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ABSTRACT

We prove that any n-node graph G with diameter D admits shortcuts
with congestion O(8D log n) and dilation O(8D), where ¢ is the
maximum edge-density of any minor of G. Our proof is simple and
constructive with a ©(6D)-round! distributed construction algo-
rithm. Our results are tight up to logarithmic factors and generalize,
simplify, unify, and strengthen several prior results. For example,
for graphs excluding a fixed minor, i.e., graphs with constant J,
only a O(D?) bound was known based on a very technical proof
that relies on the Robertson-Seymour Graph Structure Theorem.

A direct consequence of our result is this: many graph fami-
lies, including any minor-excluded ones, have near-optimal ©(D)-
round distributed algorithms for many fundamental communication
primitives and optimization problems in the standard synchronous
message-passing model with logarithmic message sizes, i.e., the
CONGEST model. These problems include minimum spanning tree,
minimum cut approximation, and shortest-path approximations.

CCS CONCEPTS

« Theory of computation — Distributed algorithms.

KEYWORDS

distributed graph algorithms, low-congestion shortcuts, minor-
exluded graphs, planar graphs, congestion, dilation, minimum span-
ning tree

ACM Reference Format:
Mohsen Ghaffari and Bernhard Haeupler. 2021. Low-Congestion Short-
cuts for Graphs Excluding Dense Minors. In Proceedings of the 2021 ACM

*Supported in part by funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 853109), and the Swiss National Foundation (project grant 200021-184735).
Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-
1910588, NSF CAREER award CCF-1750808, a Sloan Research Fellowship, the Swiss
National Foundation (project grant 200021-184735), and funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (ERC grant agreement 949272).

1We use O-notation to suppress polylogarithmic factors in n, e.g., O(f (n, D, 8)) =
O(f(n,D, ) logo(l) n).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC °21, July 26-30, 2021, Virtual Event, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8548-0/21/07...$15.00
https://doi.org/10.1145/3465084.3467935

213

Bernhard Haeupler '
Carnegie Mellon University and ETH Zurich
Zurich, Switzerland
haeupler@cs.cmu.edu

Symposium on Principles of Distributed Computing (PODC ’21), July 26—
30, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3465084.3467935

The full version of this paper is available on arXiv, at this link:
https://arxiv.org/abs/2008.03091.

1 INTRODUCTION AND RELATED WORK

Low-congestion shortcuts are graph-theoretic objects whose quality
captures the distributed complexity of a wide range of fundamental
graph problems and communication primitives. In this paper, we
provide nearly-tight shortcuts for all graphs excluding (dense) mi-
nors. Our results significantly strengthen, simplify, generalize and
unify several prior results on shortcuts for restricted graph classes.
Our results also directly imply simple near-optimal distributed al-
gorithms for a number of well-studied graph problems in excluded
minor graphs and many other graph families.

1.1 Background and Definition

Model: We work with the standard synchronous message passing
model of computation on networks and distributed systems. The
communication network is abstracted as an n-node undirected
graph G = (V,E) with m = |E| edges. In each communication
round, each node can send an O(log n)-bit message to each of its
neighbors in G. At the beginning, nodes do not know the topology
of G. At the end, each node should know its own part of the output,
e.g., which of its edges are in the computed minimum spanning tree.
This model is sometimes referred to as the CONGEST model [29].

The Motivation for Shortcuts: The Q(+/n)-round lower bound
for global distributed graph problems is well-known by now. Con-
cretely, it is known that on worst-case general graphs, for a strik-
ingly wide-range of global graph problems — including minimum
spanning tree, minimum cut, maximum flow, single-source shortest
path, etc — any distributed algorithm needs a round complexity
of Q(+/n) [3, 30, 33]. This holds even for any (non-trivial) approx-
imation of these problems, and even on graphs with a small, e.g.,
logarithmic, diameter. On the other hand, the lower bound graphs
are carefully crafted pathological topologies which do not occur
in practice. Indeed, many real-world networks have small (poly-
logarithmic) diameters (e.g., the Facebook graph with billions of
nodes has average distance below 5 and a diameter of around 50)
and seem to allow for exponentially faster optimization algorithms
with O(D)-round complexities. Low-congestion shortcuts [7] were
introduced as a graph-theoretic notion to capture and exploit this
phenomenon and allow a more fine-grained study of the complexity
of global problems and how this complexity relates to the struc-
ture of the network topology. In various graph families, algorithms
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based on low-congestion shortcuts have obtained complexities that
are considerably below the Q(+/n) barrier- in fact, often obtaining
near-optimal O(D)-round algorithms?.

