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Abstract—In this article, we consider an iterative adaptive
dynamic programming (ADP) algorithm within the Hamiltonian-
driven framework to solve the Hamilton-Jacobi-Bellman (HJB)
equation for the infinite-horizon optimal control problem in con-
tinuous time for nonlinear systems. First, a novel function, “min-
Hamiltonian,” is defined to capture the fundamental properties
of the classical Hamiltonian. It is shown that both the HJB equa-
tion and the policy iteration (PI) algorithm can be formulated
in terms of the min-Hamiltonian within the Hamiltonian-driven
framework. Moreover, we develop an iterative ADP algorithm
that takes into consideration the approximation errors during
the policy evaluation step. We then derive a sufficient condition
on the iterative value gradient to guarantee closed-loop stability
of the equilibrium point as well as convergence to the optimal
value. A model-free extension based on an off-policy reinforce-
ment learning (RL) technique is also provided. Finally, numerical
results illustrate the efficacy of the proposed framework.

Index Terms—Hamilton-Jacobi-Bellman (HJB) equation,
Hamiltonian-driven framework, inexact adaptive dynamic pro-
gramming (ADP), optimal control.
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I. INTRODUCTION

PTIMIZATION-BASED control focuses on finding
Ooptimal policies for dynamical systems by optimiz-
ing user-defined performances, which capture desired objec-
tives [1]-[5]. Pontryagin’s minimum principle, which provides
a necessary condition for optimality [6], requires the solu-
tion of a two-point boundary value problem in an open-loop
sense. On the other hand, Bellman’s principle of optimal-
ity [7] provides a necessary and sufficient condition in a
closed-loop sense that is found by solving an algebraic Riccati
equation (ARE) for linear systems and a Hamilton—Jacobi—
Bellman (HJB) equation for nonlinear systems. But there
is generally no analytical solution for nonlinear dynamical
systems and HJB. Toward that, efficient approximation algo-
rithms for solving the HIJB equations have been widely
presented in the literature. Specifically, approximate/adaptive
dynamic programming (ADP) [8] and neuroadaptive dynamic
programming (NDP) [9] are developed to solve the HIB equa-
tion forward-in-time by using function approximators [10].
Since then, different structures for ADP have been proposed,
including action-dependent globalized dual heuristic program-
ming [11], single critic learning [12], goal representation learn-
ing [13], model-free heuristic dynamic programming [14],
model-free dual heuristic dynamic programming [15],
and intermittent ADP with periodic and aperiodic event
generators [16]-[18].

Related Works: Integral reinforcement learning (RL) has
been developed to solve the optimal regulation problem [19],
the optimal tracking problem [20], and differential games [21]
without requiring the drift dynamics of the system. The actor—
critic-based ADP method, where both the policy evaluation
and policy improvement are performed in an online adap-
tive fashion, has been further developed [22]-[25]. In order to
obviate the requirement of the exact knowledge of the system
dynamics, identifiers have been incorporated into the actor—
critic structure in [26]. However, the control performance
is affected by the identification accuracy. In order to avoid
the identification step, off-policy RL algorithms directly learn
the value function and have been successfully applied to
optimal regulation [27]-[30]; optimal tracking [31]; differen-
tial games [32]-[36]; stochastic systems [37], [38]; and robust
stabilization [39]-[41]. In the aforementioned approaches, one
requires the control policy to be evaluated (in the policy
evaluation step) and updated (in the policy improvement step)
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precisely at each iteration assuming that there is no approxima-
tion error, which is not always feasible. It is thus necessary to
investigate the effect of the approximation errors on the conver-
gence ADP algorithms, such as the policy iteration (PI) [42],
value iteration [43]-[47], and optimistic PI algorithms [48].
Motivated by this shortcoming, in this work, we refer to the
class of iterative ADP algorithms with approximation errors
in the policy evaluation step as inexact ADP. We first develop
a novel inexact ADP method and investigate the condition
that guarantees convergence and closed-loop stability. Then,
a model-free extension of the inexact ADP method is further
designed to obviate the requirement of complete system dynam-
ics. Therefore, the adverse effects of system identification errors
on the system stability and control performance can be mitigated.

Contributions: To guarantee safety and performance even
in the presence of approximation errors, it is of vital impor-
tance to analyze the adverse effects that they can have on
the closed-loop stability of the equilibrium point and to the
convergence to the optimal solution. The contribution of the
present article is four-fold. First, a novel function, referred to
as “min-Hamiltonian,” is defined to unify the HIB equation
and the PI algorithm. In this way, a quasi-Newton method
can be applied to iteratively solve the HJB equation by using
the min-Hamiltonian. Second, we investigate the dependency
of the closed-loop stability and performance guarantee on the
approximation residual resulting from inexact policy evalua-
tion. On this basis, we further derive a sufficient condition that
guarantees both the convergence of the iterative learning algo-
rithm and the closed-loop stability with the iterative learning
policy. Therefore, the inexact method developed in this arti-
cle is robust against the bounded approximation error in terms
of both stability guarantee and performance improvement. In
addition, it is shown that for linear systems, the iterative ADP
algorithm reduces to the Newton—Kleinman iteration [49].

