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Abstract:  A  challenge  in  phase  field  modeling  of  phase-separating  binary  systems  using  the  Cahn-Hilliard

equation (CHE) is the determination of the mobility coefficient, which controls the kinetics of order parameter

evolution. This work presents numerical simulations to assess the feasibility of determining mobility in the CHE

from  a  notional,  model  experiment.  The  qualitative  behavior  of  these  simulations  differentiates  between  a

mobility that is uniform throughout the system and one that is restricted only to phase interfaces. Moreover,

quantitative analysis of the proposed model experiment permits inference of the product of mobility and the

coefficient  of  the  uniform free-energy  term as  well  the  characteristic  length  of  the  CHE.  If  the  free  energy

coefficient is determined by other means (e.g., form thermodynamic or atomistic models), then the mobility may

be calculated, as well.
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The motivation for this work is to advance phase field simulations of microstructure evolution in composites of

phase-separating metals. Examples of such composites include laminates made by vapor deposition [1] or roll

bonding [2], particulate composites made by ball milling [3] or high pressure torsion [4], and hierarchically-

structured  composites  that  self-organize  during  vapor  co-deposition  [5].  The  microstructures  of  these

composites  are  relatively  stable  at  room  temperature,  but  change  substantially  under  high  temperature

annealing. For example, copper (Cu)-niobium (Nb) multilayers pinch off and spheroidize [6], [7], ball-milled

composites  coarsen  and  recrystallize  [8],  and  co-deposited  alloys  phase  separate  into  complex  composite

structures [9], [10].

Phase  field  simulations  based  on  the  Cahn-Hilliard  equation  (CHE)  [1][2]  are  well-suited  to  modeling

microstructure evolution in metal composites [13][14] as well as in other phase-separating materials [15]–[18].

Yet  direct  comparisons  of  these  simulations  to  experiments  remains  out  of  reach  because  the  mobility

parameter, M, which governs the kinetics of the CHE, has never been determined for binary systems of phase

separating metals. In alloys of mutually-soluble elements, mass transport is dominated by lattice diffusion and

mobilities may be computed directly from lattice diffusion mechanisms and thermodynamic data (e.g., as in Al-

Zn [19], Cu-Au and Cu-Pt [20], Mo-Ta, Mo-W, Mo-Nb [21], Ti-Sn [22], Co-based alloys [23], Fe-based alloys

[24], Ag-Cu and Ag-Pd [25], and Ni-Cu-Ti [26]). However, in composites of phase-separating metals, mass

transport occurs predominantly along interfaces between constituent phases. Due to the complexity of interface

structures  and  atomic  transport  mechanisms  [27],  there  is  no  viable  way  to  compute  M  directly  from  first

principles.  Indeed,  even the  form of  the  mobility  parameter—e.g.,  whether  or  not  it  only  takes  on non-zero

values  at  interfaces—is  unknown.  In  the  present  work,  we  propose  a  model  experiment  and  accompanying
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quantitative inference strategy that, taken together, may be used to determine both the form and value of the

CHE mobility parameter.

The core idea of the proposed approach is to determine M by matching phase field simulations to experimental

observations of microstructure evolution. A similarly-motivated strategy has been adopted by Tavakoli et al.,

who inferred the mobility in Pb-Sn—a phase-separating binary—from experimentally determined coarsening

rates [28]. A drawback of this approach is that it requires large experimental data sets to average out statistical

fluctuations in microstructure evolution. Moreover, it does not provide a means of determining whether M is non

-zero only at interfaces. Zhao et al. inferred constitutive parameters from a temporal sequence of images taken

from  phase  field  simulations  [29].  The  same  group  then  applied  this  method  to  extract  thermo-mechanical

properties  of  an  aluminum  rod  in  a  much-simplified  experimental  setting  [30].  Their  approach  requires

continuous, in situ observation of order parameter evolution in a single sample: a criterion that is difficult to

meet  in  metal  composites,  where  characterization  is  usually  destructive.  Hulikal  et al.  adopted  a  different

strategy  in  their  study  on  lithiation  of  electrodes:  they  inferred  the  mobility  of  the  CHE  directly  from

galvanostatic and potentiostatic measurements [31]. Their approach is clearly the most robust in a setting where

microstructure  evolution  couples  to  an  externally  measurable  field  or  current.  However,  this  is  not  the  case

during thermally-assisted microstructure evolution in most metal composites.

