies with k = 10.

Fig. 4: Distributions of outputs for identity queries on 0.2-
adjacent inputs in ∆2. The top figure uses k = 5 and the
bottom figure uses k = 10.

[41] provides. The agent learns a policy to either buy or sell
a stock, and its policy at each point in time is therefore an
element of ∆2. Privatizing both entries gives W = {1, 2}. For
identity queries, we train a single agent using the A2C baseline
in [42], and we plot the agent’s policy at each point in time
when privatized with the Dirichlet mechanism with two levels
of privacy. For average queries, we repeat this training for
four agents and release the average of their policies under two
different privacy levels.

A. Simulation of Identity Queries

In Figure 4, we show an example of privatizing an identity
query on a single agent’s trading policy. We plot the probabil-
ity of buying the stock, and the complementary probability is
one minus the shown probability. The actual learned trading
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(a) Private averages of the stock trading policies learned by four
agents with k = 40.
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(b) Private averages of the stock trading policies learned by four
agents with k = 60.

Fig. 5: Private averages of four agents’ learned stock trading
policies. The top plot shows the case of k = 40 and the
bottom plot shows k = 60. As expected, a larger value
of k provides weaker privacy protections in exchange for
outputs more closely concentrated about the sensitive inputs
that produced them.

policy is shown in the solid orange line in the center, while its
private form is shown in the blue circles around it. We use the
values k = 5 and k = 10 to illustrate different levels of pri-
vacy, and both instances use the adjacency parameter b = 0.2.
Theorem 1 implies that these identity queries are provided
with (1.45, 0.04)-differential privacy with k = 5 and (2, 0.04)-
differential privacy with k = 10.

As expected, increasing k shows a more concentrated dis-
tribution of private outputs about the sensitive inputs to the
mechanism. This illustrates that one must tradeoff stronger
privacy for reduced accuracy and vice versa.

B. Simulation of Average Queries

In Figure 5, we show an example of privatizing the average
trading policy learned by four agents trading stocks. We
again use the adjacency parameter b = 0.2. Here, we choose
k = 40 and k = 60. Using Theorem 2, we find that k = 40
provides (0.83, 0.04)-differential privacy, while k = 60 pro-
vides (1.02, 0.04)-differential privacy.

As seen in Figure 5, the output when k = 40 is less concen-
trated around the average. We note here as well that general
linear queries exhibit the same behavior and that is why results
specific to that case have been omitted: simulation results
for average queries show the concentration of the Dirichlet
mechanism’s outputs about its inputs when those inputs are
functions of collections of vectors, and this concentration is
the same for general linear queries.

VIII. CONCLUSION

In this work we introduced a mechanism used for privatizing
data inputs that belong to the unit simplex. We used the
Dirichlet distribution to probabilistically map a vector within
the unit simplex to itself. We proved that the Dirichlet mecha-
nism is differentially private with high probability in identity,
average, and linear queries. Our simulation results validated
that the privacy bounds and the accuracy of the mechanism are
within ranges typically considered in the differential privacy
literature. As an extension to this work, we are interested in
applying the Dirichlet mechanism to privatizing a policy in a
Markov decision process. In particular, we are interested in
showing how accurate the Dirichlet mechanism is in terms of
the total accumulated rewards.
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APPENDIX A: PROOF OF LEMMA 2

We first state a result from [43].

Lemma 8 (Theorem 3 in [43]). Let f1, . . . , fk be non-negative
and Borel measurable functions defined on Rn and let

r(t) = sup
(x1,...,xk) s.t.

λ1x1+···+λkxk=t

f1
(︁
x1
)︁
· · · fk

(︁
xk
)︁
, t ∈ Rn,

where λ1, . . . , λk are positive constants satisfying the equality
λ1 + · · · + λk = 1. Then, the function r(t) is also Borel
measurable and∫︂
Rn

r(t)dt ≥
(︃∫︂

Rn

f1(x1)
1
λ1 dx1

)︃λ1

· · ·
(︃∫︂

Rn

fk(xk)
1

λk dxk

)︃λk

.

We next review the definition of log-concave functions. A
function g : Rn → R is said to be log-concave if for all
x1, x2 ∈ Rn and θ ∈ [0, 1], we have that

g(θx1 + (1− θ)x2) ≥ (g(x1))
θ(g(x2))

1−θ.

This condition is equivalent to

g(t) ≥ sup
θu+(1−θ)v=t

g(u)θg(v)1−θ. (21)

Note that g is log-concave if and only if log g is concave.
Next, for x ∈ Rn and p ∈ ∆

(η,η̄)
n,W let f : Rn × ∆

(η,η̄)
n,W →

[0, 1] be defined as

f(x, p) =

∏︁
i∈W

xkpi−1
i

(︃
1− ∑︁

i∈W

xi

)︃k(1−
∑︁

i∈W

pi)−1

B(kp̃W )
.

For a fixed p ∈ ∆
(η,η̄)
n,W , let

f1(x) := f(x, p).

The function f1(x) is the Dirichlet probability distribution
function with parameter α ∈ RW , where α := kp̃W . Since

https://arxiv.org/abs/2004.02744
https://arxiv.org/abs/2004.07778
https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/datasets/data/STOCKS_GOOGL.csv
https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/datasets/data/STOCKS_GOOGL.csv
https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/datasets/data/STOCKS_GOOGL.csv
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
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p ∈ ∆
(η,η̄)
n,W , we have that αi ≥ 1, for all i ∈ [|W |].

