
Reconstructing Unsteady Flow
Data from Representative
Streamlines via Diffusion and
Deep Learning Based
Denoising

Pengfei Gu
University of Notre Dame

Jun Han
University of Notre Dame

Danny Z. Chen
University of Notre Dame

Chaoli Wang
University of Notre Dame

Abstract—We propose VFR-UFD, a new deep learning framework that performs vector field
reconstruction (VFR) for unsteady flow data (UFD). Given integral flow lines (i.e., streamlines),
we first generate low-quality UFD via diffusion. VFR-UFD then leverages a convolutional neural
network to reconstruct spatiotemporally coherent, high-quality UFD. The core of VFR-UFD lies in
recurrent residual blocks that iteratively refine and denoise the input vector fields at different
scales, both locally and globally. We take consecutive time steps as input to capture temporal
coherence and apply streamline-based optimization to preserve spatial coherence. To show the
effectiveness of VFR-UFD, we experiment with several vector field data sets to report
quantitative and qualitative results and compare VFR-UFD with two VFR methods and one
compression algorithm.

Index Terms: Flow visualization, vector field reconstruction, unsteady flow data, convolutional
neural network, data reduction.

SCIENTISTS generate unsteady flow data
(UFD) from their scientific simulations to better
understand different physical and natural phe-
nomena (e.g., hurricanes and tornados). In these

cases, they often produce the corresponding in-
tegral lines (i.e., streamlines and pathlines) from
the Eulerian description of UFD for further ex-
ploration. Due to the limited disk storage and
I/O bandwidth, we consider a scenario where

IEEE Computer Graphics and Applications Published by the IEEE Computer Society c© 2021 IEEE 1

scientists do not store raw UFD but only these
line representations during simulation time for
subsequent post hoc analysis. In this paper, we
aim to achieve vector field reconstruction (VFR)
using a small set of stored flow lines. That is,
given these flow lines obtained at simulation
time, we recover the corresponding UFD in high
quality via a deep learning approach.

The key question of using flow lines to recover
UFD is which representation should be chosen:
streamlines or pathlines. Pathlines seem to be an
obvious choice as we deal with UFD. However,
streamlines have also been used for unsteady
flow analysis and visualization [1], [2] even
though they do not capture the temporal change.
We opt to use streamlines in this work due to
their simplicity, available representative selection
solutions, and easy utilization in training deep
neural networks. First, unlike pathlines, stream-
lines can be independently traced from each time
step, making it straightforward to handle during
simulation time. Moreover, for pathline tracing,
particles could go out of bound after a certain
number of time steps. Additional particles should
be placed to ensure proper domain coverage
and maintain a similar number of pathlines at
each time step. This is not a severe problem
for streamline tracing as we can discard short
streamlines and keep tracing new streamlines
until the target number of streamlines is met.
Second, for efficient data reduction, we want to
strike a good balance between the size of flow
line data saved and the quality of reconstructed
vector fields. Assuming representative flow lines
are good at capturing flow features and revealing
the underlying vector fields, using streamlines can
save more storage as we can leverage existing
representative streamline selection solutions [3],
[4], [5]. To our best knowledge, selecting rep-
resentative pathlines, however, is still an open
problem. Third, streamlines can easily provide
dense domain coverage at each time step, and
we can use every streamline point for VFR. For
example, for a UFD of 100 time steps, if we trace
300 streamlines per time step, with an average of
200 points per line, all 60, 000 vectors at each
time step can be used for loss computation during
neural network training. However, only a fraction
of pathline points covers the domain at the exact

time steps (imagining slicing pathlines along the
time dimension). For example, assuming the same
UFD, even though we trace 6, 000 pathlines,
with an average of 1, 000 points per line (so
both streamline and pathline representations store
the same number of points), we only have at
most 6, 000 vectors at each exact time step for
loss computation. The rest of the pathline points
that are at non-exact time steps cannot be easily
utilized. This is because, given a pathline point p
at time step, e.g., t = 1.3, we need to consider its
spatially neighboring points at t = 1.3 in order
to “propagate” its vector information to the same
point p at the two neighboring time steps (t = 1
and t = 2) for estimating their corresponding
vectors. Even considering that, these estimated
vectors are not accurate, which negatively impacts
loss computation and network training.

Although using streamlines to reconstruct
steady flow data has been investigated [6], [7],
using streamlines to recover unsteady flow data
still poses three crucial questions. First, how
to take into account temporal coherence? Un-
like pathlines, streamlines only encode spatial
information. Directly using available steady flow
data reconstruction algorithms will not guarantee
temporal coherence. Second, how to ensure the
recovered vector field can preserve both local and
global information? Conventional solutions only
apply linear methods in the reconstruction, which
is difficult to achieve the desired quality as vector
field data often exhibit nonlocal and nonlinear
behaviors. Third, how to recover high-quality
vector fields using sparsely sampled streamlines?
Since streamlines only cover a small set of voxels,
accurately filling uncovered voxels is the key to
achieve high-quality reconstruction.

To answer the above questions, we propose
VFR-UFD, a new deep learning framework based
on convolutional operations for reconstructing
UFD. Initially, we derive low-quality vector fields
from representative streamlines via diffusion. The
input to VFR-UFD is these low-quality vector
fields from consecutive time steps with inaccurate
and noised information, and the output is the vec-
tor field at the middle time step. We interpolate
the velocities from the generated vector field and
compare them against the ones in representative
streamlines. We minimize the errors between the
interpolated velocities from the synthesized vec-

2 IEEE Computer Graphics and Applications

tor field and the ones from streamlines through
iteratively refining the vector field globally and
locally. To demonstrate the effectiveness of VFR-
UFD, we show quantitative and qualitative results
on several unsteady vector field data sets. We
compare VFR-UFD against two VFR methods
and a state-of-the-art compression algorithm. We
show that VFR-UFD can achieve better quan-
titative results in terms of peak signal-to-noise
ratio, average angle difference, pathline distance,
and streamline distance and qualitative results in
terms of pathline and streamline rendering.