The new approach proposed here infers CHE mobility from a notional, model experiment that is, in principle,

straightforward to carry out on physical vapor deposited metal composites. We propose a quantitative inference

strategy that determines the product of mobility and free energy coefficient as well the characteristic length of

the  CHE.  Provided  that  the  free  energy  coefficient  may  be  determined  by  other  means  (e.g.,  from
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thermodynamic  models  or  atomistic  simulations),  the  mobility  coefficient  itself  may  be  determined.  The

experiment relies on a series of isothermal anneals. Thus, the temperature dependence of M may be determined

by  repeating  the  experiment  at  different  temperatures.  Finally,  the  proposed  method  distinguishes  between

uniform mobility and one of the form considered by Cahn et al. [32], which is restricted to take on non-zero

values only at phase interfaces.

The Model Experiment

Qualitative description of the model experiment

The proposed model experiment consists of annealing the specially-designed microstructure illustrated in Fig. 1.

The microstructure is composed of a layer of metal B embedded in a matrix of another metal, A. The layer of

metal B does not span the entire length of the model, but rather terminates along a straight tip, as illustrated in

Fig. 1. The length of the layer, L, is much greater than its thickness, H, so that, for all practical purposes, the

layer may be considered semi-infinite. The two components, A and B, are considered non-reacting (they do not

form  compounds)  and  immiscible  (they  phase  separate  with  negligible  mutual  solubility).  The  only

thermodynamic driver for evolution of the model microstructure is capillarity, i.e., reduction of the total energy

of  the  A/B interfaces.  As will  be  shown below,  capillarity  causes  the  tip  of  the  terminated layer  to  become

rounded and to retract towards the root of the layer (i.e., to the left, in Fig. 1). Because L ≫ H, the retraction is

not affected by conditions at the root of the layer (i.e., boundary conditions).
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Figure 1: Internal microstructure of the proposed model experiment.

Phase field model of the model experiment

We carried out phase field modeling of the proposed model experiment using the Cahn-Hilliard equation (CHE):

∂ c
∂ t = −∇ ∙J,   J = −M(c) ∇ μ,   μ = ∂ F(c)

∂ c −γ ∇ 2c (1)

Here, c ∈[ −1, 1] is an order parameter representing the relative concentration difference of the two phases, t is

time, J is phase flux, M denotes mobility, μ is chemical potential, g  is the gradient energy coefficient, and F(c) is

the bulk free energy density. We adopt the double-well potential function 

F(c) = ∆F(1 −c2)2 (2)

This function has minima at c = ±1 separated by a barrier of height ∆F. This form of the energy density causes

the c field to separate into regions where c ≈1, which we identify with component A, and c ≈−1, component B.

At  boundaries  between  these  regions,  c  changes  smoothly  from  -1  to  1  over  a  distance  of  ,  which  may  be

considered the characteristic thickness of A/B interfaces in the model. The gradient energy coefficient is taken to

be  a  scalar.  Therefore,  A/B  interfaces  have  the  same  characteristic  thickness  and  characteristic  energy,  ,

regardless of their orientation.
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The mobility  coefficient  is  also  taken to  be  scalar,  meaning that  there  is  no constitutive anisotropy of  mass

transport in our model. We consider two forms of the mobility coefficient. In the first, M = M0 is a constant. We

refer to this form as “uniform mobility.” In the second, M is a function of the order parameter, c:

M(c) = M0|1 −c2|. (3)

This form of mobility was proposed by Cahn et al. [32] to model interface-dominated transport: within regions

corresponding to components A and B (c = ±1), Eqn. 3 predicts M = 0 while at A/B interfaces (c = 0), it gives

M = M0.  We refer to this form of mobility as “interfacial mobility.” For both forms, the mobility factor, M0,

defines  a  characteristic  time  scale,  T* = γ/(M0 ∆F2).  A  description  of  our  approach  to  solving  the  CHE and

analyzing the results is provided in the Methods section.

Qualitative description of layer retraction in simulation

Fig.  2  shows representative 3-D simulations of  layer  retraction under  uniform mobility  (left)  and interfacial

mobility (right). Animations of both simulations are provided in Supplementary Materials. At short times, the

behavior of both models is comparable: the sharp corners of the terminating edge of the layer become rounded

and the layer begins to retract. As it retracts, a bulge forms at the terminating edge of the layer. However, at

longer times, qualitative differences between the two different models become apparent.

