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Fault-tolerant quantum error correction requires the measurement of error syndromes in a way that

minimizes correlated errors on the quantum data. Steane and Shor ancilla are two well-known methods for

fault-tolerant syndrome extraction. In this Letter, we find a unifying construction that generates a family of

ancilla blocks that interpolate between Shor and Steane. This family increases the complexity of ancilla

construction in exchange for reducing the rounds of measurement required to fault tolerantly measure the

error. We then apply this construction to the toric code of size L × L and find that blocks of sizem ×m can

be used to decode errors in OðL=mÞ rounds of measurements. Our method can be applied to any

Calderbank-Shor-Steane code and presents a new direction for optimizing fault-tolerant quantum

computation.
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Quantum error-correction codes [1–9] are a path toward

to the low errors required for large-scale quantum compu-

tation. Error correction is performed conditional on the

measurement outcomes of a set of code stabilizers, also

known as the error syndrome. The syndrome extraction

circuits need to be fault tolerant [10–17] as the act of

measuring syndromes also introduces extra errors on the

quantum system. The first fault-tolerant syndrome extrac-

tion scheme was proposed by Shor [10,18]. In Shor’s

scheme, each syndrome bit is extracted from the data qubits

to a verified ancilla cat state by transversal 2-qubit gates.

Transversal operations limit the error propagation and no

high-weight correlated errors can occur on the data qubits if

the cat states are verified by postselection. For low-weight

stabilizers, ancilla postselection can be avoided by decod-

ing the ancilla cat states to look for potential correlated

errors [15,19,20]. The value of the syndrome bit is the

parity of the transversal measurement outcome of the cat

state. As any measurement error will flip the syndrome bit,

for a stabilizer code of distance d, one needs to repeat the

syndrome measurements for Oðd2Þ rounds to guarantee

fault tolerance [10]. Optimizing the space and time over-

head of Shor’s scheme on particular codes is an active area

of research with substantial progress since its invention

[15,16,20–33].

The fault-tolerant extraction gadget for Shor’s scheme is

arguably the simplest. As a trade-off, a large number of

2-qubit gates are applied between data and ancilla qubits.

For Calderbank-Shor-Steane (CSS) codes [5,6], Steane

suggested to transfer the complexity of data-ancilla inter-

action to preparation of the ancilla state [12]. In Steane’s

protocol, a logical jþi (j0i) ancilla state is prepared for

simultaneously extracting all theZ stabilizers (X stabilizers).

The errors on the data are propagated to the ancillas through

transversal controlled-NOT (CNOT) gates. Steane’s

scheme requires no repetition of syndrome extractions, so

that each data qubit is touched by 2 CNOT gates, one for X
errors and another one for Z errors. Knill proposed a similar

scheme [14] based on quantum teleportation that works for

arbitrary stabilizer codes and requires only one round of

transversal CNOT gates to extract all the stabilizers, at the

cost of entangled logical ancilla. Using a constant number of

Steane or Knill syndrome extractions, an arbitrary logical

Clifford circuit can be implemented fault tolerantly in Oð1Þ
steps [34].

For quantum devices with low idling error rates, the data

qubits can wait for a reasonable amount of time until a good

Steane-style (Knill-style) ancilla block is postselected,

which yields higher fault-tolerance thresholds [14,35].

For large code blocks, however, postselection often yields

an impractically low success rate. In this Letter, we develop

a framework that generates a family of extraction schemes

for CSS codes, including Shor’s and Steane’s construction

as its two extremes. This family gradually increases the

complexity of ancilla construction in exchange for reducing

the number of 2-qubit gates between data and ancilla qubits

required to fault tolerantly measure the error. As an

example, we are able to use a single ancilla block to

measure the plaquette operators (Z-stabilizer elements) of

the toric code inside any connected sublattice. In particular,

one can partition the L × L toric lattice into patches, each

of which contains m ×m plaquettes. Choosing m to be a

constant independent of L, the success rate of ancilla

postselection will be finite. Moreover, by offsetting the

partition periodically, one can achieve fault tolerance within

OðL=mÞ measurement rounds. As a remark, our result is
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compatible with the fact that Shor’s and Steane’s schemes

require OðLÞ and Oð1Þ measurement rounds on the toric

code, respectively.

For CSS codes, the bit-flip errors (X errors) and phase-

flip errors (Z errors) can be handled independently. Without

loss of generality, we focus on bit-flip errors, which are

detected by measuring Z checks. Suppose we are measur-

ing r Z checks of an n-qubit CSS code. These checks can

be represented by an r × n parity-check matrix H, where

Hij ¼ 1 if and only if the ith Z check is supported on

the jth qubit. The bit-flip errors on the physical qubits,

represented by an n-bit binary string ψ ∈ F
n
2
, should have a

syndrome Hψ ∈ F
r
2
.