Structure: The remainder of this article is structured as
follows. Section II provides the problem formulation. The
Hamiltonian-driven framework of the exact ADP is briefly
reviewed in Section III. The extension of exact Hamiltonian-
driven ADP to the inexact case is shown in Section IV. Case
studies for both linear and nonlinear dynamical systems are
presented in Section VI. Section VII provides the conclusion
and suggests future research directions.

Notations: In this article, we denote R and RT as the set
of reals and non-negative reals, respectively. Z* denotes the
set of non-negative integers. || - || denotes the Euclidean norm
for vectors or the induced matrix norm for matrices. A real-
valued function f defined on the compact set €2 containing
the origin is said to be of class ck(Q) with k € Zt if f is
continuous when k = 0, or f is k-times continuously differ-
entiable on € when k£ > 1. A function f : 2 — R+ defined
on compact set €2 containing the origin is said to be positive
definite (semidefinite) if f(x) > 0(> 0) for all x € Q\{0},
and f(0) = 0. In addition, the function f is called proper if
Q =R" and lim”x”_>OQf(X) = Q.

II. PROBLEM FORMULATION

Consider the following continuous-time nonlinear system:

(1) =fx) +gx)u(®), x(0) =xp, t >0 )
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with states x € R”, f(x) € R", and g(x) € R™™ and con-
trol input u € R™. We assume that f(0) = 0, f(x) + g(x)u
is Lipschitz continuous on a compact set 2, C R” that con-
tains the origin, g(x) is bounded on 2, and system (1) is
stabilizable on Q,.

We consider the cost functional as

J(s x0) = / " Lo, () @)
Ip
with
L(x, u) = Q) + llul? 3)

for all (x,u) € R" x R™, where Q(x) is a positive-definite
function, ||u||12{. = u’ Ru, and R is a positive-definite symmetric
matrix. In addition, the cost (2) is assumed to be zero-state
observable [50].
Problem 1: Find a control policy, if possible, u*(x) and its
associated value function V*(x) such that
V*(xo) = ing(u; x0), u* = arginfJ(u; xo). 4)

u

Next, for system (1), the Hamiltonian is defined as

H(x, p,u) = p'[f(0) + gu(x)] + L(x, u) (&)

for all (x,p,u) € R" x R" x R™. By following [29], the
following assumption is made.

Assumption 1: Problem 1 is solvable in the sense that
there exist a positive-definite, continuously differentiable, and
proper function V*(x) and a unique continuous function
o : R" x R" — R™ such that:

1) a(x,p) = arginf,crmH (x, p, u);

2) the infinite-horizon HJB equation

aV*(x)

inf H (x,

uelR™

, u) =0,V*0)=0 (6)

is satisfied.

As investigated in [5], Assumption 1 implies that V*(x)
is the unique solution to (6) provided that uw*(x) =
a(x, [(AV*(x))/(0x)]) exists.

The cost (2) is a functional of the policy u(-) evaluated
along the state trajectory x(7), which also depends on the
initial state xop. However, there is no analytical solution to
Problem 1 for general nonlinear systems. Therefore, an alter-
native to the cost functional independent of the solution is
needed. In the following, an alternative evaluation of an arbi-
trary state-space trajectory, given a policy with the prescribed
property, is introduced.

Definition 1 (Admissible Control [51]): A mapping
u: Q. — R"™ is said to be an admissible control pol-
icy, denoted as u(x) € W(L,), with respect to the cost
functional (2) on R”, if the following conditions are satisfied:

1) u(x) is continuous on R";

2) u(0) =0;

3) u(x) stabilizes (1) on R";

4) the cost functional is finite Vxy € R”.

For a given admissible policy u(x) € W(2y), the function
V(x) : 2, — R is called a value function if

H(x, v u) =0 o
V() =0
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holds for all x € 2, [29], [52]. The positive definiteness of the
value function V(x) that satisfies the generalized HIB (GHJIB)
equation (7) can be guaranteed by the zero-state observabil-
ity of the cost J(u; x9) (2) [53]. In keeping with other works
in [22] and [29], it is assumed that the value function V(x) that
satisfies the GHJB equation (7) exists in the space cl(Qy).

In contrast to the cost functional (2), the value function V (x)
is an evaluation of an arbitrary state x in the state space. The
value function of a given state V(x) is equivalent to the cost
functional J(x; u) starting from a predetermined state x with
a given admissible policy u, as discussed in [4] and [5]. The
value function V(x) that satisfies (7) is also referred to as the
GHIB equation [54].

From the discussion above, it is shown that the Hamiltonian
plays an important role in evaluating an arbitrary admissible
policy, which is not necessarily optimal.

