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Fault-tolerant quantum error correction requires the measurement of error syndromes in a way that
minimizes correlated errors on the quantum data. Steane and Shor ancilla are two well-known methods for
fault-tolerant syndrome extraction. In this Letter, we find a unifying construction that generates a family of
ancilla blocks that interpolate between Shor and Steane. This family increases the complexity of ancilla
construction in exchange for reducing the rounds of measurement required to fault tolerantly measure the
error. We then apply this construction to the toric code of size L x L and find that blocks of size m x m can
be used to decode errors in O(L/m) rounds of measurements. Our method can be applied to any
Calderbank-Shor-Steane code and presents a new direction for optimizing fault-tolerant quantum

computation.
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Quantum error-correction codes [1-9] are a path toward
to the low errors required for large-scale quantum compu-
tation. Error correction is performed conditional on the
measurement outcomes of a set of code stabilizers, also
known as the error syndrome. The syndrome extraction
circuits need to be fault tolerant [10-17] as the act of
measuring syndromes also introduces extra errors on the
quantum system. The first fault-tolerant syndrome extrac-
tion scheme was proposed by Shor [10,18]. In Shor’s
scheme, each syndrome bit is extracted from the data qubits
to a verified ancilla cat state by transversal 2-qubit gates.
Transversal operations limit the error propagation and no
high-weight correlated errors can occur on the data qubits if
the cat states are verified by postselection. For low-weight
stabilizers, ancilla postselection can be avoided by decod-
ing the ancilla cat states to look for potential correlated
errors [15,19,20]. The value of the syndrome bit is the
parity of the transversal measurement outcome of the cat
state. As any measurement error will flip the syndrome bit,
for a stabilizer code of distance d, one needs to repeat the
syndrome measurements for O(d?) rounds to guarantee
fault tolerance [10]. Optimizing the space and time over-
head of Shor’s scheme on particular codes is an active area
of research with substantial progress since its invention
[15,16,20-33].

The fault-tolerant extraction gadget for Shor’s scheme is
arguably the simplest. As a trade-off, a large number of
2-qubit gates are applied between data and ancilla qubits.
For Calderbank-Shor-Steane (CSS) codes [5,6], Steane
suggested to transfer the complexity of data-ancilla inter-
action to preparation of the ancilla state [12]. In Steane’s
protocol, a logical |[+) (|0)) ancilla state is prepared for
simultaneously extracting all the Z stabilizers (X stabilizers).
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The errors on the data are propagated to the ancillas through
transversal controlled-NOT (CNOT) gates. Steane’s
scheme requires no repetition of syndrome extractions, so
that each data qubit is touched by 2 CNOT gates, one for X
errors and another one for Z errors. Knill proposed a similar
scheme [14] based on quantum teleportation that works for
arbitrary stabilizer codes and requires only one round of
transversal CNOT gates to extract all the stabilizers, at the
cost of entangled logical ancilla. Using a constant number of
Steane or Knill syndrome extractions, an arbitrary logical
Clifford circuit can be implemented fault tolerantly in O(1)
steps [34].

For quantum devices with low idling error rates, the data
qubits can wait for a reasonable amount of time until a good
Steane-style (Knill-style) ancilla block is postselected,
which yields higher fault-tolerance thresholds [14,35].
For large code blocks, however, postselection often yields
an impractically low success rate. In this Letter, we develop
a framework that generates a family of extraction schemes
for CSS codes, including Shor’s and Steane’s construction
as its two extremes. This family gradually increases the
complexity of ancilla construction in exchange for reducing
the number of 2-qubit gates between data and ancilla qubits
required to fault tolerantly measure the error. As an
example, we are able to use a single ancilla block to
measure the plaquette operators (Z-stabilizer elements) of
the toric code inside any connected sublattice. In particular,
one can partition the L x L toric lattice into patches, each
of which contains m x m plaquettes. Choosing m to be a
constant independent of L, the success rate of ancilla
postselection will be finite. Moreover, by offsetting the
partition periodically, one can achieve fault tolerance within
O(L/m) measurement rounds. As a remark, our result is
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compatible with the fact that Shor’s and Steane’s schemes
require O(L) and O(1) measurement rounds on the toric
code, respectively.