In the intermediate steps of fault-tolerant computations,

we are not allowed to measure the n data qubits directly.

A general idea shared by both Shor’s and Steane’s syndrome

extraction protocols is to transfer the X errors to a set of m
ancilla qubits by CNOT gates: one can perform CNOT gates

with data qubits as controls and ancilla qubits as targets, then

apply Z measurements on all ancilla qubits to obtain the

syndrome. The CNOT gates can be encoded by an m × n
binary matrix Γ, where Γij ¼ 1 if and only if there is a

CNOT gate between the jth data qubit and the ith ancilla

qubit. For an error configuration ψ ∈ F
n
2
, the error trans-

ferred to the ancilla block is Γψ ∈ F
m
2
. The matrix Γ is

referred to as the “gate matrix.” To extract the syndrome,

the ancilla block must be stabilized by r Z checks repre-

sented by an r ×m matrix H̃ such that H ¼ H̃Γ. This

guarantees that one can obtain the syndromeHψ ¼ H̃Γψ by

measuring all the ancilla qubits in the Z basis. As an

example, Steane’s method corresponds to a decomposition

H ¼ H̃Γ such that H̃ ¼ H and Γ ¼ I is the identity matrix.

The case that Γ ¼ H and H̃ ¼ I corresponds to the non-

fault-tolerant version of Shor’s scheme, in which each

stabilizer is measured by a single ancilla qubit.

A natural question is that, given an arbitrary matrix

decomposition H ¼ H̃Γ, can we find an extraction circuit

with a gate matrix Γ? To obtain a deterministic syndrome

Hψ ¼ H̃Γψ , the ancilla state should at least be stabilized

by a Z-stabilizer group isomorphic to im H̃T, the image of

H̃T (the row space of H̃). On the other hand, we want to

have as many X-stabilizer elements as possible to guarantee

that Γ encodes a trivial logical operation and does not

entangle the data and ancilla. The maximal X-stabilizer
group we can have is isomorphic to ker H̃, the kernel of H̃.

In fact, our question has a positive answer:

Theorem 1.—A decomposition H ¼ H̃Γ uniquely cor-

responds to a syndrome extraction circuit with gate matrix

Γ (up to gate ordering). The ancilla block is a CSS state

whose Z-stabilizer and X-stabilizer groups are isomorphic

to the row space of H̃, im H̃T and the kernel of H̃, ker H̃,

respectively.

The essential step to prove Theorem 1 is to verify

that ΓTðim H̃TÞ ⊆ imHT and ΓðkerHÞ ⊆ ker H̃ so that

the stabilizer group and logical operators are invariant

under Γ. A more comprehensive argument is presented in

the companion article [36]. We present five methods of

syndrome measurement for Steane’s ⟦7; 1; 3⟧ code in

Table I to show how our notation describes both standard

methods for measuring syndromes and enables the discov-

ery of new schemes. Circuits for these methods are

presented in Ref. [36]. We note that nontransversal syn-

drome extraction circuits, such as the bare ancilla and

scheme B circuits in Table I, require extra machinery to

TABLE I. For the Steane ⟦7; 1; 3⟧ code, we illustrate by matrices how our division of H into H̃ and Γ enables us to describe three

common ancilla blocks: bare qubits, cat states, and Steane ancilla. It also enables protocols that extract two Z-stabilizer elements in

parallel, as shown in schemes A and B. The Z- and X-stabilizer generators are generated from the image of H̃T, im H̃T, and the kernel of

H̃, ker H̃, respectively. The circuits labeled bare ancilla and scheme B are not transversal so that an ancilla error could lead to a weight-2

correlated error on the data block. We will require flag qubits [15] or DiVincenzo-Aliferis decoding circuits [19] to detect these errors so

that all single errors are distinguishable. For methods other than the Steane scheme, we show circuits that measure only a subset of the Z
checks. To completely measure the syndrome, we can apply the same gadgets to other subsets or even combine schemes.

