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Abstract: In this paper, we study the fragmentation of a heavy quark into a jet near
threshold, meaning that final state jet carries most of the energy of the fragmenting heavy
quark. Using the heavy quark fragmentation function, we simultaneously resum large
logarithms of the jet radius R and 1 − z, where z is the ratio of the jet energy to the
initiating heavy quark energy. There are numerically significant corrections to the leading
order rate due to this resummation. We also investigate the heavy quark fragmentation to
a groomed jet, using the soft drop grooming algorithm as an example. In order to do so,
we introduce a collinear-ultrasoft mode sensitive to the grooming region determined by the
algorithm’s zcut parameter. This allows us to resum large logarithms of zcut/(1− z), again
leading to large numerical corrections near the endpoint. A nice feature of the analysis
of the heavy quark fragmenting to a groomed jet is the heavy quark mass m renders
the algorithm infrared finite, allowing a perturbative calculation. We analyze this for
EJR ∼ m and EJR� m, where EJ is the jet energy. To do the latter case, we introduce
an ultracollinear-soft mode, allowing us to resum large logarithms of EJR/m. Finally, as
an application we calculate the rate for e+e− collisions to produce a heavy quark jet in the
endpoint region, where we show that grooming effects have a sizable contribution near the
endpoint.
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1 Introduction

Jets containing a heavy quark are an important experimental tool for probing many inter-
esting areas of particle physics, including Higgs physics [1], top physics [2–4], and many
proposed beyond the Standard Model scenarios. As such, it is important to have a good
theoretical understanding of the production and properties of heavy quark jets, which have
been lately actively studied in various high energy processes [5–14].

Jets are formed by initially producing a very energetic parton, which radiates many
collinear and soft particles into a highly collimated beam. By using the concept of a frag-
mentation function, we can accurately describe the jet formation process [15–19], including
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jets that contain a heavy quark [6]. Of particular importance both theoretically and exper-
imentally are energetic jets with the heavy quark highly boosted, meaning that the heavy
quark carries a large fraction of the total jet energy. In this region of phase space, the
amount of radiated energy is restricted, which can lead to large numerical corrections to
the calculated rate.

A jet is defined using a specific jet algorithm in order to define how particles are sorted
to be within or outside of the jet. Most jet algorithms use a parameter to differentiate the
two sets of particles, usually denoted as the jet radius R. We can also define the fraction
of the jet energy that is initiated by the heavy quark, z = EJ/EQ. Focusing now on the
radius, when R is small, terms including lnR appear in the production rate calculation
that can spoil the QCD perturbative expansion. In order to obtain reliable theoretical
predictions, these logarithms must be summed. As shown in refs. [15–19], these logarithms
can be resummed by running the scale down to µ ∼ QR using the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations, where Q is the hard scale of order
of the jet energy EJ . In ref. [18] we studied the fragmentation of light partons to a jet with
a small radius, resumming the large logarithms of R, while in ref. [6], we investigated the
fragmentation of a jet containing a heavy quark, again resumming these large logarithms.

We also have the possible situation where the jet carries a large fraction of the energy
that was carried by the initiating parton, i.e., z ∼ 1. In this region of phase space, we have
large logarithms of ln(1− z), again potentially spoiling the perturbative expansion. There-
fore, again for a proper description we need to systematically resum the large logarithms
of 1− z [20–25]. Since jets are made up of collinear particles, and in the large z limit only
soft particles can be emitted out of the jet, soft-collinear effective theory (SCET) [26–29]
is a natural tool to use to facilitate the resummation of these logarithms.

In order to resum the logarithms of 1 − z, we need to look at the dynamics in the
endpoint region. Doing so, we can see that there are a number of distinct, well-separated
energy scales. Since the observed jet carries most of the energy of the initiating parton, all
radiation that falls outside of the jet must be soft, ∼ EJ(1 − z). However, the standard
modes in SCET are not adequate for separating the radiation inside and outside of the jet,
since they are not sensitive to the jet boundary characterized by the small radius R. We
thus must introduce a new soft mode, called the collinear-soft mode [30, 31], which has the
ability to resolve the jet boundary and can consistently discriminate between soft radiation
that falls inside versus outside of the jet. Using this extra mode, we were able to resum
both the large logarithms of R and 1 − z for a massless parton initiated jet [20]. One of
the goals of this paper is to extend this calculation to jets initiated by heavy quarks, which
can potentially give large numerical corrections.

The study of jet substructure has developed rapidly in recent years (see ref. [32] for
a recent review), due to advancement in jet grooming algorithms [1, 33–36]. These jet
grooming algorithms remove soft radiation contamination in the jet by first “declustering”
a jet and then removing soft radiation to form the new groomed jet, following a precise
recipe that depends on some input constants. For instance, the soft drop algorithm [36]
depends on two variables, zcut and β, which determine if two subjets are to be treated as
distinct or one combined jet. Since these jet grooming algorithms are used to probe the
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substructure of jets, it is important to understand the soft gluon radiations that may or
may not fall within the jet. Therefore, we apply our above analysis for when we have a
heavy quark fragmenting to groomed jet. Compared with similar analyses of jet grooming
with a light quark [36–39], the heavy quark fragmentation is perfectly free from infrared
(IR) divergence due to the nonzero quark mass, but the factorization and its calculation
becomes more intricate and interesting. However, as it does for the light quark jet, the
grooming can cause large numerical corrections in the endpoint region.

The organization of this paper is as follows. In section 2 we investigate the factorization
of the heavy quark fragmentation function to a jet (FFJ) in the large z limit. To do so,
we will be using an inclusive kT-type jet algorithm [40–43]. We need to introduce the
collinear-soft mode, as described above, and we implement boosted heavy quark effective
theory to describe the interactions of the heavy quark with these collinear-soft interactions.
(Details about the construction of boosted heavy quark effective theory can be found in
appendix A.) In section 3 we calculate the next-to-leading order heavy quark FFJ in the
large z limit, resumming the large logarithms of R and 1−z. In section 4 we investigate the
fragmentation of a heavy quark fragmenting to a groomed jet. This allows us, in section 5,
to combine our results above to calculate the heavy quark fragmentation function to a
groomed jet, again resumming the large logarithms involved. As an example, we calculate
the e+e− cross section to a heavy quark jet near threshold, comparing the groomed and
ungroomed results. Finally, we conclude in section 6. There is also a brief discussion of
profile functions in appendix B.

2 Factorization of the heavy quark FFJ in the large z limit

If we consider a jet with a small radius (R), the relevant dynamics are in general described
by collinear interactions. Thus, the fragmenting process to a jet from a heavy quark can
be properly studied using the framework of SCET, more specifically SCETM [44–46]. For
this paper, we will consider the case EJ � m, but for now to be as generic as possible we
will not set a hierarchy between R and m/EJ , where m is the heavy quark mass. Using
SCET, we can express the fragmentation function to a jet (FFJ) initiated by a heavy quark
in D (= 4− 2ε) dimension as [6]

DJ/Q(z;EJR′,m, µ) =
∑
X

1
2Ncz

∫
dD−2p⊥J Tr〈0|δ

(
p+
J

z
− P+

)
δ(D−2)(P⊥)n/2 ΨQ

n

× |J(p+
J ,p

⊥
J )X/∈J〉〈J(p+

J ,p
⊥
J )X/∈J |Ψ̄Q

n |0〉, (2.1)

where Nc is the number of colors and Q denotes the heavy quark. X/∈J are the final states
that are not contained within the observed jet J . pJ is the momentum of the jet J , which
can be depicted as an n-collinear object. This means the jet momentum can be decomposed
and power-counted as

pµJ = (n · pJ ,p⊥J , n · p) = (p+
J ,p

⊥
J , p

−
J ) ∼ EJ(1, R,R2), (2.2)
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where n and n are the lightcone vectors normalized to n · n = 2, and p+
J is approximately

p+
J ≈ 2EJ . ΨQ

n = W †nξ
Q
n is the gauge invariant massive collinear field, where Wn is the

collinear Wilson line.
When we calculate the heavy quark FFJ at one loop, we will employ an inclusive

kT-type jet algorithm, which at this order covers kT [40, 41], C/A [42], and anti-kT [43]
algorithms. Under the algorithm, when two particles are merged into a jet at one loop,
their opening angle θ should satisfy

θ < R′. (2.3)

Here R′ = R for e+e− annihilation, and R′ = R/ cosh y for hadron collision, where y is
the rapidity of the jet relative to the hadron beam direction. For a parton splitting with
momenta q → p+ k, the phase space constraint from eq. (2.3) is

tan2 R
′

2 >
q2

+k2
⊥

p2
+k

2
+
, (q⊥ = 0), (2.4)

tan2 R
′

2 >
k2
⊥
k2

+
, (p⊥ = 0), (2.5)

depending on which frame we choose. These constraints apply not only to massless partons,
but also to massive partons as long as the parton masses are much smaller than their
energies.

The splitting and fragmenting processes in eq. (2.1), have been studied in ref. [6] for
the full range of z. At one loop the splitting of a heavy quark to a jet is divided into two
processes, Q→ JQ + g and Q→ Jg +Q, where Ji denotes the jet containing the parton i.
The renormalization behavior for each process satisfies the well known DGLAP evolution.

If we focus on the region where z is close to 1, the process Q→ Jg +Q is suppressed
by 1 − z. Therefore the fragmenting function can be described by the dominant process
Q→ JQ+g. In this case the jet JQ takes most of the energy of the mother parton Q, while
radiation out of the jet will be carried by gluons with energy ∼ EJ(1 − z). Furthermore,
these gluons need to be sensitive to the jet boundary restricted by small jet radius R. Thus
in SCET these gluons can be considered to be quanta of a collinear-soft (csoft) field [30, 31],
with momenta schematically given by

pcs = (p+
cs, p

⊥
cs, p

−
cs) ∼ (1− z)EJ(1, R,R2). (2.6)

Therefore, in order to properly describe the heavy quark FFJ in the large z limit, we
need to separate csoft interactions from collinear interactions. Note that collinear parton
radiations are still allowed inside the jet, but radiations outside the jet are carried out
solely by csoft gluons. As a result, similar to with the massless parton case [20], the heavy
quark FFJ can be factorized into the collinear and the csoft parts as z goes to 1.

2.1 Integrated heavy quark jet function

Since the collinear radiations reside only inside the jet, their contribution to the heavy quark
FFJ can be obtained from integrating the collinear interactions out to the jet boundary in
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the phase space. We will call it the integrated heavy quark jet function (iHQJF), for which
the detailed one-loop calculation can be found in ref. [6]. The bare one-loop result is

JQ(EJR′,m, µ) = 1 + αsCF
2π

[
1
ε2

+ 1
ε

(
ln µ2

E2
JR
′2 +m2 + 3 + b

2(1 + b)

)
+ 1

2 ln µ2

E2
JR
′2 +m2

+ 1
1 + b

(
ln µ2

E2
JR
′2 + 2

)
+ 1

2 ln2 µ2

E2
JR
′2 +m2 −

1
2 ln2(1 + b)

+ f(b) + g(b)− Li2(−b) + 2− π2

12

]
. (2.7)

Here the 1/ε poles are all ultraviolet (UV) divergences, b ≡ m2/(E2
JR
′2), and the functions

f(b) and g(b) are defined by the following integrals:

f(b) =
∫ 1

0
dz

1 + z2

1− z ln z
2 + b

1 + b
, (2.8)

g(b) =
∫ 1

0
dz

2z
1− z

(
1

1 + b
− z2

z2 + b

)
. (2.9)

If we take the limit m→ 0, eq. (2.7) reduces to the result for a massless quark [47–50]

Jq(EJR′, µ) = 1 + αsCF
2π

[
1
ε2

+ 1
ε

(
ln µ2

E2
JR
′2 + 3

2

)
+ 3

2 ln µ2

E2
JR
′2

+ 1
2 ln2 µ2

E2
JR
′2 + 13

2 −
3π2

4

]
. (2.10)

Comparing JQ with the massless case Jq, one may wonder how the UV poles of
JQ in eq. (2.7) could depend on the heavy quark mass. Usually a finite quark mass in
the amplitude would be irrelevant as the energy or momentum transfer becomes infinite.
In order to understand this, we need to keep in mind that the integrated jet functions
can only be properly obtained after the zero-bin subtraction [51]. In the naive collinear
calculation for JQ, the poles that depend on the heavy quark mass are present as infrared
(IR) divergences. However, when contributions from the zero-bin mode are subtracted to
avoid double counting, these IR poles are cancelled and are all converted to UV poles due
to the so-called pull-up mechanism. See ref. [51] for complete details.