Similar to the Hamiltonian H(x, p, u) defined in (5), we
define h as

I 7 —1.T T
h(x,p) = P SWR g @p +p fO+0x (B
for all (x, p) € R" x R", where the functions {f(x), g(x)} and
{O(x), R} are defined as in (1) and (3), respectively.
Remark 1: From (8), for V : Q, C R” — R, one has

ol 5] =

0

)+[3V( )] [F() + g(u]

1 H IV (x)

gl |7 g7

H aV(x)
| ax

Vix
+ 1MW + H a( )H
X

If (x) + g()ull

with u = —(1/2) R 'gT(x)[(3V(x))/(3x)]. In addition, con-
sider the fact that g(x) is bounded on 2, and f(-) + g(-)u
is Lipschitz continuous on €2,. Then, ||f(x) + g(x)u| is also
bounded on €2, because the Lipschitz continuous functions are
guaranteed to be bounded on compact sets [55], provided that
[(0V(x))/(0x)] is bounded on €2,. Therefore, given admissible
policy u € W(€2,), it is assumed that the solution V(x) to the
GHJB equation (7) is in the space C L@ 1221, [29]. Finally,
the boundedness of i(x, [(0V(x))/(dx)]) can be guaranteed for
all x € Q,.

Considering system (1) with a utility function (3) and a cost
functional (2), via completion of squares, the Hamiltonian can
be equivalently expressed Vx as

% 3%
H(x, %u) = 0 +[ (x)} e
| po1r 0V
+ |:u+ 2R o ]
1 gV
x R[u—l— ER‘lgT—aix)}
1ravn1? 1, V()
- 4_1|: ox ] gWR™ g (X)T-

Therefore, the minimum of the Hamiltonian w.r.t. u can be
equivalently formulated by A(-, -) as

ian(x, W), ) _ h( BV(”)
u 0x
1revyt . v
= ——[a—] gWR g () —
X ax

4

av]’
+ [_a } S+ 0Kx).
X

In addition, we define

- _ _l -1, T
ux, p) = 2R g (p 9)

for all (x,p) € R" x R". Then
aVv
i x, 2V intr(x, 2V ).
ax ax

Therefore, hx, [(0V(x))/ (Bx)]) can be viewed
as a minimization of the given  Hamiltonian
H(x,[(0V(x))/(3x)], u). In the following, we refer A(:,-) as
the min-Hamiltonian.

Based on [1]-[5], a necessary and sufficient condition for
optimality is

(10)

av*
0= ian(x, &) u> (11)
u X
with a boundary condition V*(x(co)) = 0. Based on

Assumption 1 and (10), the optimal control can be determined
Vx as

* = aV*(x) 1 1.7 8V*(x)
”(x)_”< ox ) R s =

Inserting (12) into (11), the HIB equation can be equivalently
formulated in terms of the min-Hamiltonian as

oV*(x) ) ( 8V*(x)>
—u) =hlx, ———|.
0x dx

III. HAMILTONIAN-DRIVEN FRAMEWORK FOR EXACT
ADAPTIVE DYNAMIC PROGRAMMING

(12)

0= ian(x, (13)
u

Here, we will develop a Hamiltonian-driven framework for
iterative ADP with convergence proofs to iteratively approxi-
mate the solution of HJB equation (11).

A. Background

Three fundamental steps are required to solve the
performance optimization problem (2), given the dynamical
system (1). These steps are as follows [56].

1) Policy Evaluation: To build a criterion that evaluates an
arbitrary admissible control u(-), that is, calculate the
corresponding cost J(u(+)).

2) Policy Comparison: To establish a rule that compares
two different admissible policies u(-) and v(-).

3) Policy Improvement: Based on the current admissible
control ux(-), k € Z, design a successive control uy1(-)
with an improved cost J (uk+1(~)).1

ISince we are considering a minimization problem, “improved” is achieved
given that the cost is monotonically decreasing, that is, J(ug41(-) <
Jup(), k€{0,1,2,...}.
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Algorithm 1 Model-Based Hamiltonian-Driven Exact ADP

Algorithm

1. Initialization: Start with an admissible control policy ug(x)
and set the iteration index as k = 0;

2. Determine iterative value function: Solve GHJB equation
(7) for value function Vi (x) corresponding to uy(x);

3. Determine iterative Hamiltonian: Accordins to (5), calcu-

AV

) ax’u‘

>

late the iterative Hamiltonian as H (x

4. Update policy: Update uy41 to minimize H (x, %, u) i.e.,

ug+1 = arginf, H (x, % u);

5. Stop if convergence is achieved. Otherwise, set k = k + 1
and go to Step 2.

Lemma 1 (Policy Evaluation [56]): Assume that the system
trajectory x is generated by applying an admissible policy u(-)
to system (1). Moreover, assume that there exists a unique
continuously differentiable and positive-definite solution V(x)
to the GHJB equation (7). Then, V(x) and J(u) are equivalent,
that is

V(ix) =J(u; x) Vx € Q.

According to Lemma 1, the GHIB equation (7) provides
the relationship between the cost (2) of an arbitrary admissi-
ble control u(x) and the corresponding value function V(x).
Note that by evaluating a given admissible policy, according
to Lemma 1, one can avoid solving (1) by only solving the
GHJB equation (7) for V(x).