RELATED WORK
Vector field reconstruction

VFR has been investigated for nearly three
decades. Mussa-Ivaldi [8] reconstructed 2D vec-
tor fields from the sampled points through a least-
square error measurement. Gouesbet and Letel-
lier [9] presented a global VFR algorithm for
time-varying systems through a polynomial ap-
proximation function. Xu and Prince [6] proposed
gradient vector flow (GVF) that reconstructs a
vector field from streamlines by minimizing the
Laplacian error over the entire vector field. Chen
et al. [10] utilized streamlines to estimate a par-
tition of velocities and then linearly interpolated
the missing velocities based on triangulation. Xu
et al. [3] applied an entropy-based solution to
guide streamline placement by estimating every
voxel’s information content. They used a method
similar to GVF for VFR. Han et al. [7] presented
a two-stage machine learning solution to recon-
struct a steady vector field from a set of represen-
tative streamlines. Unlike previous works where
they aim to reconstruct steady vector fields from
streamlines, our goal is to reconstruct unsteady
vector fields based on representative streamlines.

Deep learning for flow visualization
With the success of deep learning in com-

puter vision and natural language processing,
researchers have applied deep learning techniques
to solve flow visualization problems. Hong et
al. [11] utilized long short-term memory to es-
timate data patterns in different vector regions
in particle tracing tasks in order to reduce I/O
latency and accelerate the tracing. Xie et al. [12]
proposed tempoGAN that generates spatial high-
resolution flow sequences based on one generator,

one spatial discriminator, and one temporal dis-
criminator. Han et al. [5] designed an autoencoder
to group streamlines or stream surfaces through
representation learning and dimensionality reduc-
tion. They provided an interface for interactive
exploration and understanding. Wiewel et al. [13]
designed a recurrent neural network to predict 4D
functions by learning the temporal evolution of
the fluid flow. Kim and Günther [14] leveraged
a convolutional neural network (CNN) to extract
reference frames from unsteady 2D vector fields.
Guo et al. [15] proposed a CNN that spatially
upscales vector fields 4 or 8 times along each
dimension. Jakob et al. [16] constructed a large
2D fluid flow field and proposed a sub-pixel CNN
for effective flow map interpolation. Although we
also utilize a CNN, our work is different in that
it aims to leverage representative streamlines to
recover UFD via denoising rather than upscaling.

VFR-UFD
We denote F = {F1, F2, . . . , Fm} as an

unsteady vector field where Fi is the vector field
at time step i and m is the number of time steps.
si = {(p1,v1), (p2,v2), . . . , (pj,vj), . . .} is
all streamlines traced from Fi (i.e., we “con-
catenate” all streamlines and do not delineate
which points correspond to which streamline),
where pj is the position at the j-th point and
vj is the velocity at pj . We also denote FI =
{FI1, FI2, . . . , FIm} as a set of vector fields,
which is the input to VFR-UFD.

As sketched in Figure 1 (a), at simulation
time, scientists generate UFD and trace stream-
lines for each time step. They only save repre-
sentative streamlines for each time step to reduce
data storage. After that, we design VFR-UFD
to recover UFD from the saved representative
streamlines, and streamlines and pathlines are
traced for analysis and visualization during post-
processing. In particular, we use three variants
of Tao et al. [4] (i.e., p(s), I(s;V), and REP)
to select representative streamlines. Then, we
reconstruct the corresponding vector fields based
on a two-stage approach given the representative
streamline set. At the first stage, we convert the
streamlines into an inaccurate vector field with
noises via diffusion using GVF [6]. At the second
stage, we leverage VFR-UFD as a denoising
model to refine the noisy vector field through

September/October 2021 3

t

…
…

…
…

V
F

R
-U

F
D

…
…

representative

selection

flow line

tracing

vector field

reconstruction

+

simulation time postprocessing

ra
n

d
o

m
ly

-s
e
e
d

e
d

s
tr

e
a
m

lin
e
s

p
a
th

lin
e

v
is

u
a
liz

a
ti
o

n

…
… …

…

o
ri
g

in
a
l

v
e
c
to

r
fi
e
ld

s

re
p

re
s
e
n

ta
ti
v
e

s
tr

e
a
m

lin
e
s

h
ig

h
-q

u
a
lit

y

v
e
c
to

r
fi
e
ld

s

s
tr

e
a
m

lin
e

v
is

u
a
liz

a
ti
o

n

…
…

lo
w

-q
u

a
lit

y

v
e
c
to

r
fi
e
ld

s +

(a)

training data testing data

streamlines

example of inferred
time step (e.g., Fig. 5)

…… ……

… …… …

vector field

timetime

streamlines

vector field

(b)

Figure 1. (a) Overview of VFR-UFD. During simulation time, we only save representative streamlines
for storage saving. During postprocessing, VFR-UFD can reconstruct UFD from these integral lines, and
streamlines and pathlines can be generated from the recovered UFD. (b) Training and inferring time steps
from UFD.

interpolating velocities and calculating the dif-
ference between the interpolated ones and those
obtained from the representative streamlines.

At the first diffusion stage, following GVF [6],
we estimate the velocities at the voxels where
streamlines pass by calculating the weighted av-
erage of velocities from the neighboring stream-
lines. Then, these velocities are diffused to these
voxels where no streamlines pass by minimizing
the Laplacian over the whole vector field. In this
way, we convert a non-grid data (i.e., streamlines)
into a grid data (i.e., vector field) with inaccurate
velocities. The converted grid data are the input
to VFR-UFD.

At the second denoising stage, we approxi-
mate a denoising function D that aims to achieve
two goals: (1) the vector fields generated at the
first stage are refined and denoised, (2) temporal
coherence is taken into consideration. To achieve
the first goal, we utilize several techniques, such
as recurrent residual block (RRB) and batch
normalization (BN). For the second goal, we
apply sequential input and skip connection. VFR-
UFD accepts three consecutive vector fields, from
time step t − 1 to time step t + 1, as input,

and outputs the vector field at time step t. (Note
that it is straightforward to consider more time
steps, e.g., five or seven, but it would require
significantly more training time, more memory
cost, and lead to much larger model size.) After
that, we evaluate velocities in the synthesized
vector field by comparing their differences with
those from the representative streamlines. Fol-
lowing the suggestion of Guo et al. [15], VFR-
UFD decomposes each vector field into three
components (i.e., u, v, and w components) and
processes them independently.

