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ABSTRACT: Single-molecule fluorescence resonance energy
transfer (smFRET) experiments permit detailed examination of
microscopic dynamics. However, kinetic rate constants determined
by smFRET are susceptible to systematic underestimation when
the rate constants are comparable to the data acquisition rate. We
demonstrate how such systematic errors in camera-based total
internal reflection fluorescence microscopy experiments can be
greatly reduced by using stroboscopic illumination/detection,
allowing accurate rate constant determination up to the data
sampling rate and yielding an order of magnitude increase in the
dynamic range. Implementation of these stroboscopic smFRET
ideas is straightforward, and the stroboscopically obtained data are

compatible with multiple trajectory analysis methods, including dwell-time analysis and hidden Markov modeling. Such stroboscopic
methods therefore offer a remarkably simple yet valuable addition to the smFRET toolkit, requiring only relatively modest

modification to the normal data collection and analysis procedures.

1. INTRODUCTION

Single-molecule microscopy is a powerful tool for examining
kinetic systems at otherwise inaccessible levels of detail. From
the folding of biopolymers,'” to single enzyme catalysis,”" to
single DNA replication” and transcription,” both in vitro and in
vivo,~” as well as nonbiological applications,'”"" the ability to
probe at the sub-ensemble level clarifies underlying mecha-
nisms in ways that are impossible in bulk studies. Especially
powerful in the field of biophysics has been the use of single-
molecule fluorescence resonance energy transfer
(smFRET),"”™" in which spatial motion on biologically
relevant length scales (1—10 nm) can be converted into a
colorimetric ratio, the FRET efficiency (Egggr). By monitoring
the time-dependence of Egpgy for surface-tethered molecules,
structural rearrangements can be observed in real time.
Stochastic state-to-state hopping in Epgpgr trajectories can
then be analyzed to extract dynamical information, for
example, the number of thermally accessible states and the
rate constants for interconversion between those states.
smFRET experiments perform well when rate constants are
slow compared to the data acquisition rate, but rate constants
that are comparable to or exceed the sampling rate pose
additional challenges. In particular, these faster rate constants
are susceptible to systematic underestimation, with bias
becoming significant even for as little as k > 10% of the
sampling rate.'> This systematic error/bias arises from well-
known distortion of the FRET distributions by “camera
averaging” or “camera blurring.”'*"” Similar to “motional blur”
in conventional still photography, the multiple FRET states

© 2021 American Chemical Society

< ACS Publications 6080

become temporally averaged over (ie, “blur”) with increas-
ingly larger exposure times, introducing artifactual density in
the FRET histograms and intercalation between the true FRET
values. These blurred FRET values present problems for
accurate kinetic analysis of the data and can even incorrectly
suggest the existence of additional, nonphysical states."’

The simplest way to avoid such bias is obviously to increase
the acquisition rate, which, for camera-based detection include
options such as cropping the field of view or performing on-
chip pixel binning. To push hardware limitations even further,
Tang et al. have achieved increased effective frame rates
through use of sparse imaging and a galvo-mirror.'® However,
each of these options requires sacrificing some multiplexing
capacity of the experiment, which is indeed a primary benefit of
widefield methods over non-multiplexed detection such as
scanning confocal microscopy.'””” Instead, it would be more
desirable to mitigate camera averaging effects while still
maintaining the highest possible parallel throughput of data.

More sophisticated smFRET data analysis methods
incorporate such camera averaging effects directly. For
instance, much work has been put into modeling the resulting
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distorted distributions,”" as in probability distribution analysis
(PDA).”~* A more agnostic approach is taken by Chen et
al.”® in which the experimentally determined (underestimated)
rate constants are least squares compared with those derived
from simulated data subject to the same camera averaging
artifact. The parameters of the kinetic model are then
iteratively varied until the simulated results match the
experiment. While effective, this simulate—compare—iterate
approach requires accurate modeling of the experimental
system and is therefore prone to introducing additional
systematic errors.

In the present work, we propose a relatively simple
experimental solution based on stroboscopic illumination to
eliminate camera averaging effects. Stroboscopes have been
used before in single-molecule microscopy, especially in single-
particle tracking, where a flashing light source can reduce
diffusional blurring to increase accuracy in position determi-
nation.”™** Our interest in the strobe is not to reduce
motional blur but rather to reduce temporal blur. Our
development builds on the work of Farooq and Hohlbein,*
who used stroboscopic imaging to mimic the fluorescence
burst data from confocal diffusing studies and then analyzed
the FRET histogram using PDA. Here, we show that
stroboscopic data can be analyzed as trajectories, which has
the benefit of utilizing the full information content of the
smFRET data and permits rate constant determination up to
the data acquisition rate. Under typical smFRET experimental
conditions, this translates into roughly an order of magnitude
enhancement in data collection bandwidth for trajectory-based
analysis, free from systematic underestimation of rate
constants.