In figure 1(a), we show an example Feynman diagram that contributes to the real
radiation in calculating iHQJF. The gluon coming from the heavy quark radiates inside
the jet and has collinear scaling: kµ ∼ Q(1, λ, λ2), where Q ∼ EJ and λ ∼ R ∼ m/Q.
We see that iHQJF is obtained from integrating out the collinear radiation and it can be
regarded as a Wilson coefficient when matched onto the lower energy effective theory with
csoft interactions. Therefore, in order to obtain the correct contribution to iHQJF from
figure 1(a), we need to subtract the zero-bin contribution of figure 1(b), where the gluon
carries a csoft momentum scaling kµ ∼ Qη(1, λ, λ2). Here η is a new small parameter
comparable to 1− z when we investigate the threshold region in the large z limit.
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(a) (b)

p+ k
<latexit sha1_base64="apvFD8ZfKeXrpeGT3Ze/ZPTaeXo="></latexit>

p
<latexit sha1_base64="qP0gBiZaOw77ydC5cjYF/58HRN0="></latexit>

k
<latexit sha1_base64="FPsLLWqRJrLenCQBDOK8T9lH724="></latexit>

p+ k
<latexit sha1_base64="apvFD8ZfKeXrpeGT3Ze/ZPTaeXo="></latexit>

p
<latexit sha1_base64="qP0gBiZaOw77ydC5cjYF/58HRN0="></latexit>

k
<latexit sha1_base64="FPsLLWqRJrLenCQBDOK8T9lH724="></latexit>

W †
n

<latexit sha1_base64="sQNR2mhCOBF8EBOOhgub2fy5sqA="></latexit>

Wn
<latexit sha1_base64="9gMWOzUSH22bJpkRgBONE+6uu3k="></latexit>

kµ = (k+, k?, k�) ⇠ Q(1,�,�2)
<latexit sha1_base64="XCU80AcK3f38tda3eqpLmS3PEYg=">AAAF83icdZTNbhMxEMfd0kAJXy0cuSxElVpRSrYqKhekCi4cU4l+SNk0mvU6qRXba2xvIGz3SRAX1CtPwRUegLfBTjYl620dxTua/88z/hg7loxq027/XVq+tdK4fWf1bvPe/QcPH62tPz7WaaYwOcIpS9VpDJowKsiRoYaRU6kI8JiRk3j03uknY6I0TcVHM5Gkx2Eo6IBiMNbVX9sfneURz4q3m6P+i+1RP48kUbKw1sutINKUB4eb4XbEbMQE5t+z3a3+Wqu90562oG6EpdFCZev011cuoyTFGSfCYAZad8O2NL0clKGYkaIZZZpIwCMYkq41BXCie/l0hUWwYT1JMEiV/QsTTL2LI3LgWk94bEkO5lz7mnNep3UzM3jTy6mQmSECzxINMhaYNHDbFSRUEWzYxBqAFbVzDfA5KMDGbmqzkobq1KTSrmRj0SuB2a0WqecmGSNqzD2vm5+Erz4sv7hV68LmE+QzTjkHkeTRgOuiG/byvBUW0TP3e1XUCOYhdYjjwnY2MwbmS6qUFPeVzv9Beafw1JgUrhtSkZNP2bTUfIQ4hFjrJiAmsBBEgFIwqQeBqyjXE+m4cB1R7oJ4mizKaq+6ExczgeGQKE8RC7Hy2oSFkwe2NKb7XiWLfLeOV3lxHRSXxxfFA3eEdRmm+sUVcFEjZDXC/IbXOT/UnKyFnFVdFKcscXcuZVPch67yVrEb8ifabTrVksFEmwnzz0qI2AIiFRmPa+cCbjAweQ597VeIdJrtKbMlVtXGM3EMaq4HTfuuhf4rVjeOd3fCvZ3Xh3utg3flC7eKnqLnaBOFaB8doA+og44QRt/RL/Qb/WlkjW+NH43LGbq8VI55giqt8fMfkP8nDQ==</latexit>

kµ ⇠ Q⌘(1,�,�2)
<latexit sha1_base64="Jzoz1dyhz9LZNi+JivTgvwsZ7j0="></latexit>

Figure 1. (a) One sample Feynman diagram for real gluon radiation contributing to the integrated
heavy quark jet function. Diagram (b) corresponds to the zero-bin contribution to the diagram (a).
Dotted lines indicate unitary cuts where particles are on-shell.

To see the divergence structure of figure 1(a), we compute

Ma = 2πg2
sCFµ

2ε
MS

∫ 1

0

dx

1− x

∫
ΩIn

dDk

(2π)D δ
(

x

1− xp+ − k+

) (p+ k)+
(p+ k)2 −m2

2p+
k+

δ(k2)

= αsCF
2π

(µ2eγE )ε

Γ(1− ε)

∫ 1

0
dx

1− x
x

∫ x2(1−x)2E2
JR

′2

0

dk2
⊥(k2

⊥)−ε

k2
⊥ + x2m2 , (2.11)

where 4πµ2
MS

= µ2eγE , and p and k are on-shell momenta of the heavy quark and the
gluon, respectively. x is the large momentum fraction of the gluon over the jet momentum,
x = k+/(p+ k)+ = k+/(2EJ). In the first equality of eq. (2.11), ΩIn represents the phase
space inside a jet. We have chosen the frame pJ⊥ = p⊥ + k⊥ = 0, so we employed the
phase space constraint shown in eq. (2.4). As can be seen from the second equality of
eq. (2.11), the collinear IR divergence from k2

⊥ → 0 does not appear due to the presence
of the heavy quark mass. However, the soft IR divergence that happens as x → 0 is still
presents and is regularized in dimensional regularization as a pole in ε,

Ma = αsCF
2π

[
−1

2 ln 1 + b

b

(
1
εIR
− ln µ2

E2
JR
′2

)
+ · · ·

]
, (2.12)

where we suppressed other finite terms. It makes sense that the pole is IR since the energy
of the collinear gluon is limited by the jet energy and cannot grow infinitely large.

When considering the zero-bin contribution, notice that the radiated csoft gluon does
not depend on the jet energy. Hence, within the zero-bin, its energy is unlimited and can
freely grow to infinity, although it can be regarded to be much smaller than the heavy
quark energy. Taking these into account, we compute the diagram of figure 1(b),

Mb = 2πg2
sCFµ

2ε
MS

∫ ∞
0

dx

∫
ΩIn

dDk

(2π)D δ(xp+ − k+) p+
(p+ k)2 −m2

2p+
k+

δ(k2)

= αsCF
2π

(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dx

x

∫ x2E2
JR

′2

0

dk2
⊥(k2

⊥)−ε

k2
⊥ + x2m2 . (2.13)
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Here the denominator of the heavy quark propagator with off-shell momentum p + k has
been approximated as1

(p+ k)2 −m2 = k2 + 2p · k ≈ 2p · k, (2.14)

since k2 ∼ Q2η2λ2 is power-suppressed by η when compared with 2p · k. For the real
radiation shown in figure 1(b), eq. (2.14) is expressed as

2p · k ≈ p+k− + p−k+ = 1
x

(k2
⊥ + x2m2), (2.15)

where we have used p⊥ = 0 due to pJ⊥ = 0 = p⊥ + k⊥ ∼ p⊥ in our chosen frame. Then
we use the on-shell conditions: p− = m2/p+ and k− = k2

⊥/k+. In the power counting of
eq. (2.15), k2

⊥ and x2m2 are the same order, O(η2λ2).
Finally, eq. (2.13) has the result

Mb = αsCF
4π ln 1 + b

b

( 1
εUV
− 1
εIR

)
. (2.16)

In obtaining eq. (2.16), we separated UV and IR poles in the integration of x as∫ ∞
0

dx x−1−ε = 1
εUV
− 1
εIR

. (2.17)

Therefore, while the real contribution of figure 1 was originally IR-divergent, the pole can
be converted to be UV after the zero-bin subtraction:

Ma −Mb = αsCF
2π

[
−1

2 ln 1 + b

b

(
1
εUV
− ln µ2

E2
JR
′2

)
+ · · ·

]
. (2.18)

Similar conversions by the zero-bin subtraction works for the other real radiation as well
as the virtual contributions. As a result we obtain eq. (2.7), which only has genuinely UV
divergences.

2.2 Description of the heavy quark csoft interactions using boosted heavy
quark effective theory

In section 2.1 we saw that the iHQJF is the result of integrating out collinear interactions
of the heavy quark and the matching coefficient onto the lower energy theory with csoft
interactions. The zero-bin contribution to iHQJF that needs to be subtracted can be
interpreted as a contribution contained in the lower energy effective theory. As seen from
eq. (2.14), when the (boosted) heavy quark interacts with a csoft gluon, the denominator
of the heavy quark propagator can be approximated as 2p · k. In this case the on-shell
heavy quark momentum p can be written as mv since the heavy quark velocity v does not
change under the csoft interaction. Therefore, the denominator is proportional to v ·k, and

1For real gluon radiation, the relation, (p + k)2−m2 = 2p · k, is satisfied even if k is collinear. However,
for the virtual radiation, the relation (approximately) holds only when k is a csoft momentum. So, as long
as k is csoft, this relation always holds, whether k is on-shell or not.
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it indicates that the lower energy effective theory for the boosted heavy quark with csoft
interactions should be the boosted heavy quark effective theory (bHQET).

Since we describe the boosted heavy quark as an n-collinear particle, the velocity v is
also n-collinear. In general, whether the heavy quark is on-shell or not, the momentum
under csoft interactions can be written as

pµ = mvµ + kµ, (2.19)

where kµ is a residual csoft momentum. The velocity v has scaling vµ = (v+, v⊥, v−) ∼
(1/λ, 1, λ), where λ ∼ m/p+. If we choose the frame with v⊥ = 0, the velocity v can be
simply written as

vµ = v+
nµ

2 + v−
nµ

2 = v+
nµ

2 + 1
v+

nµ

2 . (2.20)

In the second equality, v− has been rewritten as 1/v+ using v2 = v+v− = 1.
To describe collinear interactions of the heavy quark, we already employed the effective

theory SCETM. We thus want to directly match SCETM onto bHEQT, integrating out
collinear interactions. For this, we match the collinear quark field in SCETM onto the
bHQET field,

ξn(x) =
√
v+
2 e−imv·xhn(x). (2.21)

Note that the bHQET field hn shares the same spinor property as ξn, satisfying

n/hn = 0, n/n/

4 hn = hn. (2.22)

This has the advantage that the power counting on the large energy in SCETM remains
true at the lower scale.

In SCETM, if we separate csoft interactions from collinear interactions, the covariant
derivative needs to be written as

iDµ = iDµ
c + iDµ

cs, (2.23)

where the csoft derivative iDµ
cs is suppressed by η, and thus does not give a leading con-

tribution in SCETM. At an energy scale lower than a typical scale for SCETM, collinear
gluons are not present, and iDµ

c in eq. (2.23) becomes the derivative operator Pµ that picks
up the frozen collinear heavy quark momentum,

iDµ → Pµ + iDµ
cs. (2.24)

In constructing bHQET from the SCETM Lagrangian using eq. (2.21), Pµ returns mvµ,
and hence iDµ in eq. (2.23) can be expressed as mvµ+iDµ

cs. The details of constructing the
bHQET Lagrangian is shown in appendix A. The leading bHQET Lagrangian employing
hn is

L(0)
bHQET = h̄nv · iD

n/

2hn, (2.25)

where we denoted the csoft derivative as iDµ, dropping the subscript for simplicity.
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Since the standard HQET Lagrangian,

L(0)
HQET = h̄vv · iDhv, (2.26)

has a boost invariance, it can be successfully applied to describe csoft interactions of the
boosted heavy quark [2, 52]. Actually we find that leading results using bHQET are the
standard results of HQET. For example, the field strength renormalization and the residue
for hn at one loop are the same ones for hv,

Zh = 1 + αsCF
2π

1
εUV

, Rh = 1− αsCF
2π

1
εIR

. (2.27)

So we might interpret bHQET as describing the boosted heavy quark interactions using
the dominant portion (hn) of the full spinor (hv). The relation between hn and hv has
been concretely considered in appendix A.