Therefore f1 is a log-concave function [44, Equation (4.4)].
Then, by (21),

f(tx, p) ≥ sup
βux+(1−β)vx=tx

f(ux, p)
βf(vx, p)

1−β (22)

for all p ∈ ∆
(η,η̄)
n,W , all tx, ux, vx ∈ Rn, and β ∈ [0, 1].

Similarly, for a fixed x ∈ Rn, let

f2(p) := f(x, p).

Toward evaluating the Hessian of log f2(p), recall the
trigamma function ψ(1)(x) = d2

dz2 log
(︁
Γ(x)

)︁
. Then

[︁
∇2 log f2(p)

]︁
i,j

=

{︄
−k2ψ(1)(kx) i = j and i, j ∈W

0 otherwise
.

The trigamma function is positive on the interval (0,∞).
Therefore, the Hessian matrix of log

(︁
f2(p)

)︁
is a diagonal

matrix whose diagonal entries are either zero or negative. This
provides log-concavity of f2(p). Therefore, using (21),

f(x, tp) ≥ sup
βup+(1−β)vp=tp

f(x, up)
βf(x, vp)

1−β (23)

for all x ∈ Rn, all tp, up, vp ∈ ∆
(η,η̄)
n,W , and all β ∈ [0, 1].

Next, fix a choice of λ ∈ [0, 1], choose ũx, ṽx, ũp, ṽp ∈ Rn

such that

λũx + (1− λ)ṽx = tx and λũp + (1− λ)ṽp = p.

Assigning ux to x in (23), we find

f(ux, p) ≥ sup
βup+(1−β)vp=p

f(ux, up)
βf(ux, vp)

1−β

≥ f(ux, ũp)
λf(ux, ṽp)

1−λ, (24)

where the second inequality follows by setting β = λ.
Similarly, we can write

f(vx, p) ≥ sup
βup+(1−β)vp=p

f(vx, up)
βf(vx, vp)

1−β

≥ f(vx, ũp)
λf(vx, ṽp)

1−λ. (25)

Revisiting (22), using (24) and (25), we can write

f(tx, p) ≥ sup
βux+(1−β)vx=tx

f(ux, p)
βf(vx, p)

1−β

= sup
λũx+(1−λ)ṽx=tx

f(ũx, p)
λf(ṽx, p)

1−λ

≥ sup
λũx+(1−λ)ṽx=tx

(︂
f(ũx, ũp)

λ2

f(ṽx, ṽp)
λ(1−λ)

·f(ṽx, ũp)(1−λ)λf(ṽx, ṽp)
(1−λ)2

)︂
.

The first line holds for all β ∈ [0, 1], while the second follows
from setting β = λ for the choice of λ above. Note that

λũx + (1− λ)ṽx =

λ2ũx + λ(1− λ)ũx + λ(1− λ)ṽx + (1− λ)2ṽx.

Since λ2 + λ(1− λ) + λ(1− λ) + (1− λ)2 = 1, Theorem 8
applies. Therefore, we can write∫︂

An

f(tx, p)dtx ≥(︃∫︂
An

f(ux, ũp)dux

)︃λ2 (︃∫︂
An

f(ux, ṽp)dux

)︃λ(1−λ)

(︃∫︂
An

f(vx, ũp)dvx

)︃(1−λ)λ(︃∫︂
An

f(vx, ṽp)dvx

)︃(1−λ)2

.

By renaming the variables tx, ux and vx to x inside the
integrals and merging the similar terms into one, we find∫︂
An

f(x, p)dx ≥
(︃∫︂

An

f(x, ũp)dx

)︃λ(︃∫︂
An

f(x, ṽp)dx

)︃(1−λ)

,

where λũp + (1− λ)ṽp = p. Therefore,
∫︁
An

f(x, p)dx is log-
concave in p. ■

APPENDIX B: PROOF OF LEMMA 3
Let c = pi + pj = qi + qj . Then using (6), we have that

beta(kqi, kqj)
beta(kpi, kpj)

=
Γ(kqi)Γ(k(c− qi))

Γ(kpi)Γ(k(c− pi))
(26)

=
Γ(kqj)Γ(k(c− qj))

Γ(kpj)Γ(k(c− pj))
. (27)

Using the definition of the digamma function, we have

∂

∂x

[︃
Γ(x− a)

Γ(x− b)

]︃
=

Γ(x− a)[ψ(0)(x− a)− ψ(0)(x− b)]

Γ(x− b)
.

(28)
Because the digamma function is strictly increasing on the
interval (0,∞), the derivative in (28) is positive if and only if
x− b < x− a, which is true if and only if a < b. Returning
to (26) and (27), we see that (26) is increasing in c if qi < pi
and that (27) is increasing in c if qj < pj . Therefore, we
will construct an upper bound using (26) if qi < pi and we
will construct an upper bound using (27) if qj < pj . For
concreteness, suppose qi < pi. Then (26) is an increasing
function of c. By definition, c = qi + qj and i, j ∈ W .
Then c ≤ 1− η̄ and we find

beta(kpi, kpj)
beta(kqi, kqj)

=
Γ(kqi)Γ(k(c− qi))

Γ(kpi)Γ(k(c− pi))

≤ beta(kqi, k(1− η̄ − qi))

beta(kpi, k(1− η̄ − pi))
.

The other case proceeds identically. ■

APPENDIX C: PROOF OF LEMMA 5
Convexity of exp(·) and Jensen’s inequality imply

beta(a, b) ≥ exp

(︃∫︂ 1

0

log
(︁
xa−1(1−x)b−1

)︁
dx

)︃
=2−(a+b).

The upper bound follows from

2αβ ≤ α2 + β2, for all α, β ∈ R.

Substituting α, β with xa−1 and yb−1 in the integral represen-
tation of the beta function completes the proof. ■
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