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Abstract

Krylov subspace recycling is a powerful tool when solving a long series of large, sparse linear systems that change only
slowly over time. In PDE constrained shape optimization, these series appear naturally, as typically hundreds or thousands of
optimization steps are needed with only small changes in the geometry. In this setting, however, applying Krylov subspace
recycling can be a difficult task. As the geometry evolves, in general, so does the finite element mesh defined on or representing
this geometry, including the numbers of nodes and elements and element connectivity. This is especially the case if re-meshing
techniques are used. As a result, the number of algebraic degrees of freedom in the system changes, and in general the linear
system matrices resulting from the finite element discretization change size from one optimization step to the next. Changes
in the mesh connectivity also lead to structural changes in the matrices. In the case of re-meshing, even if the geometry
changes only a little, the corresponding mesh might differ substantially from the previous one. Obviously, this prevents any
straightforward mapping of the approximate invariant subspace of the linear system matrix (the focus of recycling in this
paper) from one optimization step to the next; similar problems arise for other selected subspaces. In this paper, we present
an algorithm to map an approximate invariant subspace of the linear system matrix for the previous optimization step to
an approximate invariant subspace of the linear system matrix for the current optimization step, for general meshes. This is
achieved by exploiting the map from coefficient vectors to finite element functions on the mesh, combined with interpolation
or approximation of functions on the finite element mesh. We demonstrate the effectiveness of our approach numerically with
several proof of concept studies for a specific meshing technique.

(© 2021 Elsevier B.V. All rights reserved.

Keywords: Computations on changing geometries and structures; Krylov subspace recycling; Recycling CG; Shape optimization

1. Introduction

In PDE constrained shape or topology optimization, usually hundreds or thousands of iterations are needed to
reach a converged solution. Except for the first few steps, in most applications, in each optimization step the changes
in shape are small. In principle, this leads to sequences of matrices with only small changes in each optimization
step. These correspond to small changes in the governing PDE, as well. Therefore, we expect that (preconditioned)
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Krylov subspace recycling may significantly speed up the computations, as exploited in [1]. In this paper, we focus
on recycling approximate invariant subspaces.

However, in the shape optimization application presented here a significant obstacle to Krylov recycling arises
as re-meshing is often necessary. This leads to matrices from one optimization step to the next that have different
dimensions, which makes the linear systems algebraically incompatible regarding their sizes. This problem precludes
a straightforward application of Krylov subspace recycling, since we cannot transfer the algebraic basis vectors
spanning an approximate invariant subspace (or spanning any another useful subspace to recycle) from one linear
system to the next. However, we will show that through the sequence of finite element spaces from which the
algebraic linear systems are derived, we can map approximate algebraic eigenvectors from one linear system to the
next by mapping (through interpolation or other approximations) the corresponding approximate eigenvectors, or
basis vectors of an approximate invariant subspace, from one finite element space to the next. In a straightforward
way, on meshes stemming from adaptive mesh refinement (AMR) and hence on nested meshes, this idea was
explored in [2], however, with relatively modest improvements for convergence [3]. We consider more general
mappings and corrections in this paper. We will introduce the mapping for a generic mesh in Section 3. For
our numerical examples, we give an example of a mapping for a specific meshing technique in Section 4, the
corresponding numerical examples are given in Section 5.

2. Foundations

In shape optimization, the aim is to optimize a given two- or three-dimensional shape without changes in
its inherent topology in order to maximize or minimize a given objective, for example efficiency or reliability.
Depending on the problem considered, certain material laws have to be fulfilled, which are usually modeled by
PDEs, such as the elasticity equations in structural mechanics or the heat equation. This leads, in principle, to a
PDE constrained optimization problem, where the variable over which one optimizes is neither a function nor an
element of a finite dimensional space, but a domain, i.e., in most cases a subset of R2 or R3. In this paper, we
restrict ourselves to domains in R2. In a more formal way, let {2 be a bounded domain with Lipschitz boundary 942
contained in a bounded set {2 C R? such that each such {2 C {2 is admissible. This domain {2 is to be optimized
subject to some functional J({2, u) that depends on {2 and the solution of a PDE u € H'(2), i.e.

min J(2,u)
9 (M
s.t. Lu=f.
We restrict ourselves to changes in the geometry that can be described by a mapping F, : 2 — R? that is a
perturbation of identity, that is,

F=id+1V, >0,
where V € (H'®(2))? is a velocity field.