Under uniform mobility, the bulge increases in diameter while remaining connected to the retracting layer at all

times. By contrast, under interfacial mobility, the retracting layer begins to form a neck ahead of the bulge, as

shown  in  Fig.  2.  This  neck  eventually  pinches  off,  causing  the  bulge  to  detach  from  the  layer.  The  layer

subsequently continues to retract, forming another bulge that also eventually detaches. Thus, layer retraction in
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the interfacial mobility case produces a series of cylinders while the uniform case does not. With the exception

of the first cylinder, whose size is influenced by the initial conditions of the model, all of these cylinders have

identical radius and spacing.
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Figure 2: Snapshots of layer retraction at different times under uniform mobility (left) and interfacial mobility

(right). Only the layer phase is shown. These simulations use M0 = 1, ∆F = 0.25, γ = 10-3, and H = 0.2.

The  qualitatively  different  layer  retraction  behaviors  under  the  two  forms  of  mobility  may  be  explained  by

differences in the flux distribution between these two cases. Figure 3 illustrates these differences on the example

of a single order parameter distribution and its corresponding chemical potential profile, shown in Fig. 3(a).

Vector plots of the corresponding phase fluxes, J, under uniform and interfacial mobility are shown in Fig. 3(b1)

and 3(b2), respectively. Because the chemical potential gradient in both cases is the same (derived from the

order parameter distribution in Fig. 3(a)), the differences between these flux distributions are due entirely to

differences  in  the  mobility  functions.  Figures  3(c1)  and  3(c2)  shows  the  time  rate  of  change  of  the  order

parameter, ∂ c
∂ t

 (computed as negative the divergence of the flux, J, following Eqn. 1), corresponding to 3(b1)

and 3(b2), respectively. 
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Figure 3:  (a)  Order parameter  distribution for  a  retracting layer and corresponding contour plot  of  chemical

potential,  μ  (numerical  values  shown  in  the  color  bar).  (b1)  and  (b2)  are  the  phase  fluxes  J  calculated  by

multiplying −∇ μ with the uniform mobility M0 and interfacial mobility M0|1 −c2|, respectively. (c1) and (c2)

show the time rate of change of the order parameter, ∂ c
∂ t

, computed from the flux distributions in (b1) and (b2),

respectively.
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As shown in Fig. 3(b1), there is a phase influx from the matrix into the layer in the region just behind the bulge

that forms at the terminated edge. This influx shows that phase transport under uniform mobility is not restricted

to the interface and occurs through the phase interiors, as well. However, the influx seen in Fig. 3(b1) is absent in

Fig. 3(b2) because the interfacial mobility function, M0|1 −c2|, restricts phase transport to the interfacial region.

The consequence of these differences is that, in the case of interfacial mobility, there is an area just behind the

bulge that forms at the terminated edge where ∂ c
∂ t < 0, as shown in Fig. 3(c2). This area is where the neck in the

layer initially develops, eventually leading to the pinchoff of the layer. No such region of negative ∂ c
∂ t

 may be

found behind the bulge in the uniform mobility case,  Fig.  3(c1).  Consequently,  there is  no layer necking or

pinchoff, in this case.

To assess the robustness of these findings, we repeated the above-mentioned 3-D simulations with sinusoidal

shape perturbations imposed upon the layer along the y-axis direction. We find that these perturbations attenuate

without altering the sequence of events described in Fig. 2. We also carried out separate simulations on free-

standing cylinders under periodic boundary conditions, such as those generated during layer retraction in the

interfacial  mobility  case.  As  expected,  these  simulations  predict  that  the  cylinders  eventually  break  up  into

spheres  through  the  Plateau-Rayleigh  instability  [33],  [34]  (see  Supplementary  Materials),  albeit  over

considerably longer times than required for the cylinders to detach from the retracting layer.

The foregoing simulations lead to two important conclusions. First, the form of the mobility parameter—i.e.,

whether  or  not  it  is  composition  dependent—may  be  deduced  through  qualitative  inspection  of  the  layer

retraction process: breakup of the layer into a series of cylinders signals interfacial mobility of the form shown in
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Eqn. 3 while lack of such breakup indicates the mobility is uniform. Second, the layer retraction process for both

interfacial and uniform mobilities is quasi-two dimensional: changes in layer morphology within the x-z plane

occur much faster than along the y-direction. Thus, to develop strategies for quantitative inference of M0, we

need only rely on 2-D simulations of layer retraction within cross sections along the x-z plane.

