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ABSTRACT
Weprove that any𝑛-node graph𝐺 with diameter𝐷 admits shortcuts

with congestion 𝑂 (𝛿𝐷 log𝑛) and dilation 𝑂 (𝛿𝐷), where 𝛿 is the

maximum edge-density of any minor of𝐺 . Our proof is simple and

constructive with a Θ̃(𝛿𝐷)-round1 distributed construction algo-

rithm. Our results are tight up to logarithmic factors and generalize,

simplify, unify, and strengthen several prior results. For example,

for graphs excluding a fixed minor, i.e., graphs with constant 𝛿 ,

only a 𝑂̃ (𝐷2) bound was known based on a very technical proof

that relies on the Robertson-Seymour Graph Structure Theorem.

A direct consequence of our result is this: many graph fami-

lies, including any minor-excluded ones, have near-optimal Θ̃(𝐷)-
round distributed algorithms formany fundamental communication

primitives and optimization problems in the standard synchronous

message-passing model with logarithmic message sizes, i.e., the

CONGEST model. These problems include minimum spanning tree,

minimum cut approximation, and shortest-path approximations.
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1 INTRODUCTION AND RELATEDWORK
Low-congestion shortcuts are graph-theoretic objects whose quality
captures the distributed complexity of a wide range of fundamental

graph problems and communication primitives. In this paper, we

provide nearly-tight shortcuts for all graphs excluding (dense) mi-

nors. Our results significantly strengthen, simplify, generalize and

unify several prior results on shortcuts for restricted graph classes.

Our results also directly imply simple near-optimal distributed al-

gorithms for a number of well-studied graph problems in excluded

minor graphs and many other graph families.

1.1 Background and Definition

Model: We work with the standard synchronous message passing

model of computation on networks and distributed systems. The

communication network is abstracted as an 𝑛-node undirected

graph 𝐺 = (𝑉 , 𝐸) with 𝑚 = |𝐸 | edges. In each communication

round, each node can send an 𝑂 (log𝑛)-bit message to each of its

neighbors in 𝐺 . At the beginning, nodes do not know the topology

of𝐺 . At the end, each node should know its own part of the output,

e.g., which of its edges are in the computed minimum spanning tree.
This model is sometimes referred to as the CONGEST model [29].

The Motivation for Shortcuts: The Ω̃(
√
𝑛)-round lower bound

for global distributed graph problems is well-known by now. Con-

cretely, it is known that on worst-case general graphs, for a strik-

ingly wide-range of global graph problems — including minimum

spanning tree, minimum cut, maximum flow, single-source shortest

path, etc — any distributed algorithm needs a round complexity

of Ω̃(
√
𝑛) [3, 30, 33]. This holds even for any (non-trivial) approx-

imation of these problems, and even on graphs with a small, e.g.,

logarithmic, diameter. On the other hand, the lower bound graphs

are carefully crafted pathological topologies which do not occur

in practice. Indeed, many real-world networks have small (poly-

logarithmic) diameters (e.g., the Facebook graph with billions of

nodes has average distance below 5 and a diameter of around 50)

and seem to allow for exponentially faster optimization algorithms

with 𝑂̃ (𝐷)-round complexities. Low-congestion shortcuts [7] were

introduced as a graph-theoretic notion to capture and exploit this

phenomenon and allow a more fine-grained study of the complexity

of global problems and how this complexity relates to the struc-

ture of the network topology. In various graph families, algorithms

Session 4: Shortcuts, Spanners, and Message Complexity PODC ’21, July 26–30, 2021, Virtual Event, Italy

213

https://doi.org/10.1145/3465084.3467935
https://doi.org/10.1145/3465084.3467935
https://doi.org/10.1145/3465084.3467935
https://arxiv.org/abs/2008.03091


based on low-congestion shortcuts have obtained complexities that

are considerably below the Ω̃(
√
𝑛) barrier– in fact, often obtaining

near-optimal 𝑂̃ (𝐷)-round algorithms
2
.

The Definition of Shortcuts: Suppose that the set 𝑉 of vertices

is partitioned into disjoint subsets 𝑉1, 𝑉2, . . . , 𝑉𝑘 , known as parts,
such that the subgraph 𝐺 [𝑉𝑖 ] induced by each part 𝑉𝑖 is connected.

We call a collection of subgraphs 𝐻1, 𝐻2, . . . , 𝐻𝑘 a shortcut with
congestion 𝑐 and dilation 𝑑 if we have the following two properties:

(A) ∀𝑖 ∈ [1, 𝑘], the diameter of the subgraph 𝐺 [𝑉𝑖 ] + 𝐻𝑖 is 𝑂 (𝑑),
and (B) each edge 𝑒 ∈ 𝐸 is in 𝑂 (𝑐) many subgraphs 𝐻𝑖 .

Application of Shortcuts: Shortcuts organically lead to fast dis-

tributed algorithms. For instance, let us consider the minimum

spanning tree problem. Suppose that we are in a graph family for

which, we have a distributed algorithm that can compute a shortcut

with congestion 𝑐 and dilation 𝑑 in 𝑇 rounds (upon receiving the

partition 𝑉1, 𝑉2, . . . , 𝑉𝑘 ). In general, we refer to 𝑐 + 𝑑 as the quality
of the shortcut. Then, we can use this algorithm to obtain a dis-

tributed algorithm for the minimum spanning tree problem, with a

round complexity 𝑂̃ (𝑐 +𝑑 +𝑇 ). This follows directly from Boruvka’s

1926 approach [28]. A number of other graph problems can also

be solved distributedly using shortcuts, with a similar complexity.

This includes min-cut computation [7], single-source shortest-paths

approximation [16], and many more [2, 10, 21].

Of course, the question that remains is this:

What is the existential shortcut quality 𝑐 + 𝑑 of

important graph families, and what is the corre-

sponding construction time 𝑇 ?