For CSS codes, the bit-flip errors (X errors) and phase-
flip errors (Z errors) can be handled independently. Without
loss of generality, we focus on bit-flip errors, which are
detected by measuring Z checks. Suppose we are measur-
ing r Z checks of an n-qubit CSS code. These checks can
be represented by an r x n parity-check matrix H, where
H;; =1 if and only if the ith Z check is supported on
the jth qubit. The bit-flip errors on the physical qubits,
represented by an n-bit binary string y € [}, should have a
syndrome Hy € F.

In the intermediate steps of fault-tolerant computations,
we are not allowed to measure the n data qubits directly.
A general idea shared by both Shor’s and Steane’s syndrome
extraction protocols is to transfer the X errors to a set of m
ancilla qubits by CNOT gates: one can perform CNOT gates
with data qubits as controls and ancilla qubits as targets, then
apply Z measurements on all ancilla qubits to obtain the
syndrome. The CNOT gates can be encoded by an m X n
binary matrix I', where I';; = 1 if and only if there is a
CNOT gate between the jth data qubit and the ith ancilla
qubit. For an error configuration y € 3, the error trans-
ferred to the ancilla block is I'y € F5'. The matrix I" is
referred to as the “gate matrix.” To extract the syndrome,
the ancilla block must be stabilized by r Z checks repre-
sented by an r x m matrix A such that H = HT. This
guarantees that one can obtain the syndrome Hy = HTy by
measuring all the ancilla qubits in the Z basis. As an
example, Steane’s method corresponds to a decomposition
H = HT such that = H and I" = [ is the identity matrix.

TABLE I

The case that ' = H and A =1 corresponds to the non-
fault-tolerant version of Shor’s scheme, in which each
stabilizer is measured by a single ancilla qubit.

A natural question is that, given an arbitrary matrix
decomposition H = AT, can we find an extraction circuit
with a gate matrix I'? To obtain a deterministic syndrome
Hy = HTy, the ancilla state should at least be stabilized
by a Z-stabilizer group isomorphic to im AT, the image of
HT (the row space of H). On the other hand, we want to
have as many X-stabilizer elements as possible to guarantee
that I encodes a trivial logical operation and does not
entangle the data and ancilla. The maximal X-stabilizer
group we can have is isomorphic to ker A, the kernel of H.
In fact, our question has a positive answer:

Theorem 1.—A decomposition H = HT uniquely cor-
responds to a syndrome extraction circuit with gate matrix
I' (up to gate ordering). The ancilla block is a CSS state
whose Z-stabilizer and X-stabilizer groups are isomorphic
to the row space of H, im A" and the kernel of A, ker H,
respectively.

The essential step to prove Theorem 1 is to verify
that TT(imA") CimH" and T'(ker H) C ker H so that
the stabilizer group and logical operators are invariant
under I. A more comprehensive argument is presented in
the companion article [36]. We present five methods of
syndrome measurement for Steane’s [7,1,3] code in
Table I to show how our notation describes both standard
methods for measuring syndromes and enables the discov-
ery of new schemes. Circuits for these methods are
presented in Ref. [36]. We note that nontransversal syn-
drome extraction circuits, such as the bare ancilla and
scheme B circuits in Table I, require extra machinery to

For the Steane [7, 1, 3] code, we illustrate by matrices how our division of H into H and T enables us to describe three

common ancilla blocks: bare qubits, cat states, and Steane ancilla. It also enables protocols that extract two Z-stabilizer elements in
parallel, as shown in schemes A and B. The Z- and X-stabilizer generators are generated from the image of HT,im H", and the kernel of
H, ker H, respectively. The circuits labeled bare ancilla and scheme B are not transversal so that an ancilla error could lead to a weight-2
correlated error on the data block. We will require flag qubits [15] or DiVincenzo-Aliferis decoding circuits [19] to detect these errors so
that all single errors are distinguishable. For methods other than the Steane scheme, we show circuits that measure only a subset of the Z
checks. To completely measure the syndrome, we can apply the same gadgets to other subsets or even combine schemes.