Figure 1 (b) shows that we use the early
time steps of vector fields and representative
streamlines for training. For inference, we use
representative streamlines from later time steps
as input, and the network infers the corresponding
vector fields as output.

Network design and loss function
Design consideration. The key design of

each neural network for the u, v, w components
includes: (1) applying BN after each convolution
(Conv) layer to accelerate training and avoid
gradient vanishing, (2) using skip connection to

4 IEEE Computer Graphics and Applications

…
…

input Conv RBDeConv skip connectionRRBRU summation

(a) (b) (c)

Figure 2. Network architecture of (a) recurrent unit (RU), (b) recurrent residual block (RRB), and (c) VFR-UFD.

merge feature maps with the same scale from
different Conv layers, and (3) leveraging RRB to
refine and denoise features at different levels. BN
is a popular technique used to accelerate network
training as it tackles the internal covariate shift
problem by normalizing the input layers. In par-
ticular, each Conv layer is followed by BN and
rectified linear unit (ReLU) layers to speed up
training and improve model performance. Skip
connection is a standard approach to fuse the
features, which provides an alternative path for
the gradients with backpropagation. In addition, it
also helps smoothly minimize the loss and prevent
the network from trapped in chaotic states. RRB
is a recurrent block that reuses a set of Conv
layers to refine and denoise features at different
scales.

RU and RRB. The core of RRB is a recurrent
unit (RU). As illustrated in Figure 2 (a), RU
includes two Conv layers. The first Conv filters
the input features, and the second one is applied
r times for further refinement and denoising. In
the k-th (k ≤ r) refinement, the input is the
output from the k− 1-th refinement and the first
Conv layer. These two outputs are bridged by
summation. By recurrently applying Conv layers
and summation, RU can effectively filter the
features and reduce the learned parameters. Each
RRB consists of r RUs. As shown in Figure 2
(b), in an RRB, the input is convoluted with r
RUs without changing the dimensions, and an
identity skip connection is applied to the input.
Two outputs are merged by summation to produce
the final output. The design of RU and RRB helps
develop a deeper model efficiently and ensures
better discriminative representations. Due to the
accumulation feature denoising, RRB can refine
and denoise the features effectively and enhance
the quality of the synthesized vector fields.

Network architecture. The architecture of

VFR-UFD is shown in Figure 2 (c). VFR-UFD
has three individual nets, and each net consists
of a contracting/encoding path, a refining path,
and a successive expanding/decoding path. In the
contracting/encoding path, there are four RRBs
followed by the Conv layer whose stride is set
to two to reduce the input dimension by half
to refine and denoise features at different scales.
In the refining path, three residual blocks (RBs)
are applied to refine the features received from
the contracting/encoding path. In the expand-
ing/decoding path, three deconvolutional (De-
Conv) layers are followed by RRBs. The DeConv
layers are used to upscale the input, and RRBs are
employed for better feature representation and de-
noising. Moreover, skip connection is utilized to
fuse the features from contracting and expanding
paths with the same scale. Finally, a DeConv layer
is applied to upscale the feature to the original
dimension, and a Conv layer is employed to refine
the final output. We do not follow the last Conv
layer by BN and ReLU because a vector field’s
data range could be unbounded. The parameter
details of VFR-UFD are listed in Table 1.

Table 1. VFR-UFD architecture parameter details.
type kernel size stride output channels
input N/A N/A 3
RRB 3 1 16
Conv+BN+ReLU 4 2 16
RRB 3 1 32
Conv+BN+ReLU 4 2 32
RRB 3 1 64
Conv+BN+ReLU 4 2 64
RRB 3 1 128
Conv+BN+ReLU 4 2 128
3 × RB 3 1 128
DeConv+BN+ReLU 4 2 64
RRB 3 1 64
DeConv+BN+ReLU 4 2 32
RRB 3 1 32
DeConv+BN+ReLU 4 2 16
RRB 3 1 16
DeConv+BN+ReLU 4 2 8
Conv 3 1 1

Loss function. Given the streamlines, we use

September/October 2021 5

the mean squared error (MSE) to evaluate the
quality of the reconstructed vector field. Specif-
ically, we first calculate the MSE loss between
the original velocity vp from streamlines and
predicted velocity v′p interpolated from the re-
constructed vector field at sample point p, and
then sum the MSE losses calculated for all the
sample points. The overall training MSE loss is
defined as

L =
n∑
j=1

||vpj
− v′pj

||2, (1)

where ||·||2 denotes the L2 norm, n is the number
of points, and v′pj

is the interpolated velocity at
pj based on a trilinear function that interpolates
the velocities at the eight neighboring voxels of
pj .

(a) (b) (c)

Figure 3. An illustration of different sampling
schemes: (a) random sampling, (b) full sampling,
and (c) coverage-driven sampling. Red points are
sampled during training, while cyan points are not.

Optimization
Sampling. Intuitively, we can either use ran-

dom sampling (i.e., randomly sampling a subset
of all sample points to compute the MSE loss at
every epoch) or full sampling (i.e., using all sam-
ple points to evaluate the MSE loss) to train VFR-
UFD. However, both sampling schemes have their
limitations. As sketched in Figure 3, random
sampling may fail to sample voxels where only
a few streamlines pass. This could lead to poor
performance at these voxels since VFR-UFD has
almost no supervision there. As for full sampling,
it can guarantee to achieve good performance at
each voxel. However, it requires a high com-
putational cost as the number of sample points
is large. To respond, we propose a coverage-
driven sampling algorithm that can significantly
reduce the training time while achieving high-
quality performance. The algorithm is shown in

Algorithm 1. We first initialize an empty list
and shuffle the points in the training point set.
This shuffle operation can guarantee that at every
epoch, different points can be sampled. Then, we
loop each point in the point set. If the voxels
covered by the point are not observed in the
list, we sample the current point as our training
sample point.