Graph Minors and Minor Density: Before proceeding to known
results and our contribution, let us briefly recall the definition of

minors and their density. A graph 𝐻 is a minor of graph𝐺 if 𝐻 can

be obtained from 𝐺 by contracting edges and deleting edges and

vertices. Equivalently𝐻 = (𝑉 ′, 𝐸 ′) is a minor of graph𝐺 = (𝑉 , 𝐸) if
there is a mapping map𝐻,𝐺 from vertices in𝐻 to disjoint connected

subsets of vertices in𝐺 , each inducing a connected subgraph, such

that for every edge {𝑢 ′, 𝑣 ′} ∈ 𝐸 ′ there exists a {𝑢, 𝑣} ∈ 𝐸 with

𝑢 ∈ map𝐻,𝐺 (𝑢 ′) and 𝑣 ∈ map𝐻,𝐺 (𝑣 ′).
An important parameter throughout this paper is the minor

density 𝛿 (𝐺) of a graph 𝐺 which is defined as:

𝛿 (𝐺) = max

{
|𝐸 ′ |
|𝑉 ′ |

���� 𝐻 = (𝑉 ′, 𝐸 ′) is a minor of 𝐺

}
.

It is known that the minor density 𝛿 (𝐺) is (up to a small poly-

logarithmic factor) the same as the size of the largest complete

minor in 𝐺 , i.e., its complete-graph minor size 𝑟 (𝐺) = max{𝑟 |
𝐾𝑟 is a minor of 𝐺}.

Lemma 1.1 ([34]). ∀𝐺 :
𝑟 (𝐺)−1

2
≤ 𝛿 (𝐺) ≤ 8𝑟 (𝐺)

√︁
log

2
𝑟 (𝐺), i.e.,

𝛿 (𝐺) = Θ̃(𝑟 (𝐺)).

Note that if a graph family G is closed under taking minors or

equivalently excludes a fixed minor 𝐻 of size 𝑠 then every 𝐺 ∈ G
2
One can draw parallels between the role that shortcuts have turned out to play for

distributed algorithms of global graph problems with the role that separators play as

a key algorithmic tool in sequential algorithms for various graph families, such as

planar [23, 26], bounded genus [11], and minor-excluded [1].

has 𝑟 (𝐺) ≤ 𝑠 and therefore also a constant minor density 𝛿 (𝐺) =
𝑂 (𝑠

√︁
log 𝑠).

1.2 Our Contribution
We first briefly summarize known results on shortcuts (see Sec-

tion 1.3 for further details). Ghaffari and Haeupler [6, 7] provided

shortcuts of quality 𝑂̃ (𝐷) and construction time 𝑂̃ (𝐷) for planar
graphs. This was later extended to graphs with bounded genus,

bounded treewidth, and bounded pathwidth [15], and with im-

proved construction algorithms [12, 14]. Haeupler, Li, and Zuzic [17]

gave shortcuts for excluded minor graphs, with quality 𝑂̃ (𝐷2), us-
ing elaborate arguments building on the Graph Structure Theorem

of Robertson and Seymour [31, 32]. While excluded minor graphs

are vastly more general, encompassing all previous graph classes

for constant bounds on the above graph parameters, the question

whether near-optimal 𝑂̃ (𝐷) shortcuts and optimization algorithms

for excluded minor topologies are possible remained open.

Existential Results for Graph with Minor Density 𝛿 : In this

work, we resolve this question in the positive. We also significantly

strengthen, simplify, generalize, and unify all the above results by

giving a near-optimal existential shortcut guarantee for any graph

𝐺 , which depends only on its minor density 𝛿 (𝐺):

Theorem 1.2. Any 𝑛-node graph 𝐺 with diameter 𝐷 and minor
density 𝛿 (𝐺) = 𝛿 admits shortcuts with dilation 𝑂 (𝛿𝐷) and conges-
tion 𝑂 (𝛿𝐷 log𝑛).

Besides the important quadratic quantitative improvement from

𝑂̃ (𝐷2) to a near-optimal 𝑂̃ (𝐷) for excluded minor graphs, i.e.,

graphs with constant 𝛿 , our proof is significantly simpler than

that of [17]. Instead of the technical proof in [17] which uses the

powerful Graph Structure Theorem [31, 32], we give a short and

elementary proof. Our proof even provides small concrete con-

stants
3
whereas the Robertson-Seymour Graph Structure Theorem

is known to often lead to tower-type dependencies on the size 𝑘 of

the excluded minor [24] and “galactic algorithms” [22].

Even more importantly, our result applies to any graph and

graph family even if 𝛿 (𝐺) is large or growing. For example it implies

that graphs with sub-polynomial minor density or expansion (see

[27] for definitions and treatment of such more inclusive graph

families) have sub-polynomial shortcuts and fast 𝑂 (𝑛𝑜 (1) )-round
optimization algorithms, which still drastically improve over the

Ω̃(
√
𝑛)-lower bound. Our results are the first that apply to graph

classes strictly more general than minor-closed or excluded-minor

graph families.

We complement Theorem 1.2 with a matching lower bound

which shows that the linear dependency of Theorem 1.2 on the

minor-density 𝛿 (𝐺) is necessary and optimal:

Lemma 1.3. For any 𝛿, 𝐷 there is a graph 𝐺 with diameter 𝐷 and
𝛿 (𝐺) ≤ 𝛿 and a collection of parts for which the quality of the best
shortcut in 𝐺 is Ω(𝛿𝐷).

Lastly, having the minor density 𝛿 (𝐺) as a parameter in Theo-

rem 1.2 also directly implies often optimal results on shortcuts for

3
No attempt was made to optimize the explicit constants in the 8𝛿 and 8𝛿𝐷 bounds of

our main result Theorem 3.1, or any other explicit constants in this paper. Somewhat

better constants are likely possible.
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other graph parameters in a simple and uniform way. For example,

[7] showed that any genus-𝑔 network admits shortcuts of quality

𝑂̃ (𝑔𝐷). In [15] this dependency of the shortcut quality on the genus

was improved to an optimal bound of Θ̃(√𝑔𝐷) via sophisticated
topological arguments including cutting a genus-𝑔 graph along

fundamental cycles of a shortest-path tree and cleverly combining

planar shortcuts for pieces of parts that are cut by these cycles. We

obtain the same result as a trivial corollary of Theorem 1.2, given

that 𝛿 (𝐺) = 𝑂 (√𝑔) for any genus-𝑔 graph.

Corollary 1.4. Any genus-𝑔 graph with 𝑛 nodes and diameter 𝐷
admits shortcuts with congestion𝑂 (√𝑔𝐷 log𝑛) and dilation𝑂 (√𝑔𝐷).