2. METHODOLOGY

2.1. Theory of Single-Molecule Kinetics. The kinetic
systems studied in single-molecule experiments can be
abstractly represented as a finite set of discrete states {S;}
which undergo state-to-state transitions governed by first-order
kinetics. Specifically, the state transitions are considered
Poisson processes, with k; as the unimolecular rate constants
for state S; converting to state ;. The rate of change of the
population in state S; is the sum of the total loss rate and the
total production rate

d
e — 2 kS + 2k,
j#i j#i (1)
One may compactly express the total rate of change of all
states in matrix-vector form by forming the state vector S =
{Sy, S,, ...} and the rate matrix K (with off-diagonal elements
Kj = k;and on-diagonal elements K;; = _Zi# k;;) which satisfy
the master equation
iS =KS

dt ()

From eq 1, it is clear that the sum of any column of K
vanishes, which is equivalent to the conservation of molecular
number. The solution to this system of differential equations is

(€)

where 8, is the initial state distribution at ¢ = 0 and T(¢) is the
time evolution operator. In eq 3, the matrix exponential
operator is evaluated by Taylor series expansion as eX = (I +

S(t) = e™'s, = T(t)S,
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Kt + (Kt)%/2 + (Kt)*/(3!) + ...), where Kt simply multiplies
each element of K by t and I is the identity matrix.

To connect this formalism, which is based on ensemble
chemical kinetics, to the dynamics of single-molecule systems,
T(t) is interpreted as the matrix of transition probabilities at
lag time t. Specifically, the matrix element T;(t — t') is the
probability that the system will be in state j at time f after being
in state i a time ¢’ earlier. Note that this does not specify which
path the system took to reach the final state j. Indeed, Tj(t)
includes all possible trajectories the system could take to go
from i to j (eg, i—j, i—k—j, i—j—i—j). For stroboscopic
experiments, this has important implications, discussed below,
in which the experimentalist is “blind” for some fraction of the
observation time window.

2.2. Photon-By-Photon Trajectory Simulation. Single-
molecule trajectories are simulated using a photon-by-photon
approach, similar to that of Szabo and Gopich.* This is carried
out in two steps: (i) simulation of the state of the molecular
system as a function of time S(t) followed by (ii) simulation of
the fluorescently emitted and detected photons. First, the
initial state S, (e.g,, 0 or 1 for array element i = 1, n) for the
molecule is randomly selected from an equilibrium probability
vector p,q, corresponding to the unique eigenvector of the rate
matrix K with an eigenvalue of zero. Time is then iteratively
forward-propagated by randomly choosing a dwell time for the
current state i, which is exponentially distributed with a time
constant associated with the total loss rate from that state, that
is, —=1/Kj. The next state index is then randomly selected, with
a probability weighted by the branching ratio into the selected
target state j, P(i = j) = Kj;/ ;4 K;;, with this exponential time
propagation continued until the desired total simulation time is
achieved.

After the state trajectory S(t) is generated, a sequence of
individual photon detection events is produced. Similar to the
case for state transitions, photon detection is assumed to be a
Poisson process, which is accurate for a fluorophore excitation
rate small compared to the fluorescence rate Iy, = 1/Tgyen
where 73,,, is the fluorescence lifetime. In this limit, single
photons will arrive exponentially distributed in time as
determined by the photon detection rate kpjouon In general,
Kohoton €an be a function of the conformational state of the
molecule, for example, due to a FRET pair with different
quantum yields. However, many FRET dye pairs, in particular,
the Cy3—CyS pair used in the present experiments, have very
similar quantum yields, which motivates treating k.0, as
constant, though deviations could be easily incorporated into
the kinetic model. The color of the emitted photon is
probabilistically distributed based on the conformation (i.e.,
FRET state) of the molecule at the time of the excitation event.
Specifically, the photon is labeled as an “acceptor” with
probability E; or a “donor” with probability (1 — E;), where E;
is the FRET efficiency of the molecule in state i. As with the
state trajectories, the process of exponential time-jumping and
assignment of photon color is continued until the full desired
simulation window is achieved. Lastly, photons are binned at
the frame time Afy,,,,. to generate donor and acceptor average
intensities as a function of time, D(t) and A(t), respectively.
Note that all noise considered in the modeled data arises
exclusively from quantum fluctuations (“shot noise”) in the
photon counting process. While other sources such as dark
count noise and read noise’' are also present in camera-based
smFRET, the experimental conditions we are interested in
place the system well within the limit where shot noise
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dominates over all other sources of noise. This simulation
method can be extended to include background donor and
acceptor average count rates (Bp, and B,); however, the effect
of adding background photons can be equivalently achieved by
(1) shifting the FRET efficiencies and (2) increasing the
relative noise by decreasing the photon detection rate, and
therefore for simplicity, we have set the background intensities
to zero in these studies. The MATLAB code for performing
these trajectory simulations and kinetic analysis (see below)
will be made available upon request.