Algorithm 1 Coverage-driven sampling algo-
rithm.
Require: A set of points P = {p1, p2, . . . , pm}

Initialize an empty list L
Shuffle points in P
for each point p in P do

Compute the eight neighboring voxels v at p
if v is not covered by p′, ∀p′ ∈ L then

Add p into L
end if

end for

Return L

Optimization. The optimization of VFR-UFD
is as follows. It accepts three consecutive vector
fields FIt−1, F

I
t , F

I
t+1 as input, and initializes

network parameters θu, θv, and θw. VFR-UFD
is iteratively updated using stochastic gradient de-
scent until a certain number of epochs is reached.
During each epoch, the coverage-driven sampling
algorithm is applied to produce training sample
points. VFR-UFD goes through the sample points
and produces the vector field at time step t. The
gradients ∇θuL, ∇θvL, and ∇θwL is computed
according to Equation 1, and the parameters θu,
θv, and θw are automatically updated through
the optimizer using the predefined learning rate
and computed gradients. During inference, we run
VFR-UFD in the same way as training except that
the gradients may not be computed.

RESULTS AND DISCUSSION
In this section, we present VFR-UFD results,

including data sets and network training, base-
line methods for comparison, evaluation metrics,
and quantitative and qualitative analysis. We also
compare the results generated from different rep-
resentative streamline selection criteria and dis-
cuss our work’s limitations. In the Appendix, we
study several parameter settings, including archi-
tecture design, number of representative stream-
lines, feature fusion schemes, temporal coher-
ence, and sampling schemes, to evaluate VFR-
UFD.

6 IEEE Computer Graphics and Applications

Table 2. The dimensions and training epochs of each data set.
data dimension data size # rep. line size reduction comp. training
set (x× y × z × t) (GB) lines (GB) rate rate epochs
supercurrent 256× 128× 32× 100 1.172 300 0.136 8.62 11.90 50
supernova 128× 128× 128× 100 2.344 500 0.079 29.67 42.43 100
tornado 128× 128× 128× 48 1.125 500 0.040 28.13 51.12 100

Table 3. Average PSNR (dB), AAD, PD, and SD values, training time per epoch (in minutes), and inference time
(in seconds) with different methods. The SD values are for the time steps reported in Figure 5. The best ones are
highlighted in bold (same for the rest of tables in the paper).

data set method PSNR AAD PD SD train infer

supercurrent

GVF 27.07 0.08 3.57 4.65 — —
Han et al. 22.08 0.16 4.98 11.84 101.04 0.12
LC 31.52 0.04 2.78 3.34 — —
VFR-UFD 36.15 0.02 1.22 2.99 108.67 0.49

supernova

GVF 21.70 0.11 1.25 3.06 — —
Han et al. 19.97 0.18 2.14 6.20 60.53 0.18
LC 25.88 0.18 5.34 9.57 — —
VFR-UFD 31.40 0.03 0.99 2.10 69.38 0.88

tornado

GVF 29.11 0.08 0.54 2.58 — —
Han et al. 20.82 0.31 7.19 9.99 33.63 0.11
LC 24.91 0.15 3.01 2.16 — —
VFR-UFD 34.03 0.05 0.53 0.65 40.03 0.87

Data sets and network training
We show the simulation data sets experi-

mented in Table 2. Representative streamlines are
chosen from randomly-traced streamlines using
the three variants of Tao et al. [4]: p(s), I(s;V),
and REP. The number reported for representative
streamlines is for each step, while the data and
streamline sizes reported are for all time steps.
The reduction rate is the ratio between the data
and streamline sizes. We implemented VFR-UFD
with PyTorch and used a single Nvidia Tesla
V100 graphics card with 32 GB GPU memory
for training and inference. For optimization, the
network parameters were initialized using normal
initialization, and the Adam optimizer was used to
update the parameters (β1 = 0.9, β2 = 0.999).
We set one training sample per mini-batch and
the learning rate to 10−4. The learning rate is de-
cayed by 10× after every 40 iterations. All these
parameters were empirically determined based on
experiments.

Results
Baselines. We compare VFR-UFD against the

following three baseline methods (GVF and Han
et al. reconstruct the vector field of each time
step based on the representative streamlines given
without considering temporal coherence, while
LC directly compresses vector fields without us-
ing representative streamlines):

• GVF [6] is a standard and widely used method
to reconstruct vector fields from a set of
streamlines.

• Han et al. [7] is a two-stage deep learning
method for reconstructing a steady vector field.
At the first stage, the low-resolution vector
field is generated from representative stream-
lines. The low-resolution vector field is then
fed to a CNN to generate the high-resolution
(i.e., original resolution) one.

• Lossy compression (LC) [17] is a common
data compress approach, which can adaptively
select either the improved Lorenzo predictor
or the predictor based on optimized linear
regression in different regions of the data set
for compression.

In this paper, the selected representative
streamlines are compressed for data reduction
and later used to reconstruct VFR. Therefore,
we also consider a compression algorithm (i.e.,
LC) as a baseline method for comparison. For a
fair comparison, GVF, Han et al., and VFR-UFD
all use the same set of representative streamlines
for VFR. The compression rate for LC is set
the same as that for VFR-UFD as reported in
Table 2. For VFR-UFD, we also use a loss-
less floating-point compression solution [18] to
compress the representative streamlines to further
reduce the data storage. The compression rate
reported in Table 2 is the ratio between the size

September/October 2021 7

(a) GVF (b) Han et al. (c) LC (d) VFR-UFD (e) GT

Figure 4. Pathline rendering results which are the inferred results (i.e., the networks do not see these vector
fields during training, same for the rest of figures in the paper). Top to bottom: supercurrent, supernova, and
tornado. The numbers of pathlines traced are 1, 000, 500, and 2, 000, respectively.

of compressed streamlines and the size of original
vector fields. For Han et al. and VFR-UFD, the
same training settings are used. All pathline and
streamline visualization results by VFR-UFD are
generated from synthesized vector fields, which
are the inferred results (i.e., these vector fields
are not used for training the model). All rendering
results for the same data set use the same setting,
including the set of randomly-placed seeds and
the viewing parameters. We compare pathline
and streamline visualization results generated by
VFR-UFD and three baselines (i.e., GVF, Han et
al., and LC) in reference to the GT.