Employing bHQET introduced in eq. (2.25), we can describe the heavy quark FFJ
in the large z limit. For this, we first integrate out collinear interactions and obtain the
iHQJF, whose one-loop result was shown in eq. (2.7). Then the heavy quark FFJ in eq. (2.1)
is matched onto the following csoft function:

SJ/Q(z;EJR′,m, µ) =
∑
Xcs

1
2Nc

Trv+
2 〈0| δ

(
(1− z)p+

J − i∂+
)
Y cs†
n hn |J(p+

J ,p
⊥
J = 0)Xcs

/∈J〉

×〈J(p+
J ,p

⊥
J = 0)Xcs

/∈J | h̄nY
cs
n

n/

2 |0〉, (2.28)

where i∂+ in the argument of delta function returns the csoft momentum of the parton that
is not involved in the jet J . In matching from eq. (2.1), eq. (2.21) has been applied, andWn

has been replaced with Y cs
n . The dominant velocity component v+ can be approximated

as p+
J /m.
Finally, for the heavy quark FFJ in the large z region, we have the following factor-

ization:
DJ/Q(z → 1;EJR′,m, µ) = JQ(EJR′,m, µ)SJ/Q(z;EJR′,m, µ). (2.29)

As we will see from the next-to-leading order (NLO) result of SJ/Q in the next section,
the typical csoft scale needed to minimize logarithms in SJ/Q is given by µcs ∼ (1 −
z)
√

(EJR′)2 +m2. So, through renormalization group (RG) evolution of the csoft function
from the csoft scale to the collinear scale µc ∼

√
(EJR′)2 +m2, we will be able to resum

large logarithms of 1− z near threshold.
If we consider the next-to-next-to-leading order in αs, we may have effects from the

csoft gluons that are decoupled from the collinear gluons that form the heavy quark jet.
Since the collinear gluon radiates in the limited phase space constrained by the jet bound-
ary, the decoupled csoft gluons would give additional contributions to the csoft function
in eq. (2.28) and generate large nonglobal logarithms [53, 54]. Resumming the nonglobal
logarithms related to the heavy quark jet is beyond the scope of this paper,2 and here
we will focus on the resummation of the ‘global’ large logarithms of 1 − z using the csoft
function defined in eq. (2.28).

2For a recent study of the nonglobal logarithms on the heavy quark, we refer to ref. [55].
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(a) (c)(b)

Figure 2. Feynman diagrams for the one-loop calculation of the csoft function SJ/Q. Double lines
denote the bHQET field hn, and k is a csoft momentum. Virtual diagram (a) and real radiation
diagram (b) have hermitian conjugate mirror diagrams.

3 NLO results of the heavy quark FFJ in the large z limit and the
resummation of large logarithms

3.1 NLO calculation for the csoft function SJ/Q

We first show that the tree level result of the csoft function, S(0)
J/Q, has been normalized to

δ(1− z). At tree level, eq. (2.28) becomes

S
(0)
J/Q(z) = 1

2Nc

∑
s

Trv+
2 〈0| δ

(
(1− z)p+

J

)
hn |Qs(p+

J )〉〈Qs(p+
J )| h̄n

n/

2 |0〉, (3.1)

where v+ = p+
J /m and Qs denotes the heavy quark with spin s. Since the spin sum for the

collinear (heavy) quark in SCETM is given by

∑
s

ξn|Qs(p+)〉〈Qs(p+)|ξ̄n = p+
n/

2 , (3.2)

using eq. (2.21), we obtain the result for the heavy quark in bHQET

∑
s

hn|Qs(p+)〉〈Qs(p+)|h̄n = 2mn/

2 = mn/. (3.3)

Inserting eq. (3.3) into eq. (3.1), we obtain LO result,

S
(0)
J/Q(z) = 1

2 ·
v+
2
δ(1− z)
p+
J

Tr mn/n/2 = δ(1− z). (3.4)

We show the Feynman diagrams needed for the one-loop calculation of the csoft func-
tion SJ/Q in figure 2. The virtual contribution shown in figure 2(a) is

Ma =Ma · δ(1− z) = ig2
sCFµ

2ε
MS

∫
dDk

(2π)D
v+

(k2 + iε)(−v · k + iε)k+

δ(1− z)
p+
J

. (3.5)

Since we are working in a frame where p⊥J = 0, we have v⊥ = 0, and v · k is given by

v · k = 1
2

(
v+k− + k+

v+

)
= 1

2

(
p+
J

m
k− + m

p+
J

k+

)
. (3.6)

– 10 –



J
H
E
P
0
9
(
2
0
2
1
)
1
4
8

After integrating over k− in eq. (3.5), we obtain

Ma = −αsCF2π
(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dk+
k+

∫ ∞
0

dk2
⊥

(k2
⊥)−ε

k2
⊥ +m2k2

+/p
+2
J

= −αsCF2π eγE Γ(ε)
(
µ2

m2

)ε ∫ ∞
0

dxx−1−2ε, (3.7)

where x ≡ k+/p
+
J , and the Γ(ε) regularizes the UV divergence. The IR pole for x = 0

present in the remaining x integral is problematic, since it cannot be regularized as 1/εIR
because it overlaps with the UV divergence. However, it will cancel when combined with
the real radiation contribution, as we will see.

Diagrams (b) and (c) in figure 2 are contributions from real radiations, each of which
can be separated into ‘in-jet’ and ‘out-jet’ contributions. For the in-jet contribution, the
csoft gluon satisfies the jet criterion, θ < R′, from eq. (2.3). On the other hand, the
radiation from the out-jet does not satisfy this constraint. The phase space constraints for
the jet criterion were introduced in eqs. (2.4) and (2.5), depending on our choice of frame.
When a csoft gluon radiates, both can be simplified to

k2
⊥ < k2

+ tan2 R
′

2 ∼ k
2
+
R′2

4 . (3.8)

The contribution from diagram (b) is

Mb = αsCF
2π

(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dk+
p+
J

k+
δ
(
(1− z)p+

J −Θ(θ −R′)k+
) ∫ ∞

0

dk2
⊥(k2

⊥)−ε

k2
⊥ +m2k2

+/p
+2
J

,

(3.9)
where Θ is the step function that returns 1 for the out-jet contribution. The in-jet contri-
bution is proportional to δ(1− z). We can thus separate the contributions from Mb into

Mb(z) =Min
b · δ(1− z) +Mout

b (z). (3.10)

HereMin
b is

Min
b = αsCF

2π
(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dx

x

∫ x2E2
JR

′2

0

dk2
⊥(k2

⊥)−ε

k2
⊥ + x2m2 , (3.11)

where x = k+/p
+
J and xEJR′ = k+R

′/2. The out-jet contribution Mout
b can be extracted

from eq. (3.9),

Mout
b (z) = αsCF

2π
(µ2eγE )ε

Γ(1− ε)
1

1− z

∫ ∞
(1−z)2E2

JR
′2

dk2
⊥(k2

⊥)−ε

k2
⊥ + (1− z)2m2 , (3.12)

where the large component of the csoft momentum, k+, is given by (1 − z)p+
J . eq. (3.12)

has an IR divergence as z goes to 1. In order to isolate the pole, we can employ the plus
distribution

Mout
b (z) =

[∫ 1

0
dz′Mout

b (z′)
]
δ(1− z) +

[
Mout
b (z)

]
+
. (3.13)
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The term with an integral can be written as

Mout
b ≡

∫ 1

0
dzMout

b (z) = αsCF
2π

(µ2eγE )ε

Γ(1− ε)

∫ 1

0

dx

x

∫ ∞
x2E2

JR
′2

dk2
⊥(k2

⊥)−ε

k2
⊥ + x2m2 , (3.14)

where we have replaced 1 − z with x. eq. (3.14) can be combined with eq. (3.11), since
both are multiplied by the δ(1− z), and can be reorganized to be

Min
b +Mout

b = αsCF
2π

(µ2eγE )ε

Γ(1− ε)

{∫ 1

0

dx

x

∫ ∞
0

dk2
⊥(k2

⊥)−ε

k2
⊥ + x2m2 +

∫ ∞
1

dx

x

∫ x2E2
JR

′2

0

dk2
⊥(k2

⊥)−ε

k2
⊥ + x2m2

}
≡ MA

b +MB
b , (3.15)

whereMA
b (MB

b ) corresponds to the first (second) term on the right-hand side of the first
equality.

Note that MA
b has the same problematic pole (for x = 0) that couples to the UV

divergence that was in eq. (3.7). It cancels in the sumMa +MA
b , resulting in

Ma +MA
b = −αsCF2π eγE Γ(ε)

(
µ2

m2

)ε ∫ ∞
1

dxx−1−2ε

= −αsCF2π

[
1

2ε2 + 1
2ε ln µ2

m2 + 1
4 ln2 µ

2

m2 + π2

24

]
. (3.16)

Here the 1/ε poles are all UV divergences. The calculation of remaining parts of Mb is
straightforward, and they only have UV divergences. We obtainMB

b in eq. (3.15),

MB
b = αsCF

2π

[
1
2 ln 1 + b

b

(
1
ε

+ ln µ2

E2
JR
′2

)
+ π2

12 + 1
4 ln2 b+ 1

2Li2(−b)
]
, (3.17)

where b = m2/(EJR′)2. Finally, [Mout
b (z)]+ in eq. (3.13) is[

Mout
b (z)

]
+

= αsCF
2π

[
1

1− z

(
1
ε

+ ln µ2

(E2
JR
′2 +m2)(1− z)2

)]
+
. (3.18)

Moving on to the contribution of the diagram (c) in figure 2, which is

Mc = −αsCF
π

(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dk+
k+

p+
J

δ
(
(1− z)p+

J −Θ(θ −R′)k+
)

× m2
∫ ∞

0

dk2
⊥(k2

⊥)−ε

(k2
⊥ +m2k2

+/p
+2
J )2 . (3.19)

Again, Mc can be divided into in-jet and out-jet contributions,

Mc(z) =Min
c · δ(1− z) +Mout

c (z) =
[
Min

c +Mout
c

]
δ(1− z) +

[
Mout
c (z)

]
+
, (3.20)

where Mout
c =

∫ 1
0 dzM

out
c (z). After a brief computation we can again reorganize Min

c +
Mout

c , giving

Min
c +Mout

c = −αsCF
π

(µ2eγE )ε

Γ(1− ε)m
2
[∫ 1

0
dxx

∫ ∞
0

dk2
⊥(k2

⊥)−ε

(k2
⊥ + x2m2)2

+
∫ ∞

1
dxx

∫ x2E2
JR

′2

0

dk2
⊥(k2

⊥)−ε

(k2
⊥ + x2m2)2

]
, (3.21)
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where the first term in the square brackets has an IR divergence as x→ 0 and the second
has a UV divergence as x → ∞. The IR divergence is removed by cancelling against
the residue for the external heavy quark field. Including the one-loop results of the field
strength renormalization and the residue for hn in eq. (3.21), we obtain an IR finite result,

Min
c +Mout

c +Z(1)
h +R(1)

h = αsCF
2π

[
b

1 + b

(
1
ε

+ ln µ2

E2
JR
′2 +m2

)
− 1

1 + b
ln 1 + b

b

]
, (3.22)

where the renormalization Zh and the residue Rh are given in eq. (2.27).
[
Mout
c (z)

]
+ in

eq. (3.20) is straightforwardly calculated to be[
Mout
c (z)

]
+

= −αsCF2π
2b

1 + b

1
(1− z)+

. (3.23)

We have now computed all the ingredients for one-loop calculation of the csoft function
SJ/Q. The bare one-loop result is

S
(1)
J/Q(z) = 2(Ma +Mb) +Mc + (Z(1)

h +R
(1)
h )δ(1− z)

=
[
2(Ma +Min

b +Mout
b ) +Min

c +Mout
c + Z

(1)
h +R

(1)
h

]
δ(1− z)

+2
[
Mout
b (z)

]
+

+
[
Mout
c (z)

]
+

= αsCF
2π

{
δ(1− z)

[
− 1
ε2
− 1
ε

ln µ2

E2
JR
′2 +m2 + b

1 + b

(
1
ε

+ ln µ2

E2
JR
′2 +m2

)

−1
2 ln2 µ2

E2
JR
′2 +m2 −

1
1 + b

ln(1 + b) + 1
2 ln2(1 + b) + π2

12 + Li2(−b)
]

[
2

1− z

(
1
ε

+ ln µ2

(E2
JR
′2 +m2)(1− z)2 −

b

1 + b

)]
+

}
, (3.24)

where the 1/ε poles are all UV divergences. When we take the massless limit, m →
0 (equivalent to b → 0), we find eq. (3.24) is finite and recovers the result of the csoft
function for the jet with a light quark calculated in ref. [20]. So, just like JQ in eq. (2.7),
we can interpret SJ/Q in eq. (3.24) as the resummed result containing all of the O(m/EJR′)
contributions when we consider the limit EJR′ � m.