Bare ancilla Cat state Steane Scheme A Scheme B
1 1.1 1 0 0 O
H [1] (11 1 1] 01 10110 {éiié?ﬂ {éiﬂ
001 1 0 11
1 0 01 0 0O
r (111100 0] [I | 0Ous] L (I | Ogu] 0 110000
00 O0O0T1T1FO0
1 11 1 0 0
1 1.1 10 0 O 1 1.1 10 0 O
H (T1 110001111000 (0110110 { }{ }
00110 1 1 o1 1 01 10 0O 1 1 01 10
Z-stabilizer Zy ZyZyZyZy ZyZyZyZy, ZyZyZsZg, ZyZyZyZy, ZyZy, ZyZy
generators ZyZyZgZy ZyZyZlsZy
X-stabilizer None XXy, X0 X3, X1 Xo Xy Xy, X0 X3 X5 Xg Xy XoXy Xy, X0 X3 X5 Xg XXy Xy
generators Xy Xy Xy Xy XXy, XXy X5 Xy Xy Xg, X9 Xy X5
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prevent correlated data errors such as flag qubits [15] or
DiVincenzo-Aliferis decoding [19].

We now consider block extractions of the toric code.
A [2L2,2,L] toric code defined on an L x L periodic
lattice on the torus has a set V of L2 vertices, a set E of 212
edges, and a set F of L?> faces. The “boundary map”
0: F,[F] - F,[E] is a F,-linear map that maps each face
f € F to the sum of four edges bordering f. The “coboun-
dary map” &: F,[V] — F,[E] maps each vertex v € V to
the sum of four edges incident to ». The maps 9" and &' are
the Z- and X-check matrices of the toric code, respectively.
From Theorem 1, a circuit that extracts the Z stabilizers
corresponds to a decomposition 97 = d'yT, or = yd for
some y and 9. We note that such decomposition can be
constructed by cutting the torus along some arbitrarily
chosen edges. The obtained topological space will have an
edge set £ and a boundary map 0: F,[F] — F,[E], and
v: F,|E] = [F,[E] maps the edge & € E to the correspond-
ing edge e € E on the torus. Note that, if we split an edge
e € E into two edges &,,¢, € E, &,,&, will be on the
boundary of the obtained topological space. As a remark, if
the torus is not being cut at all, we obtain a Steane-style
gadget; if the torus is cut into L? disjoint faces so that all the
edges are split, we obtain the Shor-style gadget. Note that,
for any extraction gadget obtained in this way, the 2-qubit
gates are transversal on the ancilla block. Indeed, fault
tolerance can be achieved when the ancilla block is
prepared fault tolerantly. Such a family of “transversal
gadgets” can be constructed algebraically on any CSS
codes, which is shown in Ref. [36].

We now describe our model of fault-tolerant error
correction. As X and Z errors can be corrected separately,
we can ignore the Z errors on the data qubits and the
X-stabilizer measurements. Suppose our computation starts
from time 0. We extract the Z-check matrix O at every
positive integer time. For every t € Z,, each data qubit
could have an X error at time ¢ — 1/2, and the measurement
outcome of each ancilla qubit at time ¢ could have a
classical bit-flip error. For now, we ignore the data errors
between two CNOTs in the same extraction round. Suppose
at time ¢ € N, we apply a transversal gadget d = y,0, with
an edge set E,. If the syndrome bit f € F at time ¢ is
different from its previous value, we create a defect at the
lattice site (f, 7). A bit-flip error on the data qubit e € E at
time ¢ — 1/2 will excite a pair of defects (f, ) + (f2, 1),
where f| and f, share e. A measurement error on the
ancilla qubit & € E, at time ¢ will excite a set of defects
O x {11+ 1}. If & is a split edge, J; & consists of only
one face, and the error creates a pair of defects correlating
time ¢ and ¢ + 1; otherwise, 5,TE consists of two faces and
four defects are created. We say that the measurement error
is of type 1if |97e| = 1 or type II if |9} 2| = 2.

If we always use the Shor-style extraction gadget, we can
view each single error as an edge connecting the pair of

excitations. The syndrome can be decoded by applying the
minimum-weight-perfect-matching (MWPM) algorithm on
the decoder graph [37]. In general, however, the existence
of type-II errors complicates the decoding problem, as each
of them creates four defects instead of two. Note that a
type-II error on the ancilla qubit & at time ¢ is equivalent as
two data errors on the same data qubit y,é but at two
different times ¢ and 7+ 1. We can run MWPM on the
decoder graph that consists of data errors and type-I
measurement errors, with the cost that each type-II error
is regarded as a weight-2 error. Noticing that two different
data errors on the same qubit are never on the same logical
error loop with minimum weight, treating every type-II
error as two data errors will still preserve the code distance:

Theorem 2.—For any choices of transversal gadgets, if
there are less than L/2 errors in total, MWPM will not
introduce a logical error.