Bounds for other graph parameters follow similarly as simple

corollaries of our main theorem. This includes tight 𝑂̃ (𝑘𝐷) short-
cuts for 𝑘-pathwidth and 𝑘-treewidth graphs, matching the results

in [15] (since 𝛿 (𝐺) = 𝑂 (𝑘) for such graphs). In contrast to prior

works like [15], we do not require a completely different proof

specific to the graph parameter at hand to obtain these bounds.

Distributed Construction and Applications: In order to be al-

gorithmically useful we also need fast distributed constructions

for the new existential shortcut guarantees. We achieve this by

proving strong additional structural guarantees for our shortcuts,

namely tree-restrictedness and a small block number. Haeupler,

Hershkovitz, Izumi, and Zuzic [12, 14] showed that these struc-

tural guarantees are strong enough for a simple uniform shortcut

constructions to find a 𝑂̃ (𝑄)-quality shortcut in only 𝑂̃ (𝑄) rounds
whenever a quality-𝑄 shortcut with such structure exists.

Theorem 1.5. There exists a randomized distributed algorithm
which, for any 𝑛-node𝑚-edge graph 𝐺 with diameter 𝐷 and minor
density 𝛿 , computes a shortcut of quality 𝑂̃ (𝛿𝐷) in 𝑂̃ (𝛿𝐷) rounds
with high probability. There also exists a 𝑂̃ (𝛿2𝐷)-round deterministic
algorithm. Both algorithms use only 𝑂̃ (𝑚) messages.

This, together with all the algorithms that are built on top of the

low-congestion shortcut framework, shows that a wide range of

fundamental communication primitives and global graph problems

— e.g., minimum spanning tree, min-cut, shortest path approxima-

tion, etc — can be solved in 𝑂̃ (𝐷𝛿) rounds, in graphs that do not

have a minor of density 𝛿 . This vastly widens the range of graph

families for which we now know the correct round complexity for

basic global graph problems (up to logarithmic factors). We state

just two such corollaries as examples.

Corollary 1.6. There is a distributed algorithm that, for any 𝑛-
node𝑚-edge graph𝐺 with diameter 𝐷 and minor density 𝛿 , computes
a minimum spanning tree in 𝑂̃ (𝛿𝐷) rounds with high probability (or
𝑂̃ (𝛿2𝐷) rounds deterministically) using 𝑂̃ (𝑚) messages.

Corollary 1.7. There is a randomized distributed algorithms that,
for any 𝑛-node𝑚-edge graph 𝐺 with diameter 𝐷 and minor density
𝛿 , computes an exact minimum cut in 𝐺 in 𝑂̃ (𝛿𝑂 (1)𝐷) rounds with
high probability using 𝑂̃ (𝑚) messages.

Similar results can be obtained for sub-graph connectivity, single-

source shortest paths approximations [16], as well as several funda-

mental communication primitives likemultiple unicasts or partwise-

aggregation (see Section 2).

1.3 Prior Work on Shortcuts
We next overview the known results about the existential quality

and construction time of shortcuts.

Let us start with general graphs. It is easy to see that any 𝑛-node

graph 𝐺 , whose diameter is at most 𝐷 , admits shortcuts of quality

𝐷 +
√
𝑛: Let 𝑇 be a BFS of the graph 𝐺 . Define 𝐻𝑖 = ∅ for any

each part with |𝑉𝑖 | ≤
√
𝑛 and 𝐻𝑖 = 𝑇 for any other part. Moreover,

this 𝐷 +
√
𝑛 bound is nearly-optimal [7] in general graphs. This

𝐷 +
√
𝑛 bound is implicitly the underlying reason for the seminal

𝑂̃ (𝐷 +
√
𝑛) round minimum spanning tree algorithm of Kutten and

Peleg [4, 19], although there are more fine-grained aspects there to

avoid extra logarithmic factors. Moreover, this 𝑂̃ (𝐷 +
√
𝑛) round

complexity is nearly optimal for solving MST in general graphs,

as mentioned before, because of the carefully crafted lower bound

graphs of [3, 30, 33].

Ghaffari and Haeupler [7] showed that any planar graph with

diameter at most 𝐷 admits shortcuts of quality 𝑂 (𝐷 log𝐷), and
that this bound is nearly tight, almost matching a lower bound

of Ω(𝐷 log𝐷

log log𝐷
). They also provided a distributed algorithm for

constructing such shortcuts in 𝑂̃ (𝐷) rounds, assuming a planar

embedding of the graph. Combined with the distributed planar

embedding algorithm provided by [6], this led to an 𝑂̃ (𝐷) round
distributed algorithm for MST, and some other graph problems,

thus exhibiting a family of graphs in which one can go below the

notorious Ω̃(𝐷 +
√
𝑛) lower bound [33]. They [7] also showed that

graphs embeddable on a surface of genus 𝑔 admit shortcuts of

quality 𝑂 (𝑔𝐷 log𝐷).
Haeupler, Izumi, and Zuzic [14] showed that one can construct

shortcuts with a quality similar to those of [7], evenwithout a planar

embedding. Haeupler, Izumi, and Zuzic [15] showed that graphs

of treewidth or pathwidth 𝑘 admit shortcuts of quality 𝑂̃ (𝑘𝐷), and
they also improved the genus dependency to 𝑂̃ (√𝑔𝐷). Haeupler,
Hershkowitz, and Wajc [12] improved and extended the results

of [14] by showing that one can obtain algorithms that are near-

optimal in both time and message complexity, using shortcuts.

Generalizing the span of shortcuts much further, Haeupler, Li,

and Zuzic [17] gave shortcuts for excluded minor graphs. Con-

cretely, they showed that any graph that does not have a clique

of constant size as a minor admits a shortcut of quality 𝑂̃ (𝐷2).
This result is fairly involved and it builds on the Graph Structure

Theorem of Robertson and Seymour [31, 32]. Using the approach

of[12, 14], all these shortcuts mentioned above[7, 14, 15, 17] can be

constructed in a round complexity matching their quality, up to

logarithmic factors.