3.2 RG evolution of the heavy quark FFJ for resummation of large logarithms

In section 2 we discussed the factorization of the heavy quark FFJ in the large z limit. As
shown in eq. (2.29), the FFJ can be factorized into the iHQJF JQ and the csoft function
SJ/Q. Their NLO renormalized results are respectively

JQ(EJR′,m, µ) = 1 + αsCF
2π

[
3 + b

2(1 + b) ln µ2

B2 + 1
2 ln2 µ

2

B2 + 1
1 + b

(2 + ln(1 + b))

− 1
2 ln2(1 + b) + f(b) + g(b)− Li2(−b) + 2− π2

12

]
, (3.25)
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SJ/Q(z;EJR′,m, µ) = δ(1− z) + αsCF
2π

{
δ(1− z)

[
b

1 + b
ln µ2

B2 −
1
2 ln2 µ

2

B2 + π2

12

− 1
1 + b

ln(1 + b) + 1
2 ln2(1 + b) + Li2(−b)

]

+
[

2
1− z

(
ln µ2

B2(1− z)2 −
b

1 + b

)]
+

}
, (3.26)

where B2 ≡ E2
JR
′2 +m2, and f(b) and g(b) are defined in eqs. (2.8) and (2.9) respectively.

In the limit z → 1, it is useful to take the Mellin transform of SJ/Q and express the
result in the large N limit. The result is

S̃(N̄ ;EJR′,m, µ) =
∫ 1

0
dzz−1+NSJ/Q(z;EJR′,m, µ)

∣∣∣
N→∞

= 1 + αsCF
2π

[
b

1 + b
ln µ

2N̄2

B2 − 1
2 ln2 µ

2N̄2

B2 − π2

4

− 1
1 + b

ln(1 + b) + 1
2 ln2(1 + b) + Li2(−b)

]
, (3.27)

where N̄ ≡ NeγE , and the scaling of large N is comparable with 1/(1 − z). So we easily
see that the typical csoft scale needed to minimize large logarithms in SJ/Q is given by
µcs ∼ B(1− z).

The function JQ and S̃J/Q satisfies the following RG equations

d

d lnµf = γf · f, f = JQ, S̃J/Q, (3.28)

where, to next-to-leading logarithmic (NLL) accuracy, the anomalous dimensions are
given by

γJ = ΓC ln µ2

B2 + γ̂J , (3.29)

γS = −ΓC ln µ
2N̄2

B2 + γ̂S , (3.30)

with ΓC being the cusp anomalous dimension [56, 57], which can be expanded as ΓC =∑
k=0 Γk(αs/4π)k+1. To NLL accuracy, we use its first two coefficients, given by

Γ0 = 4CF , Γ1 = 4CF

[(
67
9 −

π2

3

)
CA −

10
9 nf

]
. (3.31)

γ̂J ,S in eqs. (3.29) and (3.30) are the non-cusp parts of the anomalous dimensions. For
NLL accuracy, we use the leading (one-loop) results,

γ̂
(0)
J = αsCF

2π
3 + b

1 + b
, γ̂

(0)
S = αsCF

2π
2b

1 + b
. (3.32)
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Note that the heavy quark FFJ, DJ/Q(z → 1, µ) = JQ(µ)SJ/Q(z, µ), is scale-dependent
and follows DGLAP evolution. This can be seen by combining the leading results of γJ
and γS (at one loop), which has the result

γ
(0)
J + γ

(0)
S = αsCF

π

(3
2 − 2 ln N̄

)
, (3.33)

which is the moment of the anomalous dimension for DGLAP evolution in the large N
limit.

Solving the RG equations in eq. (3.28), we can relate the factorized functions at the
factorization scale µf to the functions at their natural scales, µc and µcs, which minimize
the logarithmic terms in JQ and SJ/Q respectively. Here the typical collinear scale for JQ
is given by µc ∼ B and the csoft scale for SJ/Q is µcs ∼ B(1 − z). Finally, after taking
the inverse Mellin transform on S̃J/Q, we obtain the following RG evolution result of the
heavy quark FFJ:

DJ/Q(z → 1;EJR′,m, µf ) = JQ(EJR′,m, µf )SJ/Q(z;EJR′,m, µf )

= exp[M(µf , µc, µcs)]JQ(EJR′,m, µc)(1− z)−1+η

×S̃J/Q

[
ln µ2

cs
B2(1− z)2 − 2∂η

]
e−γEη

Γ(η) . (3.34)

This result automatically resums large logarithms of 1− z, and resums large logarithms of
small R if the factorization scale is given by µf ∼ EJ .

In eq. (3.34) the argument L of S̃J/Q[L] represents the logarithmic term in eq. (3.27).
In performing the inverse Mellin transform, the ln N̄ in eq. (3.27) can be converted to
−∂η [58, 59]. We then used the relation

S̃J/Q

[
ln µ

2
cs
B2 − 2∂η

]
(1− z)−1+η e

−γEη

Γ(η) = (1− z)−1+ηS̃J/Q

[
ln µ2

cs
B2(1− z)2 − 2∂η

]
e−γEη

Γ(η) .

(3.35)
The NLL exponentiation factorM in eq. (3.34) is

M(µf , µc, µcs) = −2SΓ(µc, µcs)− ln µ2
c

B2aΓ(µc, µcs)

−CF
β0

[3 + b

1 + b
ln αs(µf )
αs(µc)

+ 2b
1 + b

ln αs(µf )
αs(µcs)

]
, (3.36)

where SΓ and aΓ are

SΓ(µ1, µ2) =
∫ α1

α2

dαs
b(αs)

ΓC(αs)
∫ αs

α1

dα′s
b(α′s)

, aΓ(µ1, µ2) =
∫ α1

α2

dαs
b(αs)

ΓC(αs). (3.37)

Here α1,2 ≡ αs(µ1,2), and b(αs) = dαs/d lnµ = −2αs
∑
k=0 βk(αs/4π)k+1 is the QCD beta

function with β0 in eq. (3.36) the leading coefficient. Finally the evolution parameter η in
eq. (3.34) is η = 2aΓ(µf , µcs), which is positive for µf > µcs.

In figure 3(a), we show the resummed results of the b quark FFJs near threshold for
e+e− annihilation at Z pole for various choices of the jet radius R (solid lines). The results
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Figure 3. The b quark FFJs near threshold for e+e− annihilation at Z pole. The maximal energy
for the heavy quark jet and the factorization scale for the FFJs are respectively Emax

J = mZ/2
and µf = mZ . In (a), the b quark FFJs with R = {0.1, 0.2, 0.4} are illustrated (solid lines) and
compared with the results in the massless limit (dashed lines), while (b) shows the variance of the
FFJs (with R = 0.4) for different choices of the factorization scale.

have the accuracy of NLL′, i.e., NLL in resummation plus NLO in the fixed order results.
As R increases, the FFJ becomes sharper and the distribution is populated in the region of
larger z. We also show these results in the massless limit (dashed lines). The inclusion of
the nonzero heavy quark mass significantly enhances the results compared to the massless
limit. In figure 3(b), we show the factorization scale (µf ) dependence of the FFJ, which
can cancel if we combine the FFJ with other factorized functions such as a hard function
and possibly jet functions in other directions.

Unless we employ the factorization into the collinear and csoft parts shown in eq. (2.29),
we cannot properly resum the large logarithms of 1−z. In this case, we may identify µc and
µcs as a jet scale µJ , and consider the following evolution from the jet scale to factorization
scale,

DJ/Q(z → 1;EJR′,m, µf ) = exp[M̃(µf , µJ)]DJ/Q(z → 1;EJR′,m, µJ). (3.38)

Here the exponentiation factor M̃ is given by eq. (3.36) with µc=µcs =µJ , i.e., M̃(µf , µJ)=
M(µf , µJ , µJ). The heavy quark FFJ follows the naive DGLAP evolution with the anoma-
lous dimension shown in eq. (3.33). We may select the jet scale µJ for the FFJ to be some
point between B and B(1− z). (However, any single choice of µJ cannot minimize all the
large logarithms in DJ/Q of eq. (3.38).) In figure 4, we illustrate the large uncertainties in
such cases, where the upper (lower) bounds of the gray bands denote the FFJ choosing the
jet scale as B (B(1− z)). Note that the scale choice of µJ = B makes the FFJ blow up as
z goes to one in both figure 4(a) and 4(b).

In figure 5, we have estimated errors due to variations of µc and µcs in the resummed
results, eq. (3.34). In obtaining the error bands in figure 5, we varied µc and µcs from
µ0
i(=c,cs)/2 to 2µ0

i respectively, where µ0
i are the default scales given by µ0

c = B and µ0
cs =

B(1 − z). As shown in figure 5(b), the errors for the top FFJ with µf = 2 TeV and
Emax
J = 1 TeV are remarkably small, which may be due to the smallness of αs at this very

high energy scale.
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Figure 4. Uncertainties (gray bands) arising from choosing the jet scales between B (the upper
bound) and B(1− z) (the lower bound) in (a) the b quark FFJ and (b) the top quark FFJ when we
employ the naive DGLAP evolution in eq. (3.38). The solid lines denote the properly resummed
results following eq. (3.34) based on the factorization shown in eq. (2.29).

Figure 5. The collinear and the csoft scale variations of the resummed results for (a) the b quark
and (b) the top FFJs as described in the paper. The solid lines in denote the results with the
default scales given by µc = B and µcs = B(1− z).

3.3 Heavy quark jet production near threshold from e+e− annihilation

When investigating heavy quark jets with small R from e+e− annihilation, the inclusive
jet cross section can be written using the following factorization theorem:

dσ

dx
= σ0

∫ 1

x

dz

z

[
HQ(z;Q2, µ)DJ/Q

(
x

z
;EJR,m, µ

)
+HQ̄(z;Q2, µ)DJ/Q̄

(
x

z
;EJR,m, µ

)]
= 2σ0

∫ 1

x

dz

z
HQ(z;Q2, µ)DJ/Q

(
x

z
;EJR,m, µ

)
, (3.39)

where σ0 is the Born-level scattering cross section and Q2 is the center of mass energy
squared of the electron and the positron. In obtaining the second equality we ignored any
charge asymmetry. x is the heavy quark jet energy fraction,

x = 2pJ · q
q2 = 2EJ

Q
∼ p+

J

Q
, (3.40)
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where q2 = Q2, with q being the momentum carried by the photon or Z boson. The hard
scattering contribution, HQ(z), is normalized to δ(1−z) at tree level, where z is the energy
fraction of the heavy quark. Since we will consider the Q� m limit, we can suppress the
heavy quark mass dependence in HQ(z).