The Definition of Shortcuts: Suppose that the set V of vertices
is partitioned into disjoint subsets V1, Vo, ..., Vi, known as parts,
such that the subgraph G[V;] induced by each part V; is connected.
We call a collection of subgraphs Hi, Hy, ..., Hr a shortcut with
congestion ¢ and dilation d if we have the following two properties:
(A) Vi € [1,k], the diameter of the subgraph G[V;] + H; is O(d),
and (B) each edge e € E is in O(c) many subgraphs H;.

Application of Shortcuts: Shortcuts organically lead to fast dis-
tributed algorithms. For instance, let us consider the minimum
spanning tree problem. Suppose that we are in a graph family for
which, we have a distributed algorithm that can compute a shortcut
with congestion ¢ and dilation d in T rounds (upon receiving the
partition V1, Va, ..., Vi). In general, we refer to ¢ + d as the quality
of the shortcut. Then, we can use this algorithm to obtain a dis-
tributed algorithm for the minimum spanning tree problem, with a
round complexity O(c+d+T). This follows directly from Boruvka’s
1926 approach [28]. A number of other graph problems can also
be solved distributedly using shortcuts, with a similar complexity.
This includes min-cut computation [7], single-source shortest-paths
approximation [16], and many more [2, 10, 21].
Of course, the question that remains is this:

What is the existential shortcut quality ¢ + d of
important graph families, and what is the corre-
sponding construction time T?

Graph Minors and Minor Density: Before proceeding to known
results and our contribution, let us briefly recall the definition of
minors and their density. A graph H is a minor of graph G if H can
be obtained from G by contracting edges and deleting edges and
vertices. Equivalently H = (V’, E’) is a minor of graph G = (V, E) if
there is a mapping mapy ¢; from vertices in H to disjoint connected
subsets of vertices in G, each inducing a connected subgraph, such
that for every edge {u’,0’} € E’ there exists a {u,0} € E with
u € mapy (') and v € mapy (o).

An important parameter throughout this paper is the minor
density 5(G) of a graph G which is defined as:
|E|
14
It is known that the minor density §(G) is (up to a small poly-
logarithmic factor) the same as the size of the largest complete
minor in G, ie., its complete-graph minor size r(G) = max{r |
K, is a minor of G}.

Lemma 1.1 ([34]). VG : 2971 < 5(G) < 8r(G)yflog, r(G), ie.
8(G) = 0(r(G)).

6(G) = max{

H = (V',E’) is a minor of G} .

Note that if a graph family G is closed under taking minors or
equivalently excludes a fixed minor H of size s then every G € G

20ne can draw parallels between the role that shortcuts have turned out to play for
distributed algorithms of global graph problems with the role that separators play as
a key algorithmic tool in sequential algorithms for various graph families, such as
planar [23, 26], bounded genus [11], and minor-excluded [1].

214

PODC 21, July 26-30, 2021, Virtual Event, Italy

has r(G) < s and therefore also a constant minor density §(G) =

O(s+/logs).

1.2 Our Contribution

We first briefly summarize known results on shortcuts (see Sec-
tion 1.3 for further details). Ghaffari and Haeupler [6, 7] provided
shortcuts of quality O(D) and construction time O(D) for planar
graphs. This was later extended to graphs with bounded genus,
bounded treewidth, and bounded pathwidth [15], and with im-
proved construction algorithms [12, 14]. Haeupler, Li, and Zuzic [17]
gave shortcuts for excluded minor graphs, with quality O(D?), us-
ing elaborate arguments building on the Graph Structure Theorem
of Robertson and Seymour [31, 32]. While excluded minor graphs
are vastly more general, encompassing all previous graph classes
for constant bounds on the above graph parameters, the question
whether near-optimal O(D) shortcuts and optimization algorithms
for excluded minor topologies are possible remained open.

Existential Results for Graph with Minor Density §: In this
work, we resolve this question in the positive. We also significantly
strengthen, simplify, generalize, and unify all the above results by
giving a near-optimal existential shortcut guarantee for any graph
G, which depends only on its minor density 6(G):

THEOREM 1.2. Any n-node graph G with diameter D and minor
density §(G) = § admits shortcuts with dilation O(5D) and conges-
tion O(6D log n).

Besides the important quadratic quantitative improvement from
O(D?) to a near-optimal O(D) for excluded minor graphs, i.e.,
graphs with constant §, our proof is significantly simpler than
that of [17]. Instead of the technical proof in [17] which uses the
powerful Graph Structure Theorem [31, 32], we give a short and
elementary proof. Our proof even provides small concrete con-
stants® whereas the Robertson-Seymour Graph Structure Theorem
is known to often lead to tower-type dependencies on the size k of
the excluded minor [24] and “galactic algorithms” [22].

Even more importantly, our result applies to any graph and
graph family even if §(G) is large or growing. For example it implies
that graphs with sub-polynomial minor density or expansion (see
[27] for definitions and treatment of such more inclusive graph
families) have sub-polynomial shortcuts and fast 0(n°M)-round
optimization algorithms, which still drastically improve over the
Q(+y/n)-lower bound. Our results are the first that apply to graph
classes strictly more general than minor-closed or excluded-minor
graph families.