Ghaffari, Kuhn, and Su [8] provided shortcut constructions for

well-connected graphs. In particular, they showed that any graph

where the lazy random walk has mixing time𝑇𝑚𝑖𝑥 admits shortcuts

of quality 𝑇𝑚𝑖𝑥 · poly(log𝑛) and they presented distributed algo-

rithms for constructing shortcuts of quality𝑇𝑚𝑖𝑥 ·2𝑂 (
√
log𝑛 log log𝑛)

in 𝑇𝑚𝑖𝑥 · 2𝑂 (
√
log𝑛 log log𝑛)

rounds. These quality and construction

time bounds were both improved later to𝑇𝑚𝑖𝑥 · 2𝑂 (
√
log𝑛)

, by Ghaf-

fari and Li [9].

Finally, Kitamura et al.[18] showed that any 𝑘-chordal graph

admits shortcuts of quality𝑂 (𝑘𝐷), which can be determined in even

𝑂 (1) rounds, and that graphs of diameter 4 and 3 admit shortcuts
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of quality and construction time 𝑂̃ (𝑛1/4) and 𝑂̃ (𝑛1/3) respectively.
These essentially match the respective lower bounds [25, 33].

2 PRELIMINARIES: DEFINITIONS OF
SHORTCUTS

In many distributed algorithms for global graph problems, the prob-

lem boils down to the following natural part-wise aggregation

task. For instance, this exactly captures the problem of identifying

minimum-weight outgoing edges in Boruvka’s classic approach to

MST [28].

Definition 2.1. (The Part-wise Aggregation Problem) Con-
sider a network graph 𝐺 = (𝑉 , 𝐸) and suppose that the vertices are
partitioned into disjoint parts 𝑃1, 𝑃2, . . . , 𝑃𝑘 such that the subgraph in-
duced by each part is connected. In the part-wise aggregation problem,
the input is a value 𝑥𝑣 for each node 𝑣 ∈ 𝑉 . The output is that each
node 𝑢 ∈ 𝑃𝑖 should learn an aggregate function of the values held
by vertices in its part 𝑃𝑖 , e.g.,

∑
𝑣∈𝑃𝑖 𝑥𝑣 , min𝑣∈𝑃𝑖 𝑥𝑣 , or max𝑣∈𝑃𝑖 𝑥𝑣 .

Alternatively, exactly one node in each part has a message and it
should be delivered to all nodes of the part.

Typically, if we can solve the part-wise aggregation problem in

a network in 𝑇 time, we can obtain algorithms for various funda-

mental graph problems with a round complexity of 𝑂̃ (𝐷 +𝑇 ) [7].
Thus, we want fast algorithms for part-wise aggregation.

The point to emphasize in the part-wise aggregation problem

is that, it is possible that the diameter of the subgraph induced by

each part 𝑃𝑖 is quite large, much larger than the diameter of the

base graph 𝐺 . For instance, the former can be up to Θ(𝑛) while
the latter is just 2 (considering a wheel graph with one part being

all nodes except the center). Hence, to obtain fast algorithms for

part-wise aggregation, we would like to allow some parts to use

edges of 𝐺 which are outside the part. Of course, we should limit

the number of parts that try to use each single given edge, as that

would cause congestion and would slow down the solution. This

naturally brings us to the concept of low-congestion shortcuts, as
defined in [7].

Definition 2.2. (Shortcuts) Given a part-wise aggregation prob-
lem— i.e., a graph𝐺 = (𝑉 , 𝐸) where vertices are partitioned in disjoint
parts 𝑃1, 𝑃2, . . . , 𝑃𝑘 , each of which induces a connected subgraph — we
call a collection of subgraph𝐻1,𝐻2, . . . ,𝐻𝑘 a shortcut with congestion
𝑐 and dilation 𝑑 if we have the following two properties: (I) for each
𝑖 ∈ [1, 𝑘], the diameter of the subgraph 𝐺 [𝑃𝑖 ] + 𝐻𝑖 is at most 𝑂 (𝑑),
and (II) each edge 𝑒 is in at most 𝑂 (𝑐) many of the subgraphs 𝐻𝑖 . We
refer to 𝑄 = 𝑐 + 𝑑 as the quality of the shortcut.

Given a 𝑐-congestion 𝑑-dilation shortcut for a part-wise aggre-

gation problem, we can solve the part-wise aggregation problem

in 𝑂 (𝑐 + 𝑑 log𝑛) = 𝑂̃ (𝑄) rounds, using the random delays tech-
nique [5, 13, 20]. This makes the shortcut quality 𝑄 the dominant

parameter which determines the round complexity of shortcut-

based algorithms (modulo the shortcut’s construction time).

Tree-Restricted Shortcuts, and their Block-Number: In many

graph families [7, 15, 17], shortcuts can be chosen to come from

one low-depth tree of the original graph, which provides a particu-

larly clean and simple structure which can be utilized for efficient

shortcut constructions. In particular, one can fix any rooted breadth

first search tree 𝑇— or any other low-depth spanning tree— and

restrict each 𝐻𝑖 to only include edges from 𝑇 . Note that only edges

with descendants
4
in 𝑃𝑖 are useful for short-cutting 𝑃𝑖 . A particular

simple way to construct 𝐻𝑖 is to specify a set 𝑆 of 𝑏 edges in 𝑇

and define 𝐻𝑖 to be all edges with descendants in the forest 𝑇 \ 𝑆 .
We say such an 𝐻𝑖 has block number at most 𝑏 since the graph

(𝑃𝑖 ∪𝑉 (𝐻𝑖 ), 𝐻𝑖 ) has at most 𝑏 connected components (of diameter

𝑂 (𝐷)). More generally we define tree-restricted shortcuts and their

block number as follows:

Definition 2.3. (Tree-Restricted Shortcuts and Block Num-
ber) Consider a part-wise aggregation setup in graph𝐺 with diameter
𝐷 , parts 𝑃1, . . . , 𝑃𝑘 , a rooted tree 𝑇 of 𝐺 with depth 𝐷 . We say the
shortcut 𝐻1, . . . , 𝐻𝑘 is tree-restricted or 𝑇 -restricted if all its edges
are in 𝑇 , i.e., if

⋃
𝑖 𝐻𝑖 ⊆ 𝑇 . Moreover, for any part 𝑃𝑖 , we call the

connected components of the graph (𝑃𝑖 ∪𝑉 (𝐻𝑖 ), 𝐻𝑖 ) the blocks of 𝑃𝑖 .
The block number 𝑏 of a shortcut is the maximum block number of
any part.