Near threshold where x is close to 1, the heavy quark FFJ can be factorized into JQ
and SJ/Q as shown in eq. (2.29). Additionally, HQ(z) can also be factorized as [52, 60]

HQ(z;Q2, µ) = H(Q,µ)Jn(z;Q,µ). (3.41)

Here, the hard function H(Q) includes virtual hard interactions with fluctuations of Q2.
The inclusive jet function Jn(z) describes (hard-)collinear interaction in the opposite di-
rection of the heavy quark jet. The offshellness in Jn(z) is given by p2

X ∼ Q2(1 − z). To
NLO in αs, H(Q) and Jn(z) are

H(Q,µ) = 1 + αsCF
2π

(
−3 ln µ2

Q2 − ln2 µ
2

Q2 − 8 + 7π2

6

)
, (3.42)

Jn(z;Q,µ) = δ(1− z) + αsCF
2π

{
δ(1− z)

[
3
2 ln µ2

Q2 + ln2 µ
2

Q2 + 7
2 −

π2

2

]

−
[

1
1− z

(
2 ln µ2

Q2(1− z) + 3
2

)]
+

}
. (3.43)

Finally, inserting eqs. (2.29) and (3.41) into eq. (3.39), we obtain the factorization
theorem for the inclusive jet cross section near threshold

1
σ0

dσ

dx
= 2H(Q,µ)JQ(EJR′,m, µ)

∫ 1

x

dz

z
Jn(z;Q,µ)SJ/Q(z;EJR′,m, µ). (3.44)

Based on this factorization, large logarithms of R and 1−x can be simultaneously resummed
through RG evolutions of the factorized functions. The resummed result is

1
σ0

dσ

dx
= 2 exp[M(µh, µhc, µc, µcs)]H(Q,µh)JQ(EJR′,m, µc)(1− x)−1+η

×J̃n

[
ln µ2

hc

Q2(1− x) − ∂η

]
S̃J/Q

[
ln µ2

cs
B2(1− x)2 − 2∂η

]
e−γEη

Γ(η) , (3.45)

where µh ∼ Q and µhc ∼ Q(1−x)1/2 are the scales that minimize the large logarithms in H
and Jn, respectively. Note that the µ-dependence shown in eq. (3.44) is exactly cancelled
in this resummed result. The evolution parameter η is given by η = 2aΓ(µhc, µcs), which
is a positive quantity. J̃n is the Mellin transform of Jn, with the NLO result

J̃n[L] = 1 + αsCF
2π

(
3
2L+ L2 + 7

2 −
π2

3

)
. (3.46)

Finally, the exponentiation factorM in eq. (3.45) to NLL accuracy is

M(µh, µhc, µc, µcs) = 4SΓ(µh, µhc)− 2SΓ(µc, µcs) + 2aΓ(µh, µhc) ln µ2
h

Q2 − aΓ(µc, µcs) ln µ2
c

B2

−CF
β0

(
3 ln αs(µh)

αs(µhc)
+ 3 + b

1 + b
ln αs(µh)
αs(µc)

+ 2b
1 + b

ln αs(µh)
αs(µcs)

)
. (3.47)
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4 Heavy quark fragmentation to a groomed jet

As we have seen, the dominant contribution to the heavy quark FFJ comes from large
z region, and the (global) large logarithms of 1 − z in this region can be successfully
resummed through the factorization of the collinear and csoft contributions. But, if we
use a grooming procedure on the heavy quark jet in order to investigate its substructure,
the theoretical calculation of heavy quark fragmenting process can be severely modified
because some csoft gluon radiations inside the jet are removed in the grooming process. In
this and the following section, we consider a heavy quark fragmentation to a groomed jet
focusing on large z region. It will be interesting to see how much the grooming changes
the heavy quark FFJ in the large z region.

To be specific about the grooming procedure, we will consider soft drop [36]. For e+e−

annihilation it can be implemented as follows:

1. Decluster the jet j into two subjets j1 and j2 by undoing the last clustering process.

2. If the subjets satisfy the soft drop condition,

min(Ej1 , Ej2)
Ej1 + Ej2

> zcut

(
θ12
R

)β
, (4.1)

then take j to be the final soft-drop jet.

3. Otherwise redefine j to be the subjet with the larger energy and go back to step 1.

4. If j is a single particle or cannot be declustered further, we can either remove j

from the procedure (“the tagging mode”) or regard j as the final soft-drop jet (“the
grooming mode”).

Here we start with the ungroomed jet J with radius R defined by one of the kT-type
algorithms, and recluster the jet constituents into the subjets using the C/A algorithm.
θ12 is the angle between the two subjets. In hadron collision,3 we use pjT instead of Ej ,
and θ12 is replaced with ∆R =

√
∆y2 + ∆φ2. If we choose the limit where the angular

exponent β vanishes, the procedure becomes equivalent to the mMDT procedure [1]. So
the soft drop can be considered as a generalized mMDT procedure.

In eq. (4.1) the energy cut zcut is usually set to be zcut = 0.1, hence we will consider
the limit zcut � 1. As we apply soft drop to jets with small R, the parton or subjet that
fails to satisfy the soft drop criterion in eq. (4.1) can be regarded as csoft mode(s) in SCET.
If we have a single parton after declustering, we will keep it as a final groomed jet, i.e., we
adopt “the grooming mode”. Doing so we do not exclude any event, and it is adequate for
considering the fragmenting process to the jet.

3Since we apply the soft drop to a jet with small R, the groomed results do not modify hard interactions,
only the fragmenting processes. So our results on the heavy quark fragmenting processes in sections 4 and 5
can be immediately applied to hadron collisions with replacement EJ R→ pJ

T R.
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4.1 Heavy quark jet fragmentation function to a groomed jet

To begin, let us consider the probability for a groomed jet to take energy fraction zG
compared to the ungroomed jet energy EJ . We will call this probability function the “jet
fragmentation function (JFF) to a groomed jet”, which also provides useful information
on the energy loss when we groom a jet. The groomed jet energy differs from EJ only
when a radiated gluon inside the ungroomed jet has energy less than zcutEJ . Hence the
groomed jet energy fraction zG scales as ∼ 1 − zcut, and thus is close to 1. Therefore the
fragmenting process to the groomed jet from the ungroomed jet is dominantly described
by csoft interactions.

In refs. [6, 18], we formulated the differential cross section using the JFF for a given
jet energy or pT . Applying this formalism to the groomed jet from a heavy flavored jet,
we describe the differential scattering cross section over zG and EJ through the following
factorization theorem:

dσ

dEJdzG
=
∫ 1

x=2EJ/Q

dz

z

dσ(x/z;µ)
dEi

DJQ/i(z;EJR,µ)ΦG(zG), (4.2)

where Q is the center of mass energy of the electron and positron for e+e− annihilation.
DJQ/i is the fragmentation function to the heavy flavored jet [6], and ΦG is the heavy
quark JFF to the groomed jet, which is determined by the csoft interactions. Note that
ΦG is a scale invariant quantity since the convolution of dσ/dEi and DJQ/i is already scale
invariant. If EJ is not too close to Q/2, the jet energy fraction over the parton covers the
full range of z, and DJQ/i can be described by purely collinear interactions, while again
ΦG described by csoft interactions. Hence the factorization in eq. (4.2) basically holds to
all orders in αs.

Since the groomed jet involves an energetic heavy quark and the fragmenting process
can be described entirely through csoft gluon radiations, we can apply bHQET to ΦG.
Similar to eq. (2.28), ΦG is defined as

ΦG(zG; zcut, EJR,m) =
∑
Xcs

1
2Nc

Trv+
2 〈0| δ

(
(1− zG)p+

J −Θin · i∂+
)
Y cs†
n hn |JGXcs

/∈JG
〉

×〈JG(p+
JG
,p⊥JG

= 0)Xcs
/∈JG
| h̄nY cs

n

n/

2 |0〉, (4.3)

where zG = p+
JG
/p+
J and JG is the groomed jet. Θin is the step function that equals one for

gluon radiations to the in-jet region of JQ and zero otherwise. Hence Θin · i∂+ returns the
csoft momentum of the groomed gluon, i.e., the gluon to be dropped through grooming
process. Eq. (4.3) is normalized to δ(1− zG) at LO in αs.

In figure 6(a), we illustrate the phase space for the radiated csoft gluon in the one-loop
calculation of ΦG applying the soft drop with the angular parameter β ≥ 0. The shaded
region denotes the groomed region, where zG can take values other than zG = 1. In other
regions, the contributions are proportional to δ(1 − zG). Using the plus distribution on
the real emission contribution to the groomed region, regularizing the IR divergence as zG
goes to 1, the contribution can be written as

Mgr
R (zG) = δ(1− zG)

(∫
gr
dx dk2

⊥MR(x,k2
⊥)
)

+
[∫

gr
dk2
⊥MR(1− zG,k2

⊥)
]

+
, (4.4)
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Figure 6. Diagram (a) is the phase space of the csoft gluon in the one-loop calculation of ΦG for
EJR & m. Diagram (b) denotes the phase space for the ultra-collinear soft (ucsoft) gluon radiation
when we consider the limit EJR� m for ΦG applying the soft drop with β = 0. Both the shaded
regions denote the groomed region, where the radiated gluon is dropped by the soft drop procedure.

where MR(x,k2
⊥) is the overall real emission distribution with x = k+/p

+
J and k2

⊥, with
k being the momentum of the radiated csoft gluon. In eq. (4.4), the subscript ‘gr’ in the
integrals represents the phase space for the groomed region, given by 0 < x < zcut and
x2E2

JR
2(x/zcut)2/β < k2

⊥ < x2E2
JR

2. In the groomed region x can be also given by 1− zG.
If we combine the term proportional to δ(1 − zG) in eq. (4.4) with the other real

emission contributions outside of the groomed region, the integral of MR(x,k2
⊥) over x

and k2
⊥ covers the full phase space shown in figure 6(a). Hence the net contribution

proportional to δ(1 − zG) from the real emission must cancel the virtual contribution to
ΦG due to unitarity. Therefore the remaining nonvanishing contribution to ΦG at one loop
is given by the second term in eq. (4.4), which is

Φ(1)
G (zG) =

[∫
gr
dk2
⊥MR(1− zG,k2

⊥)
]

+

= αsCF
π

Θ(zG + zcut − 1)
1− zG

ln 1 + b(
1−zG
zcut

)2/β
+ b

+ b

1 + b
− b(

1−zG
zcut

)2/β
+ b




+

,

(4.5)

where b = m2/(E2
JR

2). This gives a nonzero value only when zG > 1− zcut. As expected,
the result has no scale dependence (except in αs). Note that ΦG has no large logarithm
since 1− zG ∼ zcut. Also note that even if we consider the limit 1− zG � zcut, the growth
in ΦG is reasonable due to the presence of b.

From eq. (4.5) we can also investigate the massless limit (b = 0), where the result reads

Φ(1)
G (zG;m = 0) = αsCF

π

2
β

[Θ(zG + zcut − 1)
1− zG

ln zcut
1− zG

]
+
. (4.6)

– 21 –



J
H
E
P
0
9
(
2
0
2
1
)
1
4
8

Note that this result only holds for β > 0. If β = 0, eq. (4.6) has an IR divergence, more
specifically a collinear divergence, and hence a nonperturbative analysis is indispensable [39,
61]. However, in the massive case, eq. (4.5), is IR safe for β = 0, with the result

Φ(1)
G (zG;β = 0) = αsCF

π

[Θ(zG + zcut − 1)
1− zG

(
ln 1 + b

b
− 1

1 + b

)]
+
. (4.7)

If we consider the small b limit (EJR � m), large logarithm appears in eq. (4.7).
In order to resum the large logarithms through an additional factorization, we need to
introduce a submode of the csoft mode. We will call this mode the “ultra-collinear soft
(ucsoft) mode”, with the scaling behavior

pucs = (p+
ucs, p

⊥
ucs, p

−
ucs) ∼ EJ(1− zG)

(
1, m
EJ

,
m2

E2
J

)
∼ EJzcut

(
1, m
EJ

,
m2

E2
J

)
. (4.8)

Here the largest momentum component, p+
ucs, is comparable with the csoft mode, i.e, p+

ucs ∼
p+

cs. But the offshellness, p2
ucs ∼ (1 − zG)2m2 ∼ z2

cutm
2, is much smaller than the csoft

modes’ offshellness in this limit.
Using this to separate the csoft and the ucsoft modes in the limit EJR � m, we

factorize ΦG with β = 0 as

ΦG(zG;β = 0, EJR� m) =
∫ 1

zG

dz

z
SΦ
G(z; zcut, EJR,µ)UΦ

G,c

(
zG
z

; zcut,m, µ

)
, (4.9)

where SG and UG are the csoft and ucsoft contributions respectively. As shown in fig-
ure 6(b), the ucsoft mode scaling, eq. (4.8), does not recognize the jet boundary, since R is
much larger than m/EJ . Therefore, in calculating UG the upper limit of k2

⊥ can be taken
to be infinity, resulting in an UV divergence. Since SΦ

G is the matching coefficient between
ΦG and UΦ

G,c, and ΦG is finite, SΦ
G must have the same UV divergence as UG, but with a

relative minus sign. To NLO in αs, the renormalized SG and UΦ
G,c are

SΦ
G(z; zcut, EJR,µ) = δ(1− z)− αsCF

π

[
Θ(z + zcut − 1)

1− z ln µ2

E2
JR

2(1− z)2

]
+
, (4.10)

UΦ
G,c(z; zcut,m, µ) = δ(1− z) + αsCF

π

[
Θ(z + zcut − 1)

1− z

(
ln µ2

m2(1− z)2 − 1
)]

+
. (4.11)

Combining the one-loop results in eqs. (4.10) and (4.11), we recover eq. (4.7) in the limit
EJR� m.