2.1. Krylov subspace recycling

We briefly describe the main ideas behind Krylov subspace recycling and a recycling Conjugate Gradients
algorithm (RCG) that combines a Deflated Conjugate Gradient algorithm with a very efficient method to compute,
on the side, an approximate invariant subspace for the symmetric positive definite (SPD) system matrix K that can
be used for the next linear system. A Deflated Conjugate Gradient method was first proposed in [4]. A projected
CG algorithm was independently proposed in [5]. The implementation here follows [6]. In the next subsection, we
present an efficient method to compute and update an approximate invariant subspace that extends the approach
in [6] using the ideas for updating the recycle space in recycling MINRES (RMINRES) [1], but adjusted for
working in the K-inner product. The approximate invariant subspace update in [6] can only use the first £ (a chosen
parameter) direction vectors from the Krylov space for a new linear system. Of course, £ can be chosen very large,
but this requires storing ¢ direction vectors, presenting a possibly overwhelming memory cost and a substantial
computational cost. The advantage of RCG is that it uses the whole new Krylov space to update the recycle space,
but proceeding in cycles of length m (see Section 2.2) to keep memory requirements and computational costs low.
This requires storing at most m direction vectors, independent of the number of iterations to convergence. We
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provide some further details at the end of Section 2.2. For a more efficient version of RMINRES than presented
in [1] see [7]; the first version of RMINRES was proposed in [8]. The CG and MINRES algorithms were proposed
in [9] and [10], respectively. An interesting alternative to recycling is proposed in [11] for applications with a
fixed, Hermitian, matrix and many right hand sides (so rather different from our objective here). It proposes to
compute eigenvectors accurately in the course of solving multiple linear systems and then accurately deflate the
corresponding invariant subspace from the remaining right hand sides to obtain good convergence. This avoids
the cost of the orthogonalization in each iteration of RCG/deflated CG at the cost of many more iterations for
accurate eigenvectors. In [11] these iterations can be spread over multiple right hand side solves; however, for
shape optimization the method is not efficient as the matrix generally changes each optimization step. For similar
ideas in the nonsymmetric case; see [12].

The purpose of recycling is to reuse a judiciously selected subspace from the search space generated by earlier
linear solves to speed-up the convergence of subsequent linear solves. Here, we focus on approximate invariant
subspaces associated with small (in absolute value) eigenvalues. Depending on whether the right hand sides change
substantially or not, recycling may also give good initial guesses [8]. For several recent Krylov subspace recycling
methods for engineering applications see [13—19], and for HPC implementations see [20-22]. A survey of Krylov
subspace recycling methods is given in [23].

In this section, we do not consider the complication that our matrices from one optimization step to the next
may be incompatible. We will address this issue in Section 3.

Algorithm 1 Preconditioned Deflated Conjugate Gradients (see [6])

I: Input K, W = [wy, ..., wi] (range(W) is the recycle space), SPD preconditioner M~!, and initial guess ug
satisfying ro = f — Kuy L W.

2: Compute zg = M~ 'rg;  po = 20 — WWTKW)'WTKz,.
3:fori =1,2,...,¢do

4 oy =r" 2 /pl Kpi-i

500 W =01 + & 1Pi-1

6: 1 =r;_1 —a;_Kp;i_

7 Z; = M_ll‘i

8  Bii=rlz/r 2,

9. Solve (WTKW)t;, = (KW)'z

10 p;i=Biipi-1 +z; — Wt

11: end for

Consider at some optimization step the linear system Ku = f with SPD K € R"*", a SPD preconditioner
M~!, and a recycle space range(W) with W e R"*¥ computed in the previous optimization step. We give
the preconditioned deflated CG [6] in Algorithm 1, focusing on the mathematical relations rather than efficient
implementation. This algorithm solves the preconditioned system M~'Ku = M~!f, working in the M-inner product,
(X, y)m = y' Mx, and minimizing the error in the operator norm M~'K, which is self-adjoint and positive definite
with respect to this inner product. The algorithm still minimizes the error in the K-norm (energy norm) [24] but
over the augmented preconditioned Krylov space.

As for standard CG, the search direction vectors, p;, satisfy pJTKp,- =0 for i # j, and in addition W’ Kp, = 0
(the zero vector) for all i; see [6].

2.2. Computing a recycle space

In our recycling (preconditioned) conjugate gradient algorithm, W e R"*¥ represents the initial k-dimensional
recycle space, range(W). As RCG is optimal over range(W) @ range([po p1 ... Pp¢—1]) (after £ iterations), the
recycle space itself is not changed during the solve. However, for the next linear system, we want to recycle an
improved approximate invariant subspace, represented by Y, which we compute while solving the current linear
system. RCG, due to the short recurrence, does not need restarting or truncating; however, to update the recycle
space, we need to keep a sequence of search vectors p;. To limit the memory requirements, we periodically update
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the new recycle space Y using (max) m previous search vectors p; before discarding them. We use the term
cycle to denote the solution process between two updates of the new recycle space. Let Y; € Rk represent
the recycle space selected after cycle j. Utilizing notation from [1], let P; = [p—im ... Pjm—1] € R and
Ej = [PG-1m—t --- Pjml = [Pj_1e, | P; | Pjrie] € R™™+D with standard basis vectors ej, e, € R™;
P, =1[0]|P; | Pye]