If a topology has shortcuts for any collection of parts and any

choice of the tree 𝑇 then we say it admits good shortcuts. We also

introduce the concept of partial shortcuts which lead to slightly

tighter bounds and simpler proofs:

Definition 2.4. (Admitting Shortcuts) We say a topology 𝐺
with diameter 𝐷 admits tree-restricted 𝑐-congestion 𝑏-block shortcuts,
if for any tree 𝑇 with depth at most 𝐷 and for any collection of
node-disjoint connected parts 𝑃1, . . . , 𝑃𝑘 , there exists a 𝑇 -restricted
𝑐-congestion 𝑏-block shortcut.

Definition 2.5. (Admitting Partial Shortcuts) We say a topol-
ogy 𝐺 with diameter 𝐷 admits tree-restricted 𝑐-congestion 𝑏-block
partial shortcuts, if for any tree 𝑇 with depth at most 𝐷 and for any
collection of node-disjoint connected parts 𝑃1, . . . , 𝑃𝑘 , there are at least
𝑘/2 of the parts with a 𝑇 -restricted 𝑐-congestion 𝑏-block shortcut.

It is easy to see that a small block number directly implies a small

dilation and that admitting partial shortcuts is essentially the same

as admitting shortcuts – up to a 𝑂̃ (1) factor in the congestion.

Observation 2.6. Any 𝑏-block 𝑇 -restricted shortcut in a graph
with diameter 𝐷 has dilation at most 𝑏 (2𝐷 + 1).

Proof. For each part 𝑃𝑖 , the graph (𝑃𝑖 ∪ 𝑉 (𝐻𝑖 ), 𝐻𝑖 ) ⊆ 𝑇 is a

forest with at most 𝑏 connected components, each of them has a

diameter of at most twice the depth of 𝑇 which is 𝐷 . These compo-

nents are connected via edges of 𝑃𝑖 , because 𝑃𝑖 induces a connected

subgraph. Hence, the diameter of 𝐺 [𝑃𝑖 ] + 𝐻𝑖 , i.e., the dilation for

this part, is at most 𝑏 (2𝐷 + 1). □

Observation 2.7. Any 𝑛-node graph𝐺 that admits tree-restricted
𝑐-congestion 𝑏-block partial shortcuts also admits tree-restricted
𝑐 log

2
𝑛-congestion 𝑏-block shortcuts.

Proof. For a collection of 𝑘 parts and a tree 𝑇 consider log
2
𝑘

iterations in which one takes a 𝑇 -restricted 𝑐-congestion 𝑏-block

partial shortcut for any still remaining parts. Given that such a

partial shortcut defines sets of shortcut edges for at least half of the

remaining parts, all parts will have a set of shortcut edges from 𝑇

4
Here, as standard, we call node 𝑣 a descendant of an edge 𝑒 ∈ 𝑇 if the shortest path

connecting 𝑣 to the root of the tree passes through edge 𝑒 .
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in the end. Taking this as a full 𝑇 -restricted shortcut might lead to

a (𝑐 log
2
𝑘)-congestion but leaves the block number of 𝑏 for every

part unaffected. □

Efficient Shortcut Constructions for Tree-restricted Short-
cuts: The main reason for Haeupler, Izumi and Zuzic [14] to intro-

duce the concept of 𝑏-block tree-restricted shortcuts is that this

additional structure can be used to obtain a very simple and effi-

cient shortcut construction. This constructionwas further improved

by Haeupler, Hershkowitz, and Wajc [12] to give a slightly faster,

deterministic, and message optimal construction:

Lemma 2.8 ([12, 14]). There exists a simple distributed algorithm
which, for any 𝑛-node 𝑚-edge 𝐷-diameter graph 𝐺 which admits
𝑐-congestion 𝑏-block partial shortcuts with quality 𝑄 = 𝑐 + 𝑏𝐷 , com-
putes a quality-𝑂̃ (𝑄) shortcut for any given collection of parts in
𝑂̃ (𝑄) rounds with high probability using 𝑂̃ (𝑚) message (or deter-
ministically in 𝑂̃ (𝑏𝑄) rounds).

By proving that the shortcuts from Theorem 1.2 can be chosen

to be tree-restricted with a small 𝛿 (𝐺) block number we get an

efficient construction algorithm, and therefore Theorem 1.5, “for

free”. We remark that proving this additional tree-restriction struc-

ture and thus having a fast construction algorithm is crucial for the

algorithmic usability of shortcuts and generally quite hard. Indeed,

efficiently constructing good general shortcuts for all graph families

that admit them remains a major open problem. Even in the spe-

cial case of well-connected graphs (with a small mixing time, e.g.,

expander or random graphs), for which shortcuts generally cannot

be chosen to be tree-restricted, there is currently a 2
𝑂 (

√
log𝑛)

gap

between the construction time and the shortcut quality[8, 9].

3 SHORTCUTS FOR GRAPHS WITH MINOR
DENSITY 𝛿

3.1 Main Result
We prove the following main result, which directly implies Theo-

rem 1.2 and Theorem 1.5.

Theorem 3.1. Every 𝐺 with diameter 𝐷 and minor density 𝛿 =

𝛿 (𝐺) admits tree-restricted 8𝛿𝐷-congestion 8𝛿-block partial shortcuts.

Indeed, using Observation 2.7 and Observation 2.6 the existence

of a 8𝛿𝐷-congestion 8𝛿-block partial shortcut directly implies the ex-

istence of an (8𝛿𝐷 log
2
𝑛)-congestion (8𝛿 (2𝐷+1))-dilation shortcut

and therefore Theorem 1.2. The constructive main theorem Theo-

rem 1.5 directly follows from using Lemma 2.8 on the tree-restricted

shortcuts of Theorem 3.1.

The general idea to prove Theorem 3.1 is to "run" the shortcut

construction algorithm from [14] and prove that if it fails to find a

sufficiently good tree-restricted shortcut, then 𝐺 contains a minor

with density exceeding 𝛿 (𝐺).

Proof of Theorem 3.1. Let 𝑇 be any rooted spanning tree in

𝐺 of depth at most 𝐷 . Let P = {𝑃1, . . . , 𝑃𝑘 } be a collection of

connected node-disjoint parts. We set our desired congestion to be

𝑐 = 8𝛿𝐷 . For a tree edge 𝑒 ∈ 𝑇 , let 𝑣𝑒 be the endpoint of 𝑒 that is

further away from the root.