Bare ancilla Cat state Steane Scheme A Scheme B

H̃ ½ 1 � ½ 1 1 1 1 �

2

4

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0 1 1 0 1 1

3

5

�

1 1 1 1 0 0

0 1 1 0 1 1

� �

1 1 0

0 1 1

�

Γ ½ 1 1 1 1 0 0 0 � ½ I4 04×3 � I7 ½ I6 06×1 �

2

4

1 0 0 1 0 0 0

0 1 1 0 0 0 0

0 0 0 0 1 1 0

3

5

H ½1 1 1 1 0 0 0 � ½1 1 1 1 0 0 0 �

2

4

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0 1 1 0 1 1

3

5

�

1 1 1 1 0 0 0

0 1 1 0 1 1 0

� �

1 1 1 1 0 0 0

0 1 1 0 1 1 0

�

Z-stabilizer

generators

Z10 Z10Z20Z30Z40 Z10Z20Z30Z40 , Z20Z30Z50Z60 ,

Z30Z40Z60Z70

Z10Z20Z30Z40 ,

Z20Z30Z50Z60

Z10Z20 , Z20Z30

X-stabilizer

generators

None X10X20 , X20X30 ,

X30X40

X10X20X30X40 , X20X30X50X60

X30X40X60X70 , X10X20X50

X10X20X30X40 , X20X30X50X60

X30X40X60 , X10X20X50

X10X20X30

PHYSICAL REVIEW LETTERS 127, 090505 (2021)

090505-2



prevent correlated data errors such as flag qubits [15] or

DiVincenzo-Aliferis decoding [19].

We now consider block extractions of the toric code.

A ⟦2L2; 2; L⟧ toric code defined on an L × L periodic

lattice on the torus has a set V of L2 vertices, a set E of 2L2

edges, and a set F of L2 faces. The “boundary map”

∂∶ F2½F� → F2½E� is a F2-linear map that maps each face

f ∈ F to the sum of four edges bordering f. The “coboun-
dary map” δ∶ F2½V� → F2½E� maps each vertex v ∈ V to

the sum of four edges incident to v. The maps ∂T and δT are

the Z- and X-check matrices of the toric code, respectively.

From Theorem 1, a circuit that extracts the Z stabilizers

corresponds to a decomposition ∂T ¼ ∂̃
TγT, or ∂ ¼ γ∂̃ for

some γ and ∂̃. We note that such decomposition can be

constructed by cutting the torus along some arbitrarily

chosen edges. The obtained topological space will have an

edge set Ẽ and a boundary map ∂̃∶ F2½F� → F2½Ẽ�, and
γ∶ F2½Ẽ� → F2½E� maps the edge ẽ ∈ Ẽ to the correspond-

ing edge e ∈ E on the torus. Note that, if we split an edge

e ∈ E into two edges ẽ1; ẽ2 ∈ Ẽ, ẽ1; ẽ2 will be on the

boundary of the obtained topological space. As a remark, if

the torus is not being cut at all, we obtain a Steane-style

gadget; if the torus is cut into L2 disjoint faces so that all the

edges are split, we obtain the Shor-style gadget. Note that,

for any extraction gadget obtained in this way, the 2-qubit

gates are transversal on the ancilla block. Indeed, fault

tolerance can be achieved when the ancilla block is

prepared fault tolerantly. Such a family of “transversal

gadgets” can be constructed algebraically on any CSS

codes, which is shown in Ref. [36].

We now describe our model of fault-tolerant error

correction. As X and Z errors can be corrected separately,

we can ignore the Z errors on the data qubits and the

X-stabilizer measurements. Suppose our computation starts

from time 0. We extract the Z-check matrix ∂T at every

positive integer time. For every t ∈ Zþ, each data qubit

could have an X error at time t − 1=2, and the measurement

outcome of each ancilla qubit at time t could have a

classical bit-flip error. For now, we ignore the data errors

between two CNOTs in the same extraction round. Suppose

at time t ∈ N, we apply a transversal gadget ∂ ¼ γt∂̃t with

an edge set Ẽt. If the syndrome bit f ∈ F at time t is

different from its previous value, we create a defect at the

lattice site ðf; tÞ. A bit-flip error on the data qubit e ∈ E at

time t − 1=2 will excite a pair of defects ðf1; tÞ þ ðf2; tÞ,
where f1 and f2 share e. A measurement error on the

ancilla qubit ẽ ∈ Ẽt at time t will excite a set of defects

∂̃
T
t ẽ × ft; tþ 1g. If ẽ is a split edge, ∂̃Tt ẽ consists of only

one face, and the error creates a pair of defects correlating

time t and tþ 1; otherwise, ∂̃Tt ẽ consists of two faces and

four defects are created. We say that the measurement error

is of type I if j∂̃Tt ẽj ¼ 1 or type II if j∂̃Tt ẽj ¼ 2.