Here, we consider only approximate invariant subspaces using harmonic Ritz vectors [25] for the M-inner product
and the preconditioned matrix M~'K (M = I for the unpreconditioned case). For any subspace S C R", & € S is

a harmonic Ritz vector of M~'K with harmonic Ritz value 6 if

M~ 'Kg — 0 Lyy MT'KS. 2)
Taking & = Sx with range(S) = S leads to the generalized eigenvalue problem

STKM™'KSx = 6S"KSx. 3)

We discuss the computation of Y; for the general case j > 1 and outline changes for other cases. We set
S =[Y;_; P;], which leads to the (m + k) x (m + k) generalized eigenvalue problem

G;x =0Fx, where 4

G,

[(KY,-_QTM‘(KY,»_I) (KY,-_I)TM%KP,-)}
(KPJ)TM*I(KYj,l) (KPJ)TM*I(KPj) ’
F, = |:YIT;1KYJ_1 YJT;IKPJ].
P;KY; P/ KP;
For j = 1, we take Yo = W and S = [Y, P;] (this corresponds to the update in [6] for a new linear system after
the first). If no recycle space is available, we take S = P; (with obvious changes for G; and F;). For SPD K and

M, (4) has real solutions with positive eigenvalues. After solving (4), we choose the k harmonic Ritz vectors with
the smallest magnitude harmonic Ritz values, and set X; = [x; ... x¢], and

Y, = SX; = [Y,, P;IX,. (5)

The main cost in solving for X; is the computation of G; and F;. Fortunately, we can compute G; and F;
efficiently using recurrences, avoiding unnecessary storage and computation. Again, we only discuss the general
case (j > 1) in detail.

We start with the recurrences for G;. From (5), we have for Y;_;

Yj,1 = [Yj,Q ijl]Xjfl and KYJ‘,1 = [KYJ',Q Kijl]Xj,I. (6)

For the (1,1) block of G;, using (6), we get (KY;_)" M1 (KY;_|) = XJT_IGj,lXj,l. Next, from Algorithm 1
lines 67, we have

-1 —1 ai_—ll
M Kp;_1 = (z;-1 — z)a;,_, = [2;-1 2;] e @)
%l
and from line 10 (with t; from line 9),

z; = Wt; +p; — Bi—1pi-1 = Wt + [pi—1 pil [_ﬁii_l] , (8)
which together give (at the end of cycle j)

M 'KP; = (WT; +P;&)¥,, )
where T; = [tG—im tG-tmt1 --- timl, \I’_(;"H)X'” is a lower bidiagonal matrix with the m coefficients
a&lnw O[(_jlfl)m+1’ e, otj_nLl from (7) on the diagonal and —a(;il)m, —a(_jll)m+1, e, —aj_nifl on the subdi-
agonal, and <I>3.m+2)x(m+1) is a lower bidiagonal matrix with the coefficients —B(;_1yu—1, —B(j—tym> - —Bjm—1

from (8) on the main diagonal and 1’s on the subdiagonal.
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For the (1,2) block of G; (and the (2,1) block by transposition), we have
(KY,;,_)’M'KP; = Y/_ K(WT; +P,;®,)¥;
= (Y_ KW)T;¥; + (Y]_KP)®,;¥;. (10)

The matrices in brackets can be computed by recurrences at the end of the previous iteration. Using (6) and
PJT;IKW = O (the zero matrix), as p; Lx W for all i, we get

Y! T
YI_ KW =X/, [ - 2} KW = X/_ [YMKW} : 11
P! 0
T
with YTKW = X7 [W (‘fw} , (12)

where Y_IT_ZKW is available from the previous iteration. For j = 1, Y KW = W/KW, and WKW is available
from the recycling CG iteration. For Y;,lKE ;s we have, again using (6),

YT KP
T ¥xp — x7T j=2
Y,_,KP, =X}, |: :| .

P[ KP,
Using p; Lk W ( = Yyp), PTKP = O for i # j, and the recurrence implied Ey (6), range(Y;_») C
range([Y,;_; P;_»]), we have Y] 2KP = 0. For the second block, we have PT KP;, = PT KI[P;_ie, |

P, | Pjyie] = dj_1m_1enel, with standard basis vectors e, € R™ and e € R’”+2, and A
p(Tj*I)mfle(jfl)mfl Hence

Y] KP, = X/_ [ 0 ] (13)
dij—tym—1€me]
with YJKP, = W' KP, = O. (14)
In addition (e(1m+2))T<I>lelj = —%(ei”’)f with e(1m+2) e R"*? and e(lm) e R™.
Jj—Dm

Finally, for the (2,2) block of G; we get, using (9) and PJTKW = O, the m x m tridiagonal matrix

(KP;)"M~'(KP;) = (KP))"(WT,; + P;®,)¥; =P/KP,;®; ¥,
=[0|D;|0]®;¥;,

where D; = PJTKPJ- is a diagonal matrix with coefficients d; = p] Kp;, fori = (j —Dm, (j —Dm+1, ..., jm—1,
on the diagonal. The coefficients d;, ¢;, B; have all been computed in the past RCG cycle.