Defining overcongested edges: Initially, let 𝑂 = ∅. We process

tree edges in order of decreasing depths, level by level. For any

edge 𝑒 ∈ 𝑇 , let 𝐼𝑒 ⊆ P be the parts that have a non-empty inter-

section with the descendants of 𝑣𝑒 in 𝑇 \𝑂 . If |𝐼𝑒 | ≥ 𝑐 we say 𝑒 is
overcongested and we add 𝑒 to 𝑂 .

The bipartite graph 𝐵: We define the bipartite graph 𝐵 = (𝑂 ∪
P, 𝐸 ′) whose node set consists of edge-nodes corresponding to

overcongested edges on the one side and part-nodes corresponding

to the parts from P on the other side. The edges 𝐸 ′ = {(𝑒, 𝑃𝑖 ) | 𝑒 ∈
𝑂, 𝑃𝑖 ∈ 𝐼𝑒 } ⊆ 𝑂 × P of 𝐵 indicate which part contributed to which

edge being overcongested. We associate every edge (𝑒, 𝑃𝑖 ) ∈ 𝐵 with

some representative node 𝑟 (𝑒,𝑃𝑖 ) ∈ 𝑃𝑖 , that is a descendant of 𝑣𝑒 and
can be reached from 𝑣𝑒 via 𝑇 \𝑂 . A schematic illustration of this

setup is given in Figure 1. Let 𝑅𝑖 ⊆ 𝑃𝑖 be the set of representative

nodes in 𝑃𝑖 . Note that |𝑅𝑖 | is equal to the degree of node 𝑃𝑖 ∈ 𝐵.
The degree of any edge-node 𝑒 ∈ 𝐵 is |𝐼𝑒 | ≥ 𝑐 , as we only have

overcongested edges represented in 𝐵.

Next, we argue that one of the following two cases applies: either

(I) there exists a good partial shortcut, or (II) graph𝐺 has a minor of

density exceeding 𝛿 – contradicting the assumption that 𝛿 = 𝛿 (𝐺).
(I) Either there exists a good partial shortcut: If at least half of
all parts have a degree of at most 8𝛿 in 𝐵, then defining the shortcut

𝐻𝑖 for any such part 𝑃𝑖 to be all ancestor edges of 𝑃𝑖 in the forest

𝑇 \𝑂 identifies a 𝑐-congestion 8𝛿-block partial shortcut.

(II) Or there is a dense minor 𝐵P′ in 𝐺 : If we are not in case

(I), then at least half of all parts in 𝐵 have degree at least 8𝛿 in

𝐵. In this case, the average degree among part-nodes in 𝐵 is at

least 4𝛿 , because at least half of the parts have degree at least 8𝛿 .

Moreover, the average degree among edge-nodes (and in fact even

their minimum degree) in 𝐵 is at least 𝑐 .

Let P ′
be a random subset of P in which each part is included

independently at randomwith probability
1

4𝐷
. We define a subgraph

𝐵P′ = (𝑉P′, 𝐸P′) of the bipartite graph 𝐵 which is also a minor of

𝐺 , as follows. The part-nodes in 𝐵P′ are exactly the 𝑃𝑖 ∈ P ′
and in

the minor-mapping map𝐵P′ ,𝐺 such a node is mapped to the vertex

set of 𝑃𝑖 . All edges 𝑒 ∈ 𝑂 with 𝑣𝑒 ∉
⋃

𝑃𝑖 ∈P′ 𝑃𝑖 are edge-nodes in

𝐵P′ . The vertex set map𝐵P′ ,𝐺 (𝑒) in𝐺 of such an edge-node 𝑒 ∈ 𝐵P′

is exactly the vertices in the connected component containing 𝑣𝑒
in the forest (𝑇 \𝑂) \ (⋃𝑃𝑖 ∈P′ 𝑃𝑖 ).

To define which edges (𝑒, 𝑃𝑖 ) ∈ 𝐵 are in 𝐵P′ , we say (𝑒, 𝑃𝑖 ) is
potentially present if the tree path between 𝑣𝑒 and the representative
𝑟 (𝑒,𝑃𝑖 ) ∈ 𝑃𝑖 , including the deeper endpoint 𝑣𝑒 but excluding the

representative node 𝑟 (𝑒,𝑃𝑖 ) ∈ 𝑃𝑖 , does not contain any node from⋃
𝑃 𝑗 ∈P′ 𝑃 𝑗 . We say edge (𝑒, 𝑃𝑖 ) is actually present and add (𝑒, 𝑃𝑖 )

to 𝐵P′ if it is both potentially present and 𝑃𝑖 ∈ P ′
. Note that

𝐵P′ is indeed a minor of 𝐺 under the mapping function map𝐵P′ ,𝐺
since the vertex sets corresponding to nodes in 𝐵P′ are disjoint and

connected in𝐺 and edges in 𝐵P′ are a subset of the edges produced

when contracting these vertex sets in 𝐺 .

Density of the graph 𝐵P′ = (𝑉𝑃 ′, 𝐸𝑃 ′): Let 𝑘 be the number of

edges in 𝐵. Every edge (𝑒, 𝑃𝑖 ) ∈ 𝐵 has a probability of at least

1 − (1 − 1

4𝐷
)𝐷 ≥ 3

4
to be potentially present. This probability is

independent from the
1

4𝐷
probability for 𝑃𝑖 to be in P ′

. Hence,

E[|𝐸𝑃 ′ |] ≥ 3𝑘
16𝐷

.
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Figure 1: A schematic illustration of a tree 𝑇 (indicated in blue), the one part that we are focusing on (indicated as a gray area with white
nodes in it) along with a few others (indicated just as gray areas), and the overcongested edges (indicated in red) that have descendants in this
part, which we call representatives (indicates with red cross marks). When the blue tree goes through a part (a gray area), we indicate that this
section of the tree has some vertex of that part.