If we always use the Shor-style extraction gadget, we can

view each single error as an edge connecting the pair of

excitations. The syndrome can be decoded by applying the

minimum-weight-perfect-matching (MWPM) algorithm on

the decoder graph [37]. In general, however, the existence

of type-II errors complicates the decoding problem, as each

of them creates four defects instead of two. Note that a

type-II error on the ancilla qubit ẽ at time t is equivalent as
two data errors on the same data qubit γtẽ but at two

different times t and tþ 1. We can run MWPM on the

decoder graph that consists of data errors and type-I

measurement errors, with the cost that each type-II error

is regarded as a weight-2 error. Noticing that two different

data errors on the same qubit are never on the same logical

error loop with minimum weight, treating every type-II

error as two data errors will still preserve the code distance:

Theorem 2.—For any choices of transversal gadgets, if

there are less than L=2 errors in total, MWPM will not

introduce a logical error.

The formal proof of Theorem 2 is left in Ref. [36].

In practice, we need to correct the errors after a finite

number of measurement rounds. As the information pro-

vided by the latest syndrome bits is always unreliable, they

will be processed only when further syndrome bits are

gathered, which is referred to as the overlapping recovery

method [21]. More concretely, we can divide the time axis

by some chosen integer time

1 ¼ t1 < t2 < � � � < ti < � � � :

In the ith round of error correction, we decode the

syndrome bits in the time interval ½ti; tiþ2Þ, but only

correct the errors in ½ti − 1=2; tiþ1 − 1=2Þ; then discard

the syndrome bits in ½ti; tiþ1Þ while the updated syndrome

bits in ½tiþ1; tiþ2Þ are kept for the next round of correction.
The decoder graph for the ith recovery only contains the

vertices (syndrome bits) and edges (errors) in

½ti − 1=2; tiþ2 − 1=2Þ. The defects can be fused with the

time boundary so that its lifetime is extended to the next

round. If the distance from time slice ti to tiþ1 on the

decoder graph, denoted by dðti; tiþ1Þ, is much smaller than

the code distance L, it would be too easy for the decoder to
fuse a defect at time ti to the time boundary. Equivalently,

the decoder will consider most of the syndrome bit flips as

measurement errors so that the data errors can hardly be

corrected. Our goal is to correct the data errors in ½ti −
1=2; tiþ1 − 1=2Þ before the time tiþ2. If dðtiþ1; diþ2Þ ≫ L,
when we have less than L=2 errors, the decoder will not

fuse a defect before tiþ1 with another defect after tiþ2.

Indeed, we have the following result, whose formal proof

is in Ref. [36]:

Theorem 3.—For any choices of transversal gadgets and

set of integer time ftig, MWPM is fault tolerant only if

dðti; tiþ1Þ ¼ ΩðLÞ for every i.
Our argument generalizes the overlapping recovery

method discussed in Ref. [21], which uses Shor error

correction for fault tolerance. For Shor error correction, we
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have dðti; tiþ1Þ ¼ jtiþ1 − tij so that we need to repeat the

measurement for ΩðLÞ rounds. On the other hand, as an

extreme case, if we apply Steane error correction, as there

are no type-I errors, the decoder graph does not have any

timelike edges. The time slices are not connected with each

other so that dðt; t0Þ ¼ ∞ for any t ≠ t0. This allows us to
choose ti ¼ i. Moreover, when the MWPM decoder

matches the defects in time slice t, the syndrome informa-

tion later than t is not used at all. Our analysis is compatible

with the fact that Steane’s scheme supports single-shot

error correction [13].

Without taking the complexity of ancilla-state preparation

into account, the Steane-style gadget is the best among all

transversal gadgets. In practice, however, we might hope that

the ancilla block size is bounded by some constant or some

functionofL. For example,wewould like to partition the toric

lattice into m ×m square lattices for some m (for simplicity,

we assume thatm is a divisor of L) so that each ancilla block
has 2mðmþ 1Þ ¼ Oðm2Þ qubits. Note that the special case
m ¼ 1corresponds to theShor-stylegadget.Forgeneralm,we

naturally expect that the time overhead of fault-tolerant

error correction, characterized by jtiþ1 − tij, is somewhere

between OðLÞ and Oð1Þ. Unfortunately, if the partition is

identical for each time slice, as depicted in Fig. 1(a), we will

still have dðt; t0Þ ¼ jt − t0j due to the existence of a path of

timelike errors fðẽ; tÞgt∈N, where ẽ ∈ ∂̃F is some split edge.