2.3. Single-Molecule Microscopy. smFRET experiments
are performed on a DNA hairpin by total internal reflection
fluorescence (TIRF) microscopy, as described previously.”
Briefly, a 7 bp DNA hairpin™ with a 40-adenine loop is
biotinylated at the 3" end and attached to a glass surface via
streptavidin—biotin binding.34 The hairpin is labeled with Cy3
and CyS5 for FRET-based conformational detection. The DNA
construct is imaged in SO mM HEPES buffer (pH = 7.6) with
70 mM total monovalent cations (K* and Na*) and a PCA—
PCD—TROLOX oxygen-scavenging and triplet quenching
cocktail for enhanced fluorophore photostability.””*® A
diode-driven Nd:YAG laser illuminates the surface-attached
DNA construct in a through-objective TIRF conﬁguratiorl.k"7
Fluorescence is separated by a dichroic mirror into donor
(Cy3) and acceptor (CyS) channels, which are each focused
onto one-half of an intensified charge-coupled device (ICCD)
array. To achieve stroboscopic (gated) illumination, the diode
light output is modulated by a variable duty cycle square-wave
current profile generated in LabVIEW (NI, Austin, TX), which
also triggers the ICCD to initiate frame acquisition. Movies are
analyzed using homebuilt software programmed in LabWind-
ows/CVI to extract single-molecule trajectories. Particles are
located by brightness thresholding and then sorted into donors
and acceptors and paired based on relative location. Finally,
integration inside a 2-pixel radius around particle centers then
generates donor and acceptor intensity trajectories, D(f) and
A(t).

2.4. Single-Molecule Trajectory Analysis. 2.4.1. Dwell-
Time Analysis. In the simplest mode of analysis, time-
dependent FRET trajectories are computed from the binned
donor [D(t)] and acceptor [A(t)] intensities by FRET(t) =
A(t)/[A(t) + D(t)], where we assume any corrections for
differential donor versus acceptor quantum yields to be
negligible. Simple two-state thresholding at the arithmetic
mean of low and high FRET values is applied to the FRET
trajectories to determine the state function, S(t), with the
temporal duration between threshold crossings yielding a
histogram of dwell times N(At, ). This dwell-time histogram
is then re-expressed as the “survival probability” P(Aty,,.;) fora
given conformational state lasting longer than Aty with
single exponential fits for folded state dwell times (Af,)
yielding the unfolding rate constant kg4 (and vice versa).

24.2. Hidden Markov Modeling. As a second analysis
scheme, Hidden Markov modeling (HMM) is performed by
computing the likelihood function (L) of observing an
experimental FRET trajectory given a set of model parameters
and then finding the parameter values that maximize L. For a
FRET trajectory E, of temporal length NAt; ., the scalar
probability L is computed as

N
L= lT* H O(E")*e](‘Afm

n=2

*O(El)*Peq

(4)
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This equation is read right to left, where p. is the
equilibrium probability vector, O(E,) is the diagonal matrix of
observation probabilities for the nth observed FRET value, K is
the rate matrix, At . is the time between frames, and 17 is
the row vector (1, 1, ...) of length equal to the number of states
in the system. Diagonal elements of the observation matrix
(O;) are the probabilities of observing a FRET value in the
state i, which we model as Gaussian variables, that is, O;(E) o
exp[—(E — E;)*/206i%) with center E; and width &, Gradient
ascent is used to determine the set of parameters (k;, E, o)
which maximize L, where L is periodically renormalized to
avoid instabilities due to numerical underflow.”® Note that this
probability is maximized by optimization of the rate matrix
elements Kj rather than the transition probabilities T;, which
avoids inaccuracies and instabilities due to computation of the
matrix logarithm K = In(T)/At; ...

2.4.3. Time-Correlation Function Analysis. In the third
kinetic analysis approach, time-correlation functions (TCFs)
are computed for the four possible combinations of donor and
acceptor intensities: (D(¢)D(t + 7)), (D()A(t + 7)), (A(t)D(t
+17)), and (A(t)A(t + 7)). For example, (D(t)A(t + 7)) reflects
the donor—acceptor cross-correlation function given by

D(DA(t +7) = ), P.rD{Z PM(r)Af] o
i f S

In eq 5, P, is the equilibrium probability of initial state i, D;
the average donor intensity in state i, P,_(7) is the transition
probability from i to f in lag time 7, A is the average acceptor
intensity in the final state f, and the summation is over all initial
and final states. Additional contributions to the TCF from fast
dynamics (eg., fluorophore blinking) are not included as the
time resolution of these CCD measurements is typically in the
10s of the milliseconds domain, far longer than the time scales
of such photophysical behavior in Cy3 and Cy5™ (in effect,
these contributions are statically incorporated into A; and D).
We may therefore generalize to any combination of donor and
acceptor TCFs by writing eq S in matrix form as

GG (t + 1)
r (6)
where the channel C; is now labeled by either donor D or
acceptor A, pq is the equilibrium probability vector, E(Cy) is a
diagonal matrix whose diagonal elements are FRET efficiencies
in each conformational state (ie., E; if C; = A or (1 — E;) for C
= D), T(z) is the transition probability matrix at lag time 7
equal to exp(Kz), and 17 is the row vector (1, 1, ...) of length
equal to the number of states in the system. Here, we have
normalized the TCFs by the square of the total intensity [I* =
(D; + A))*], which for comparable quantum yields is only
weakly dependent on the system state, and have exploited the
simple definition of the FRET efficiency as E, = A,/(A; + D).
The four TCFs are evaluated at nonnegative integer multiples
of the frame time Atfg . and simultaneously fit to eq 6 by
minimizing the sum of the squares of the residuals in
MATLAB.