Lemma 2 (Policy Comparison [56]): For x € Qx, let u;(x)
for i = 1,2 be two different admissible policies with the
corresponding value functions given by V;(x) obtained by solv-
ing the GHJB equation (7). Denote h(x, [(dVi(x))/(0x)]) =
inf, H(x, [(0Vi(x))/(0x)],u) as h; for i = 1,2. Denote
d(uj, u;) = ||lu; — uj||g as d; for i = 1, 2, where u; represents
u(x, [(dVi(x))/(dx)]) = arginf,H (x, [(dVi(x))/(3x)], u). Then,
the following results hold:

1) h; <0,i=1,2;

2) hy <h, = Vi) > Va(x) Vx;

3) dy =2dy= Vi(x) = Valx) Vx

Note that the invariant feature of the Hamiltonian is
H(x, [(0Vi(x))/(dx)], u;) = O given that V;(x) is the corre-
sponding value function with respect to the admissible policy
u;(-) that satisfies GHJB equation (7). As proved in Lemma 2,
more details about the Hamiltonian H(x, [(dV;(x))/(9x)], u;),
that is, d; and h;, provide a solution that compares J(u1; xg)
and J(up; xp), that is, the cost of two different admissible
policies u; and u». Therefore, instead of solving the GHJB
equation (7) for V;(x) on €2, one can compare the performance
of two different admissible policies using d; and h;.

The PI algorithm can be formulated in terms of the
Hamiltonian as in Algorithm 1.

The convergence of Algorithm 1 is investigated as follows.

Lemma 3 (Policy Improvement [56]): Assume that the pol-
icy sequence {uy (x)},fi | starts from an admissible policy u (x)
and that Vi (x) is obtained by solving (7). The policy sequence
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is generated by

1 A%
U1 () = —ER*‘gT(mﬂ

Then, the following statements hold.
1) The value function sequence {Vj(x)} is a nonincreasing
sequence Vx, that is

Vx € Q. (14)

Vi) > Vir1 (x(4), k=1,2,...

2) Both {Vi(x)} and {ug(-)} converge to V*(x) and u*(-) Vx,
respectively, that is

limyg s o0 Vi(x) = V*(x)
limy— oo ug (x) = u*(x).

B. Model-Based Hamiltonian-Driven Exact ADP

The PI algorithm can be interpreted as a suc-
cessive minimization of the iterative Hamiltonian
H(x, [(0Vy)/(0x)],u). This can be viewed as a special
case of the policy comparison step. Compared now to the
more general case of Lemmas 2 and 3, we provide an
explicit method to obtain the policy ug41(-) with an improved
performance. Note that in the step of the value function deter-
mination, the GHIB equation is solved precisely. Therefore,
Algorithm 1 is referred to as the exact ADP algorithm in this
article.

For subsequent discussions, we define Fj as

1 _
Fi(x,p,q) = q"f(x) — qug(x)R el (x)p (15)
for all (x,p, q) € R* x R" x R" and define F, as
1 T -1 T
Fa(x,p) = =3P @R g  (0)p (16)

for all (x,p) € R" x R".

The exact ADP Algorithm 1 can be represented in terms of
the min-Hamiltonian A(-, -) as follows.

Corollary 1: Given Vi(x), the model-based Hamiltonian-
driven exact ADP algorithm is equivalent to the following
iteration:

7 <x’ 3Vk(X)’ Vi) 3Vk(X)> —|—h<x, 3Vk(X)> _0
0x ox ox 0x

with Vi41(0) =0.
The iteration in Corollary 1 is essentially a nonlinear the
Lyapunov equation of Viy(x) Vx € Q,, that is

T
0= [—avk; l(x)] [f(x) S sR g () L) V"(x)}
X 2 0x
T
+ 0+ i(%) sWR g D (g9
X 0x

Equivalently, the exact ADP method can be divided as the
policy evaluation and the policy improvement steps, that is,
H(x, [(0Vi(x))/(0x)], ux(x)) = 0 Vx € Q, for the policy eval-
uation step and uy1(x) = —(1/2) R g7 [V (x))/(3x)]
Vx € Q4 for the policy improvement step.

Remark 2: The exact iterative ADP algorithm, as shown in
Algorithm 2, requires solving exactly a nonlinear Lyapunov
equation in each iteration as shown in (17). Due to the
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inherent nonlinearity, it is impossible to obtain Vj41(x) sat-
isfying (17), given Vi(x) and there might exist a residual for
the nonlinear Lyapunov equation. This residual would prop-
agate through iterations and further affect the convergence
of the iterative learning algorithm and the closed-loop sta-
bility, which might lead to unreliable results [47]. In this
article, we present an inexact iterative ADP algorithm with
the existence of the approximation residual in each iteration
and convergence guarantee.

IV. INEXACT ADAPTIVE DYNAMIC PROGRAMMING
A. Model-Based Hamiltonian-Driven Inexact ADP

In the following, we investigate the case when there exists
residual error in the PI algorithm and present a sufficient
condition to guarantee the monotonic convergence.