Evaluation metrics. Following Guo et al.
[15], we leverage peak signal-to-noise ratio
(PSNR) and average angle difference (AAD) [15]
to evaluate the quality of the synthesized vector
fields. Besides, we use pathline distance (PD),
which is defined as

PD(P, P̂) =
1

N

N∑
i=1

1

ni

ni∑
j=1

min
p∈Pi

||p− p̂ij ||2,

(2)
where P and P̂ are the pathlines traced from GT
and synthesized vector fields, N is the number of
pathlines, ni is the number of points at the i-th
pathline, p̂ij is the j-th point at the i-th pathline

traced from the synthesized vector field, and Pi is
the i-th pathline traced from the GT vector field.
Finally, we use streamline distance (SD), which
for each time step, follows the same way as we
compute pathline distance.

Quantitative and qualitative analysis. In
Table 3, we report the average PSNR, AAD, PD
values over the entire vector field sequence, and
SD values on certain time steps, using GVF, Han
et al., LC, and VFR-UFD methods. We can see
that VFR-UFD outperforms GVF, Han et al., and
LC for all three data sets across all the metrics
(i.e., with the highest PSNR, lowest AAD, lowest
PD, and lowest SD). In addition, we report the
average training time per epoch (in minutes) and
average inference time (in seconds) using the
three data sets. In terms of training time, we see
that Han et al. takes the shortest time compared to
VFR-UFD. This is because the CNN used in Han
et al. is a shallow network. However, we observe
that VFR-UFD only increases a few minutes (i.e.,
7.63, 8.85, and 6.40 minutes for the supercurrent,
supernova, and tornado data sets, respectively)
in training compared to Han et al. In terms of
inference time, there is not a significant difference
between Han et al. and VFR-UFD. Overall, the

8 IEEE Computer Graphics and Applications

(a) GVF (b) Han et al. (c) LC (d) VFR-UFD (e) GT

Figure 5. Streamline rendering results which are the inferred results. Top to bottom: supercurrent, supernova,
and tornado. 500 streamlines are traced for each data set at time steps 45, 36, and 33, respectively.

quantitative results show that VFR-UFD is an
effective and efficient method, as it achieves a
good trade-off between performance gain and the
increased training time.

In Figure 4, we present pathline rendering
results of the synthesized vector fields generated
by GVF, Han et al., LC, and VFR-UFD, with GT
results provided for reference. Although subtle,
GVF and Han et al. do not capture well the
swirling patterns for the supercurrent data set.
There is also a clear shift of velocity magnitude
for Han et al. as judged by the pathline colors.
LC does not generate finer details of the swirling
patterns compared with GT, while VFR-UFD can
capture these patterns well. For the supernova
data set, compared with GVF and Han et al.,
VFR-UFD captures more details around the su-
pernova’s center, while LC leads to the worst
visual result. For the tornado data set, VFR-UFD
produces smoother pathlines than GVF and Han
et al., confirming that VFR-UFD can capture finer
details. Again, LC leads to the worst result.

In Figure 5, we present streamline rendering
results of the synthesized vector fields generated
by GVF, Han et al., LC, and VFR-UFD, with
GT results provided for reference. For the su-
percurrent data set, LC and VFR-UFD produce
better visual quality than GVF and Han et al.

However, LC produces more errors than VFR-
UFD at the bottom-left corner, and VFR-UFD
captures the swirling patterns better than LC. For
the supernova data set, VFR-UFD produces the
best visual quality, while GVF leads to multiple
errors at the bottom-left region, Han et al. yields
errors at the top-left region, and LC clearly gener-
ates the worst overall result. For the tornado data
set, VFR-UFD captures more details than GVF,
Han et al., and LC. For example, GVF does not
capture the details at the tornado’s center, Han
et al. yields low visual quality at the central and
bottom-right regions, and LC leads to the worst
result.

In Figure 6, we compare volume rendering
results of errors introduced by the reconstructed
vector fields generated by GVF, Han et al., LC,
and VFR-UFD. These volumetric errors are com-
puted following Han et al. [7]. For the supercur-
rent data set, we can see that GVF, Han et al., and
LC generate more errors than VFR-UFD. For the
supernova data set, it is obvious that VFR-UFD
produces the fewest errors at the boundary and the
center of the supernova, followed by Han et al.,
GVF, and LC. For the tornado data set, it is clear
that VFR-UFD produces the fewest errors at the
boundary and the core of the tornado, followed
by GVF, Han et al., and LC.

September/October 2021 9

(a) GVF (b) Han et al. (c) LC (d) VFR-UFD

Figure 6. Comparison of volume rendering results of errors introduced by the reconstructed vector fields. Top
to bottom: supercurrent, supernova, and tornado. The error volumes shown are for time steps 45, 36, and 33,
respectively.

Why are baselines bad? As we observe
from Figures 4, 5, and 6, VFR-UFD always
achieves the best quality in terms of pathline and
streamline renderings compared with GVF, Han
et al., and LC. The possible explanations are as
follows. GVF only applies linear interpolation
to recover a vector field through aggregating
the velocities from streamlines, which does not
capture nonlinear flow patterns (e.g., the core of
the supernova and the swirls of the supercurrent).
Han et al. is a nonlinear approach for recovering
a vector field from streamlines. However, due
to the random initialization of the low-resolution
vector field, the employed CNN is sensitive to
the perturbation and cannot generate high-quality
vector fields. As for LC, it cannot guarantee the
quality of rendering results since a small change
in a vector field could lead to poor quality of
pathline and streamline renderings.