We complement Theorem 1.2 with a matching lower bound
which shows that the linear dependency of Theorem 1.2 on the
minor-density §(G) is necessary and optimal:

LEmMMA 1.3. For any 8, D there is a graph G with diameter D and
6(G) < 6 and a collection of parts for which the quality of the best
shortcut in G is Q(6D).

Lastly, having the minor density 5(G) as a parameter in Theo-
rem 1.2 also directly implies often optimal results on shortcuts for

3No attempt was made to optimize the explicit constants in the 85 and 85D bounds of
our main result Theorem 3.1, or any other explicit constants in this paper. Somewhat
better constants are likely possible.
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other graph parameters in a simple and uniform way. For example,
[7] showed that any genus-g network admits shortcuts of quality
O(gD). In [15] this dependency of the shortcut quality on the genus
was improved to an optimal bound of (:)(\@D) via sophisticated
topological arguments including cutting a genus-g graph along
fundamental cycles of a shortest-path tree and cleverly combining
planar shortcuts for pieces of parts that are cut by these cycles. We
obtain the same result as a trivial corollary of Theorem 1.2, given
that 6(G) = O(4/g) for any genus-g graph.

COROLLARY 1.4. Any genus-g graph with n nodes and diameter D
admits shortcuts with congestion O(+/gD log n) and dilation O(+/gD).

Bounds for other graph parameters follow similarly as simple
corollaries of our main theorem. This includes tight O(kD) short-
cuts for k-pathwidth and k-treewidth graphs, matching the results
in [15] (since §(G) = O(k) for such graphs). In contrast to prior
works like [15], we do not require a completely different proof
specific to the graph parameter at hand to obtain these bounds.

Distributed Construction and Applications: In order to be al-
gorithmically useful we also need fast distributed constructions
for the new existential shortcut guarantees. We achieve this by
proving strong additional structural guarantees for our shortcuts,
namely tree-restrictedness and a small block number. Haeupler,
Hershkovitz, Izumi, and Zuzic [12, 14] showed that these struc-
tural guarantees are strong enough for a simple uniform shortcut
constructions to find a O(Q)-quality shortcut in only 0(Q) rounds
whenever a quality-Q shortcut with such structure exists.

THEOREM 1.5. There exists a randomized distributed algorithm
which, for any n-node m-edge graph G with diameter D and minor
density 8, computes a shortcut of quality O(6D) in O(8D) rounds
with high probability. There also exists a O(5?D)-round deterministic
algorithm. Both algorithms use only O(m) messages.

This, together with all the algorithms that are built on top of the
low-congestion shortcut framework, shows that a wide range of
fundamental communication primitives and global graph problems
— e.g., minimum spanning tree, min-cut, shortest path approxima-
tion, etc — can be solved in O(D§) rounds, in graphs that do not
have a minor of density §. This vastly widens the range of graph
families for which we now know the correct round complexity for
basic global graph problems (up to logarithmic factors). We state
just two such corollaries as examples.

COROLLARY 1.6. There is a distributed algorithm that, for any n-
node m-edge graph G with diameter D and minor density §, computes
a minimum spanning tree in O(8D) rounds with high probability (or
O(8%D) rounds deterministically) using O(m) messages.

CoRrOLLARY 1.7. There is a randomized distributed algorithms that,
for any n-node m-edge graph G with diameter D and minor density
8, computes an exact minimum cut in G in 0(5° D) rounds with
high probability using O(m) messages.

Similar results can be obtained for sub-graph connectivity, single-
source shortest paths approximations [16], as well as several funda-
mental communication primitives like multiple unicasts or partwise-
aggregation (see Section 2).
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1.3 Prior Work on Shortcuts

We next overview the known results about the existential quality
and construction time of shortcuts.

Let us start with general graphs. It is easy to see that any n-node
graph G, whose diameter is at most D, admits shortcuts of quality
D + +/n: Let T be a BFS of the graph G. Define H; = 0 for any
each part with |V;| < /n and H; = T for any other part. Moreover,
this D + v/n bound is nearly-optimal [7] in general graphs. This
D + +/n bound is implicitly the underlying reason for the seminal
O(D + v/n) round minimum spanning tree algorithm of Kutten and
Peleg [4, 19], although there are more fine-grained aspects there to
avoid extra logarithmic factors. Moreover, this O(D + v/n) round
complexity is nearly optimal for solving MST in general graphs,
as mentioned before, because of the carefully crafted lower bound
graphs of [3, 30, 33].