= I"*E(C))*T(2) *E(C))*p,,

3. SIMULATION RESULTS

3.1. Fast Rate Constants are Systematically Under-
estimated in smFRET Experiments. To establish the effects
of bin time on smFRET-derived rate constants, we begin by
analyzing our simulation (“synthetic”) single-molecule fluo-
rescence trajectories. The primary benefit of such an approach

https://doi.org/10.1021/acsjpcb.1c01036
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is that the actual simulation parameters are known precisely,
allowing the computation of absolute and asymmetrical errors.
Additionally, use of the simulations permits rapid testing of
these kinetic analysis methods over the full parameter space,
including modifying parameters not typically under exper-
imental control, such as rate constants. There are numerous
protocols for modeling single-molecule trajectories;’”"' we
opted for a photon-by-photon approach, in which both state-
to-state transitions and photon detection events are treated as
continuous-time processes, with the simulated photon arrivals
binned by time/color into frames (Afg,,.) to generate
discrete-time fluorescence trajectories of a typical CCD-based
smFRET experiment. In doing so, we make no assumptions as
to how photons are distributed per time bin, nor are
requirements imposed that a molecule remain in a given
state for the entire bin. Since camera averaging is a result of
mapping from continuous-time to discrete-time processes, this
photon-by-photon approach is ideal for capturing and
modeling such artifacts.

We introduce our model for camera averaging by
considering the two-state system in Figure la, which
interconverts between two well-resolved FRET states (E,,,
0.2, Epigp = 0.8), with forward rate kg = 20.0 s~ and reverse
rate kg = 10.0 s', and achieves a total fluorescence signal-to-
noise ratio (SNR = I/6;, where o is the standard deviation in

a) =205
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kg =10 s
Frame Rate (Hz)
b) 100 10
»
€ 20-
S
[72]
c
3
P 10 +-
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Figure 1. Systematic underestimation of rate constants in a model
system. (a) Markov schematic of a two-state system governed by rates
kg =20.0 s ' and kp = 10.0 s~". Simulated trajectories are analyzed by
dwell-time analysis to extract rate constants as a function of camera
frame length for (b) continuous illumination and (c) stroboscopic
illumination (20% duty cycle). Shaded regions represent +lo
uncertainty bands. Simulation conditions: 2000 s, Ey,,, = 0.2, Eyyy, =
0.8, and 100 photons per frame (SNR = 10), repeated for each Afg,,.
until standard error of the mean ogpy = 6/ \/ N reached 0.5%.
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the brightness I) of 10:1 (100 photons per frame). Simulated
trajectories of 200 s length are binned with At from 5 ms
to 150 ms and are subjected to conventional dwell-time
analysis” to determine the apparent rate constants plotted in
Figure 1b. Both kg and kg are accurately determined at short
bin times but are systematically underestimated as these rate
constants become comparable to the frame rate (kgme = 1/
Atgume)- As Figure 1b clearly highlights, the magnitude of
systematic rate constant errors smoothly increases in transition
to the fast rate constant regime (kpkp & Kgume)-

The source of this systematic rate constant underestimation
is due to errors in the transformation between continuous-time
dynamics and discrete-time measurements. The true state of a
system is a continuous function of time (Figure 2a), which is

Ayame
a) —_—
Hidden 2
State
1
Time
b) Conventional
Laser mImmmmImmIT
E
T I FRET
E E Distortion
1
1 2 3 4 5 &6
Frame #
c) Stroboscopic
laser @ @ 08 @ B @O
- E
w
- \//\/\
w E,
1 2 3 4 5 6
Frame #

Figure 2. Mapping of continuous-time dynamics onto discrete-time
results in blurred FRET states. (a) Sample true (hidden) state
trajectory over six camera frames. (b,c) Ideal, noiseless FRET values
averaged over time window during which laser is on (green blocks)
for (b) continuous illumination and (c) stroboscopic illumination.

converted into a sequence of discrete frames by temporal
binning (Figure 2b). The ideal, noiseless FRET value equals
the time-weighted average of all FRET values visited in Afg,,.,
with frames consisting of a single state i exhibiting a constant E;
FRET value. Conversely, frames for which the system has
traversed multiple states in Afg,,. present an average FRET
value contaminated by each of the individual FRET values. As
a result of this FRET averaging,''” accurately assigning which
state or combination of states the system occupies in each
frame becomes difficult. However, FRET averaging is not
problematic, since long as frames with more than one state
occur infrequently. This will be true if the sampling frame rate
is much faster than the rates of interconversion between states
(—K; < kyme)- Indeed, the measured rate constants for the
synthetic data agree well with the extracted rate constants for
sufficiently fast (kgume > 10 kg, k) frame rates (Figure 1b).
However, when the frame rate is within an order of magnitude
of kg or kg, the increased probability of a frame containing
multiple states results in many frames with incorrect state
assignments. Since the theoretical basis of most analyses of
single-molecule trajectories assumes single-state occupancy per

https://doi.org/10.1021/acsjpch.1c01036
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frame, faster rate constants lead to a greater fraction of frames
that are unmodeled. In addition to making accurate state
assignment difficult, fast rate constants and/or slow frame rates
result in fundamentally “missed dynamics.” Short excursions to
a state lasting less than one frame will only result in slightly
altered FRET efficiency, which will be misinterpreted as if no
transition had occurred at all. The number of threshold-
crossing transitions in a given smFRET trajectory will be lower
than expected, resulting again in systematic underestimation of
the rate constants. We note that simply discarding the shortest
dwell times (<1—2 frames), as is sometimes performed to
account for spurious short dwell times,’” is insufficient to
correct the underestimation of rate constants (Supporting
Information, Figure S1).