Results

Inference of uniform mobility

Inference strategy

If the layer retracts without forming a series of pinched-off cylinders, we conclude that the mobility does not

depend on composition and proceed to infer the numerical value of M0 through quantitative analysis of layer

retraction. Using the definitions of the characteristic quantities, L* , T* , and E* , the mobility coefficient, M0,

may be expressed as

M0 = L* 5

E*T* .                                       (4)

Our objective is therefore to determine L* , T* , and E* from the layer retraction process and then to compute M0

from these quantities. We will assume that the only experimentally accessible information is the shape of the

retracting layer as a function of time. For example, this shape may be found by imaging a cross-section through a

sample, such as that shown in Fig. 1, after annealing for a pre-determined period of time. Notably, we will not

assume that the distance by which the layer has retracted can be measured in an experiment. This assumption

reflects the difficulty of creating reliable, fixed fiducial markers with respect to which the displacement of the

retracting layer may be measured with precision.
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While the exact shape of the entire retracting layer is available, in principle, we find that the most convenient

aspect of the shape to track during layer retraction is the curvature, κ, of the A/B interface. Specifically, we will

track the maximum interface curvature, κmax, which is located invariably at the tip of the retracting layer. As will

be shown below, the dependence of κmax on time, t, follows the power law

κmax = Atu.                                    (5)

Thus, the time dependence of κmax may be characterized by the two fitting constants, A and u. Similar power law

dependencies for other quantities have been observed in previous phase field modeling studies [35]–[38].

Our goal is to carry out phase field simulations over a range of L* , T* , and E*  values and for multiple layer

thicknesses, H, to arrive at functional dependencies, A = f(L* , T* , E*;H) and u = g(L* , T* , E*;H). Provided that

A and u depend on all characteristic quantities, L* , T* , and E* , over some range of H values, these functions may

be inverted to express L* , T* , and E* as a function of A, u, and H. In this way, the mobility coefficient, M0, may

be ultimately expressed in terms of A, u, and H, all of which are experimentally accessible.

Dependence of A and u on L*, T*, and E*

No dependence of A or u on E*. We find that A and u do not depend on E*. This conclusion may be supported

analytically by considering two forms of the CHE: one with parameters M0, ∆F0, γ0 and the other with M0/ϵ,

ϵ ∆F0,  ϵγ0,  where  ϵ  is  any  positive  number.  These  two  sets  of  parameters  yield  different  values  of  E*,  but

identical L* and T*. Substituting the two sets of parameters back into the CHE predicts identical rates of change

of the order parameter with time, ∂ c/ ∂ t. Thus, different values of E* lead to identical time histories of layer
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retraction—and  therefore  identical  A  and  u—provided  that  L*  and  T*  remain  unchanged.  We  verified  this

conclusion numerically as shown in Fig. 4a.

Dependency of u on (H/L*). We use dimensional analysis to identify the most general admissible parametric

dependency of u on H, L*, and T* [39]. Since the dependent variable, u, is already dimensionless and there is

only one dimensionless ratio that may be constructed from the independent variables, namely Π1 =  H/L*, we

conclude that u cannot depend on T*. Buckingham’s π-theorem [40] then gives u = g(H / L* ). To confirm this

deduction, Fig. 4b compares two κmax-t  curves with different T*, but identical H  and L*. When plotted on a

logarithmic scale, the fitted slopes at long times yield u. For both curves, the slopes are identical, confirming that

u does not depend on T*.

Dependency of A ∙L*T*u on H/L*. Similarly,  for  the  dependent  variable  A, the  complete  set  of  independent

parameters  is  H, L*,  and  T*.  If  we  pick  L*  and  T*  as  the  complete,  dimensionally  independent  subset,  the

dimensionless, independent variable becomes Π1 =  H/L* and the dimensionless, dependent variable is Π0 =  A ∙

L*T*u. Hence, following the Buckingham π-theorem [40], we get A ∙L*T*u = f(H/L*).
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Figure 4: (a) Comparison of κmax-t under different E* but identical L* and T*. In case 1 represented by blue open

symbols,  M0 = 1,  ∆F0 = 1, γ0 = 10−8;  in  case  2  represented  by  red stars, M0 = 1 / 2, ∆F0 = 2, γ0 = 2 ∙10−8. (b)

Power law fits of maximum curvature vs. time under identical H and L*, but different T*.