Ghaffari and Haeupler [7] showed that any planar graph with
diameter at most D admits shortcuts of quality O(D log D), and
that this bound is nearly tight, almost matching a lower bound

log D
of Q(D loglog D

constructing such shortcuts in O(D) rounds, assuming a planar
embedding of the graph. Combined with the distributed planar
embedding algorithm provided by [6], this led to an O(D) round
distributed algorithm for MST, and some other graph problems,
thus exhibiting a family of graphs in which one can go below the
notorious Q (D + /i) lower bound [33]. They [7] also showed that
graphs embeddable on a surface of genus g admit shortcuts of
quality O(gDlog D).

Haeupler, Izumi, and Zuzic [14] showed that one can construct
shortcuts with a quality similar to those of [7], even without a planar
embedding. Haeupler, Izumi, and Zuzic [15] showed that graphs
of treewidth or pathwidth k admit shortcuts of quality O(kD), and
they also improved the genus dependency to é(\/ED). Haeupler,
Hershkowitz, and Wajc [12] improved and extended the results
of [14] by showing that one can obtain algorithms that are near-
optimal in both time and message complexity, using shortcuts.

Generalizing the span of shortcuts much further, Haeupler, Li,
and Zuzic [17] gave shortcuts for excluded minor graphs. Con-
cretely, they showed that any graph that does not have a clique
of constant size as a minor admits a shortcut of quality O(D?).
This result is fairly involved and it builds on the Graph Structure
Theorem of Robertson and Seymour [31, 32]. Using the approach
of[12, 14], all these shortcuts mentioned above[7, 14, 15, 17] can be
constructed in a round complexity matching their quality, up to
logarithmic factors.

Ghaffari, Kuhn, and Su [8] provided shortcut constructions for
well-connected graphs. In particular, they showed that any graph
where the lazy random walk has mixing time T;,;, admits shortcuts
of quality Tpnix - poly(log n) and they presented distributed algo-
rithms for constructing shortcuts of quality Ty - 20( Viognloglogn)
in Tonix + 20(Vlognloglogn) 151 ds. These quality and construction
time bounds were both improved later to Ty - 20(\/@), by Ghaf-
fari and Li [9].

Finally, Kitamura et al.[18] showed that any k-chordal graph
admits shortcuts of quality O(kD), which can be determined in even
O(1) rounds, and that graphs of diameter 4 and 3 admit shortcuts

). They also provided a distributed algorithm for
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of quality and construction time O(n'/*) and O(n'/?) respectively.
These essentially match the respective lower bounds [25, 33].

2 PRELIMINARIES: DEFINITIONS OF
SHORTCUTS

In many distributed algorithms for global graph problems, the prob-
lem boils down to the following natural part-wise aggregation
task. For instance, this exactly captures the problem of identifying
minimum-weight outgoing edges in Boruvka’s classic approach to
MST [28].

DEFINITION 2.1. (The Part-wise Aggregation Problem) Con-
sider a network graph G = (V, E) and suppose that the vertices are
partitioned into disjoint parts Py, P, ..., Py such that the subgraph in-
duced by each part is connected. In the part-wise aggregation problem,
the input is a value x, for each nodev € V. The output is that each
node u € P; should learn an aggregate function of the values held
by vertices in its part P;, e.g., Y.yep, Xv, MiNyep; Xy, OF MaXyep; Xp.
Alternatively, exactly one node in each part has a message and it
should be delivered to all nodes of the part.

Typically, if we can solve the part-wise aggregation problem in
anetwork in T time, we can obtain algorithms for various funda-
mental graph problems with a round complexity of O(D +T) [7].
Thus, we want fast algorithms for part-wise aggregation.

The point to emphasize in the part-wise aggregation problem
is that, it is possible that the diameter of the subgraph induced by
each part P; is quite large, much larger than the diameter of the
base graph G. For instance, the former can be up to ®(n) while
the latter is just 2 (considering a wheel graph with one part being
all nodes except the center). Hence, to obtain fast algorithms for
part-wise aggregation, we would like to allow some parts to use
edges of G which are outside the part. Of course, we should limit
the number of parts that try to use each single given edge, as that
would cause congestion and would slow down the solution. This
naturally brings us to the concept of low-congestion shortcuts, as
defined in [7].

DEFINITION 2.2. (Shortcuts) Given a part-wise aggregation prob-
lem —i.e., agraph G = (V, E) where vertices are partitioned in disjoint
parts P1, Py, ..., Py, each of which induces a connected subgraph — we
call a collection of subgraph Hy, Ha, ..., Hy. a shortcut with congestion
c and dilation d if we have the following two properties: (I) for each
i € [1,k], the diameter of the subgraph G[P;] + H; is at most O(d),
and (Il) each edge e is in at most O(c) many of the subgraphs H;. We
refer to Q = c + d as the quality of the shortcut.