3.2. Stroboscopic lllumination Eliminates Rate Con-
stant Underestimation. To help resolve this issue, we
propose an extremely simple solution which uses stroboscopic
illumination to effectively address both FRET-averaging and
missed dynamics as fundamental causes of rate constant
underestimation. In a stroboscopic smFRET experiment, the
excitation time window is compacted into a small fraction of
the full frame. This reduction in the duty cycle can be
accomplished in a variety of ways, including modulating the
excitation laser current, gating the CCD detection, or simply
using an analog optical chopper wheel. Reducing the time per
frame that the molecule is interrogated increases the
probability that the molecule occupies only one state for the
duration of the observation pulse (Figure 2c). For example, in
a two-state system with kg, . & kp kg, the probability of
remaining in a single state for an entire frame is on average
only 1/e = 37%. The same system with a 10% duty cycle strobe
will have a survival probability exp(—kAtyp.) = 90%, which
makes state assignment more accurate and lowers the
probability of both FRET averaging and missed dynamics.

The experimental “cost” of implementing stroboscopic
methods is that one is blind to the molecular-state behavior
during the window duration when the illumination is off. We
address this with the second component of the proposed
technique, which involves analytical correction to the
measured rate constants accounting for missed transitions.
This correction incurs negligible computational cost and in fact
becomes exact in the limit of vanishing strobe pulse width. In
the interest of space, we briefly motivate and describe how to
calculate the correction, with a complete derivation to be
found in the Appendix. The first correction is specific to dwell-
time analysis, in which each state’s survival function is fit to an
exponential distribution to obtain an apparent rate constant
kiPP. For fast frame rates, k{*P is approximately the total rate
constant for leaving state i, but more generally ki is related to
the single-frame self-transition probability T; by

T, = ok B )

In our corrected treatment, one first computes the diagonal
elements T; of the transition probability matrix T, from which
the full matrix T can be constructed. This is particularly trivial
for a two-state system, as each of the columns of T must sum
to 1. For more complex systems, empirical branching ratios are
required, as addressed in the Appendix. The second step in the
correction applies to any method that measures the transition
probability matrix T (eg,, hidden Markov Modeling), in which
the rate constant matrix K is determined from T by computing
the matrix logarithm
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which yields the desired corrected rate constants as matrix
elements K;. Note that the common approximation K = (1/
Atgne) (T — I) is only accurate in the slow rate constant
regime (—K;At,, . <1), with the full matrix logarithm
required when measuring rate constants comparable to the
data acquisition rate. Fortunately, there are a number of
computationally efficient algorithms available for performing
this matrix logarithm."**'

Combining stroboscopic illumination with the matrix
logarithm correction abrogates the systematic underestimation
of rate constants in our simulated smFRET data, as seen in
Figure 1c. The forward and reverse rate constants determined
by dwell-time analysis under a 20% duty cycle strobe
recapitulate the simulated values quite well and are
independent of the choice of bin time. Neither the strobe
nor analytical correction alone is sufficient to completely
remove the systematic error, with only the combination
correctly addressing the underlying complications of state-
averaging and missed dynamics. Additional random (non-
systematic) errors are also observed at large frame times
(shaded uncertainty bands in Figure lc; note that these
uncertainties are standard deviations 6, whereas the standard
error of the mean 6ggy = 6/4/N can be decreased to arbitrary
precision by repeating the measurement N times and
averaging). In this regime, the average dwell time is shorter
than a single frame, and the dwell-time distributions cover only
a few frames in time, which increases uncertainty in fitting.
Said differently, the information content of the trajectory
diminishes as frame-to-frame correlations become sufficiently
weak. This loss of correlation generates an upper limit on the
rate constants measurable with this combination of techniques
for a given frame time, as will be empirically verified in Section
34.

3.3. Camera Averaging Artifacts Cannot Be Resolved
by Modified Experimental Conditions. One is tempted to
think that it is possible to reduce or eliminate such
underestimation of rate constants by the control of
experimental parameters (eg., laser intensity). However, this
is not the case. To explicitly address this possibility, we have
performed data simulations over a wide variety of “exper-
imental” conditions, as summarized in Figure 3a—e and which
reveal no impact on rate constant deviations. By way of
example, the results shown in Figure 3a represent simulations
under identical conditions as in Figure 1 but with a 1:1 rather
than 2:1 ratio of forward/reverse rate constants. Notice that
the rate constants bias becomes significant (ie., >5%, as
indicated by the yellow-banded region) at kAfg,,. > 02, in
agreement with previous observations.'” As a second example,
we can increase the signal-to-noise ratio (SNR) by 4x (Figure
3b), which improves the accuracy of state identification but has
little effect on avoiding rate constant underestimation error.
This is because binning-induced broadening of FRET values is
fundamentally not related to shot noise on the photon stream
but rather on the state-transition dynamics. Third, we can
increase the total duration of the FRET trajectories (e.g, by
obtaining data from more molecules), which reduces statistical
noise in the measured rate constants but once again has little
effect on the systematic bias (Figure 3c). As a fourth example,
we might hope to modify the two-state FRET efficiencies to be
better resolved (Figure 3d), which could be experimentally