The formal proof of Theorem 2 is left in Ref. [36].

In practice, we need to correct the errors after a finite
number of measurement rounds. As the information pro-
vided by the latest syndrome bits is always unreliable, they
will be processed only when further syndrome bits are
gathered, which is referred to as the overlapping recovery
method [21]. More concretely, we can divide the time axis
by some chosen integer time

l=f<th< - <t;<-

In the ith round of error correction, we decode the
syndrome bits in the time interval [t;,7;,,), but only
correct the errors in [t; —1/2,¢,.; — 1/2); then discard
the syndrome bits in [t;, #;, ;) while the updated syndrome
bits in [#;, 1, #;,,) are kept for the next round of correction.
The decoder graph for the ith recovery only contains the
vertices (syndrome bits) and edges (errors) in
[t; —1/2,t;» — 1/2). The defects can be fused with the
time boundary so that its lifetime is extended to the next
round. If the distance from time slice #; to t;,; on the
decoder graph, denoted by d(#;, t;, ), is much smaller than
the code distance L, it would be too easy for the decoder to
fuse a defect at time ¢; to the time boundary. Equivalently,
the decoder will consider most of the syndrome bit flips as
measurement errors so that the data errors can hardly be
corrected. Our goal is to correct the data errors in [; —
1/2,t; — 1/2) before the time #;,,. If d(t;,1,d;1») > L,
when we have less than L/2 errors, the decoder will not
fuse a defect before f;,; with another defect after 7, ,.
Indeed, we have the following result, whose formal proof
is in Ref. [36]:

Theorem 3.—For any choices of transversal gadgets and
set of integer time {z;}, MWPM is fault tolerant only if
d(t;, 1) = Q(L) for every i.

Our argument generalizes the overlapping recovery
method discussed in Ref. [21], which uses Shor error
correction for fault tolerance. For Shor error correction, we
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have d(t;,t;41) = |t;s1 — ;] so that we need to repeat the
measurement for Q(L) rounds. On the other hand, as an
extreme case, if we apply Steane error correction, as there
are no type-I errors, the decoder graph does not have any
timelike edges. The time slices are not connected with each
other so that d(t, 1) = oo for any ¢ # ¢. This allows us to
choose t; =i. Moreover, when the MWPM decoder
matches the defects in time slice ¢, the syndrome informa-
tion later than 7 is not used at all. Our analysis is compatible
with the fact that Steane’s scheme supports single-shot
error correction [13].

Without taking the complexity of ancilla-state preparation
into account, the Steane-style gadget is the best among all
transversal gadgets. In practice, however, we might hope that
the ancilla block size is bounded by some constant or some
function of L. For example, we would like to partition the toric
lattice into m x m square lattices for some m (for simplicity,
we assume that m is a divisor of L) so that each ancilla block
has 2m(m + 1) = O(m?) qubits. Note that the special case
m = 1 corresponds to the Shor-style gadget. For general m, we
naturally expect that the time overhead of fault-tolerant
error correction, characterized by |t — t;|, is somewhere
between O(L) and O(1). Unfortunately, if the partition is
identical for each time slice, as depicted in Fig. 1(a), we will
still have d(¢,¢) = |t — ¢| due to the existence of a path of
timelike errors { (2, 1)} ,cy» Where & € OF is some split edge.
To avoid creating a straight line parallel to the time axis, we
can shuffle the type-I errors by shifting the partitions peri-
odically. For simplicity, we assume that m = 3k for some
k € N. We label the rows and columns of the toric lattice from
0 to L — 1. The vertex on row i and column j is labeled by
(i, 7). At time ¢ € N, we obtain a gadget by partitioning the
lattice into square lattices of size m x m, whose top-left
corners are ((pm + kt) mod L, (gm + kt) mod L), where
p.q=0,...,L/m— 1.Thedecoder graph is demonstrated in
Fig. 1(b). One can verify that d(z, 1 + 3) = t + 2 = Q(m) for
any 7 € N. Therefore, it suffices to choose |t — ;| =
O(L/m) to achieve fault tolerance.