Given a c-congestion d-dilation shortcut for a part-wise aggre-
gation problem, we can solve the part-wise aggregation problem
in O(c + dlogn) = O(Q) rounds, using the random delays tech-
nique [5, 13, 20]. This makes the shortcut quality Q the dominant
parameter which determines the round complexity of shortcut-
based algorithms (modulo the shortcut’s construction time).

Tree-Restricted Shortcuts, and their Block-Number: In many
graph families [7, 15, 17], shortcuts can be chosen to come from
one low-depth tree of the original graph, which provides a particu-
larly clean and simple structure which can be utilized for efficient
shortcut constructions. In particular, one can fix any rooted breadth
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first search tree T— or any other low-depth spanning tree— and
restrict each H; to only include edges from T. Note that only edges
with descendants® in P; are useful for short-cutting P;. A particular
simple way to construct H; is to specify a set S of b edges in T
and define H; to be all edges with descendants in the forest T \ S.
We say such an H; has block number at most b since the graph
(P; UV (H,), H;) has at most b connected components (of diameter
O(D)). More generally we define tree-restricted shortcuts and their
block number as follows:

DEFINITION 2.3. (Tree-Restricted Shortcuts and Block Num-
ber) Consider a part-wise aggregation setup in graph G with diameter
D, parts Py, ..., Py, a rooted tree T of G with depth D. We say the
shortcut Hy, ..., Hy is tree-restricted or T-restricted if all its edges
are in T, i.e, if ; Hi € T. Moreover, for any part P;, we call the
connected components of the graph (P; U V (H;), H;) the blocks of P;.
The block number b of a shortcut is the maximum block number of
any part.

If a topology has shortcuts for any collection of parts and any
choice of the tree T then we say it admits good shortcuts. We also
introduce the concept of partial shortcuts which lead to slightly
tighter bounds and simpler proofs:

DEFINITION 2.4. (Admitting Shortcuts) We say a topology G
with diameter D admits tree-restricted c-congestion b-block shortcuts,
if for any tree T with depth at most D and for any collection of
node-disjoint connected parts Py, ..., Py, there exists a T-restricted
c-congestion b-block shortcut.

DEFINITION 2.5. (Admitting Partial Shortcuts) We say a topol-
ogy G with diameter D admits tree-restricted c-congestion b-block
partial shortcuts, if for any tree T with depth at most D and for any
collection of node-disjoint connected parts P1, . . ., Py, there are at least
k/2 of the parts with a T-restricted c-congestion b-block shortcut.

It is easy to see that a small block number directly implies a small
dilation and that admitting partial shortcuts is essentially the same
as admitting shortcuts — up to a O(1) factor in the congestion.

OBSERVATION 2.6. Any b-block T-restricted shortcut in a graph
with diameter D has dilation at most b(2D + 1).

Proor. For each part P;, the graph (P; U V(H;),H;) C Tis a
forest with at most b connected components, each of them has a
diameter of at most twice the depth of T which is D. These compo-
nents are connected via edges of P;, because P; induces a connected
subgraph. Hence, the diameter of G[P;] + H;, i.e., the dilation for
this part, is at most b(2D + 1). o

OBSERVATION 2.7. Any n-node graph G that admits tree-restricted
c-congestion b-block partial shortcuts also admits tree-restricted
clog, n-congestion b-block shortcuts.

Proor. For a collection of k parts and a tree T consider log, k
iterations in which one takes a T-restricted c-congestion b-block
partial shortcut for any still remaining parts. Given that such a
partial shortcut defines sets of shortcut edges for at least half of the
remaining parts, all parts will have a set of shortcut edges from T

“Here, as standard, we call node v a descendant of an edge e € T if the shortest path
connecting o to the root of the tree passes through edge e.
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in the end. Taking this as a full T-restricted shortcut might lead to
a (clog, k)-congestion but leaves the block number of b for every
part unaffected. O

Efficient Shortcut Constructions for Tree-restricted Short-
cuts: The main reason for Haeupler, Izumi and Zuzic [14] to intro-
duce the concept of b-block tree-restricted shortcuts is that this
additional structure can be used to obtain a very simple and effi-
cient shortcut construction. This construction was further improved
by Haeupler, Hershkowitz, and Wajc [12] to give a slightly faster,
deterministic, and message optimal construction:

LEmMMA 2.8 ([12, 14]). There exists a simple distributed algorithm
which, for any n-node m-edge D-diameter graph G which admits
c-congestion b-block partial shortcuts with quality Q = ¢ + bD, com-
putes a quality-O(Q) shortcut for any given collection of parts in
O(0Q) rounds with high probability using O(m) message (or deter-
ministically in O(bQ) rounds).

