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Abstract—In this paper, we investigate the behavior of agents
with bounded rationality, attacking a set of stochastic sensors
measuring the state of a binary event. The coordination problem
between the attackers is formulated as a multi-player non-
zero-sum one-shot game. Each attacker aims to maximize the
probability that a certain detector will produce an erroneous
estimate of the true event, while they remain stealthy. To better
predict the outcome of this game, we categorize the players based
on the number of strategic thinking steps they will take. Each
level-k attacker behaves based on subjective beliefs of the others’
behaviors, which are quantified via a Poisson distribution over
the lower levels. The expected best responses for the type of each
attacker are derived. The limiting conditions as the cognitive
levels increase, as well as when the attackers fully coordinate,
are shown to converge to the Nash equilibrium.

Index Terms—Bounded reasoning, cognitive hierarchy, Byzan-
tine problem.

I. INTRODUCTION

Due to their complexity and their profound effect on mod-

ern infrastructure, e.g., in the automotive [1] and health [2]

industries, cyber-physical systems (CPS) must be made safe

and secure in their operation. This becomes more pressing

in the presence of malicious agents that strive to corrupt,

confuse or destabilize the system. It has become clear that

software-oriented defense mechanisms, like firewalls, are in-

capable of securing CPS on their own, and as such, the

control community has shifted its focus on developing rigorous

mathematical tools that examine all the different layers of a

complex system under attack [3]. These problems also emerge

in estimation processes, where decisions must be made about

the true state of the environment, given potentially corrupted

measurements. Game theory offers a unified framework for

analyzing the interactions between competing, selfish agents

[4]. Due to its flexibility, it has been extensively used in

CPS security applications, in order to develop defense and

mitigation strategies for a variety of attack scenarios. However,

the majority of the aforementioned works on the subject

has leveraged relatively simplistic attack models, operating

under the assumption of infinite rationality—allowing for the

derivation of equilibrium solutions—and by disregarding the

heterogeneity of the attackers on a system, as well as the

complex interactions that take place among them.
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Developing effective collaborations, when there are more

than one agents, is a challenging problem, since there are

cognitive limitations, which can be seen as a form of bounded

rationality [5]. Several recent experimental and empirical

studies [6] suggest that decision makers’ initial responses to

games often deviate systematically from equilibrium, and that

structural non-equilibrium (e.g., cognitive hierarchy) models

often out-predict equilibrium. In this sense, some player(s)

may be “making mistakes,” which is common. Thus, we

leverage ideas from cognitive hierarchy as a tool to examine

non-equilibrium behavior of boundedly rational players, in the

context of the model introduced in [7] that captures a binary

sensor system under Byzantine attacks.

Considering game-theoretic approaches to security, in [8],

the intrusion detection problem is formulated as a non-

cooperative game between an attacker and a defender of

infinite intelligence. The formulation utilized in this work

was introduced in [7], where the Byzantine attack problem

was solved as a zero-sum game between rational opponents

and closed-form Nash equilibria were computed under certain

assumptions. This can be applicable in high-stakes security

domains such as infrastructure protection where presumably

the adversary will conduct careful surveillance and planning

before attacking. However, there are some security domains

where adversary may not act perfectly rational due to short

planning windows or due to lower stakes associated with

the attack. Security strategies generated under the assumption

of a perfectly rational adversary might be significantly less

effective that ones generated to tackle specific suboptimal

attack patterns.

Therefore, addressing the boundedly rationality behavior

exhibited by adversaries is a fundamental challenge for ap-

plying security games to a wide variety of domains. In the

work of [9], the author describes several models of bounded

rationality, both for single optimizers, as well as competing

players through a combination of limited information about

the environment and intractability of the optimal decision

in complex scenarios. With the advent of behavioral game

theory [5], more sophisticated models of irrational players

were introduced. An important approach to bounded ratio-

nality in games is based on iterations of best responses.

Specifically, in level-k models [6], the authors suggest that

a player with k steps of strategic thinking optimally reacts

to the assumption that everyone else has conducted k ´ 1

steps. The same framework has been applied to a global

entry game with private and public information [10]. The

authors of [11], introduced cognitive hierarchy, according to

which the players are categorized in certain cognitive types
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according to the steps of strategic thinking, while each type is

equipped with a distribution of beliefs over lower-type players.

The method of cognitive hierarchy has been employed to

investigate the problem of distributed up-link random access

for the Internet of Things in [12]. Cognitive hierarchy was also

used alongside reinforcement learning in training autonomous

vehicles in [13]. Such approaches have been also developed for

dynamic environments; the authors in [14] propose a dynamic

model of bounded rationality based on prospect theory in a

controls context while in [15] an iterative thinking framework

is analyzed from a regret minimization point of view.