Discussion

Representative streamline selection crite-
ria. To select representative streamlines for net-
work training, we use three variants of Tao et
al. [4]: p(s), I(s;V), and REP. To investigate
the differences of these selection criteria, we
experiment on the supercurrent data set. Figure 7
shows streamline and pathline rendering results
under these three different streamline selection
criteria. From the highlighted regions, we can
see that, with VFR-UFD, using REP to select
representative streamlines yields both streamline
and pathline rendering results close to GT com-
pared with p(s) and I(s;V). This is because REP
focuses on domain coverage, and the selected
streamlines well cover the entire domain, which
helps VFR-UFD validate voxels throughout the
volume during training. Table 4 reports the av-
erage PSNR and AAD values. We can see that
when using p(s), VFR-UFD produces the highest

10 IEEE Computer Graphics and Applications

(a) p(s) (b) I(s;V) (c) REP (d) GT

Figure 7. Comparison of streamline (top row) and pathline (bottom row) rendering results under different
streamline selection criteria for generating the streamline set for training. 1, 000 streamlines at time step 56 and
1, 000 pathlines are traced for the supercurrent data set.

PSNR and lowest AAD values. However, the
value differences between using p(s) and REP
are fairly small (i.e., 0.34 for PSNR and 0.002
for AAD). If we only consider feature regions
with high entropy values, the PSNR gap between
p(s) and REP increases to 0.66, while both
achieve the same AAD value of 0.012. Consider-
ing both quantitative and qualitative results, we
recommend using REP to select representative
streamlines for all data sets.

Table 4. Average PSNR (dB) and AAD values and only the
feature regions (FR) for the entire vector field sequence
using different streamline selection criteria for generating
the streamline set for training.

data set criterion PSNR AAD PSNR-FR AAD-FR

supercurrent
p(s) 36.49 0.018 42.02 0.012
I(s;V) 32.76 0.038 38.94 0.015
REP 36.15 0.020 41.36 0.012

Limitations. Our current work has the fol-
lowing limitations. First, although simple, as-
suming tracing streamlines independently from
each time step does not incorporate temporal
coherence in the first place. Considering repre-
sentative streamline selection at simulation time
requires additional integration work. Using a set
of well-selected pathlines of the same size could
lead to better UFD reconstruction quality, while
representative pathline selection remains an open
question. If the simulation uses the smoothed
particle hydrodynamics (SPH) method, it is more
convenient to directly consider the Lagrangian
description of the flow field for VFR. Second, the
network needs to be retrained for different data
sets. A neural network model trained on various
types of images could effectively infer unseen im-

ages from multiple categories. This is not the case
for scientific data since the training data is limited
(i.e., not diverse enough), and different scientific
data sets may not follow a single distribution. For
example, Guo et al. [15] showed that the results
generated from joint training using two data sets
are worse than those generated from separate
training using a single data set. Still, it is possible
to train VFR-UFD on a certain type of data sets
and later apply it to reconstruct a different data
set of the same type. For ensemble data sets, we
can train the network on an ensemble data set and
use it to directly infer another ensemble data set
without retraining.

CONCLUSIONS AND FUTURE WORK
We have presented VFR-UFD, a new deep

learning-based VFR solution for UFD. Our so-
lution takes representative streamlines from each
time step as input to generate low-quality vector
fields, which are refined to yield high-quality
vector fields through the designed neural nets.
Compared to GVF and Han et al., VFR-UFD
generates synthesized vector fields of higher qual-
ity, both qualitatively and quantitatively. We also
compared VFR-UFD against a state-of-the-art
lossy compression scheme. In the future, we will
consider using physics-informed CNN that uti-
lizes the physical properties of UFD for guiding
neural network training. We will also tackle the
more challenging scenario of VFR-UFD using
pathlines instead of streamlines. Furthermore, we
will generalize our work by exploring pretraining
methods to save retraining time for different data
sets.

September/October 2021 11

ACKNOWLEDGMENT
This research was supported in part by the

U.S. National Science Foundation through grants
IIS-1455886, CCF-1617735, CNS-1629914,
DUE-1833129, and IIS-1955395, and the
NVIDIA GPU Grant Program. The authors
would like to thank the anonymous reviewers for
their insightful comments.

REFERENCES
1. B. Jobard and W. Lefer. Unsteady flow visualization by

animating evenly-spaced streamlines. Computer Graph-

ics Forum, 19(3):31–39, 2000.

2. T. Wischgoll, G. Scheuermann, and H. Hagen. Tracking

closed streamlines in time dependent planar flows. In

Proceedings of International Symposium on Vision, Mod-

eling and Visualization, pages 447–454, 2001.

3. L. Xu, T.-Y. Lee, and H.-W. Shen. An information-

theoretic framework for flow visualization. IEEE

Transactions on Visualization and Computer Graphics,

16(6):1216–1224, 2010.

4. J. Tao, J. Ma, C. Wang, and C.-K. Shene. A unified ap-

proach to streamline selection and viewpoint selection for

3D flow visualization. IEEE Transactions on Visualization

and Computer Graphics, 19(3):393–406, 2013.

5. J. Han, J. Tao, and C. Wang. FlowNet: A deep learning

framework for clustering and selection of streamlines and

stream surfaces. IEEE Transactions on Visualization and

Computer Graphics, 26(4):1732–1744, 2020.

6. C. Xu and J. L. Prince. Gradient vector flow: A new exter-

nal force for snakes. In Proceedings of IEEE International

Conference on Computer Vision, pages 66–71, 1997.

7. J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and

C. Wang. Flow field reduction via reconstructing vec-

tor data from 3D streamlines using deep learning.

IEEE Computer Graphics and Applications, 39(4):54–67,

2019.

8. F. A. Mussa-Ivaldi. From basis functions to basis fields:

Vector field approximation from sparse data. Biological

Cybernetics, 67(6):479–489, 1992.