By proving that the shortcuts from Theorem 1.2 can be chosen
to be tree-restricted with a small 5(G) block number we get an
efficient construction algorithm, and therefore Theorem 1.5, “for
free”. We remark that proving this additional tree-restriction struc-
ture and thus having a fast construction algorithm is crucial for the
algorithmic usability of shortcuts and generally quite hard. Indeed,
efficiently constructing good general shortcuts for all graph families
that admit them remains a major open problem. Even in the spe-
cial case of well-connected graphs (with a small mixing time, e.g.,
expander or random graphs), for which shortcuts generally cannot

be chosen to be tree-restricted, there is currently a 20(Vlogn) gap
between the construction time and the shortcut quality[8, 9].

3 SHORTCUTS FOR GRAPHS WITH MINOR
DENSITY §

3.1 Main Result

We prove the following main result, which directly implies Theo-
rem 1.2 and Theorem 1.5.

THEOREM 3.1. Every G with diameter D and minor density § =
0(G) admits tree-restricted 85 D-congestion 85-block partial shortcuts.

Indeed, using Observation 2.7 and Observation 2.6 the existence
of a 86 D-congestion 85-block partial shortcut directly implies the ex-
istence of an (86D log, n)-congestion (85(2D+1))-dilation shortcut
and therefore Theorem 1.2. The constructive main theorem Theo-
rem 1.5 directly follows from using Lemma 2.8 on the tree-restricted
shortcuts of Theorem 3.1.

The general idea to prove Theorem 3.1 is to "run" the shortcut
construction algorithm from [14] and prove that if it fails to find a
sufficiently good tree-restricted shortcut, then G contains a minor
with density exceeding §(G).

Proor oF THEOREM 3.1. Let T be any rooted spanning tree in
G of depth at most D. Let # = {Py,..., P} be a collection of
connected node-disjoint parts. We set our desired congestion to be
¢ = 85D. For a tree edge e € T, let v, be the endpoint of e that is
further away from the root.

217

PODC 21, July 26-30, 2021, Virtual Event, Italy

Defining overcongested edges: Initially, let O = . We process
tree edges in order of decreasing depths, level by level. For any
edge e € T, let I, C P be the parts that have a non-empty inter-
section with the descendants of v, in T \ O.If || > ¢ we say e is
overcongested and we add e to O.

The bipartite graph B: We define the bipartite graph B = (O U
P,E’) whose node set consists of edge-nodes corresponding to
overcongested edges on the one side and part-nodes corresponding
to the parts from # on the other side. The edges E’ = {(e, P;) | e €
O,P; € I.} € O x P of B indicate which part contributed to which
edge being overcongested. We associate every edge (e, P;) € B with
some representative node r(, p,) € Pj, that is a descendant of ve and
can be reached from v, via T \ O. A schematic illustration of this
setup is given in Figure 1. Let R; C P; be the set of representative
nodes in P;. Note that |R;| is equal to the degree of node P; € B.
The degree of any edge-node e € B is |I| > ¢, as we only have
overcongested edges represented in B.

Next, we argue that one of the following two cases applies: either
(I) there exists a good partial shortcut, or (II) graph G has a minor of
density exceeding § — contradicting the assumption that § = §(G).

(I) Either there exists a good partial shortcut: If at least half of
all parts have a degree of at most 85 in B, then defining the shortcut
H; for any such part P; to be all ancestor edges of P; in the forest
T \ O identifies a c-congestion 85-block partial shortcut.

(II) Or there is a dense minor By, in G: If we are not in case
(I), then at least half of all parts in B have degree at least 83 in
B. In this case, the average degree among part-nodes in B is at
least 49, because at least half of the parts have degree at least 84.
Moreover, the average degree among edge-nodes (and in fact even
their minimum degree) in B is at least c.

Let P’ be a random subset of # in which each part is included
independently at random with probability i. We define a subgraph
Bpr = (Vpr, Epr) of the bipartite graph B which is also a minor of
G, as follows. The part-nodes in Bp: are exactly the P; € £’ and in
the minor-mapping map Bpr,G such a node is mapped to the vertex
set of P;. All edges e € O with v, ¢ (Jp,cps P; are edge-nodes in
Bpr. The vertex set mapg , ;(e) in G of such an edge-node e € By
is exactly the vertices in the connected component containing v,
in the forest (T '\ O) \ (Up,ep’ Pi).

To define which edges (e, P;) € B are in Bps, we say (e, P;) is
potentially present if the tree path between v, and the representative
T(e,p;) € Pi, including the deeper endpoint v but excluding the
representative node r(, p,) € P;, does not contain any node from
Upjenpl Pj. We say edge (e, P;) is actually present and add (e, P;)
to By if it is both potentially present and P; € P’. Note that
By is indeed a minor of G under the mapping function map Bpr,G
since the vertex sets corresponding to nodes in By are disjoint and
connected in G and edges in By are a subset of the edges produced
when contracting these vertex sets in G.