5 Heavy quark fragmentation function to a groomed jet in the large z

limit

We now consider a heavy quark fragmenting to a groomed jet, which can be described
by what we will call the heavy quark fragmentation function to a groomed jet (FFGJ),
DJG/Q(z). Since zcut in the grooming procedure is given to be small, the effect of grooming
can safely be ignored unless the energy fraction of the groomed jet over the heavy quark,
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Figure 7. (a): phase space for a radiated gluon in SJG/Q. Here the shaded region is the inner
space of the groomed jet and the contribution is proportional to δ(1 − z). The contributions with
z 6= 1 comes from the outside of the shaded region. (b): the phase space for the ucsoft gluon scaling
as pucs ∼ zcutEJ(1,m/EJ , (m/EJ)2), which is decoupled from the csoft mode when we consider the
limit EJR� m.

z, is large. Therefore, in this section, we focus on the large z behavior of the heavy
quark FFGJ.

As we see in eq. (2.29), when we consider the heavy quark fragmenting to a jet in the
large z limit, the heavy quark FFJ can be factorized into iHQJF and SJ/Q. Instead of an
ungroomed jet, if we consider a groomed jet, the grooming effects will modify the csoft
function SJ/Q. So, introducing a new csoft function including grooming, we formulate the
heavy quark FFGJ in the large z region as

DJG/Q(z;EJR,m, µ) = JQ(EJR,m, µ)SJG/Q
(z; zcut, EJR,m, µ). (5.1)

Since the ungroomed csoft function, SJ/Q, describes the out-jet radiations, its one-
loop contribution does not feel the effects of grooming. Therefore, to NLO in αs, the csoft
function for the groomed jet can simply be given by

SJG/Q(z; zcut, EJR,m, µ) = δ(1− z) + S
(1)
J/Q(z) + Φ(1)

G (z), (5.2)

where the one-loop contributions, S(1)
J/Q and Φ(1)

G , have been obtained in eqs. (3.26) and (4.5),
respectively. Since Φ(1)

G returns a nonzero value only in the region z > 1 − zcut, S(1)
JG/Q

is
equal to S(1)

J/Q in the region z < 1 − zcut. Thus the grooming effects modify the original
heavy quark FFJ only in the region z > 1− zcut.

For simplicity, we consider the grooming effects using the soft drop with β = 0. In
this case the fragmenting process in the massless limit becomes IR (collinear) divergent.
However, in the fragmenting process for a heavy-flavored jet, the heavy quark mass prevents
the divergence. In figure 7(a), the phase space for a radiated gluon in the function SJG/Q

is illustrated. Here the space inside of the groomed jet is denoted as the shaded region,
in which the contribution is proportional to δ(1 − z) at NLO in αs. In the outer region
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the gluon splits away. In the massless case, we have a collinear divergence from the region
x ∈ [0, zcut] at |k⊥| = 0, which is regularized in the massive case by the heavy quark mass.

5.1 Factorization of the heavy quark FFGJ in the limit 1− z � zcut

Since the grooming affects the region of z above 1 − zcut, we need to investigate this
region more closely. The dependence of zcut in this region gives rise to an additional large
logarithm near the end point, i.e., ln[zcut/(1− z)]. In order to handle the large logarithm,
we need to refactorize SJG/Q in the region. Since 1 − z is much smaller than zcut near
the end point, a new softer mode can be decoupled from the csoft mode. We call it the
“collinear-ultrasoft (cusoft)” mode, and it scales as pcus ∼ (1 − z)EJ(1, R,R2), while the
csoft mode in this region scales as pcs ∼ zcutEJ(1, R,R2).

The csoft mode near the end point cannot radiate out of the groomed jet; the available
phase space for the radiation is given by the shaded region in figure 7(a). The one-loop
contribution of the csoft mode is obtained by integrating over the shaded region,

S
(1)
G =

∫ ∞
zcut

dx

∫ x2E2
JR

2

0
dk2
⊥MR(x,k2

⊥), (5.3)

where MR(x,k2
⊥) is the real emission distribution in the csoft limit as described below

eq. (4.4). For the complete one-loop result, we need to include the virtual contribution.
But, when we factorize SJG/Q decoupling the cusoft mode from the csoft mode, we need
to subtract the cusoft contributions in the calculation of the csoft part. This is the con-
ventional matching procedure, i.e, the zero-bin subtraction. In this subtraction, the vir-
tual contribution cancels since the virtual contributions for both the modes are the same.
Therefore the one-loop result entirely comes from the integration of eq. (5.3), and the
renormalized NLO result for the csoft function SG is

SG(zcut, EJR,m, µ) = 1 + αsCF
2π

[(
ln 1 + b

b
− 1

1 + b

)
ln µ2

z2
cutE

2
JR

2 + π2

6

+ 1
2 ln2 b+ Li2(−b)− ln 1 + b

b

]
. (5.4)

When we consider the cusoft contribution in the factorization, we focus on the region
near x = 0 in figure 7(a), where x is equivalent to 1 − z. In this region, the split gluon
from the jet can radiate either inside or outside the jet. Furthermore, the gluon cannot
recognize zcut since the cusoft mode is much softer than the csoft mode. Note that the cusoft
mode describes the same situation as the case of the (partonic) heavy quark fragmentation
function (HQFF). In the large z region, the HQFF can be additionally factorized into the
virtual heavy quark function and the shape function [52, 60]. The cusoft gluon here can
radiate into the full phase space like the soft gluon does in the HQFF. Therefore, the cusoft
contribution to one loop should be the same as the shape function for the HQFF and the
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(a) (b)

Figure 8. FFJ and FFGJ for (a) bottom and (b) top quark jets near threshold, with no separation
between jet scale and heavy quark mass, i.e., EJR ∼ mb(t). The black curves are FFJs and the
blue curves are FFGJs, with zcut = 0.1, R = 0.4, and µmin = 0.5GeV for the both solid black and
solid blue curves (ref. appendix B for the definition µmin in profile functions). In panel (a), the
dashed curve corresponds to µmin = 0.4GeV in the profile function for the ultrasoft scale µus, and
the dotted curve corresponds to µmin = 0.3GeV. Note that for the top quark jet, the groomed FFJ
is insensitive to the exact value of µmin.

NLO result is thus

Ucus(z;m,µ) = δ(1− z) + αsCF
2π

{
δ(1− z)

[
ln µ2

m2 −
1
2 ln µ2

m2 −
π2

12

]

+
[

2
1− z

(
ln µ2

m2(1− z)2 − 1
)]

+

}
. (5.5)

Here the large logarithms are minimized when µ ∼ m(1− z).
Since the cusoft function in eq. (5.5) can be given independent of knowledge of the

jet boundary (i.e., no R dependence), we can express the scaling of the cusoft mode more
precisely as

pcus ∼ (1− z)EJ

(
1, m
EJ

,
m2

E2
J

)
. (5.6)

This will be important if we consider the limit EJR� m. Finally, the factorization formula
for SJG/Q near the end point is

SJG/Q(z → 1; zcut, EJR,m, µ) = SG(zcut, EJR, b, µ)Ucus(z;m,µ). (5.7)

Here the cusoft function is free of nonglobal logarithms. The dependence on the logarithms
resides only in SG. Since the contribution to SG comes from the region of z below 1− zcut,
the nonglobal logarithm effects from the grooming is limited [36, 62].

In figure 8, with accuracy NLL′, we show the comparison between FFJ and FFGJ for
bottom and top quark jets, in the limit 1−z � zcut and with no separation of scale between
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EJR and heavy quark mass m, where zcut = 0.1. The factorization scale of both the FFJ
and FFGJ are set to be µf = EJ . For the bottom quark jet, figure 8(a), the grooming effect
is large. However, the collinear-ultrasoft scale µcus = mb(1 − z) � 0.48GeV(= mbzcut) in
the limit 1− z � zcut, so non-perturbative effects are significant. We have chosen different
profile functions to test this (for a detailed description of profile functions used in this
paper, please refer to appendix B; the purpose of the profile functions is to freeze the z-
dependent scale to a minimum value µmin as z → 1). In figure 8(a), the solid, dashed, and
dotted blue curves corresponds to µmin = 0.5, 0.4, and 0.3GeV, which shows the sensitivity
to non-perturbative effects.

In figure 8(a), we have interpolate the FFGJs with the FFJ in a tiny region (zcut −
0.05, zcut + 0.05), so that the FFGJs smoothly transform to the FFJ in the region z < zcut.
This is fine since the factorization eq. (5.7) used here applies only to the limit 1− z � zcut.
For the top quark jet, figure 8(b), the cusoft scale mt(1 − z) is still perturbative in the
limit 1 − z � zcut, as long as z is not too close to 1. Note that in panel (b) of figure 8,
EJR ∼ 2mt, so EJR can still be reasonably treated as the same scale of mt, which justifies
the use of eq. (5.7). The more interesting case is when we impose the scale hierarchy
EJR� m, as discussed in the next section.

5.2 Refactorization of the csoft function SG when EJR� m

In eq. (4.9), when considering the limit EJR � m, we factorized the JFF to a groomed
jet, ΦG into the csoft and ucsoft parts. Similarly for SG in eq. (5.7), we can decouple the
ucsoft mode from the csoft mode, which scales as

pucs ∼ zcutEJ

(
1, m
EJ

,
m2

E2
J

)
. (5.8)

Since we are considering the limit 1− z � zcut, the ucsoft mode here does not contribute
to the actual distribution of z. Instead SG in eq. (5.7) can be refactorized into the csoft
and the ucsoft parts

SG(zcut, EJR� m,µ) = SG,0(zcut, EJR,µ)UG,ucs(zcut,m, µ). (5.9)

Here SG,0 is the csoft function with the mode pcs ∼ zcutEJ(1, R,R2), and UG,ucs is a newly
introduced ucsoft function.

Since the ucsoft gluon radiates over too narrow an angle to distinguish the jet boundary,
the upper limit of the transverse momentum to the heavy quark, |k⊥|, can be taken to be
infinity. The available phase space of the ucsoft gluon at one loop is shown by the shaded
region in figure 7(b). When we compute the ucsoft function to one loop, the virtual
contribution vanishes. Since the cusoft mode (p2

cus ∼ (1− z)2m2), which scales as eq. (5.6),
can be regarded as a submode of the ucsoft mode (p2

ucs ∼ z2
cutm

2), the same virtual
contribution from the cusoft mode needs to be subtracted. Hence the complete one-loop
result can be obtained from integration of the shaded region in figure 7(b), and the NLO
result is

UG,ucs(zcut,m, µ) = 1 + αsCF
2π

(
− ln µ2

z2
cutm

2 + 1
2 ln2 µ2

z2
cutm

2 + π2

12

)
. (5.10)
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The csoft function SG,0 in eq. (5.9) is the matching coefficient between UG,c and SG in
the limit EJR� m. Hence, subtracting the one-loop result in eq. (5.10) from the result of
SG in eq. (5.4) and taking the limit as m→ 0, we can obtain the one-loop result of SG,0,4

SG,0(zcut, EJR,µ) = 1 + αsCF
2π

(
−1

2 ln2 µ2

z2
cutE

2
JR

2 + π2

12

)
. (5.11)

The cusoft function, UG,s, is unchanged in the limit EJR � m. Therefore SJG/Q in this
limit is given by

SJG/Q(z → 1; zcut, EJR� m,µ) = SG,0(zcut, EJR,µ)UG,ucs(zcut,m, µ)Ucus(z;m,µ).
(5.12)

5.3 Resummed results of the heavy quark FFGJ

We now turn to the resummed result of the heavy quark FFGJ, beginning with the as-
sumption EJR & m. As shown in eq. (5.1), the grooming modifies the soft function by the
addition of a new csoft function in the factorized form. We can write

DJG/Q(z → 1;EJR,m, µ) = JQ(EJR,m, µ)SJG/Q(z → 1;EJR,m, µf ) (5.13)
= JQ(EJR,m, µ)SG(zcut, EJR, b, µ)Ucus(z → 1;m,µ).