Inference of M0

According to Eqn. (4), M0 depends on L* , T* , and E* . However, since we have found that A and u show no

dependence on E* , the proposed inference strategy cannot determine M0 by itself, but rather only the product

M0E* = L* 5/T* . Substituting in the expressions for L* , T* , and E* , this relationship may be further rewritten as

M0 ∆F = ̅
M0 = L* 2/T* ,  where ∆F  is the barrier height in the free energy function shown in Fig. 2. Thus, the

proposed model experiment and inference strategy may be used to determine ̅
M0, which, in turn, may be used to

find M0, provided that ∆F is determined through other means, as elaborated in the discussion section.

Using the numerical results listed in Table 1 and the parametric dependencies described in the preceding section,

we find

u = −3.27( H
L* ) −1 −0.1884                              (6)

AL*T* u = 8.2( H
L* ) −0.54                  (7)

The quality of these fits is illustrated in Fig. 5. Using these expressions, we write the characteristic variables L*

and T* in terms of the experimentally measurable quantities, Hexp, uexp, and Aexp, allowing us to write ̅
M0 as

(8)

Table 1: Power law fitting results for phase field simulations over a range of H, L*, and T*.
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H
L* T* A u 

0.1 5.657 ∙10−4 3.2 ∙10−7 44.82 -0.2068

0.1 4.0 ∙10−4 1.6 ∙10−7 46.34 -0.2013

0.1 2.828 ∙10−4 8 ∙10−8 48.44 -0.1977

0.1 2.0 ∙10−4 4 ∙10−8 50.85 -0.1949

0.1 1.414 ∙10−4 2 ∙10−8 54.29 -0.1931

0.1 1.0 ∙10−4 1 ∙10−8 56.92 -0.1917

0.1 7.071 ∙10−5 5 ∙10−9 60.17 -0.1907

0.1 5.0 ∙10−5 2.5 ∙10−9 63.97 -0.1901

0.1 1.0 ∙10−4 5.553 ∙10−9 50.85 -0.1917

0.2 5.0 ∙10−4 2.5 ∙10−7 32.05 -0.1965

0.2 2.0 ∙10−4 4 ∙10−8 37.23 -0.1917

Figure 5: Comparison of the fits in Eqn. 6 (dashed lines) with the data in Table 1 (open symbols) for (a) u and (b)
A.

Inference of interfacial mobility

Inference strategy
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If the layer forms a series of pinched-off cylinders while retracting, we conclude that the mobility depends on

composition.  As  in  the  uniform  case,  our  strategy  remains  to  infer  M0  from  Eqn.  (4)  by  determining  the

characteristic  length,  time,  and  energy  scales,  L* ,  T* ,  and  E* ,  from  the  time-evolution  of  the  shape  of  the

receding  layer.  However,  since  the  layer  retraction  process  in  the  interfacial  mobility  case  is  qualitatively

different from the uniform case, we will not rely on measurements of interface curvature to find L* , T* , and E* .

Rather, we will rely on finding the spacing, D, between adjacent pairs of cylinders formed by pinch-off from the

retracting layer as well as the average time, t, between the pinch-off of successive cylinders. The definitions of

D and t are illustrated in Fig. 6a.

In the remainder of this subsection, we use phase field modeling to find D and t for different combinations of

L* ,  T* ,  E* ,  and  layer  thickness,  H,  yielding  the  functional  dependencies  D = F(L* , T* , E*;H) and

∆ t = G(L* , T* , E*;H). Our goal is to invert these relations, for some range of H, to obtain expressions for L* , T*

, and E*  in terms of the experimentally measurable quantities, D, t, and H. The practical implementation of

such measurements is provided in the discussion section.

Dependence of D and ∆ t on L* , T* , and E*

No dependence of D and t on E*. Following the same reasoning presented in the uniform mobility case, we

conclude that D and t do not depend on E*. This conclusion is verified with numerical experiments plotted in

Fig. 6b.

Dependency of D/L* on (H/L*). The dependent variable D is a function of the independent parameters H, L*,

and T*. Choosing L* as the complete, dimensionally independent subset yields the dimensionless, independent
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variable Π1 =  H/L* and the dimensionless, dependent variable Π0 =  D/L*. Accordingly, we get D/L* = F(H/L*).