https://doi.org/10.1021/acsjpcb.1c01036
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Figure 3. Camera averaging artifacts are robust to experimental
parameters. (a) Bias as percent error in rate constants for simulated
two-state systems with equal forward and backward rate constants.
Simulation conditions: 2000 s, Ejq,, = 0.2, Ejygp, = 0.8, ki = kg, and 100
photons per frame (SNR = 10), repeated 24 times to determine
uncertainties (standard error of the mean). For reference, the yellow
region demarks a +5% bias. (b—e) Same as (a) but simulation
conditions are modified as follows: (b) 4X greater SNR ratio, (c) 10X
more simulated time, (d) increased FRET separation from AEmgr =
Epigh — Ejgy = 0.6 to 1.0, and (e) increased equilibrium constant from
K = 1 to 4 by decreasing ky.

achieved by redesigning the single-molecule construct to
optimize placement of the fluorophores. However, an increase
in AEgger from 0.6 to 1.0 leaves the rate constant
underestimation errors remarkably similar. Finally, increasing
the equilibrium constant from K., = 1 to 4 (in Figure 3e by
reducing the reverse rate ky by 4X) leads to only small
differences in the errors for kg and kg, with the average
magnitude of the bias unchanged. In summary, systematic
underestimation of fast rate constants by camera averaging and
missing dynamics proves to be remarkably insensitive to the
choice of parameters potentially under experimental control.
3.4. Optimal Excitation Duty Cycle and Maximum
Measurable Rate Constants. We have shown that
introducing a low duty cycle (i.e., stroboscopic) light source
can help eliminate binning-related artifacts in smFRET studies,
but this obviously can result in loss of signal, SNR, and
reduction in performance. To compensate for the loss of signal,
the experimentalist may wish to increase laser power, but this
also has obvious limits due to photophysics (eg, photo-
bleaching, triplet-state formation) and nonlinearity in
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fluorophore brightness when the time interval between
photoexcitation events approaches the fluorescence lifetime.
Therefore, it is a useful exercise to identify the largest duty
cycle that still reduces systematic errors to acceptable levels.
To determine this optimal strobe duty cycle, we have
simulated smFRET data over a range of duty cycles, rate
constants, and frame acquisition rates (Figure 4). For a fixed
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Figure 4. Determining the optimal strobe duty cycle. (a) Rate
constant bias as a function of duty cycle, for fixed kAt (1.0, red;
0.5, green; 0.1, blue). Duty cycle of 100% corresponds to no strobe.
Shaded bands indicate uncertainties (+16). Bias band of +1.5%
highlighted in yellow and recommended duty cycle (<20%) indicated
by the vertical dashed line. (b) Rate constant bias at fixed duty cycles.
The quality of results decreases for kAfg,. > 1. Simulation
conditions: 8000 s, k. = kg, Ey,,, = 0.2, Epg, = 0.8, and 100 photons
per frame (SNR = 10). For 2D heatmaps of bias and uncertainty for
combinations of duty cycle and framerate, see Supporting
Information, Figure S2.

kAtgme (Figure 4a), a decrease in strobe duty cycle
monotonically reduces systematic error. However, under real-
world experimental conditions, single-molecule rate constants
might have typical statistical uncertainties of several percent or
larger; hence, reduction of these systematic errors to <3% is
usually unwarranted. For rate constants equal to the frame rate
(kAtgome = 1), we observe in Figure 4a that a strobe duty cycle
of 10—20% already has reduced systematic error in the
extracted rates to <3%. Obviously for rate constants lower than
the frame rate (kAtg,,. < 1), one achieves this 3% error limit
target even more quickly with a reduction in duty cycle.
Alternatively summarized, below a 10% duty cycle, one is
discarding signal for little gain in extracted rate constant
accuracy.

The corresponding upper limit in the measured rate
constants is determined by the data acquisition rate.
Trajectory-based analyses of rate constants rely on frame-to-
frame correlations, and these methods fail when kinetic
relaxation occurs on the time scale of the frame rate. Indeed,
this mode of failure is readily observable in the shaded
uncertainty regions in the right-hand side of Figure Ic, for
which even the stroboscopic data produce results with high
levels of statistical noise when the rate constants exceed ~1.5
K¢rame- Simply stated, this is due to low information content per
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frame when the system decorrelation is fast. In this limit,
individual data points in the FRET trajectory therefore become
uncorrelated and can provide only non-dynamical information
(eg., equilibrium constants). This same behavior can also be
noted in Figure 4b, where even for low-duty-cycle data
acquisition, the quality of results decays quickly at kgky >
kfame- In summary, stroboscopic smFRET methods can help
rescue rate constants up to the frame rate, but faster rate
constants require alternative approaches, such as stroboscopic
probability distribution analysis discussed below.””