The resummation of the iHQJF, JQ, was discussed previously. We have

JQ(µf ) = exp[Mc(µf , µc)]JQ(µc), (5.14)

where

Mc(µf , µc) = 2SΓ(µf , µc) + aΓ(µf , µc) ln
µ2
f

B2 + aγ̂c(µf , µc), (5.15)

with
aγ̂c(µf , µc) = −CF

β0
ln αs(µf )
αs(µc)

3 + b

1 + b
. (5.16)

Turning to the resummation of the soft pieces, from eq. (5.4), we obtain

SG(µf ) = exp[Mcs(µf , µcs)]SG(µcs), (5.17)

where

Mcs(µf , µcs) = aγ̂cs(µf , µcs) = −2CF
β0

ln αs(µf )
αs(µcs)

[
ln 1 + b

b
− 1

1 + b

]
. (5.18)

Since we are interested in the z → 1 limit, we take the Mellin transform of UG,s, in the
large N limit, obtaining

Ũcus(N̄ ;EJR,m, µ) = 1 + αSCF
2π

[
ln µ

2N̄2

m2 −
1
2 ln2 µ

2N̄2

m2 −
5
12π

2
]
. (5.19)

4The result can also be obtained from the integration of the shaded region after subtracting the region
shown in figure 7(b) from the one shown in figure 7(a).
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This is resummed by

Ũcus(N̄ ;µf ) = exp[Mcus(µf , µcus)]N̄−ηU Ũcus(N̄ , µcus), (5.20)

where

Mcus(µf , µcus) = −2SΓ(µf , µcus)− ln
µ2
f

m2aΓ(µf , µcus) + aγ̂cus(µf , µcus), (5.21)

with
aγ̂cus(µf , µcus) = −2CF

β0
ln αs(µf )
αs(µcus)

, (5.22)

and
ηU = 2aΓ(µf , µcus). (5.23)

Combining everything, we obtain

DJG/Q(z → 1;EJR,m, µf ) = JQ(EJR,m, µf )SJG/Q(z;EJR,m, µf ) (5.24)

= exp[M(µf , µc, µcs, µcus)]JQ(EJR,m, µc)(1− z)−1+η

×SG(zcut, EJR, b, µcs)Ũcus

[
ln µ2

cus
m2(1− z)2 − 2∂η

]
e−γEη

Γ(η) ,

where

M(µf , µc, µcs, µcus) = −2SΓ(µc, µcus) + ln m
2

µ2
c

aΓ(µc, µcus) + ln m
2

B2 aΓ(µf , µc) (5.25)

−CF
β0

[
3 + b

1 + b
ln αs(µf )
αs(µc)

+ 2
(

ln 1 + b

b
− 1

1 + b

)
ln αs(µf )
αs(µcs)

+ 2 ln αs(µf )
αs(µcus)

]
,

and η = ηU .
We now turn to the region where EJR� m, in which case we can further factorize SG,

as shown in eq. (5.9), with the addition of the new ucsoft function UG,ucs. This modifies
the above to be5

DJG/Q(z → 1;EJR,m, µf ) = JQ(EJR,m, µf )SJG/Q(z;EJR,m, µf ) (5.26)

= exp[M(µf , µc, µcs, µucs, µcus)]JQ(EJR,m, µc)SG,0(zcut, EJR,µcs)

×(1− z)−1+ηUG,ucs(zcut,m, µucs)Ũcus

[
ln µ2

cus
m2(1− z)2 − 2∂η

]
e−γEη

Γ(η) ,

where

M(µf , µc, µcs, µucs, µcus) = −2SΓ(µc, µcs)− 2SΓ(µucs, µcus)− ln µ2
c

E2
JR

aΓ(µc, µcs)

− ln µ
2
ucs
m2 aΓ(µucs, µcus)− ln z2

cut aΓ(µcs, µcus)

−CF
β0

(
3 ln αs(µf )

αs(µc)
+ 2αs(µucs)

αs(µcus)

)
. (5.27)

5Here the heavy quark mass dependence in iHQJF JQ can be safely ignored.
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Figure 9. FFJ and FFGJ for top quark jets near threshold, with a hierarchy between jet scale
(size) and heavy quark mass, i.e., EJR � mt. In this figure, EJ = 2TeV and zcut = 0.1. Panels
(a), (b), and (c) show different choices of the jet radius R = 0.2, 0.4, and 0.6, respectively.

In figure 9, we show the comparison between FFJ and FFGJ for top quark jets when
there is a large difference between EJR and heavy quark mass mt. Here the FFJs and
the FFGJs at NLL′ are plotted with different jet radii; R = 0.2, 0.4, and 0.6, respectively.
The error bands are obtained by varying the natural scale µi of each factorized function in
eq. (5.26) between µi/2 and 2µi and summing the errors in quadrature. Since EJ = 2TeV,
the jet scales EJR = 0.4, 0.8, 1.2TeV are well above the top quark mass. As both the FFJ
and the FFGJ depend on the factorization scale, we again set it as µf = EJ . In comparison
to figure 8(b), due to the large difference between EJR and mt, grooming effects become
more significant. Moreover, for a fixed jet energy, the larger the jet radius is, the greater
effect the jet grooming has. The reason is that a larger jet radius means more soft gluons
will be enclosed in the jet and consequently more gluons are available for grooming.

5.4 Cross sections for groomed jets near threshold

Similar to eq. (3.39) for ungroomed jet cross sections in e+e− collisions, the factorized form
of the groomed jet cross section for e+e− collisions can be expressed as

dσ

dx
= 2σ0

∫ 1

x

dz

z
HQ

(
z;Q2, µ

)
DJG/Q

(
x

z
;EJR,m, zcut, µ

)
, (5.28)

with the FFJ replaced by the groomed FFJ. In the following, we numerically study the
groomed jet cross sections in the limit (1 − z) � zc and m � EJR, where eq. (3.34) for
the groomed FFJ is used in eq. (5.28) for the groomed jet cross section. The final form of
the factorized groomed cross section in the limit (1− z)� zc and m� EJR is

1
σ0

dσG
dx

= 2 exp[M(µh, µhc, µc, µcs, µucs, µcus)]

×H(Q,µh)JQ(EJR,m, µc)SG,0 (zcutEJR,µcs)UG,ucs (zcutm,µucs)

× (1− x)−1+ηJ̃n

[
ln µ2

hc

Q2(1− x) − ∂η

]
Ũcus

[
ln µ2

us
m2(1− x)2 − 2∂η

]
e−γEη

Γ(η) , (5.29)
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R = 0.2
<latexit sha1_base64="bLrV0UqudIrmHAlezyt4nnctMXw=">AAAB7HicbVBNS8NAEJ3Ur1q/oh69LBbBU0hKRS9C0YvHKqYttKFstpt26WYTdjdCCf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXphyprTrflultfWNza3ydmVnd2//wD48aqkkk4T6JOGJ7IRYUc4E9TXTnHZSSXEcctoOx7czv/1EpWKJeNSTlAYxHgoWMYK1kfyHa9ep9e2q67hzoFXiFaQKBZp9+6s3SEgWU6EJx0p1PTfVQY6lZoTTaaWXKZpiMsZD2jVU4JiqIJ8fO0VnRhmgKJGmhEZz9fdEjmOlJnFoOmOsR2rZm4n/ed1MR1dBzkSaaSrIYlGUcaQTNPscDZikRPOJIZhIZm5FZIQlJtrkUzEheMsvr5JWzfHqzsV9vdq4KeIowwmcwjl4cAkNuIMm+ECAwTO8wpslrBfr3fpYtJasYuYY/sD6/AF8NI3T</latexit>

x
<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

x
<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

x
<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

0.90 0.92 0.94 0.96 0.98 1.00
0

20

40

60

80 Ungroomed
Groomed

Fixed Order Ungroomed
Fixed Order Groomed

0.90 0.92 0.94 0.96 0.98 1.00
0

20

40

60

80

100

120

140 Ungroomed
Groomed

Fixed Order Ungroomed
Fixed Order Groomed

0.90 0.92 0.94 0.96 0.98 1.00
0

50

100

150

200 Ungroomed
Groomed

Fixed Order Ungroomed
Fixed Order Groomed

(a) (b) (c)

R = 0.4
<latexit sha1_base64="iBPYAcRhCNpGRyhjaCkRYzwt7zA=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFBKp6EUoevFYxbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0e3Ubz0xpXkiH804ZUFMBpJHnBJjJf/h2nVqvUrVddwZ8DLxClKFAo1e5avbT2gWM2moIFp3PDc1QU6U4VSwSbmbaZYSOiID1rFUkpjpIJ8dO8GnVunjKFG2pMEz9fdETmKtx3FoO2NihnrRm4r/eZ3MRFdBzmWaGSbpfFGUCWwSPP0c97li1IixJYQqbm/FdEgUocbmU7YheIsvL5PmuePVnIv7WrV+U8RRgmM4gTPw4BLqcAcN8IECh2d4hTck0Qt6Rx/z1hVUzBzBH6DPH388jdU=</latexit> R = 0.6

<latexit sha1_base64="mBNOd3yTKZ8Mv9ApQOFRPpk7qJI=">AAAB7HicbVBNS8NAEJ3Ur1q/oh69LBbBU0ikflyEohePVUxbaEPZbDft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDDlTGnX/bZKK6tr6xvlzcrW9s7unr1/0FRJJgn1ScIT2Q6xopwJ6mumOW2nkuI45LQVjm6nfuuJSsUS8ajHKQ1iPBAsYgRrI/kP165z0bOrruPOgJaJV5AqFGj07K9uPyFZTIUmHCvV8dxUBzmWmhFOJ5VupmiKyQgPaMdQgWOqgnx27ASdGKWPokSaEhrN1N8TOY6VGseh6YyxHqpFbyr+53UyHV0FORNppqkg80VRxpFO0PRz1GeSEs3HhmAimbkVkSGWmGiTT8WE4C2+vEyaZ45Xc87va9X6TRFHGY7gGE7Bg0uowx00wAcCDJ7hFd4sYb1Y79bHvLVkFTOH8AfW5w+CRI3X</latexit>

1 �
0

d
�
(G

)

d
x

<latexit sha1_base64="5KYXijVFJjHFU6FaFCuL4FvEW1g=">AAACE3icbVC7TsMwFHXKq5RXgJHFokIqDFWCimCsYICxSPQhNVHkOE5r1U4i20FUUf6BhV9hYQAhVhY2/ga3zQAtR7rS8Tn3yvceP2FUKsv6NkpLyyura+X1ysbm1vaOubvXkXEqMGnjmMWi5yNJGI1IW1HFSC8RBHGfka4/upr43XsiJI2jOzVOiMvRIKIhxUhpyTNPnFAgnNl55kg64Miz8pkSFO+sdn2c51nwkHtm1apbU8BFYhekCgq0PPPLCWKcchIpzJCUfdtKlJshoShmJK84qSQJwiM0IH1NI8SJdLPpTTk80koAw1joihScqr8nMsSlHHNfd3KkhnLem4j/ef1UhRduRqMkVSTCs4/ClEEVw0lAMKCCYMXGmiAsqN4V4iHSkSgdY0WHYM+fvEg6p3W7UT+7bVSbl0UcZXAADkEN2OAcNMENaIE2wOARPINX8GY8GS/Gu/Exay0Zxcw++APj8wcaFJ7w</latexit>

Figure 10. Comparison between ungroomed and groomed jet cross sections of top quark jets in
electron-positron collisions. The black (blue) bands are groomed (ungroomed) jets with resumma-
tion with NLL′ accuracy, and the black (blue) dotted curves are groomed (ungroomed) jets with
the fixed order NLO calculation. (a), (b), and (c) correspond to different jet radii, R = 0.2, 0.4, and
0.6, respectively. The center of mass energy is Q = 4TeV and the jet energy is EJ = Q/2 = 2TeV.

where η = 2aΓ(µhc, µcus) and the RG evolution factorM is

M(µh, µhc, µc, µcs, µucs, µcus)

= 4SΓ (µh, µhc)− 2SΓ (µc, µcs)− 2SΓ (µucs, µcus) + 2 ln µ2
h

Q2aΓ (µh, µhc)

− ln µ2
c

E2
JR

2aΓ (µc, µcs)− ln µ
2
ucs
m2 aΓ (µucs, µcus)− ln z2

cutaΓ (µcs, µucs)

−CF
β0

(
3 ln α (µh)

α (µhc)
+ 3 ln α (µh)

α (µc)
+ 2 ln α (µucs)

α (µcus)

)
. (5.30)

In figure 10, we show the comparison between ungroomed and groomed jet cross sec-
tions for top jet production in electron-positron collisions. The center of mass energy is
Q = 4TeV, so the top quark jet energy is 2TeV, which is the same jet energy that was used
of figure 9. With this choice, the scale separation EJR� mt is manifest and the factorized
formula eq. (5.29) is applicable. The error bands are obtained by varying the natural scale
µi of each factorized function in eq. (5.29) between µi/2 and 2µi and summing the errors in
quadrature. The groomed jet cross sections share the same features as that of the FFGJs
shown in figure 9, i.e., the grooming effects are significant near threshold, and the larger
the jet radius, the greater effect of the jet grooming. As we consider jet cross sections for
the case EJR ∼ mt, the grooming effects are rather small, similar to figure 8(b). Also the
error bands of the ungroomed and the groomed jet cross sections almost overlap in this
case since the errors at the cross section level (i.e., the combination of the errors for many
factorized functions) are large.