Next, we consider the blocks of F;. Just as for the (1,1) block of G, using (6), we get for the (1,1) block of F;
that YJT_IKYJ_I = Xjr_le_lXj_l. The (1,2) block and (2,1) block of F; satisfy YJT_IKPj = 0. Finally, the (2,2)
block of F; equals D;.

Algorithm 2 outlines the (preconditioned) Recycling CG algorithm that includes the recycle space into the search
space. Algorithm 3 gives the computation of G; and F;. The invariant subspace update in [6] corresponds to
Algorithm 3 for j == 1 (with some minor changes). Extending this update to proceed in cycles (with j > 1)
requires the additional recurrences derived above to update G; and F; without any additional O(n) computations
and storing at most m direction vectors.

While algorithm 2 allows any subspace to be recycled, we focus here on approximate invariant subspaces, in
particular, those corresponding to small eigenvalues. Removing the small eigenvalues leads to substantially improved
rates of convergence as the condition number is significantly improved [6]. See [26] for a general discussion of the
link between the condition number and CG convergence for SPD systems.

3. Recycling CG for evolving geometries

In shape optimization, the changes in geometry in each optimization step and thus in the underlying mesh prevent
a straightforward application of the described Krylov subspace recycling. Depending on the meshing technique, a
mapping of the matrix representing the subspace in one optimization step to the next might be necessary.

5
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Algorithm 2 Recycling CG

1: Input: matrix K, right hand side f, preconditioner M, (max) cycle length m, recycle space dimension k, recycle
space basis W = [wy, ..., wi] (possibly empty), Yo = W, initial guess uy, and convergence tolerance 7.

2: 19 = f — Kuy.

3: if W is defined (from solving a previous linear system) then

4 Compute W=KW; LL” = W’W (Cholesky decomposition)
5. Solve (LLT)y = WTry; ug=uo+Wy; r1o=ro— Wy

6: Zy) = Mill‘o; Solve (LLT)t() = WTZO; Po = zo — Wty

7: else

8: Zy) = M_ll‘o; Po =12

9: end if

10: i = 0 {iteration index}; j = 1 {cycle index}

11: while ||r;||» > t do

122 i=i+1

13:  {Do one step of Preconditioned Deflated CG (Algorithm 1).}
14 o = (! zi-)/(p]_ Kpi—1)

15: u =u_ +o;_1pi-1; i =ri—1 —o;1Kp;_

16: Z; = Mill','

17: Bioy=rlz/r] 7

18: Solve LLTti = WTZ,' ;0 pi=Bi—1pi-1 2 — Wt;

19: if mod (i, m) == 0 then

20: {Update recycle space Y, for use in next linear system.}

21: Compute G;, F; from (4) ff. (Algorithm 3) and solve G;x = 0Fx.

22: Let X; contain k eigenvectors corresponding to k smallest magnitude eigenvalues (or an alternative
selection, if desired).

23: Y; =[Y;_1 P;IX;;  {Yo =W if W exists, otherwise empty}

24: j=Jj+1

25:  end if

26: end while
27: W =Y {Assign recycle space for the next system.}

e .
WN T P
F(p )+ —— i ‘\
I
|
Q. Q

i i+l

Fig. 1. Mapping new mesh nodes to the domain of the previous optimization step.

3.1. Mapping between successive meshes

Let {2 and (2,4, be two domains representing two immediately consecutive shapes stemming from an iterative
shape optimization procedure, see Fig. 1. These domains are discretized by finite element meshes 7; and T;y,
respectively. In general, the meshes feature different connectivities and different numbers of nodes, N; and N;1,
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Algorithm 3 Computing G; and F;

1: if j == 1 then

Fi(1,1) = WKW (available from RCG)

Fi(1,2) = O™, F (2, 1) = O™k

Fi(2,2) =D; (available from RCG)

Gi(1, 1) = (KW)'M~'(KW) (KW available from RCG)
Gi(1,2) = WIKW(T,¥,) (WTKW available from RCG)
Gi(2.1)=6G(1,2)"

G1(2,2) = [0|D;]|0](®,¥)

Solve for X; from G;x = 0F;x

10:  Compute Y'KW from (12); Compute Y/ KP, from (13)
Gy(1,1) =XTGi Xy Fa(l, 1) = XTF X,