4. EXPERIMENTAL TESTS

To demonstrate that the above results and predictions based
on simulated data are experimentally valid, we have performed
a series of smFRET experiments measuring kinetic rate
constants with and without stroboscopic illumination (Figures
S and 6). Specifically, we choose to examine a very simple
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Figure 5. Experimental evaluation of stroboscopic smFRET. (a)
Cartoon depiction of two-state DNA hairpin investigated in these
studies. (b) Sample smFRET trajectory (left) taken at a fast frame rate
(30 ms frame™') compared to underlying dynamics. FRET histogram
(right) exhibits two well-resolved peaks. (c) Same as (b), but for a
slow frame rate (300 ms frame™'). Many frames contain intermediate
FRET values due to camera averaging. (d) Same as (c) but using
stroboscopic illumination at 20% duty cycle.

single-molecule construct consisting of a DNA hairpin with a 7
base-pair stem and 40-adenine loop which we have studied
previously (Figure Sa).** This construct exhibits well-behaved
two-state single-exponential kinetics (with kgq = 1.2 57", kyagoa
=22 s7") and therefore represents a useful model system with
which to test these stroboscopic analysis methods. The data
collection is performed on a TIRF®" microscope apparatus
with charge-coupled device (CCD) camera detection, and the
incident laser power is increased or decreased to maintain a
constant SNR % 7 at all acquisition rates. As shown in Figure
5b at fast frame rates, smFRET trajectories under continuous
illumination exhibit switching between two states, with the
integrated FRET histogram (right panel) clearly depicting two
distinct FRET peaks. On the other hand, continuous
illumination at a 10X slower frame rate (Figure Sc) yields a
notably smeared smFRET histogram, with spurious density
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Figure 6. Experimental validation of stroboscopic method by
measuring DNA hairpin folding dynamics over a range of camera
frame rates. (a) Folding rate constants. Without stroboscopic
illumination (red), the measured folding rate constant is a function
of frame rate. Application of a 10% duty cycle strobe (purple)
removes the dependence. (b) Same as (a), but for the unfolding rate
constants. Each data point represents an analysis of 2000—3000
observed dwell times from ~50 molecules. Error bars are standard
errors of the mean as determined by bootstrapping.

appearing between the two FRET states. By way of contrast,
however, the use of a 10% duty cycle strobe at this same slow
frame rate (Figure 5d) removes camera averaging artifacts from
the FRET histogram (far right), therefore restoring distinct
two-state behavior.

Furthermore, the rate constants from the smFRET
trajectories were measured by dwell-time analysis over a
range of data acquisition bandwidths (40 to 1.3 Hz, Figure 6).
Without stroboscopic illumination, the extracted rate constants
exhibit the behavior characteristic of our simulated results, that
is, with the measured rate constants (filled squares) system-
atically dependent on frame rate and underestimated with
increasing Afg, ... The inclusion of a 10% duty cycle strobe
(open diamonds) completely removes this dependence on
frame rate, in agreement with our simulations. Indeed, the
kinetic measurements remain faithful even up to kAt .= 1.7,
which agrees with our upper limit of kAt . ~ 1.5 predicted
above.

5. DISCUSSION

smFRET has proven itself to be an invaluable technique for
measuring the detailed dynamics of biological processes.' '
However, this work demonstrates that rate constants
determined in such smFRET experiments can be prone to
systematic underestimation, particularly when the conforma-
tional state-to-state transition rates are comparable to the data
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acquisition rate (kAfg,,. > 0.1). Herein, we have presented an
extremely simple “stroboscopic” method for eliminating such
“camera averaging” artifacts by restricting fluorescence
collection to a reduced but contiguous portion of each time
bin, for instance, by gating the excitation-light source. We have
demonstrated that the use of stroboscopic data collection,
together with a simple mathematical correction, can accurately
recover rate constant information up to the data acquisition
rate, validating these methods on both synthetic (Figure 1) and
experimental (Figure 6) data. As a result, stroboscopic
smFRET methods in principle extend the upper limit of
measurable rate constants by up to an order of magnitude over
that of conventional smFRET without resorting to reducing
the instrument throughput by cropping the field of view to
increase frame rates.

We can extend the use of stroboscopic smFRET one step
further. The issue of systematic rate constant underestimation
due to time binning is ubiquitous and generates similar
constraints for more sophisticated smFRET trajectory analysis
methods such as hidden HMM™**™** and TCF fitting."""°
Consequently, each of these and other analysis methods might
also benefit from stroboscopic data collection. To explore this
in more detail, we have analyzed simulated smFRET
trajectories using each of the three methods: (i) dwell-time
analysis, (ii)) HMM, and (iii) TCF fitting, under both
continuous and stroboscopic illumination conditions (Figure
7). As clearly evident in Figure 7b,c (filled symbols), neither
HMM nor TCF fitting escapes this fundamental issue of
underestimating fast rate constants. This is quite simply
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Figure 7. Systematic underestimation of rate constants is a shared
feature of multiple smFRET analysis methods. Simulated conditions
are the same as in Figure 3a. (a) Dwell-time analysis. (b) HMM. (c)
TCEF fitting. Each analysis is performed on data simulated under full-
frame illumination (solid symbols) as well as 25% duty cycle
stroboscopic illumination (open symbols). Error bars are +10.
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because both methods make the assumption, as in dwell-time
analysis, that the system occupies a single state throughout
each observation point. This assumption becomes more nearly
correct when fractional duty cycle “stroboscopic” illumination
is applied, with all methods accurately estimating the rate
constant for a 10% duty cycle excitation (Figure 7, open
symbols). Consequently, the data in Figure 7 demonstrate that
stroboscopic smFRET improves the accuracy of rate constant
determination by other analysis methods besides dwell-time
analysis. In addition, the use of HMM enables an especially
facile extension of the stroboscopic method to systems of more
than two states, as demonstrated in Supporting Information,
Figure S3.