The nodes in 𝐵P′ on the other hand consist of (A) at most some

𝑘
𝑐 edge-nodes, given that they have degree at least 𝑐 in 𝐵, each of

which is included in 𝐵P′ with probability 1 − 1

4𝐷
and (B) at most

some
𝑘
4𝛿

part-nodes, with average degree more than 4𝛿 in 𝐵, each

of which is included in 𝐵P′ with probability
1

4𝐷
. Hence,

E[|𝑉𝑃 ′ |] < 𝑘

8𝛿𝐷
+ 𝑘

4𝛿
· 1

4𝐷
=

3𝑘

16𝐷

1

𝛿
.

Therefore, by linearity of expectation, we can conclude that

E[|𝐸𝑃 ′ | − 𝛿 |𝑉𝑃 ′ |] = E[|𝐸𝑃 ′ |] − 𝛿E[|𝑉𝑃 ′ |] > 3𝑘

16𝐷
− 𝛿 3𝑘

16𝐷

1

𝛿
= 0,

which implies that 𝑃𝑟 [|𝐸𝑃 ′ | − 𝛿 |𝑉𝑃 ′ | > 0] > 0. That is, with a

non-zero probability
5
, the minor 𝐵P′ in 𝐺 has density exceeding 𝛿 ,

giving the desired contradiction. □

We remark that the above proof of Theorem 3.1 can easily be

made constructive directly. A trivial implementation would lead

to a deterministic 𝑂 (𝛿2𝐷2)-round algorithm. Using the sampling

idea from [12, 14] to identify overcongested-edges one can speed

this up to 𝑂̃ (𝛿𝐷). Overall, this would save a Θ(log𝑛) factor in the

quality of the computed (partial) shortcut. One could also make the

algorithm certifying, i.e, output a dense minor if a (partial) shortcut

of desired quality cannot be found. For example, one can obtain an

algorithm which when run on a graph𝐺 with tree𝑇 of depth 𝐷 and

5
With a slightly more careful argument, we can show that there is Ω (1/𝐷) probability
to find a minor of density exceeding 𝛿 , but for our existence proof, just a positive

probability suffices.

a collection of parts terminates in 𝑂̃ (𝛿𝐷) rounds for some 𝛿 ≤ 𝛿 (𝐺)
and outputs both an 8𝛿-block 8𝛿𝐷-congestion partial shortcut and

a (𝛿 − 1)-dense bipartite minor, which explains/certifies why no

better shortcut was found.

3.2 Optimality of the Main Result
Next we prove that our main result Theorem 3.1 is existentially

optimal up to only small explicitly given constant factors in the

congestion and block number of partial shortcuts. This directly

implies the slightly weaker Lemma 1.3 for full shortcuts presented

in Section 1.2.

Lemma 3.2. For every 𝛿 ′, 𝐷 ′ ∈ N with 5 ≤ 𝛿 ′ ≤ 𝐷 ′/2 there exists
a topology 𝐺 (with 𝑂 (𝛿𝐷) nodes) and a set of node-disjoint paths
such that:

• 𝐺 has diameter 𝐷 ′ and every minor of𝐺 has density less than
𝛿 ′ and

• the best partial shortcut quality for the set of paths in 𝐺 is at
least (𝛿′−3)𝐷′

6
= Θ(𝛿 ′𝐷 ′), i.e., any partial shortcut has either

congestion at least Ω(𝛿 ′𝐷 ′) or dilation at least Ω(𝛿 ′𝐷 ′).

Proof. Let 𝛿 = 𝛿 ′−2, 𝑘 = ⌊𝐷′

2𝛿
⌋,𝐷 = 𝑘𝛿 . Note that 𝑘 ≥ 2, 𝛿 ′ ≥ 3,

𝐷 ∈ [6, ⌊𝐷′
2
⌋]. The topology𝐺 = (𝑉 , 𝐸) is made of one special path

of length (𝛿 − 1)𝑘 + 1 at the top, along with (𝛿 − 1)𝐷 + 1 many paths

of length (𝛿 − 1)𝐷 + 1 at the bottom, known as rows. In every 𝐷𝑡ℎ

column, every 𝐷𝑡ℎ
row is connected to a node in the top path, such
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Figure 2: The lower bound graph for Lemma 3.2 with 𝛿′ = 3, 𝑘 = 2 and 𝐷′ = 6. The special path of length at most 𝐷 is at the top, and below
are the Θ(𝛿𝐷) paths/parts of length Θ(𝛿𝐷) . Every 𝐷 steps on these parts there is a column connecting all paths and (green) connections every
𝐷 steps on this column to the special path on top.

that all these nodes of the same column are connected to one node

in the top node. See Figure 2 for an illustration. More formally, the

graph is defined as follows:

• 𝑉 = {𝑝𝑖 | 𝑖 ∈ [(𝛿 − 1)𝑘 + 1]} ∪ {𝑣𝑖, 𝑗 | 𝑖, 𝑗 ∈ [(𝛿 − 1)𝐷 + 1]}
• The edges 𝐸 are such that the 𝑝-nodes form a path of length

(𝛿 − 1)𝑘 . Moreover, for any 𝑖 ∈ [(𝛿 − 1)𝐷 + 1], the 𝑣𝑖,∗-
nodes form a path 𝑃𝑖 of length (𝛿 − 1)𝐷 . Also, for any

𝑗 ∈ [𝛿], the nodes 𝑣∗,( 𝑗−1)𝐷+1 form a path of length (𝛿 −1)𝐷
of which every 𝐷𝑡ℎ

node connects to 𝑝 ( 𝑗−1)𝑘+1, that is,
{𝑣 ( 𝑗 ′−1)𝐷+1,( 𝑗−1)𝐷+1, 𝑝 ( 𝑗−1)𝑘+1} ∈ 𝐸 for every 𝑗, 𝑗 ′ ∈ [𝛿].

We first argue that the graph has diameter at most 𝐷 ′
. From

every 𝑣 node one can reach a 𝑝-node by going at most
𝐷
2
steps to

the closest node in its 𝑃-path which is in the same column as of a

𝑝-node, then going at most
𝐷
2
steps up or down to a node that has

a 𝑝-node neighbor, and then doing one more step to that 𝑝-node.

From any 𝑝-node one can reach 𝑝 𝐷
2

in at most
𝐷
2
steps. Overall the

diameter of 𝐺 is therefore at most 1.5𝐷 + 1 ≤ 𝐷 ′
.