9. G. Gouesbet and C. Letellier. Global vector-field recon-

struction by using a multivariate polynomial L2 approx-

imation on nets. Physical Review E, 49(6):4955–4972,

1994.

10. Y. Chen, J. Cohen, and J. Krolik. Similarity-guided

streamline placement with error evaluation. IEEE

Transactions on Visualization and Computer Graphics,

13(6):1448–1455, 2007.

11. F. Hong, J. Zhang, and X. Yuan. Access pattern learning

with long short-term memory for parallel particle tracing.

In Proceedings of IEEE Pacific Visualization Symposium,

pages 76–85, 2018.

12. Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempoGAN: A

temporally coherent, volumetric GAN for super-resolution

fluid flow. ACM Transactions on Graphics, 37(4):95:1–

95:15, 2018.

13. S. Wiewel, M. Becher, and N. Thuerey. Latent-space

physics: Towards learning the temporal evolution of fluid

flow. Computer Graphics Forum, 38(2):71–82, 2019.

14. B. Kim and T. Günther. Robust reference frame ex-

traction from unsteady 2D vector fields with convolutional

neural networks. Computer Graphics Forum, 38(3):285–

295, 2019.

15. L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, D. Z. Chen,

J.-X. Wang, and C. Wang. SSR-VFD: Spatial super-

resolution for vector field data analysis and visualization.

In Proceedings of IEEE Pacific Visualization Symposium,

pages 71–80, 2020.

16. J. Jakob, M. Gross, and T. Günther. A fluid flow data

set for machine learning and its application to neural flow

map interpolation. IEEE Transactions on Visualization

and Computer Graphics, 27(2), 2021.

17. X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen,

and F. Cappello. Error-controlled lossy compression op-

timized for high compression ratios of scientific datasets.

In Proceedings of IEEE International Conference on Big

Data, pages 438–447, 2018.

18. P. Lindstrom and M. Isenburg. Fast and efficient com-

pression of floating-point data. IEEE Transactions on

Visualization and Computer Graphics, 12(5):1245–1250,

2006.

Pengfei Gu, is a Ph.D. student in the Department of
Computer Science & Engineering at the University of
Notre Dame. Contact him at pgu@nd.edu.

Jun Han, is a Ph.D. candidate in the Department of
Computer Science & Engineering at the University of
Notre Dame. Contact him at jhan5@nd.edu.

Danny Z. Chen, is a professor in the Department of
Computer Science & Engineering at the University of
Notre Dame. Contact him at dchen@nd.edu.

Chaoli Wang, is an associate professor in the
Department of Computer Science & Engineering
at the University of Notre Dame. Contact him at
chaoli.wang@nd.edu.

12 IEEE Computer Graphics and Applications

APPENDIX
Parameter study

To evaluate VFR-UFD, we study the fol-
lowing parameter settings: architecture design,
number of representative streamlines, feature fu-
sion schemes, temporal coherence, and sampling
schemes. Note that all parameter study results
shown for VFR-UFD are the inferred results. That
is, pathline and streamline visualization results
and PSNR and AAD values reported are from
the synthesized vector fields.

Table 1. Average PSNR (dB) and AAD values, and train-
ing time per epoch (in minutes) with different architecture
designs.

data set architecture PSNR AAD train

supernova

No RRB 23.72 0.082 41.77
1-RRB 26.07 0.060 52.25
2-RRB 31.40 0.029 69.38
3-RRB 30.72 0.039 84.84

tornado

No RRB 31.14 0.062 31.22
1-RRB 34.28 0.043 36.58
2-RRB 34.03 0.047 40.03
3-RRB 33.86 0.049 50.80

Architecture design. To investigate the effec-
tiveness of the number of RUs for refining and
denoising inaccurate vector fields, we conduct
experiments on the supernova and tornado data
sets by setting different values (0 to 3) for r. We
denote different architectures as r-RRB. In Fig-
ure 1, we show the streamline rendering results
from the synthesized vector fields generated by
different architectures (i.e., r-RRB). The stream-
line rendering results from the synthesized vector
fields generated by 2-RRB are much closer to GT
than those generated by other architectures. This
indicates that, when a suitable number of RUs is
set, RRB can refine and denoise the features to
enhance the synthesized vector fields’ quality. As
shown in Table 1, we compute the average PSNR
and AAD values, and the training time per epoch.
For the supernova data set, 2-RRB performs the
best (i.e., with the highest PSNR and lowest
AAD). For the tornado data set, 1-RRB performs
the best; however, the performance difference
between 1-RRB and 2-RRB is small (i.e., 0.25 for
PSNR and 0.004 for AAD). Considering that the
streamline rendering results from the synthesized
vector fields generated by 2-RRB are much closer
to GT than those by 1-RRB and small r cannot
completely clean the noises introduced by GVF

and large r will result in gradient vanishing, we
recommend using 2-RRB for both data sets.

Table 2. Average PSNR (dB) and AAD values, and
training time per epoch (in minutes) using different
numbers of representative streamlines selected by REP
for training.

data set # rep. lines reduction rate PSNR AAD train

supernova
100 146.50 25.34 0.078 17.73
300 49.87 29.00 0.048 55.48
500 29.67 31.40 0.029 69.38

tornado
100 140.63 26.52 0.120 9.85
300 46.88 31.41 0.064 29.20
500 28.13 34.03 0.047 40.03

Number of representative streamlines. To
explore how the quality of the synthesized vector
fields using VFR-UFD improves with the increase
of representative streamlines used for training,
we conduct experiments on the supernova and
tornado data sets using different numbers of rep-
resentative streamlines. As illustrated in Figure 2,
we see that the quality of the synthesized vec-
tor fields using VFR-UFD improves gradually
when the number of representative streamlines
increases from 100 to 300 and 500. This is
because the more representative streamlines used,
the more information the training data can pro-
vide. Table 2 reports the average PSNR and AAD
values, and the training time per epoch. The
performance is the best when using 500 repre-
sentative streamlines for both data sets, which
is consistent with the pathline rendering results
shown in Figure 2. However, with the increase
of representative streamlines, the training takes
a longer time. Considering the trade-off between
the number of representative streamlines and the
training time, we recommend using 500 represen-
tative streamlines for both data sets.