In the exact ADP algorithm, given Vi (x) on €2, it is difficult
to find Viy1(x) satisfying (17). Therefore, the inexact ADP
method is formulated as a value function recursion satisfying

7 (x’ W) Vi1 @) a%(x)) N h()c’ af/k(x)>

0x ox ox ox
= €r+1(x) (18)

for x € @, with Vi41(0) = 0, which is equivalent to

A T A
oV 1 oV,
ek+1<x>=[ 3’;“} [f(x)—igu)le—lg(xﬂa—;}
~ T A~
1/(0V, aV
+ Q(x)+z(a—k) gWR g =L (19)
X ox

where Vi (x) denotes the iterative value function generated by
the inexact ADP algorithm and &1 (x) is the value function
recursive approximation residual.

Corollary 2: The iteration in (19) can be viewed as a merge
of the inexact policy evaluation step with residual as

. T
aV
sr(x) = |: ;)fx):| [0 + gu(x)]

+ W) + lluk () [ (20)
for x € 2, with Vi (0) = 0 and the policy update rule
1 v,
U1 (x) = —ER“gT(maL(x) Vx € Q. 1)
X

To this end, the model-based inexact ADP method can be
summarized in Algorithm 2. In the next, we investigate the
sufficient condition to guarantee the monotonic convergence
and the stability guarantee for Algorithm 2.

Lemma 4: For x € Q, let u;(x), i = 1,2, be different
admissible policies and their corresponding positive definite
and continuously differentiable functions value functions be
given by Vi(x), i = 1,2, obtained by solving the GHJB
equation (7). Assume that for V7 > 0

7 (x(t)7 AVi(x(@) Vax(n)  Vi(x(D)
ax() ax(1) 9x(2)
Then, Vi(x) > Va(x) Vx € Q.

) >0. (22)

Algorithm 2 Model-Based Hamiltonian-Driven Inexact ADP

1. Initialization: Start with an initial positive definite value
function \70(-) satisfying h(x, %) < 0 and set the
iteration index as k = 0;

2. Inexact Policy Evaluation: Find the positive definite value
function Vjyi(x) with V;41(0) = O satsifying condition
(25);

3. Policy Improvement: Update uy41(-) according to (14);

4. Stop if convergence is achieved. Otherwise, set k = k + 1
and go to Step 2.

Proof: Denote A(x) = Va(x) — Vi(x). Then, from the
definition of J, in (16), condition (22) is equivalent to
dA(x) Vi)
0x 0x

iA((,))_ ' <)—1<>R—1 T(x)
7 x(1) = fx ng g (x

> 0. (23)

Note that V;(x), i = 1,2, are obtained by solving GHJB
equation (7) with admissible policies u;(x), i = 1,2. Then,
Vi(x) can be also viewed as the Lyapunov function satisfying
limy— o Vo (x(?)) = limy_, o0 V1 (x(¢)) = 0, which implies that

Am AG(@) = lim [Va(x(0) = Vix@)] = 0. (24)

Combining (23) and (24), one can conclude that A(x) < 0,
that is, Vi(x) > Va(x) Vx € Q4. This completes the proof. H

Theorem 1: Let the initial control policy up(-) be admissi-
ble. Assume that the sequences {Vk(~)},fi0 and {u ()}, are
determined by Algorithm 2. Given that

07 (x, Wi Vi @) am)) . h(}@ am))

dx ox 0x ox

Vi1 () af/k()o) 03)

1
< ——F ,
=73 2(x ax ax

then, the followings hold.

1) limgsoo Vi(¥) = Vo) and Vig1(x) < Vi(x) Vx €
Q, k=0,1,2,...

2) The iterative control policy u(-)
system (1), for k=1,2,...

3) The value function sequence {Vk(~)},fi | converges to the
solution of the HIB equation.

Proof: From (18), condition (25) implies

stabilizes the

Wi @ 9V
ox ox

Ery1(x) + %.7—'2 <x, ) <0. (26)

Given Vk(x), the iterative value function Vk+1(x) satisfies,
VxeQy

. 1 A )
h(x, w> = &1 (x) + Efz(x, Wier1® _ 8Vk(x))'

ox 0x
(27

From (18) and (27), one has
V) Vi) _ aVk(x)>

ekr1(x) = Fi (x, o P P
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ol 22)
ax

1 i i
__ln (x, Vi@ avk(x>)

ox ox

v
n h(& k+1(x)>.
ox
Based on (27) and (28), the iterative value functions Vk+1 (x)
and Vj42(x) and approximation residual g (x) satisfy

f< W1 (1) 9Visa(x) aVk+1<x>>
1 xs Pl -

(28)

ox ox ox

— 200 — h(x, w>
X

1 8\7 X 8\7 X
=ek+z<x)—sk+1(x)—§fz<x, k;xl()— ;}f)>

> er42(x) = 0 (29)

where the inequality results from (25).

Finally, from Lemma 4, (29) further implies Vk+2(x) <
Vk+1(x). In addition, note that the iterative value function
Vie(x) generated by Algorithm 2 is positive definite. Then, the
value function sequence {Vk (x)},‘j":0 is nonincreasing and lower
bounded. Therefore, limy_, Vk x) = \700 (x) exists.