Stroboscopic smFRET requires greater laser power than
conventional smFRET to obtain the same signal level, which
can potentially exacerbate issues of fluorophore saturation and
photobleaching. To examine this effect, we collected strobo-
scopic data with a 20% duty cycle at 100 frames per second
(Supporting Information, Figure S4), which is approximately
the full-frame capture rate of current CCD technology.
Working at our maximum available laser fluence (x50 mW
over a 20 um diameter TIR spot), we observed a 50%
reduction in SNR compared to that of non-stroboscopic data
at the same conditions (SNR = 3 vs 6; Figure S4a). Despite the
loss of SNR, the quality of the data is sufficient for dwell-time
analysis, and the extracted rate constants are equivalent to
those obtained without stroboscopic illumination (Figure S4b,
c). These results show that, with the help of oxygen removal®
and triplet quenching,* fluorophore photophysics does not
impede stroboscopic smFRET operation at acquisition rates up
to 100 Hz.

This article is an extension of the work of Farooq and
Hohlbein*” who first demonstrated the use of stroboscopic
smFRET to measure fast rate constants. However, instead of
analyzing stroboscopic data by trajectory-based analyses, as in
these studies, Farooq and Hohlbein used PDA.Z>* In PDA,
data points are binned into a FRET histogram, which is then fit
to a model that includes kinetic parameters. Therefore, PDA
treats each observed FRET value as an independent measure-
ment. In contrast, trajectory-based analysis (eg., dwell-time
analysis, HMM, TCF fitting) makes use of the correlation
between data points, which has the potential advantage of
utilizing a greater portion of the information content of the
data. Therefore, intuitively, the trajectory-based method
presented in this paper should yield rate constants with
smaller uncertainties than those determined by PDA. Indeed,
when simulated data are analyzed by both PDA and dwell-time
analysis, the results from dwell-time analysis have ~50%
smaller uncertainties (Supporting Information, Figure SS).
This reduction in uncertainty may make the present method
more attractive to some smFRET researchers, especially those
who already rely on trajectory-based analysis and do not wish
to switch to PDA, and entirely different form of analysis.
However, as shown by Farooq and Hohlbein, the combination
of stroboscopic smFRET and PDA has in principle access to
faster dynamics than stroboscopic trajectory analysis, as
stroboscopic PDA is limited by the exposure time rather
than the frame duration. Due to this combination of factors, we
consider the trajectory-based approach and the PDA-based
approach to be complementary methods for analyzing
stroboscopic smFRET data.

We emphasize that stroboscopic smFRET is quite
straightforward to incorporate into any existing smFRET
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experiment, with stroboscopic illumination implementable at a
relatively low cost. Furthermore, stroboscopic data does not
require adopting new analysis methods, as it is fully compatible
with conventional dwell-time, HMM, and TCF analyses.
Therefore, any smFRET laboratory can readily incorporate
stroboscopic methods while largely maintaining the current
experimental arrangement and analysis. In the interest of
completeness and kinetic rigor, we recommend reporting
frame acquisition rates along with published rate constants, as
well as closely monitoring the ratio of smFRET-measured rate
constants to this acquisition rate. If any rate constants exceed
10—20% of the frame rate, then FRET averaging is a significant
concern, for which application of stroboscopic methods offers
a reduction in rate constant systematic errors down to <3%
level. Finally, while this paper has focused on using smFRET to
determine conformational dynamics, such a stroboscopic
approach should also be extendable to any experimental
method based on a fluorescence measurement of discrete-state
sampling, such as transitions between diffusional states in
single-molecule diffusion studies” or binding processes studied
by protein-induced fluorescence enhancement (PIFE)."”

6. CONCLUSIONS

We have developed, tested, and presented a stroboscopic
solution to the underestimation of rate constants in time-
binned smFRET experiments. Our wok demonstrates that
kinetic rate constants are significantly underestimated when
comparable to the sampling rate, with >5% systematic errors
arising when rate constants are faster than 10% of the frame
rate. These deviations cannot be avoided by modifying
experimental parameters such as light intensity or trajectory
duration. The core cause of the artifact is the mapping of
continuous-time dynamics onto a discrete-time domain of
binned data, resulting in blurring of FRET states and missed
dynamics. These fundamental issues can be addressed through
the combined use of (i) stroboscopic illumination and (ii)
analytic mathematical correction to the rate constants.
Stroboscopic smFRET is thereby capable of measuring rate
constants up to at least the data acquisition rate, which for a
5% threshold of measurement accuracy amounts to a tenfold
increase in dynamic range. This allows one to measure single-
molecule rate constants up to the frame acquisition rate limit
without compromising any other multiplexing capacity of the
measurement.
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Appendix deriving correction to rate constants deter-
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implementation, dwell-time analysis with short dwells
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