12: else

13 F;(1,2) = 05" F,2,1) = 0"

14 F;2.2)=D; (available from RCG)

15:  Compute G;(1,2) from (10)—(13)

16 G2, 1) =G(1,2)

7. G(2,2) = [0]D;|01(®;¥))

18:  Solve for X; from G;x = 6F;x

19:  Compute Y/ KW from (11) and (12);  Compute Y]TKE]A+1 from (13)
200 G, D=X'G;X; Fu(1,1)=XTFX,

21: end if

R A A ol

—_
—

respectively. Additionally, from optimization step i, an approximate invariant subspace is given by range(Wg)), with
Wi’) e RNk which is supposed to be recycled in optimization step i + 1. However, the system in step i 4+ 1 is of
dimension N; ;. Therefore, we are in need of a function that maps the N; x k matrix representing the approximate
invariant subspace of the system in optimization step i to a N;;; X k matrix, which is meant to represent a good
approximate invariant subspace of the linear system in optimization step i + 1.

The mapping we propose exploits the fact that the linear systems we consider are closely linked to the continuous
finite element spaces V;, ({2, T;) and V, ({211, T;i1+1), determined by 7; and T;,;, respectively. They represent the
bilinear form in the weak formulation and each matrix entry is computed by evaluating this bilinear form using
the geometric information from the underlying mesh. As a reminder, we give a recap to the Galerkin method: In
general, to solve a PDE, it is considered in its weak formulation defined on a Sobolev space H" ({2) or HjJ'({2). The
solution is approximated in a finite dimensional subspace of this Sobolev space, the finite element space V;,({2).
Consider for example the elliptic zero-boundary value problem

- Z di(audu) + apu = f in 2

i k=1 15)
u=0 ondf?,
with u € HJ(£2). The function u is a solution to (15) if
a(u,v) = (f,v), forall ve Hy(f). (16)
On the finite dimensional subspace V;({2) we can find a basis of nodal basis functions &, ..., @y of the subspace
such that (16) is equivalent to
auy, ;) =(f, %), j=1,...,N, an

with u;, € V,(§2). Therefore, u;, can be formulated in terms of the basis functions, u;, = Ziv: L uj ®;. This approach
leads to the system of equations

N

Za(@k, Spue = (f, ), j=1,...,N, (18)
k=1
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or in matrix notation Ku = f, where
K)jx =a(P, ¢;) and 6); = (f, 9;).

Now, consider the approximate invariant subspace range(W,({i)) with W,(f) € RNixk Instead of considering the
coefficients of the matrix in the algebraic sense, we can see the columns of the matrix as vectors containing the
coefficients of continuous functions defined on the finite element space V, (2, T;). These functions are defined as

Ni
wh(x) = Z(W,ﬁ"))(j,m) o), m=1,....k xe, (19)
j=1

@;i)(x) being the nodal basis functions of the finite element space V;,({2;, T;). If we are able to find a transformation

FxUDy: 2.1 — 2, that maps each node p; in T4, =1, ,Nipz1toa correspondmg point x; in {2;, we can
build the matrix representing the mapped approximate invariant subspace W € RNi+1>k in the following way:
W) my = wi(F(pr). (20)

In summary, this method consists of two steps: First, we define a map from the nodes of the new mesh to points in
the old domain (see Fig. 1); and second, we interpolate the values of the matrix Wk via the functions defined in
(19) in the finite element space and evaluate these functions at the points in {2; corresponding to the nodes in 7;;.

Although the second step is straightforward, the first step can be challenging, depending on the meshing technique
that is used. Therefore, we briefly discuss general concepts to realize such a mapping for different meshing
techniques. If the update of the shape in the optimization procedure is performed via mesh morphing [27], each
node in 7;4; can be mapped uniquely to the corresponding node in 7;, hence the approximate invariant subspace can
be recycled without being transformed. Techniques that work with a reference frame, like Arbitrary Lagrangian
Eulerian (ALE) [28], come with an inherent mapping from the reference frame to the domain. Through this
reference frame, we can map each node in 7;; to a node in 7; and thus recycle the approximate invariant subspace
as in the mesh morphing case. For meshing techniques that do not have such an inherent mapping it gets more
difficult.

If we assume, for example, a general re-meshing scheme without a prescribed number of nodes or restrictions on
the connectivity, then the optimization procedure does not provide any information about the relation between the
two domains {2 and (2, ;; see Fig. 1. Additionally, the two meshes generally may differ in the number of nodes and
thus basis functions. Therefore, a more sophisticated mapping of the approximate invariant subspace of the linear
system matrix derived from mesh 7; to an approximate invariant subspace for the system matrix derived from mesh
T; .1 becomes inevitable. If no other information is available, the simplest map from (2, to {2 is F(x) := x. This
choice, however, does not guarantee that F(x) € (. Therefore, we suggest to choose F(x) as the minimizer, in
a suitable norm, of the distance between the given point x and points in (2, i.e., F(x) := argmingcq, [|X; — x|,
which implies the identity for x € 2. Another approach would be to extrapolate the w')(-) in a simple way. We
discuss this idea in more detail in Section 4.