2) First, when & = 0, the initial value function \70(-)
satisfying h(x, [(0 Vo(x))/(ax)]) < 0 implies that

v Vo 1 Vi
h| x, ﬂ = H| x, —0, ——R_]gT(x)—O
0x ax 2 0x

v,
dx

which is equivalent to

2 AV,
Yo = 02500 + g 0]

IA

—Q(x) — ul (X)Ruy (x).

Therefore, uj(x) can stabilize the closed-loop system.
Second, for the successive value function update,
from (19), (25), and (27), one has

h(x’ M) = &k+1(x) + %-7:2 (x, Vi1 (0 _ 3Vk(x)>

ox ax 0x
<0.

Then, replacing p € R” in (8) with [(8‘7/(+1(x))/(8x)] yields

A N T
OVit1(x) Vi1
hlx, —— | =
0x ox

1 av,
x [f(x) - Eg(x)R‘lgT(x)%}

N T N
1| dVip 1.7, Vit
- R e/
4[ o } gR g () o
+0(x) <0
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for x € Q,, which implies that

~ T ~
X 1] 0Via _ Vi1
Vig1(n) < —= | —= | g@R g’ () —= — o).
4 0x 0x

Note that Q(x) is a positive-definite function and R is a
positive-definite matrix. Then, with the iterative value function
Vi+1(x) being the Lyapunov function, the closed-loop system

1 v
F=f00) = S8R T W=, k>0, 120
2 0x
has a stable equilibrium given the control policy
1 v
uw = —R g I s,
2 dx

Therefore, the iterative policy ux(x) stabilizes system (1).
3) Since the value function sequence {Vk(')}/fio converges,
then from (15) and (16), one has

lim Vi (x) — Ve(x) =0
k— 00

WV () aVi(x)
m — =

i 0
k—o00 0x ax
v, v, v,
lim 7 (. k(X)’ 1 Vi)
k—o0 0x 0x 0x
v, v,
lim 75 (. 1) Vi(x) _0
k— 00 0x 0x

for x € Q. From proposition 1), both \700 (x) = lim;— o Vi(x)
and us (x) = —(1/2)R~ ¢ (x)[(d Voo (x))/(9x)] exist. Then, as
k — o0, according to (18) and (25), we have limj_, o €k (x) =
0 and h(x, [(8\700(x))/(8x)]) = 0, for x € . Therefore,
the iterative value function sequence {Vk},fio converges to
the solution of the HIB equation (13). This completes
the proof. |

Remark 3: In the kth iteration, given the iterative value
function Vi (x), the iterative ADP algorithm aims to find the
updated iterative value function Vk+1 (x) with convergence to
the optimal value function V*(x). In Theorem 1, we presented
a sufficient condition (25) on the iterative value function
gradient [(0 Vk+1(x)) /(0x)] to guarantee the monotonicity of
the inexact iterative ADP algorithm. Based on Theorem 1,
the iterative value function sequence {Vk(x)},fio generated
by Algorithm 2 with the recursive condition (25) guarantees
both the monotonicity and the closed-loop stability in each
iteration. In addition, baseg on the deﬁnitiop of F> in (16),
one has —(1/2)F>(x, [(8Vir1)/(@0] — [(8Vi)/ (@) = 0
Vx € Q. Therefore, condition (25) on [(dVji+1(x))/(0x)] is
always feasible.

B. Special Case: Inexact Kleinman-Newton Iteration

The inexact ADP can be applied to linear systems, which
is a special case of the developed results, as shown in [57].
Consider the following linear—quadratic regulator (LQR)
problem:

J(u; x0) = f - [+" () 0ox(t) + u" (®)Ru(p)]dt
0
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such that x = Ax+ Bu, x(0) = xg, t > 0.

The necessary and sufficient condition for the optimal control
can be presented by solving the algebra Riccati equation

ATP+PA—PBR'BTP+ Q0 =0.
The ARE is represented as the following matrix equation:
RX)=ATX+XA—XBR™'B'X + 0
with
Fp(X,Y)=ATY + YA — YBR™'B'X — XBR™'B"Y.

The exact PI algorithm and the inexact PI algorithm for solving
ARE can be represented as follows:

Fr X, Xep1 — Xp) + R(Xx) =0

Fr X, Xy 1 — X)) + R(Xx) = exp1. (30)

Interested readers are referred to [57] for more details.

V. MODEL-FREE HAMILTONIAN-DRIVEN INEXACT ADP
In this section, we present a model-free extension of the
inexact iterative ADP algorithm using the off-policy integral
RL (IRL) algorithm.
Assumption 2: There exists a value function Vo(x) €
CY(9,) such that A(x, [(d %(x))/(ax)]) <0.
In [58], the initial condition is assumed to satisfy

v
H<x, O(X),ul) <0.
ox

Note Ehat h(x, [(0 \70 x)/ (8x)]2 =
inf, H(x, [(0Vo(x)/ ()], u) =  H(x, [(0Vo(x))/(0x)], u1).
Therefore, condition (31) implies that Assumption 2 holds.

€1V

A. Off-Policy Integral Reinforcement Learning
Consider the system with the behavior policy up € R™ as

X =f(x) 4+ g®uyp
=f(x) + g@ur(x) + g)[up —ur(x)], t >0

where u(x) is the iterative learning policy to approximate the
optimal policy u*(x).