Density of the graph Bp, = (Vpr, Epr): Let k be the number of
edges in B. Every edge (e, P;) € B has a probability of at least
1-(1- %)D > % to be potentially present. This probability is
independent from the i probability for P; to be in P’. Hence,

E[Ep|] > 13-
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Figure 1: A schematic illustration of a tree T (indicated in blue), the one part that we are focusing on (indicated as a gray area with white
nodes in it) along with a few others (indicated just as gray areas), and the overcongested edges (indicated in red) that have descendants in this
part, which we call representatives (indicates with red cross marks). When the blue tree goes through a part (a gray area), we indicate that this

section of the tree has some vertex of that part.

The nodes in Bps on the other hand consist of (A) at most some
IE< edge-nodes, given that they have degree at least c in B, each of
which is included in By, with probability 1 — i and (B) at most
some % part-nodes, with average degree more than 46 in B, each
of which is included in Bp: with probability i. Hence,

k k1 3k 1
EllVpll < —+ —+ — = ——.
Well < 555 % 45 4p ~ 16D 5

Therefore, by linearity of expectation, we can conclude that

3k 3k 1
16D 16D6S
which implies that Pr[|Ep/| — §|Vp/| > 0] > 0. That is, with a
non-zero probability®, the minor By in G has density exceeding §,
giving the desired contradiction. O

E[|Ep | - 8|V |] = E[IEp (] - SE[IVp]] > 0,

We remark that the above proof of Theorem 3.1 can easily be
made constructive directly. A trivial implementation would lead
to a deterministic O(§2D?)-round algorithm. Using the sampling
idea from [12, 14] to identify overcongested-edges one can speed
this up to O(8D). Overall, this would save a ©(logn) factor in the
quality of the computed (partial) shortcut. One could also make the
algorithm certifying, i.e, output a dense minor if a (partial) shortcut
of desired quality cannot be found. For example, one can obtain an
algorithm which when run on a graph G with tree T of depth D and

SWith a slightly more careful argument, we can show that there is Q(1/D) probability
to find a minor of density exceeding &, but for our existence proof, just a positive
probability suffices.
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a collection of parts terminates in O(8D) rounds for some § < §(G)
and outputs both an 85-block 85 D-congestion partial shortcut and
a (6 — 1)-dense bipartite minor, which explains/certifies why no
better shortcut was found.

3.2 Optimality of the Main Result

Next we prove that our main result Theorem 3.1 is existentially
optimal up to only small explicitly given constant factors in the
congestion and block number of partial shortcuts. This directly
implies the slightly weaker Lemma 1.3 for full shortcuts presented
in Section 1.2.

LEMMA 3.2. Forevery§’,D’ € N with5 < §’ < D’ /2 there exists
a topology G (with O(8D) nodes) and a set of node-disjoint paths
such that:

o G has diameter D’ and every minor of G has density less than

8" and
o the best partial shortcut quality for the set of paths in G is at
least w =0(8’D’), i.e, any partial shortcut has either

congestion at least Q(8’D’) or dilation at least Q(5'D’).

PrOOF. Let§ = '~ 2,k = | L5 |, D = k8. Note that k > 2,6" > 3,
D € [6, L%J]. The topology G = (V, E) is made of one special path
of length (6 — 1)k +1 at the top, along with (6 — 1)D + 1 many paths
of length (8 — 1)D + 1 at the bottom, known as rows. In every D'#
column, every D" row is connected to a node in the top path, such
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a path of length (6 — 1)k
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Figure 2: The lower bound graph for Lemma 3.2 with §’ = 3, k = 2 and D’ = 6. The special path of length at most D is at the top, and below
are the ©(6D) paths/parts of length ©(5D). Every D steps on these parts there is a column connecting all paths and (green) connections every

D steps on this column to the special path on top.

that all these nodes of the same column are connected to one node
in the top node. See Figure 2 for an illustration. More formally, the
graph is defined as follows:

e V={pilie[(6-Dk+1]} Ufoi;[ije[(6-1)D+1]}

o The edges E are such that the p-nodes form a path of length
(8 — 1)k. Moreover, for any i € [(§ — 1)D + 1], the v; «-
nodes form a path P; of length (6§ — 1)D. Also, for any
Jj € [6], the nodes v, (j_1)p41 form a path of length (6 —1)D
of which every D! node connects to P(j-1)k+1> that is,
{0(j—1)D+1,(j-1)D+1, P(j-1)k+1} € E for every j, j" € [5].

We first argue that the graph has diameter at most D’. From
every v node one can reach a p-node by going at most % steps to
the closest node in its P-path which is in the same column as of a
p-node, then going at most % steps up or down to a node that has
a p-node neighbor, and then doing one more step to that p-node.
From any p-node one can reach p D in at most % steps. Overall the

diameter of G is therefore at most 1.5D + 1 < D’.