We verified that D is independent of T* by comparing two simulations with identical L* and H, but different T*.

Both yield a series of pinched-off cylinders with identical spacing, D as shown in Fig. 6c, as expected.

Dependency of t/T* on H/L*.  The complete  set  of  independent  variables  determining t  is  H,  L*,  and T*.

Choosing  L*  and  T*  as  the  complete,  dimensionally  independent  subset,  the  dimensionless,  independent

variable is Π1 =  H/L* and the dimensionless, dependent variable Π0 =  t/T*. Therefore, t/T*= G(H/L*).

Figure 6: (a) Illustration of spacing D and average time t between the pinch-off of successive cylinders, (b)

comparison of A/B interface profiles at selected times under different E* but identical L* and T*. The solid

profiles have L* = , T* = 10-3, E* = 10-4.5 by employing M0 = 1, ∆F = 1, γ = 10-3. Dashed profiles have L* = , T*

= 10-3, E* = 2 ∙10-4.5 by employing M0 = 1/2, ∆F = 2, γ = 2 ∙10-3. H = 0.2 in both cases, (c) simulations with H =
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0.2, L* = , and (a) T* = 10−3 (at t = 720) and (b) T* = 10−4 (at t = 72.0).

Inference of M0

Since D and t show no dependence on E*, we follow the same reasoning as presented in the uniform mobility

part  to  conclude  that  only  the  product  M0 ∆F = ̅
M0 = L* 2/T*  may  be  inferred  from  the  proposed  model

experiments.  Using the numerical results listed in Table 2 and the parametric dependencies described in the

preceding section, we get  

D
L* = 0.315( H

L* )3.4                                   (9)

∆ t
T* = 1.5 ∙10−3( H

L* )10                      (10)

The  quality  of  these  fits  is  illustrated  in  Fig.  7.  With  these  relationships,  we  can  express  the  characteristic

variables L* and T* in terms of the experimentally measured quantities, Hexp, Dexp, texp, allowing us to express

̅
M0 as

                                 (11)

Table 2: D and t from phase field simulations over a range of, H, L*, and T*.

H L* T* D t

0.2  1.0 ∙10−3 5.22 156

0.2  1.5 ∙10−3 3.22 31.4

2.0 ∙10−3 9.79
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0.2  2.30

0.2  3.0 ∙10−3 1.42 1.81

0.2  4.0 ∙10−3 1.00 0.590

0.2  1.0 ∙10−4 5.22 15.6

0.1  1.0 ∙10−3 0.499 0.146

0.1  2.5 ∙10−4 2.60 39.5

0.4  4.0 ∙10−3 10.5 624

 

Figure 7: Comparison of the fits in Eqn. (10) (red lines) with the data in Table 2 (open symbols) for (a) D and (b)

t.

Conclusions and Discussion
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We have proposed a  model  experiment  for  determining the  mobility  term of  the  Cahn-Hilliard  equation,  as

applied  to  phase-separating  binary  systems,  and  presented  an  associated  inference  strategy.  The  experiment

involves tracking the retraction of a semi-infinite layer of one phase embedded in a matrix of the second phase.

Qualitative inspection of the retraction process determines whether the mobility is independent of composition

or if it depends on composition in such a way that there is non-zero mobility only at the interfaces between the

constituent phases: in the latter case, the retracting layer breaks up into a series of disconnected cylinders while

in the former case it does not.

This observation is consistent with the findings of Amos et. al., who modeled the spheroidization of a cementite

platelet embedded within a ferrite matrix [41]. Their simulation used a mobility matrix defined as composition-

weighted average of mobilities of the two phases. In each phase, the mobility was written as the product of a

uniform diffusivity  with  a  composition-dependent  susceptibility.  Thus,  similar  to  our  Eqn.  3,  their  mobility

ultimately  incorporates  a  dependence  on  composition  that  favors  interface  transport.  They  observe  that  the

platelet breaks up into cylinders that further decompose into spheres.

We consider this outcome to be a consequence of the composition-dependence of the mobility used in that study.

Indeed, we repeated the simulation of Amos et. al. using our phase field model with the interfacial mobility in

Eqn. 3 and observed a comparable spheroidization history for the platelet. By contrast, when using a uniform

mobility, the platelet simply becomes equiaxed without breaking up. Nevertheless, our conclusions concerning

qualitative  differences  between  the  uniform  mobility  and  interfacial  mobility  cases  are  restricted  to  the

particular potential function (eqn. 2) and gradient energy used in this study (eqn. 1). Indeed, Li et al. observed
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the breakup of retracting layers in simulations on phase separating polymer blends that used uniform mobility,

but composition-dependent gradient energy coefficient [42].