A special case of re-meshing is mesh refinement (and derefinement), especially adaptive mesh refinement
(AMR) [29]. Although in this case the two systems will certainly differ in dimension, the new nodes will definitely
lie inside (2. Additionally, for the new nodes the global evaluation in (19) reduces to a local evaluation on the
respective refined element; a mapping of approximate invariant subspaces between AMR meshes is described in [2].

3.2. Improving the approximate invariant subspace

While our approach to map an approximate invariant subspace from one optimization step to the next, discussed
in the previous subsection, usually provides good approximate invariant subspaces, occasionally the error from the
approximation procedure is large enough that recycling the approximate invariant subspace is not effective. In that
case, we suggest to use an eigensolver to improve the approximation. For the purpose of effective recycling in the
linear solver, we generally need only a modest improvement of the accuracy of the desired recycle space as an
approximate invariant subspace [30]. In our experience, a few cycles of subspace iteration or Arnoldi is typically
enough. Of course, the cost of the eigensolver must be offset by cost reductions in the linear solver.

8
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(a) (b) (c)

Fig. 2. Grid generation: (a) the structured mesh T and the domain £2; (b) the adapted mesh 7°°; (c) the active mesh 7.

4. Mapping on structured meshes

To solve the optimization problem given in Section 2, it is first discretized via the finite element method. Here,
the meshing is realized by an approach similar to Composite Finite Elements, first developed in [31-33].

4.1. Structured meshes for evolving geometries

The structured meshing approach that is used in this paper combines some of the best features of re-meshing and
mesh morphing techniques. For demonstration purposes, the technique is described in two dimensions but easily
extends to three dimensions. For more details see [34]

We assume the feasible area 2 to be rectangular. 2 is discretized by a regular triangular grid. The grid is denoted
by T, the number of elements by N N¢ and the number of nodes by N™. As in Fig. 2a, the boundary §2 of the
shape to be optimized is superimposed onto the grid, represented, for example, by a set of splines. In a second step,
we adapt the grid T to the boundary of the shape by moving the closest vertex of a cut edge onto the boundary [34].
The adapted grid is denoted by 7°°. The computations are only performed on the elements inside the domain. We
call these elements active elements, making up the active grid 7,, and the corresponding nodes are called active
nodes (P, with | P,| =: N,). The active elements are a subset of the elements of 7°°, which itself is a perturbation
of T. An important advantage of this approach is the possibility to implicitly build the system of equations for all
nodes in 7°°, with the rows and columns corresponding to the non-active nodes containing only zeros, and then
perform the calculation only with the “active” sub-mesh that we denote by 7. ~

In this way, after updating the shape, the process starts again, each optimization step, with 7, with the same
node numbering and connectivity. The mesh is updated according to [34]. This gives a substantial speed-up in
building the mesh in comparison with full re-meshing approaches, as only elements at the boundary have to be
changed. Additionally, as most of the elements do not change, the system matrix has to be updated only for entries
corresponding to nodes in elements that do change; see Fig. 3. Hence, the full assembly of the system matrix in
each iteration is avoided. This provides an advantage over both the re-meshing and the mesh-morphing techniques,
while obtaining an accuracy comparable to re-meshing approaches.

4.2. Mapping

The structured meshing technique described in the previous section is decidedly well suited for designing a
mapping of the type described in Section 3. This is why, as a proof of concept, we introduce a quite simple mapping
adjusted for this specific meshing technique, which still leads to a considerable speed up in many of our test cases.
Consider the linear systems K(p®)u® = £ and K(p*D)yu+) = fi+) and W® e RN Xk, with range(W®)
approximating the invariant subspace corresponding to the k smallest eigenvalues of K(p"). As in this meshing
approach the initial connectivity of the mesh is kept for all optimization steps, we can uniquely identify each node
in iteration (i 4+ 1) with a node in iteration (i). We distinguish between three cases to determine the matrix W
representing the mapped approximate invariant subspace, see Fig. 3: (1) Matrix entries corresponding to inner nodes
that stay inner nodes are kept; (2) matrix entries corresponding to nodes that change from inner node to boundary
node or vice versa are recalculated according to (19); and (3) matrix entries corresponding to nodes that change
from inactive to active are calculated in the following way. Assuming only small changes in the geometry, these
nodes must be boundary nodes or close to boundary nodes. It is therefore likely that the values of former active
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Fig. 3. The status changes for nodes near the boundary for a small change in shape.
Table 1

Cosines of the principal angles (cos(¢;)) between the approximate invariant subspace of dimension k = 15 and the true invariant subspace
corresponding to the 15 smallest eigenvalues for three successive deformations (iteration 1, 2, and 3).