Feature fusion schemes. There are two stan-
dard feature fusion schemes: concatenation and
summation. To investigate VFR-UFD’s effective-
ness using different feature fusion schemes, we
conduct experiments on the supernova and tor-
nado data sets. Specifically, we make use of
concatenation and summation in RU to fuse the
features. Figure 3 presents the pathline rendering
results from the synthesized vector fields gener-
ated by VFR-UFD using different feature fusion
schemes. For both data sets, the synthesized vec-
tor fields generated using summation are closer
to GT than those generated using concatenation.
For a clearer comparison, Table 3 reports the

September/October 2021 1

(a) No RRB (b) 1-RRB (c) 2-RRB (d) 3-RRB (e) GT

Figure 1. Comparison of streamline rendering results with different RRB blocks using the supernova (top) and
tornado (bottom) data sets. 500 streamlines are traced for each data set.

average PSNR and AAD values. We can see that
the performance of summation is better than that
of concatenation for both data sets (especially for
the supernova data set), which is consistent with
the pathline rendering results. This is because in
concatenation, Conv processes the noisy features
without refinement every time. In contrast, in
summation, the noisy features are refined after
the addition operation and fed into the follow-
ing Convs. Considering both the quantitative and
qualitative results, we recommend using summa-
tion for all data sets.

Table 3. Average PSNR (dB) and AAD values using
different feature fusion schemes.

data set scheme PSNR AAD

supernova concatenation 24.31 0.076
summation 31.40 0.029

tornado concatenation 33.26 0.048
summation 34.03 0.047

Table 4. Average PSNR (dB) and AAD values without
and with considering temporal coherence (TC).

data set TC PSNR AAD

supercurrent without 35.82 0.023
with 36.15 0.020

supernova without 29.07 0.045
with 31.40 0.029

Temporal coherence. We take into account
temporal coherence when using streamlines to
recover UFD. To study the importance of tem-
poral coherence on performance improvement,
we perform experiments on the supernova and

supercurrent data sets. In particular, instead of in-
putting three consecutive vector fields into VFR-
UFD (i.e., temporal coherence is considered), we
input a single vector field into VFR-UFD (i.e.,
temporal coherence is not considered). Figure 4
shows the pathline rendering results from the
synthesized vector fields generated by VFR-UFD
without and with considering temporal coherence.
The synthesized vector fields generated by VFR-
UFD when considering temporal coherence are
closer to GT than those generated without con-
sidering temporal coherence. Table 4 reports the
average PSNR and AAD values. We can see
that the performance when considering temporal
coherence is better than that without considering
temporal coherence, even though the performance
difference on the supercurrent data set is small
(i.e., 0.33 for PSNR and 0.003 for AAD), which
is consistent with the pathline rendering results.
Therefore, incorporating temporal coherence can
improve the quantitative and qualitative results of
UFD.

Table 5. Average PSNR (dB) and AAD values, and
training time per epoch (in minutes) using different
sampling schemes.

data set scheme PSNR AAD train

supernova
random 29.03 0.049 52.25
full 31.80 0.026 102.17
coverage-driven 31.40 0.029 69.38

Sampling schemes. There are two standard
sampling schemes, random sampling and full

2 IEEE Computer Graphics and Applications

(a) 100 streamlines (b) 300 streamlines (c) 500 streamlines (d) GT

Figure 2. Comparison of pathline rendering results with different numbers of streamlines used in training using
the supernova (top) and tornado (bottom) data sets. 500 and 2, 000 pathlines are traced for the supernova and
tornado data sets, respectively.

(a) concatenation (b) summation (c) GT

Figure 3. Comparison of pathline rendering results
with different feature fusion methods using the su-
pernova (top row) and tornado (bottom row) data
sets. 1, 000 and 2, 000 pathlines are traced for the
supernova and tornado data sets, respectively.

sampling. Random sampling reduces the train-
ing time, but it cannot guarantee high perfor-
mance. Instead, full sampling achieves high per-
formance, but the training time is prolonged. Con-
sidering the trade-off between training time and
quality performance, we propose the coverage-
driven sampling scheme, which can achieve high
performance while saving much training time.

(a) without TC (b) with TC (c) GT

Figure 4. Comparison of pathline rendering results
without and with temporal coherence (TC) using the
supernova data set. 500 pathlines are traced.

We conduct experiments using random sam-
pling, full sampling, and coverage-driven sam-
pling on the supernova data set to show our
proposed coverage-driven sampling scheme’s effi-
ciency and efficacy. In the experiment with the su-
pernova data set, random sampling and coverage-
driven sampling use 59.75% and 77.26%, respec-
tively, of the full samples. As shown in Figure 5,
the synthesized vector fields generated by VFR-
UFD using coverage-driven sampling and full
sampling are much closer to GT than those using
random sampling. Table 5 reports the average
PSNR and AAD values along with training time
per epoch. We can see that the performance using
coverage-driven sampling is better than that using

September/October 2021 3

(a) random sampling (b) coverage-driven sampling (c) full sampling (d) GT

Figure 5. Comparison of streamline rendering results with different sampling schemes using the supernova
data set. 500 streamlines are traced.

random sampling, and is comparable to that using
full sampling while saving 2.28 days in training
time (running 100 epochs). As a consequence, we
recommend using coverage-driven sampling.

4 IEEE Computer Graphics and Applications

	RELATED WORK
	Vector field reconstruction
	Deep learning for flow visualization

	VFR-UFD
	Network design and loss function
	Optimization

	RESULTS AND DISCUSSION
	Data sets and network training
	Results
	Discussion

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	Pengfei Gu,
	Jun Han,
	Danny Z. Chen,
	Chaoli Wang,

	APPENDIX
	Parameter study