The time derivative of Vi(x) along the state trajectory
Vt>0is

AV [8%@)T' dx

dr ox dr

B [affk(x)

- ox

T
i| {f () + g)ur(x)
+ g@[up —ur(x)1}.  (32)

From Corollary 2, one has

[af/k(x)

0x

= ex(x) — Q(x) — u{ Ruy..

T
} [f () + g@ur(x)]

(33)

Consider the data collection phase with instant sequence {tj}jﬁi o
with tj1 =t + A, 1o > 0 and 73y < T on the interval [0, T].
Then, in each iteration, integrating both sides of (33) over the
interval [0, 7] yields the off-policy IRL Bellman equation

N T
lj
f " [M] [F@ + g@m]de
; ox
li+1 li+1
:/ er(x)dt —/ r(x, ug(x))dr. (34)
4 4

In addition, with the policy improvement update rule (14), one
has

[af/koc)

T
- } g [up — ug ()] = —2uf, COR[up — u(x)]

which after integrating yields

/fw [avk(x)
| T

ox
J

T
:| 8 [up — ur(x)Jdr

li+1
=— / up, O)R[up — u(x)1dr. (35)
1

j
Combining (34) and (35), by integrating (32), one can obtain
Vi(x(r + A)) = Vi(x()

lj+ lj+
= / 1 er(x)dt — / 1 L(x, ux(x))dr
1 1

j j

fji+1
-2 / up,  COR[up(x) — u(x)1dr. (36)
i
Therefore, the term ftjj“ ex(x)dt can be calculated as
fji+1 R R
/ exdt = Vi(x(te+1)) — Vie(x(te))
Ij
L1
— 2/ u,{HR[uk — upldt
j
lit+1
+ / L(x, ux)dr. 37
lj
From the definition of /> in (16), one has
. . T
[ Vi Vi 1 3(Vk—Vk_1)
— X, — N I S
2 2 dx ox 4 ox
3(‘71{ — \A/k_1>
dax
= —(ux — ey ) R(ux — iy ).

(33)

Therefore, Ehe condition g < —(1/2)F(x, [(0 Vi)
/(0x)] — [(0Vk—1)/(0x)]) in (25) can be rewritten as in
the integral form as

lj+1 LA | 3‘7/C 3‘7/(,1
dr< [ —om(x S
/,. ge(dr —/,. 2 2( ax  ox

J 7

)dr. (39)

From (37) and (38), (39) can be further rewritten as
VieOe(t1)) = Vi)
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fji+1 tjt1
-2 / up, | R(ux — up)dr + / L(x, ux)dt
t t

j j

lit+1 T
< —/ (g — ug1)" R(ug — ugy1)dr.
1,

j

(40)

Similarly, from (37), the condition ¢ > 0 in (25) can be
rewritten in an integral form as

n N fj+1
0 < Vi(x(tk+1)) — Vi(x(tx)) +/ L(x, ux)dr
i
U1

- 2/ up,  Rlug — up)de. (41)

i
Therefore, the inexact ADP algorithm aims to find the iterative
value function Vi41(x) that satisfies (40) and (41).

B. Off-Policy Integral Reinforcement Learning With Neural
Network

Given an actor—critic representation, namely, an actor to
approximate the optimal policy and a critic to approximate
the optimal cost, one has

Vi) = W ie(0), uie(x) = ¢ () Wk (42)
where W, € RV is the critic weight, ¢, : R? — RV

is the critic basis, VAVa,k e RM s the actor weight, and
¢a : R" — RN>7 jg the actor basis. It is desired to
determine a rigorously justifiable form for the actor—critic
structure. We assume that both the actor and critic basis are
dense in the Sobolev norm W' since the Sobolev norm is
desired for value function approximation as well as the value
gradient approximation [22]. Conventional utilization of the
Weierstrass high-order approximation theorem for the basis
function design is polynomial functions [53].
Equation (40) can be further parameterized as

~ Lir1
W Lo (x(t + A)) — e (x(1)] + / . L(x, up)dt
1

'j

—2 / W7 s daOR Gtk — up)de

)

fji+1 T L1 T
— f u Rugdr + 2/ Wa’k_i_lqba(x)Rukdr 43)
1, tj

j

k+1¢a (X)R(ba (x) Wa k+1dt

with a compact form given by

WAWi + Wibjx +cjix <0 (44)
where Wk = [WWC’k ] with
a,k+1

0 0
A=1o [ guoReI e
b, = [¢C(X(fj+1)) —¢c(X(fj))]
j.k

ZD'j, k

lj+1 lit1
Cik = / u,{Rukdr +/ L(x, up)dr
[/ t

j j
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Algorithm 3 Model-Free Hamiltonian-Driven Inexact ADP
1. Initialization: Start with policy u;(-) and value function
Vo(x), set k =0;
1. Data Collection Phase: Collect the online data to assem-
ble data-based matrix A;, bj , ¢j k. dj x and y; ; with instant
sequence {t]}