Angle 1 8 9 10 11 12 13 14 15

iter 1 0.992 0.945 0.939 0.935 0.935 0.913 0.872 0.806 0.150
iter 2 0.983 0.904 0.843 0.785 0.722 0.551 0.331 0.153 0.102
iter 3 0.987 0.933 0.908 0.899 0.844 0.781 0.700 0.476 0.217

nodes in their neighborhood provide a better approximation than a value resulting from interpolating former active
and inactive nodes. We therefore propose for these points the following extrapolation: Consider that the status of
node )?e(”l) changes from inactive to active. From the set of nodes that share a finite element, we consider only the
subset of nodes that were active in iteration (i). For each active node, x{' " we have such a set S©9. We set the

entries of W& corresponding to these nodes to the weighted mean of the values at S@©, given by

< i+1 i+1
o 1 st 15 =2 Ve = lls —x"l
(W )(l,_]) = S(i’[) 1 Z Z ) - (i+1) (w )(S,j)? (21)
| a | - SGSL(,i’() EGS((:,(Z) ”S —_ XZ ||2
with weights corresponding to the distance between the neighbors’ location on the old grid and xéiﬂ).

4.3. Test of mapping an approximate invariant subspace

As our first example, we consider a model problem solving the linear elasticity equations on a bent rod with a
181 x 121 nodes grid, resulting in 5507 active nodes. To get a first impression of the quality of the approximation
of the invariant subspace via the mapping, we perform deformation steps of the shape in a controlled way, see
Fig. 4, and calculate the principal angles between the resulting mapped approximate invariant subspaces and the
true invariant subspaces corresponding to the smallest eigenvalues of the new system matrix, which have been
computed for the purpose of comparison only.

We perform three steps of deformation of the original shape, with recycle space dimension k = 15, and we
calculate the principal angles between the mapped approximate invariant subspace and the invariant subspace
corresponding to the 15 smallest eigenvalues according to [35, p. 604]; see Table 1. We see that most of the angles
are small, i.e., our approach approximates these spaces quite well. Note that we only consider small geometric
deformations.
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Fig. 4. Sequence of shapes for a model problem.
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tion.

Fig. 5. Test problem 1: Poisson equation on a turbine blade. Four consecutive positions of the hole at x = 0.025, x = 0.028, x = 0.031
and x = 0.034.

5. Numerical results

To demonstrate the efficacy of the described methods, we consider two two-dimensional examples. The first one
concerns a turbine blade on which the Poisson equation is solved. For the second one, we solve the linear elasticity
equation on a bent rod.

5.1. Poisson equation on a turbine blade

As a first example, we solve the Poisson equation on a turbine blade, where the change of geometry is caused by
a hole, representing a cooling channel, as its position inside the turbine blade is being optimized. In this example,
the movement of the hole is artificial and not driven by an optimization. We provide results for two mesh sizes.
For the first, T is a 361 x 181 grid, which gives close to 12,000 active nodes on 7,, and, for the second, T is
a 722 x 362 grid yielding a little less than 47,000 active nodes. On the boundary of the blade, Robin-boundary
conditions hold with constant heat coefficients, and the temperature on the cooling channel boundary is chosen to
be two times lower than the one on the outer boundary. We perform an initial solve using RCG without a recycle
space (but computing one for the next solve), and hence the convergence will be the same as for CG, and then
three solves with RCG and a recycle space dimension of k = 15 for three consecutive changes of the domain;
the geometries are visualized in Fig. 5. An incomplete Cholesky factorization, IC(0), preconditioner is used. For
comparison, we also provide the convergence of preconditioned CG.

Fig. 6 and Table 2 demonstrate that a speed-up of around 55% in terms of the number of matrix—vector products
is obtained (including the initial 15 matrix—vector products required for the recycle space), independent of the
problem size. In the smaller example, the number of active nodes does not change due to the fact that the hole is
moved in very controlled way and does not change in size. Nevertheless, the rows and columns of the matrix do
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Fig. 6. Convergence history of recycling CG with recycle space dimension k = 15 for solving the Poisson equation for four different
positions of the hole in the blade using meshes of two different sizes. Dotted lines indicate the convergence of CG and solid lines the
convergence of recycling CG. Red is used for the initial system, green for system 1, blue for system 2 and cyan for system 3. The dashed
vertical line indicates the k = 15 matrix—vector multiplications that have to be invested before the recycling CG method can start (if there is
a recycle space). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Number of unknowns, number of iterations and number of nodes changing status from active to inactive and vice versa for solving the

Poisson equation for four different positions of the hole in the blade using underlying meshes of two different sizes. The dimension of the
recycle space is k = 15 for both the small problem and the larger problem.