To avoid creating a straight line parallel to the time axis, we

can shuffle the type-I errors by shifting the partitions peri-

odically. For simplicity, we assume that m ¼ 3k for some

k ∈ N.We label the rows and columns of the toric lattice from

0 to L − 1. The vertex on row i and column j is labeled by

ði; jÞ. At time t ∈ N, we obtain a gadget by partitioning the

lattice into square lattices of size m ×m, whose top-left

corners are ððpmþ ktÞ mod L; ðqmþ ktÞ mod LÞ, where
p; q ¼ 0;…; L=m − 1. Thedecodergraph is demonstrated in

Fig. 1(b).One canverify thatdðt; tþ 3Þ ¼ tþ 2 ¼ ΩðmÞ for
any t ∈ N. Therefore, it suffices to choose jtiþ1 − tij ¼
OðL=mÞ to achieve fault tolerance.

We study the circuit-level performance of our fault-

tolerant error-correction schemes numerically. The X- and

Z-syndrome extractions are applied alternatively. Our error
model is parametrized by a single error parameter p and
consists of three parts: (1) gate errors, with probability p,
each 2-qubit CNOT gate is followed by a Pauli error drawn
uniformly at random from the set fI; X; Y; Zg⊗2nfI ⊗ Ig;
(2) measurement errors, with probability 2p=3, a measure-
ment outcome in either the Z or X basis is flipped;
(3) preparation errors, ancilla preparation can lead to
correlated errors that need to be removed through verifica-
tion or syndrome measurement decoding. Here we assume a
simple error model where the complicated ancilla blocks are
generated perfectly and then each qubit undergoes an
independent depolarizing channel with probability p.
Our calculations ignore idling errors, which enables us to

avoid complications due to scheduling. Comparison of
these syndrome extraction methods for practical application
would require a detailed multiparameter error model, a
procedure for ancilla generation and verification, and
the connectivity constraints of the quantum processor.
To accelerate our simulation, instead of the standard
MWPM decoding algorithm, we use a weighted variant
of the union-find decoder [38,39]. Table II compares the
threshold of our block extraction schemes and the conven-
tional Shor’s and Steane’s schemes. For block extraction,
we fix the ancilla block size m when L →∞. In this case,
we will still need OðLÞ rounds of extractions even if we
offset the blocks. However, we observe that offsetting the
blocks yields different threshold values than aligning them.
This makes sense as the two strategies provide different
decoder graph symmetries. When m gets larger, the offset
version starts to yield higher threshold values. We also
calculate the threshold of the conventional bare-ancilla
extraction scheme [40] for a comparison. The raw data of
the simulation are available in Ref. [36].

In this Letter, we have constructed a family of syn-

drome extraction gadgets for CSS codes described by

decomposition of parity-check matrices. These gadgets

allow us to extract stabilizer elements of the same type

in parallel. Notably, our gadget family includes both

Shor’s [10] and Steane’s [12] schemes. We applied these

gadgets on the toric code and constructed fault-tolerant

error-correction schemes. Remarkably, for a toric code

with distance L, one can use ancilla blocks with size

Oðm2Þ to achieve fault tolerance in OðL=mÞ rounds. By
numerical simulation, we found that our error-correction

schemes could yield higher thresholds under a simplified

circuit-level noise model. As the data qubits would be

FIG. 1. The decoder graphs of the toric code: the syndrome bits

are vertices, the data errors are horizontal edges, and the type-I

measurement errors are vertical edges. The ancilla blocks when

aligned (a) lead to timelike correlations between directed repeated

measurements. By offsetting the ancilla blocks (b), the timelike

correlations require spacelike errors in order to correlate defects

from top to bottom.

TABLE II. Threshold comparison between block syndrome

extractions and the standard methods.

Shor Block extraction

Method Cat Bare m ¼ 3 m ¼ 6 m ¼ 9 m ¼ 12 Steane

Offset (%)
0.57 0.83

0.68 0.89 1.04 1.13
2.05

Aligned (%) 0.74 0.89 0.97 1.04

PHYSICAL REVIEW LETTERS 127, 090505 (2021)

090505-4



kept idling while preparing the ancilla state, we assume

that the idling errors are negligibly small, which could be

achieved by trapped-ion qubits [41] or other qubits with

long coherence time. In practice, the ancilla preparation

errors will depend on the preparation protocols, which

can be either direct preparation with postselection [40] or

state distillation [42]. A more comprehensive analysis is

beyond the scope of this Letter.

We note our method of syndrome extraction is quite

general and only requires the codes be CSS. We conjecture

that our methods will yield better circuit-level thresholds

than the Shor-style syndrome extraction methods currently

used on large distance codes such as two-dimensional color

codes [30,43], while keeping the rejection rates of post-

selection reasonable. However, the decoding problem and

the time overhead analysis would be more complicated and

code specific. We expect that the framework for analyzing

and optimizing the time overhead of sequential Shor-style

extractions [25,26] will be helpful for time optimizing

Steane-like extraction.
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