Nowwe argue that𝐺 has no minor with density 𝛿 ′. Notice that𝐺
is planar after deleting the 𝛿 (𝛿 − 1) edges between the 𝑝 nodes and

any 𝑃𝑖 -path except 𝑃1. Anyminor of𝐺 with 𝑠 ≥ 𝛿+1 nodes therefore
has, according to Euler’s formula, at most 3𝑠 − 6 + 𝛿 (𝛿 − 1) edges
and thus an edge density of at most

3𝑠−6+𝛿 (𝛿−1)
𝑠 < 3 + 𝛿

𝑠 (𝛿 − 1) <
𝛿 + 2 = 𝛿 ′.

Finally, we argue about the shortcut quality. We have (𝛿−1)𝐷 +1
paths 𝑃𝑖 , each of length (𝛿 − 1)𝐷 . For each path 𝑃𝑖 , the only way

to shorten the distance between the two endpoints is to use the

edges of the top-path. In fact, unless a part 𝑃𝑖 has at least 1/2

of the edges of the top path in its shortcut 𝐻𝑖 , the dilation of its

part, i.e., the diameter of 𝐺 [𝑃𝑖 ] + 𝐻𝑖 would be at least
1

2
(𝛿 − 1)𝐷 .

Therefore, if the shortcut quality is smaller than
1

2
(𝛿 − 1)𝐷 , each

part 𝑃𝑖 needs to have at least half of the edges of the top path in its

shortcut. But then, overall, the (𝛿 − 1)𝑘 + 1 edges of the top path

appear at least
1

2
((𝛿 −1)𝐷) ((𝛿 −1)𝑘 +1) times, in total, in shortcuts.

Hence, at least one edge has congestion at least
1

2
(𝛿 − 1)𝐷 . Lastly

1

2
(𝛿 − 1)𝐷 ≥ 1

6
(𝛿 ′ − 3)𝐷 ′

. □

We note that there is a Θ(log𝑛) factor gap in the congestion

(but not the dilation) between the upper bound for full shortcuts

in Theorem 1.2 and Lemma 1.3. This gap stems from the log
2
𝑛

loss of 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 2.7, which goes from partial shortcuts to (full)

shortcuts. A planar lower bound topology with Ω(𝐷 log𝐷) short-
cuts given in [7] shows that the congestion-gap between partial

shortcuts and full shortcuts can be at least Ω(log𝐷). Whether this

is the maximal gap between partial and full shortcuts and whether

Theorem 1.2 can be improved to shortcuts of quality independent

of 𝑛, e.g.,𝑂 (𝛿𝐷 log𝐷), are interesting questions – albeit not ones of

particular importance to the algorithmic applications of shortcuts.

3.3 Shortcuts for other Graph Parameters and
Algorithmic Applications

Wefinish by giving the few remaining technical details for the direct

implications of our existential and algorithmic shortcut guarantees

from Theorem 3.1 and Theorem 1.5, which are stated in Section 1.2.

As discussed in Section 1.2, our shortcut guarantees in terms

of the minor density 𝛿 (𝐺) directly imply bounds for other graph
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parameters of interest. Consider, for example, the following easy

and existentially tight bounds on the minor density in terms of

graph parameters considered in [15]:

Lemma 3.3. The following bounds on the minor density 𝛿 (𝐺) of a
graph 𝐺 hold:

• If𝐺 has genus, non-orientable genus, or Euler genus of 𝑔, then
𝛿 (𝐺) = 𝑂 (√𝑔).

• If 𝐺 has treewidth or pathwidth at most 𝑘 , then 𝛿 (𝐺) ≤ 𝑘 .

Proof. Being embeddable into an orientable or non-orientable

surface is a graph property that is closed under minor-operations.

Moreover, An𝑛-node graph𝐺 having a genus, non-orientable genus,

or Euler genus of 𝑔 implies that this graph has at most 3𝑛 +𝑂 (𝑔)
edges. Since any graph with density 𝛿 has at least 𝑛 ≥ 𝛿 nodes

and thus at least min{𝛿𝑛, 𝛿2
2
} ≥ 𝛿𝑛

2
+ 𝛿2

4
edges, the (minor) density

of any such graph is at most 𝑂 (√𝑔). Similarly, having treewidth

or pathwidth at most 𝑘 are graph properties closed under taking

minors. Moreover, a graph of treewidth (or pathwidth) at most 𝑘

and 𝑛 nodes has less than 𝑘𝑛 edges and therefore its (minor) density

is at most 𝑘 . □

Combining Theorem 3.1 with Lemma 3.3 now directly implies

Corollary 1.4 and the following analogous corollary for treewidth-𝑘

graphs:

Corollary 3.4. Any graph with 𝑛 nodes, diameter 𝐷 , and
treewidth at most 𝑘 admits shortcuts with congestion 𝑂 (𝑘𝐷 log𝑛)
and dilation 𝑂 (𝑘𝐷).

Note that while completely different and highly nontrivial proofs

specific to planar graphs, bounded genus graphs, and bounded

treewidth graphs were given in [7, 15], we obtain the same existen-

tially optimal results by simply plugging in bounds on the minor

density 𝛿 (𝐺) in terms of the desired graph parameter into Theo-

rem 3.1. Constructive results of these shortcuts follow similarly

from Theorem 1.5.

Algorithmic applications, such as, the fast distributed MST and

minimum-cut algorithms claimed in Corollary 1.6 and Corollary 1.7

follow immediately and in a completely modular fashion from our

new constructive shortcuts given in Theorem 1.5 and shortcut-

based algorithms like the ones given in [7, 12].

Proof of Corollary 1.6 and Corollary 1.7. The min-cut al-

gorithm follows from a randomized algorithm given in [7] that

computes a (1 + 𝜀) approximation in 𝑂̃ (𝑄 poly(1/𝜀)) time, with

high probability, given a shortcut of quality 𝑄 which is can be con-

structed according to Theorem 1.5. To convert this into an exact

algorithm we observe that the minimum degree of 𝐺 and therefore

also its min-cut is of size at most 2𝛿 given that the density of 𝐺

can be at most 𝛿 . Setting 𝜀 = 1

4𝛿
therefore implies an exact algo-

rithm. The MST statement follows directly from Theorem 1.5 and

Boruvka’s distributed MST algorithm, as described in [7, 12]. □
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