0>

2. Learning Phase Solve QCQP (49) to obtain
{Wek. Wakg1} for {‘A’k(X), uj+1(x) [, respectively;

3. Stop if convergence is achieved. Otherwise, set k = k+ 1
and go to Step 2.

wj | = —2/ ha(X)R(u — up)dr

-2 f $a(x)Rurdr. (45)
Similarly, (41) can be further parameterized as
WER[dex(t)) = fex(0))]
(SN
-2 W e 1®a(OR(u — up)dt
e
== / L(x, ui)dt (46)
3
with a compact form given by
Wldix+vx<0 47)
where
O (x(2 '+12
G = [zft’gl(cbzz) (R (ZE SJub c)lr
t/+1
Vik = —/ L(x, ux)dr. (48)
1

7
Then, finding the iterative value function Vk+1(x) that satis-
fies (40) and (41) is equivalent to finding the weight W, that
satisfies (44) and (47). However, the weight Wk that satis-
fies (44) and (47) might not be unique. Therefore, we present
the following quadratically constrained quadratic program
(QCQP) to determine the weight Wy in each iteration:

2
min
W
such that {WAWk+Wb]k+C]k<O 49)
Wkd]k+)/]k <0

To this end, the model-free inexact ADP method can be
summarized in Algorithm 3.

Corollary 3: The off-policy IRL equation (34) has the
same solution for the value function as the Bellman equa-
tion (19), and the same updated control policy as described in
Corollary 2.

Proof: Dividing both sides of the off-policy IRL Bellman
equation (34) by T and taking the limit as 7 — 0, one can
obtain

ox
+ Q) + lluellg + 2uf | R — wi) = ey

N T
av,
[ k(x)} [f @) + g()ux + g() (e — up) |

(50)
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Fig. 1. Model-free inexact ADP for a linear system. The first two figures

illustrate the convergence of the actor and critic networks. The latter two
figures show that after learning using the collected data during the first 2 s,
the approximate optimal policy stabilizes the system.

Inserting the policy improvement rule into (50) yields the
inexact policy evaluation (19). This completes the proof. W

VI. SIMULATIONS
A. Linear System

Consider the continuous-time linear system given by

2 1 1 0 0
x=|1 -1 O|x+]|0 1 |u t>0.
0 0 1 1 0

We consider the reward function as L(x, u) = xTQx + u'Ru
with O and R being identity matrices of appropriate dimen-
sions. Based on LQR, the optimal control and the optimal
value function can be determined as

‘o = 83056 —2.2827 —4.6607

WW=1_85707 —27323 —22827 "
31.0746  8.5707 8.3056

Vi) = 7| 8.5707 27323 2.2827 |x.
83056  2.2827 4.6607

The behavior policy for data collection is designed as a linear
combination of sinusoidal signals. For the inexact ADP learn-
ing, we employ the quadratic polynomial basis function for
the critic network. Given ten iterations, the results are shown
in Fig. 1. One can observe that for the inexact ADP algorithm,

9
2 T T
O W2 —We
15% 4
1k 4
0.5+ -
0 : - © © © © © © €
0 1 2 3 4 5 6 7 8 9 10
Number of iterations
T T
O [IWi — Wkl |4
o o o o o o
0 1 2 3 4 5 6 7 8 9 10
Number of iterations
4-
3l
2
1
Us I I 1 1 L 1 1 |
0 1 2 3 4 5 6 7 8
Time (sec)
T T T =
— =@l
. .
0 1 2 3 4 5 6 7 8

Time (sec)

Fig. 2. Model-free inexact ADP for nonlinear system. The first two figures
illustrate the convergence of the actor and critic networks. The latter two
figures show that after learning using the collected data during the first 2 s,
the approximate optimal policy stabilizes the system.

both the iterative quadratic value function and the iterative lin-
ear feedback policy converge to the optimal value function and
optimal control policy, respectively.

B. Nonlinear System

Consider the following nonlinear dynamical system [56]:

X1 = —Xx| —}—xlx%
X2 = —xo +xju, t>0

with the reward function selected as, L(x, u) = 2(x% —i—x%) +
0.5u>. The optimal control and the optimal value function
can be determined as u*(x) = —2x1xp and V*(x) = x% + x%,
respectively. Based on the quadratic form of the optimal value
function, we select the quadratic polynomial basis function
for the critic network. After learning with the data collected
from the online system running phase, the results are shown
in Fig. 2. One can observe that within eight iterations, both
the iterative quadratic value function and the iterative linear
feedback policy converge to the optimal value function and
optimal control policy, respectively.

VII. CONCLUSION

This article leveraged the Hamiltonian-driven framework,
where the Hamiltonian of admissible control policies plays
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an important role in the iterative performance improvement
of the control policy. First, the HIB equation was represented
in terms of the min-Hamiltonian function in order to apply

the

quasi-Newton iterative method to solve it. A novel PI

algorithm with bounded approximation error in each iteration
was discussed in detail. A sufficient condition was derived for

the

iterative value gradient update with approximation error

in each iteration to guarantee the convergence of the inexact
ADP algorithm.

Future work will focus on extending the work to networked
systems.
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