We study the circuit-level performance of our fault-
tolerant error-correction schemes numerically. The X- and

(a) Aligned ancilla blocks (b) Offset ancilla blocks
FIG. 1. The decoder graphs of the toric code: the syndrome bits
are vertices, the data errors are horizontal edges, and the type-I
measurement errors are vertical edges. The ancilla blocks when
aligned (a) lead to timelike correlations between directed repeated
measurements. By offsetting the ancilla blocks (b), the timelike
correlations require spacelike errors in order to correlate defects
from top to bottom.

Z-syndrome extractions are applied alternatively. Our error
model is parametrized by a single error parameter p and
consists of three parts: (1) gate errors, with probability p,
each 2-qubit CNOT gate is followed by a Pauli error drawn
uniformly at random from the set {1, X, Y, Z}®\{I ® I};
(2) measurement errors, with probability 2p/3, a measure-
ment outcome in either the Z or X basis is flipped;
(3) preparation errors, ancilla preparation can lead to
correlated errors that need to be removed through verifica-
tion or syndrome measurement decoding. Here we assume a
simple error model where the complicated ancilla blocks are
generated perfectly and then each qubit undergoes an
independent depolarizing channel with probability p.

Our calculations ignore idling errors, which enables us to
avoid complications due to scheduling. Comparison of
these syndrome extraction methods for practical application
would require a detailed multiparameter error model, a
procedure for ancilla generation and verification, and
the connectivity constraints of the quantum processor.
To accelerate our simulation, instead of the standard
MWPM decoding algorithm, we use a weighted variant
of the union-find decoder [38,39]. Table II compares the
threshold of our block extraction schemes and the conven-
tional Shor’s and Steane’s schemes. For block extraction,
we fix the ancilla block size m when L — co. In this case,
we will still need O(L) rounds of extractions even if we
offset the blocks. However, we observe that offsetting the
blocks yields different threshold values than aligning them.
This makes sense as the two strategies provide different
decoder graph symmetries. When m gets larger, the offset
version starts to yield higher threshold values. We also
calculate the threshold of the conventional bare-ancilla
extraction scheme [40] for a comparison. The raw data of
the simulation are available in Ref. [36].

In this Letter, we have constructed a family of syn-
drome extraction gadgets for CSS codes described by
decomposition of parity-check matrices. These gadgets
allow us to extract stabilizer elements of the same type
in parallel. Notably, our gadget family includes both
Shor’s [10] and Steane’s [12] schemes. We applied these
gadgets on the toric code and constructed fault-tolerant
error-correction schemes. Remarkably, for a toric code
with distance L, one can use ancilla blocks with size
O(m?) to achieve fault tolerance in O(L/m) rounds. By
numerical simulation, we found that our error-correction
schemes could yield higher thresholds under a simplified
circuit-level noise model. As the data qubits would be

TABLE II. Threshold comparison between block syndrome
extractions and the standard methods.

Shor Block extraction
Method Cat Bare m =3 m=6 m=9 m =12 Steane
Offset (%) 0.68 089 1.04 1.13
Aligned (%) 0.57°0.83 0.74 089 097 1.04 2.05

090505-4



PHYSICAL REVIEW LETTERS 127, 090505 (2021)

kept idling while preparing the ancilla state, we assume
that the idling errors are negligibly small, which could be
achieved by trapped-ion qubits [41] or other qubits with
long coherence time. In practice, the ancilla preparation
errors will depend on the preparation protocols, which
can be either direct preparation with postselection [40] or
state distillation [42]. A more comprehensive analysis is
beyond the scope of this Letter.

We note our method of syndrome extraction is quite
general and only requires the codes be CSS. We conjecture
that our methods will yield better circuit-level thresholds
than the Shor-style syndrome extraction methods currently
used on large distance codes such as two-dimensional color
codes [30,43], while keeping the rejection rates of post-
selection reasonable. However, the decoding problem and
the time overhead analysis would be more complicated and
code specific. We expect that the framework for analyzing
and optimizing the time overhead of sequential Shor-style
extractions [25,26] will be helpful for time optimizing
Steane-like extraction.
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