Opt. step 361 x 181 722 x 362
N #its (#matvecs) Active (inactive) N #its (#matvecs) Active (inactive)

0 11,893 279 (279) 46,668 572 (572)
1 11,893 114 (129) 269 (269) 46,671 259 (274) 999 (996)
2 11,893 128 (143) 269 (269) 46,671 300 (315) 997 (997)
3 11,893 117 (132) 269 (269) 46,669 267 (282) 996 (998)
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0.00 4

0.0 01 02 03 0.4 05 06 07

Fig. 7. Test problem 2: Linear elasticity problem for ceramic object under tensile load.

not represent the same nodes in the region of the hole, as indicated by the number of nodes in the regular grid
changing between active and inactive states.

5.2. Gradient based shape optimization with linear elasticity as governing PDE

In our second example, we consider a bent rod that is clamped at the left, i.e., with zero-boundary conditions on
the left boundary, and a tensile load is applied on the right boundary, i.e., Neumann-boundary conditions are applied
on the right side; see Fig. 7. In this example, the deformations of the shape of the rod are not artificially generated
but originate from an optimization procedure using shape derivatives [36]. We assume that the rod is made from a
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Fig. 8. Convergence history of recycling CG for solving the elasticity equation as needed in four consecutive optimization steps using a
mesh of size 301 x 201. Dotted lines indicate the convergence of CG and solid lines that of recycling CG. Red is used for the initial system,
green for system 1, blue for system 2 and cyan for system 3. The dashed vertical line indicates the k = 15 matrix—vector multiplications
that have to be invested before the recycling CG method can start (if there is a recycle space). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Number of unknowns, number of iterations and number of nodes changing status from active to inactive and vice versa for solving the
elasticity equation for four consecutive optimization steps using underlying meshes of two different sizes.

Opt. step N #its (#matvecs) Active (inactive)
0 30,108 619 (619)

1 30,062 299 (314) 629 (644)

2 30,030 411 (426) 641 (641)

3 29,984 338 (353) 624 (644)

ceramic material, in this case Al,O3. Ceramic is a linear elastic material. The shape of the rod is being optimized to
maximize its reliability under the applied tensile load. The reliability of the rod is measured by a functional giving
the probability of failure of the rod under a given tensile load,

d . +\ ™
T2, u) = F(z)/ /d (%) dndx, (22)
0 Jsd-1 0

4
2?2

where 2 C R? is the domain, u € H'(£2,R?) is the solution of the governing linear elasticity equation,
B(u,v) = L(v), Vv € Hol(.Q, R?), o(u) is the stress tensor, m > 2 is the Weibull modulus, and oy is some positive
constant. For simplicity, m = 2 is assumed in this example. The differentiability of the functional is shown in [37].
We use the discrete adjoint method to calculate the shape derivative of the Lagrangian; for more details see [38]. T
is a 301 x 201 grid that leads to approximately 15,000 active nodes, and therefore about 30,000 unknowns in the
linear elasticity equation. The calculation of the gradient is based on the Steklov—Poincaré type metric introduced
in [39]. The rod is straightening during the iteration process. As the resulting linear systems are ill-conditioned, we
use IC(0)-preconditioning as in the previous example. Three RCG solves are performed after the initial RCG solve
(starting without a recycle space) for four consecutive configurations in the optimization process. The dimension of
the recycle space is k = 15.

The convergence is visualized in Fig. 8, and details can be found in Table 3. Here we observe an average reduction
of the necessary iterations by approximately 43% compared with preconditioned CG.
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6. Conclusion

In this paper, we have introduced a new approach to recycle information from the Krylov subspaces of previous
systems in shape optimization. In contrast to other approaches previously considered in the literature, in shape
optimization we often face a varying number of unknowns, and the mapping from the unknowns in the algebraic
systems to the meshes may not be consistent from one optimization step to the next. This makes it difficult to
map subspaces from one optimization step to the next. We deal with these problems by considering the vectors
spanning the recycle space as coefficient vectors of finite element functions on the underlying finite element
mesh. The corresponding finite element functions are used to find the nodal values on the new mesh, possibly
in combination with extrapolation, if a new active node is outside the previous active mesh. The resulting vectors
span the approximate invariant subspace for the new system matrix.

The numerical results demonstrate the efficacy of our finite element-based approach in two different cases:
(1) When the number of unknowns does not change due to small changes in the domain, but the active and
inactive nodes do, and (2) when the number of unknowns does change due to larger deformations of the domain
under consideration. In both cases the number of iterations necessary to solve the sequence of systems has been
substantially reduced.
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