Quantitative analysis of the layer retraction process in our proposed model experiment permits inference of the

product of mobility and uniform free energy density (as defined in Eqn. 2), ̅
M0 = M0 ∆F. M0 cannot be inferred

by itself due to the insensitivity of the temporal evolution of the CHE to the characteristic energy, . Indeed, the

CHE temporal evolution is completely determined by ̅
M0 and the scaled gradient coefficient, ̅

γ = γ/ ∆F = L* 2.

Our proposed model experiment permits inference of both quantities, with the latter following directly from

Eqn. 6 and 9. Thus, a completely parameterized model of microstructure kinetics may be constructed based on

these inferences, even if ∆F is unknown. By contrast, Zhao et al. claim that their parameter inference method

determines all CHE parameters, including E*  [29]. The rationale for this claim is not clear in light of the strict

insensitivity of temporal evolution of the CHE to E* .

The values of M0 and γ may be computed from ̅
M0 and ̅

γ
, as inferred by our method, provided that the value of

∆F may be determined by other means. For example, atomistic simulations may be used to compute the energy

per unit area, ΓAB, of interfaces between the phases, A and B, that make up the microstructure illustrated in Fig.

1. Such calculations are carried out routinely for composites of phase separating transition metals and typically

yield interface energies in the 0.5-1 J/m2 range [43], [44]. Following Cahn [45], we write  and thereby obtain

∆F = 3ΓAB

8L* . Alternatively, ∆F may also be obtained from fits to solubility data, e.g. as in Ref. [46] for the Cu-

Nb binary system.
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While the work presented here focuses on theoretical and numerical analysis, the proposed model experiment

and associated parameter inference are, in principle, straightforward to carry out on phase separating metals,

such as Cu-Nb. The microstructure illustrated in Fig. 1 may be synthesized using physical vapor deposition,

similar to what has been done previously to synthesize metal multilayer composites [1], [47]. The process would

begin with the deposition of a layer of metal A. Next, a physical mask is placed over the sample followed by

deposition of a layer of metal B with thickness H. Finally, the mask is removed and a second layer of metal A is

deposited. This way, a A-B-A trilayer is deposited on parts of the substrate area while the remainder is covered

with  a  single  A layer,  albeit  deposited  in  two steps.  The  B layer  terminates  at  the  interfaces  between  areas

covered with a A-B-A trilayer and ones with a single A layer.

A  sample  synthesized  as  described  above  may  then  be  annealed  isothermally  at  a  prescribed  temperature

followed  by  sectioning,  e.g.  using  a  focused  ion  beam [48],  along  an  area  perpendicular  to  the  edge  of  the

terminating layer. Inspection of the shape of the retracting layer on this cross section reveals whether or not the

layer  is  breaking  up  into  cylinders  and,  therefore,  whether  or  not  the  mobility  is  composition-dependent,

following the form in Eqn. 3. Next, by repeating the isothermal anneal for several samples—all at the same

temperature,  but  for  different  times—followed  by  sectioning  of  all  samples,  the  evolution  of  the  retraction

process at successive times is obtained.

For composition independent mobility, the maximum A/B interface curvature is determined for each sample

using the fitting procedure described in the “Methods” section, followed by fitting of the power law function in

Eqn. 5 to obtain A and u. These values are then substituted into Eqn. 8 to obtain ̅
M0. For composition dependent
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mobility, the values of D and t are determined from direct inspection of the cross sections. One complicating

factor in this case is that, for long anneal times, we expect cylinders generated during layer retraction to break up

into equiaxed particles via the Plateau-Rayleigh instability [33], [34]. Thus, several sections of each specimen

may have to be taken to obtain accurate estimates of the spacing between successive pinch-offs. Alternatively,

radiographic characterization perpendicular to the same surface may be employed [49]. Since the latter approach

is not destructive, it may obviate the need for multiple samples.