The dotted curves in figure 10 are the fixed order NLO results. Since the cross section
is renormalization scale independent, the dependence on µ for the fixed order results is
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only present in αs(µ), where we have chosen µ to be the hard scale Q. In contrast to
resummed results (black and blue bands), the fixed order cross sections become divergent
as x approaches 1, and near the endpoint they are approximated as

1
σ0

(
dσ

dx

)
fix
≈ αsCF

π

1
1− x ln Q2

B2(1− x) ∼
αsCF
π

1
1− x ln Q2

(EJR)2(1− x) , (5.31)

1
σ0

(
dσG
dx

)
fix
≈ αsCF

π

1
1− x ln Q2

m2(1− x) , (5.32)

where σ and σG are the ungroomed and groomed cross section respectively. Figure 10
also shows that the fixed order results of the groomed cross sections are larger than the
ungroomed ones unrealistically, which can be confirmed from eqs. (5.31) and (5.32) as well.
This also shows that resummation is essential to the formulation of the groomed jet cross
section given in this work.

6 Conclusion

In this paper, we studied the process of a heavy quark fragmenting into a jet in the endpoint
region where the jet carries almost all of the energy of the initiating heavy quark, i.e., z ∼ 1
where z is the jet energy fraction of the fragmenting parton. This analysis employs the
heavy quark FFJ, initially introduced in ref. [6]. (The FFJ was originally introduced for
the massless case in ref. [18] and then studied in the endpoint in ref. [20].) We are able
to simultaneously resum logarithms of the jet radius R and 1 − z using Soft Collinear
Effective Theory, or more accurately SCETM. In the endpoint region, to describe the csoft
interactions of the heavy quark, it is useful to match this effective theory onto boosted
heavy quark effective theory, which we do in detail. From the resummed result, we show
that there are numerically significant corrections to the lowest order result.

One of the advantages of this analysis is that we can use the formalism to investigate
heavy quark jet substructure, which we do by calculating the heavy quark fragmentation
to a groomed jet, using the soft drop [36] grooming algorithm as an example. In order to
account for the grooming procedure fully, we must introduce a collinear-ultrsoft (cusoft)
mode, which is sensitive to the region with z > 1− zcut in the grooming algorithm. Then,
by considering the heavy quark fragmentation function to a groomed jet in the large z limit,
we are able to additionally resum large logarithms of zcut/(1− z). We show that there are
again large numerical corrections in the endpoint from this procedure when compared with
the analysis on the ungroomed jet.

A nice feature of this analysis using grooming is the heavy quark mass makes the
soft drop algorithm IR finite. This allows us to perturbatively calculate the corrections
and resum the logarithms from grooming except for the extremely close to the endpoint,
1− z . ΛQCD/m. Comparing the sizes of EJR′ and m, we investigate both the grooming
analyses for EJR′ ∼ m and for EJR′ � m. For the EJR′ � m kinematics, we refactorize
the (original) csoft function introducing the ultracollinear-soft (ucsoft) mode. With this
refactorization we can additionally resum the large logarithms of EJR′/m.
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Finally, as an application, we calculate the rate for e+e− collisions to produce a heavy
quark jet in the endpoint region, comparing the groomed and the ungroomed results. For
specificity, we looked at a hypothetical 4TeV machine producing top quark jets. We find
that the grooming procedure has a sizable effect close to the endpoint. It would certainly
be exciting to be able to test this out at a future collider.
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A Construction of bHQET

In this appendix we consider a direct construction of the bHQET Lagrangian from SCETM.
The SCETM Lagrangian is [44]

LSCETM = ξ̄n

[
n · iD + iD/⊥

1
n · iD

iD/⊥
]
n/

2 ξn −m
2ξ̄n

1
n · iD

n/

2 ξn

+mξ̄n
[
iD/⊥,

1
n · iD

]
n/

2 ξn. (A.1)

We first separate csoft interactions from collinear interactions by writting the covariant
derivative as Dµ = Dµ

c +Dµ, where Dµ is the csoft covariant derivative. We then integrate
out the collinear modes (gluons). Finally, the SCET massive quark field is matched onto
the bHQET field as shown in eq. (2.21).

The resulting bHQET Lagrangian is

LbHQET = v+
2

{
h̄n

(
m

v+
+ iD− + iD/⊥

1
mv+ + iD+

iD/⊥

)
n/

2hn (A.2)

− h̄n
m2

mv+ + iD+

n/

2hn + h̄n

[
iD/⊥,

m

mv+ + iD+

]
n/

2hn

}
,

where D+ ≡ n ·D and D− ≡ n ·D. v+ = n · v ∼ 2E/m is power-counted as O(1/λ), and
the velocity vµ has been expressed as (v+n

µ + nµ/v+)/2 with v⊥ set to zero. The scaling
of the csoft derivative Dµ is (D+, D⊥, D−) ∼ 2Eη(1, λ, λ2).
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Expanding the propagator,

1
mv+ + iD+

= 1
mv+

[
1− iD+

mv+
+
(
iD+
mv+

)2
+O(η3)

]
, (A.3)

we rewrite eq. (A.2) to O(η) as

LbHQET = v+
2 h̄n

(
iD− + iD+

v2
+

)
n/

2hn (A.4)

+ 1
2mh̄n

(
iD/⊥iD/⊥ −

(iD+)2

v2
+
−
[
iD/⊥,

iD+
v+

])
n/

2hn.

The term in the first line is the leading Lagrangian, which can be re-expressed as

L(0)
bHQET = h̄nv · iD

n/

2hn. (A.5)

Using leading equation of motion from (A.5), we have the relations

iD+
v+

n/

2hn = −v+iD−
n/

2hn, h̄n
n/

2
i
←−
D+
v+

= −v+h̄n
n/

2 i
←−
D−, (A.6)

where i←−Dµ = −i
←−
∂ µ + gAµcs. Applying eq. (A.6), we can further simplify the subleading

terms in eq. (A.4),

h̄n

(
iD/⊥iD/⊥ −

(iD+)2

v2
+
−
[
iD/⊥,

iD+
v+

])
n/

2hn

= h̄n

(
iD+iD− + iD/⊥iD/⊥ −

[
iD/⊥,

iD+
v+

])
n/

2hn

= h̄n

[
(iD)2 + g

(
σµν⊥
2 + inµγν⊥

v+

)
Gµν

]
n/

2hn, (A.7)

where σµν⊥ = i[γµ⊥, γν⊥]/2, and we used the relation [iDµ, iDν ] = igGµν .
Finally, the bHQET Lagrangian to O(η) is given by

LbHQET = h̄nv · iD
n/

2hn + 1
2mh̄n

[
(iD)2 + g

(
σµν⊥
2 + inµγν⊥

v+

)
Gµν

]
n/

2hn. (A.8)

The subleading kinematic term (iD)2 is connected to the leading Lagrangian by reparam-
eterization invariance, since vµ → vµ + iDµ/m [63]. So this term has no higher order
corrections in αs nor any nontrivial renormalization. On the other hand, we expect that
the chromomagnetic term with Gµν to have higher order corrections and will need renor-
malization similarly to standard HQET.

Since the bHQET field hn has a different spin property from the standard HQET field
hv, the relation between the two fields needs to be investigated. In order to do so, we first
consider the reparameterization invariant (RPI) combination for both fields. Note that
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in order for the combination to fully preserve the reparameterization symmetries, it must
reproduce the form of the full theory quark field (with a large phase removed). Therefore
the combinations for both fields should be equal to each other.

Since hn has been matched from ξn in SCETM, we can find the form in bHQET from
SCETM. In SCETM the RPI form is given by [46, 64, 65]

ξn + 1
n · iD

(iD/+m)n/2 ξn. (A.9)

To this, if we apply the matching relation, eq. (2.21), the RPI combination of the bHQET
field is √

v+
2

[
hn + 1

mv+ + iD+
(iD/⊥ +m) n/2hn

]
. (A.10)

This combination should be equal to the standard HQET combination, given by

1 + v/

2 hv + 1− v/
2 Hv, (A.11)

where Hv satisfies v/Hv = −Hv and is power-suppressed by 1/m when compared with hv.
Therefore, applying the projection (1+v/)/2 to eq. (A.10), we have the following relation

hv = 1 + v/

2

√
v+
2

(
1 + 1

mv+ + iD+
(iD/⊥ +m)n/2

)
hn, (A.12)

where v has been given in eq. (2.20). Expanding to O(η2), we obtain

hv =
√
v+
2

(
1 + 1

v+

n/

2

)[
hn −

1
2m

(
iD/⊥ + iD+

v+

)
hn

]
, (A.13)

where the second term in the square bracket is suppressed by η. Hence, to leading order
η, hn is given by

hn =
√

2
v+

(
1− 1

v+

n/

2

)
hv. (A.14)

Substituting eq. (A.14) into eq. (A.5), we reproduce the leading HQET Lagrangian as

h̄nv · iD
n/

2hn = 2
v+
h̄vv · iD

n/

2hv = h̄vv · iDhv. (A.15)

where the second equality is obtained from the relation

2
v+
h̄vv · iD

n/

2 v/hv = 2h̄vv · iDhv −
2
v+
h̄vv/v · iD

n/

2hv. (A.16)

The subleading Lagrangian at LO in αs for the standard HQET is given by [66]

L(1)
HQET = − 1

2mh̄vD/D/ hv = 1
2m

[
h̄v(iD)2hv + g

2 h̄vσ
µνGµνhv

]
, (A.17)

where the chromomagnetic operator containing Gµν has nonzero corrections at higher order
in αs. From eq. (A.17), it is straightforward to obtain eq. (A.8) using the leading relation
in eq. (A.13).
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Figure 11. The profile function for the z-dependent csoft scale as appears in eq. (3.45) where
B =

√
E2
JR

2 +m2 with EJ = 50GeV, m = 4.8GeV, and R = 0.4. Here µmin is set to be 0.5GeV.
The solid, dashed, and dotted curves correspond to µ0 = B, 2B, and B/2, respectively.

B Profile functions

For a z-dependent scale like the csoft scale µcs = B(1 − z) that appears in eq. (3.45), the
scale becomes non-perturbative as z approaches 1. To enable numerical evaluations, we
freeze such z-dependent scales to a certain value µmin using the following equation,

µprofile(z) =
{
µ0(1− z), for z < x;
µmin + aµ0(1− z)2, for z ≥ x.

(B.1)

where µ0 is µ0 = B =
√
E2
JR

2 +m2 for the csoft scale, or µ0 = m for the usoft scale, and
x and a are fixed by requiring µprofile(z) to be continuous and smooth (differentiable) at x.
When the scale variation for a relevant function is evaluated, µ0 varies between µ0/2 and
2µ0. As an example, the profile functions for the csoft scale is shown in figure 11.
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