Now we argue that G has no minor with density 6. Notice that G
is planar after deleting the 5(8 — 1) edges between the p nodes and
any P;-path except P1. Any minor of G with s > §+1 nodes therefore
has, according to Euler’s formula, at most 3s — 6 + 5(J — 1) edges
and thus an edge density of at most w <3+ g(a -1)<
S+2=0"

Finally, we argue about the shortcut quality. We have (§—1)D+1
paths P;, each of length (6 — 1)D. For each path P;, the only way
to shorten the distance between the two endpoints is to use the
edges of the top-path. In fact, unless a part P; has at least 1/2
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of the edges of the top path in its shortcut Hj, the dilation of its
part, i.e., the diameter of G[P;] + H; would be at least %(6 - 1)D.
Therefore, if the shortcut quality is smaller than %((5 —1)D, each
part P; needs to have at least half of the edges of the top path in its
shortcut. But then, overall, the (8§ — 1)k + 1 edges of the top path
appear at least %((5 —1)D)((6—1)k+1) times, in total, in shortcuts.
Hence, at least one edge has congestion at least %(6 —1)D. Lastly
1(6-1)D > (5’ -3)D". O

We note that there is a ©(log n) factor gap in the congestion
(but not the dilation) between the upper bound for full shortcuts
in Theorem 1.2 and Lemma 1.3. This gap stems from the log, n
loss of Observation 2.7, which goes from partial shortcuts to (full)
shortcuts. A planar lower bound topology with Q(D log D) short-
cuts given in [7] shows that the congestion-gap between partial
shortcuts and full shortcuts can be at least Q(log D). Whether this
is the maximal gap between partial and full shortcuts and whether
Theorem 1.2 can be improved to shortcuts of quality independent
of n, e.g., O(8D log D), are interesting questions — albeit not ones of
particular importance to the algorithmic applications of shortcuts.

3.3 Shortcuts for other Graph Parameters and
Algorithmic Applications
We finish by giving the few remaining technical details for the direct
implications of our existential and algorithmic shortcut guarantees
from Theorem 3.1 and Theorem 1.5, which are stated in Section 1.2.
As discussed in Section 1.2, our shortcut guarantees in terms
of the minor density §(G) directly imply bounds for other graph
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parameters of interest. Consider, for example, the following easy
and existentially tight bounds on the minor density in terms of
graph parameters considered in [15]:

LEmMA 3.3. The following bounds on the minor density §(G) of a
graph G hold:

o IfG has genus, non-orientable genus, or Euler genus of g, then

4(G) = O(\9).
o IfG has treewidth or pathwidth at most k, then §(G) < k.

Proor. Being embeddable into an orientable or non-orientable
surface is a graph property that is closed under minor-operations.
Moreover, An n-node graph G having a genus, non-orientable genus,
or Euler genus of g implies that this graph has at most 3n + O(g)
edges. Since any graph with density § has at least n > § nodes
and thus at least min{dn, %2} > 57" + %2 edges, the (minor) density
of any such graph is at most O(~/g). Similarly, having treewidth
or pathwidth at most k are graph properties closed under taking
minors. Moreover, a graph of treewidth (or pathwidth) at most k
and n nodes has less than kn edges and therefore its (minor) density
is at most k. O

Combining Theorem 3.1 with Lemma 3.3 now directly implies
Corollary 1.4 and the following analogous corollary for treewidth-k
graphs:

COROLLARY 3.4. Any graph with n nodes, diameter D, and
treewidth at most k admits shortcuts with congestion O(kD log n)
and dilation O(kD).

Note that while completely different and highly nontrivial proofs
specific to planar graphs, bounded genus graphs, and bounded
treewidth graphs were given in [7, 15], we obtain the same existen-
tially optimal results by simply plugging in bounds on the minor
density 5(G) in terms of the desired graph parameter into Theo-
rem 3.1. Constructive results of these shortcuts follow similarly
from Theorem 1.5.

Algorithmic applications, such as, the fast distributed MST and
minimum-cut algorithms claimed in Corollary 1.6 and Corollary 1.7
follow immediately and in a completely modular fashion from our
new constructive shortcuts given in Theorem 1.5 and shortcut-
based algorithms like the ones given in [7, 12].

PROOF OF COROLLARY 1.6 AND COROLLARY 1.7. The min-cut al-
gorithm follows from a randomized algorithm given in [7] that
computes a (1 + ¢) approximation in O(Q poly(1/¢)) time, with
high probability, given a shortcut of quality Q which is can be con-
structed according to Theorem 1.5. To convert this into an exact
algorithm we observe that the minimum degree of G and therefore
also its min-cut is of size at most 2§ given that the density of G
can be at most §. Setting ¢ = % therefore implies an exact algo-
rithm. The MST statement follows directly from Theorem 1.5 and
Boruvka’s distributed MST algorithm, as described in [7, 12]. O
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