Once D and t are known, ̅
M0 is obtained from Eqn. 11. Using standard error propagation methods [50], Eqn. 8

and 11 may also be used to obtain the uncertainty of ̅
M0 from the uncertainties of the experimentally measured

variables. For instance, using Eqn. 11, the relative error of ̅
M0, i.e., δ ̅

M0 / ̅
M0, is determined as , implying that the

mobility coefficient extracted from Eqn. 11 is more sensitive to D than to Δt or H. Similarly, using Eqn. 8, we

find , meaning that the sensitivity of the mobility coefficient to experimental parameters depends on the values

of these parameters.

Finally, the inference procedure described here makes numerous idealizations of material microstructure. For

example, we have ignored the possibility of orientation-dependent interface energies, thermodynamic driving

forces for layer retraction arising from elastic misfit or coherency stresses, and pinning effects originating from

homophase  interfaces  (grain  boundaries)  within  the  A  and  B  phases.  We  anticipate  that  accurate  mobility

inference may require expansion of our phase field model to account some, if not all, of these factors. A clearer

understanding  of  which—if  any—additional  factors  that  must  be  included  is  expected  to  emerge  upon

comparison of the modeling results presented here to the outcomes of corresponding experiments.
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5. Methods

We solve the CHE within the MOOSE framework [51] using the built-in ‘SplitCHParsed’ kernel and ‘Newton’

solver.  For  computational  efficiency,  adaptive  meshing  and  time-stepping  are  used.  We  perform  both  3-D

simulations, representing the complete microstructure shown in Fig. 1, as well as 2-D simulations, which model

a  cross-section  of  the  microstructure  along the  x-z  plane.  In  2-D simulations,  we  apply  Neumann boundary

conditions (BCs) on both c and μ on all boundaries: ̂
n ∙∇ c = 0  and ̂

n ∙∇ μ = 0, where ̂
n

 is the boundary unit

outward normal vector. In 3-D simulations, we also use the same Neumann BCs for all boundaries oriented

normal to the x and z axes, as shown in Fig. 1. For boundaries normal to the y axis, we apply periodic BCs. To

ensure that model dimensions do not artificially suppress any morphological instabilities of the microstructure,

the length of the 3-D models along the y-axis is kept at least 10 times greater than the layer thickness, H.

To  obtain  the  functional  dependencies,  A = f(L* , T* , E*;H)  and  u = g(L* , T* , E*;H) in the uniform mobility

case, we must compute maximum interface curvatures and fit their time dependence to Eqn. 4. To find κ, we first

extract the A/B interface profile, defined as the set of locations where c = 0. Next, using the coordinates of points

along the interface, we compute local curvature using the MATLAB code by Mjaavatten [52]. The output is then

smoothed using the Gaussian-weighted moving average filter, as implemented in the ‘smoothdata’ function in

MATLAB. The maximum curvature—found invariably at the tip of the retracting layer—is then extracted. This

process is repeated at multiple times throughout a layer retraction simulation, yielding a plot of κmax vs. t. Fig. 8a

-8c provides an illustrative example of the aforementioned calculations.
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To fit the expression in Eqn. 4 to κmax vs. t data, we must determine the time range, [tmin, tmax], over which the fit

is to be performed. Our choice of tmax and tmin is driven by the need to avoid artifacts associated with boundary

and initial conditions of the phase field simulations. Fig. 8(d) shows the layer thickness and interface curvature

at the root of the retracting layer—i.e., along the left boundary of the model—as a function of time. We see that

both quantities are independent of time until a characteristic tmax, which is the time when the bulge at the tip of

the layer begins to interact with the boundary. We take this tmax as the upper bound of the time interval over

which the fit is to be performed. Once tmax is known, we then consider a range of possible tmin values, from zero

to tmax, and check how the fitted A and u depend on the choice of tmin. We find that A and u are independent of t

min, provided that tmin is above a threshold value, as illustrated in Fig. 8(e). Below this threshold value, the fitted

A and u are affected by the initial state of the model, in which the terminated edge of the layer has sharp corners.

We therefore choose the threshold value above which A and u no longer depend on tmin as the lower bound of our

fitting interval. The interval [tmin, tmax] is determined separately for each phase field simulation.
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Figure  8:  Illustrative  example  of  interface  curvature  calculation:  (a)  identification  of  interface  location,  (b)

curvature calculated as a function of location along the interface, and (c) time history of maximum curvature for

a simulation with M0 = 1, ∆F = 1,  and γ  = 3.2 ∙10-7, (d) determination of tmax, and (e) determination of tmin

employed in data fitting.
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The animations supporting the conclusions of this article are included in Supplementary Materials.
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