In securing a CPS from adversaries, it is important to

develop accurate models of prediction, grounded on exper-

imental results regarding human behavior. Specifically, the

authors in [16] propose cumulative prospect theory to facilitate

unmanned aerial vehicle path planning. In the context of

estimation problems, the authors in [17] consider the problem

of the interaction between several self-interested sensors under

different solution concepts, such as Nash or Stackelberg equi-

libria. Furthermore, the need for security analysts to consider

more complex models of attacker behavior is addressed in [18]

where the authors examine experimental data that showcase

the appearance of complex relations between attackers with

both shared and competing objectives in the security domain.

Similarly, in [19], the authors provide a survey that showcases

the complexities of attacker behavior with the goal of achiev-

ing superior forecasting. Besides discovering, visualizing, and

predicting multi-stage attacks, a method such as ours, will

provide a framework to understand and profile behaviors of

attackers.

Contributions: The contributions of the present work are

threefold. Initially, we formulate the decentralized coordinated

sensor attack as a non-zero sum (NZS) game between selfish

attackers who seek a “balance” between the probability of

successful attack and individual stealthiness. Subsequently, we

show that the game is guaranteed to have a Nash equilibrium.

This game is employed as a model for high-level binary

decision processes, such as fault sensors and alarm systems,

that are found in safety and mission–critical CPS. Second,

we introduce a cognitive hierarchy approach to bounded

rationality, by finding closed-form solutions to the internal

maximization problem of each level-k attacker. The inclusion

of non-equilibrium solution concepts allows us to gain insight

into attack policies of selfish agents—either computational

ones that are bounded by hardware constraints [20] or human

ones bounded by cognitive limits [11]—which do not operate

on the Nash equilibrium. To the best of our knowledge, this

is the first time that a structured non-equilibrium framework

is investigated in this context to analyze and predict attacking

behaviors on binary sensors. As such, we derive a more potent

prediction model driven by beliefs that may be constructed

from previous attack scenarios, thus enabling the defending

mechanism to better address realistic attacks. We finally high-

light how the game evolves as the attackers increase their

cognitive levels, and as they shift the weight of their decision-

making process towards successfully attacking, rather than

remaining stealthy.

Structure: The remainder of the paper is structured as

follows. In Section II, we formulate the Byzantine problem.

Section III describes the coordination game that is taking place

between the decentralized attackers, and introduces competing

elements between them. The structure of this game, as well as

its equilibrium properties, are analyzed in Section IV. Bounded

rationality models are developed by leveraging a cognitive

hierarchy approach in Section V. Section VI discusses the

convergence properties of the non-equilibrium game. Finally,

Section VII concludes and discusses future work.

II. PROBLEM FORMULATION

A. Binary Hypothesis Testing

Consider a set of ns sensors measuring the value of a single

binary event X P X “ t0, 1u. In this work, we approach

the binary estimation problem from the attackers’ perspective

in order to understand, analyze, and eventually predict, their

behavior. The ultimate goal in this line of research is to

develop mechanisms that will act as predictive models in

adversarial environments in order to assist in the design of

defense mechanisms.

Consider the value X of a binary random variable with

Bernoulli distribution

P pX “ 1q “ 1´ P pX “ 0q “ pevent P p0, 1q. (1)

The defender has access to the, potentially corrupted by

noise or attacks, measurements of ns sensors, Zi, i P
t1, . . . , nsu. In the case of sensors reporting strictly binary

values and the sensors are homogeneous in their behavior,

then it facilitates the analysis to consider the summation of

the, potentially corrupted, reported values, Z “
řns

k“1
Zk.

Assuming now that every sensor has the same probability

of reporting the wrong event value due to stochastic faults in

the absence of attacks, we have

Z “

#

R, wp 1´ pat

S `
řnp

i“1
Wi, wp pat,

where, pat is an a-priori estimation of the probability that the

sensors are attacked and np is the number of adversarial agents.

Also, we have that

R „

#

Binompns, perrq, X “ 0

Binompns, 1´ perrq, X “ 1,

and

S „

#

Binompns ´
řnp

i“1
mi, perrq, X “ 0

Binompns ´
řnp

i“1
mi, 1´ perrq, X “ 1,

where Binompα, psq denotes the binomial distribution, quanti-

fying the number of successes in a sequence of α experiments,

each with ps probability of success. Furthermore, perr denotes

the probability that a single sensor will report erroneously due

to stochastic faults and it is a design parameter that quantifies

the quality of the sensor and is assumed to be known a-

priori. The distribution of the values Wi are determined by

the attackers as a function of the real state of the world

X . Specifically, they shape this distribution according to the
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probability measure ωj0 when X “ 0 and ωj1 when X “ 1,

each with support Ij “ t0, . . . ,mju, @j P t1, . . . , npu, where

mj is the number of sensors that the attacker j has access

to. We further assume that the subsets are disjoint, i.e., that

different attackers are not able to affect the same sensor. In

order to capture the interactions between them, we formulate a

NZS game among the various attackers of unknown rationality.

While all of them share the common goal of maximizing the

probability of error, each of them wishes to remain as stealthy

as possible. By assuming selfish attackers, we formulate the

following NZS game.

B. Non-Zero Sum Game

In order to fully describe the NZS game, we define the sets

contained in the tuple G “ pO,J ,Sq. By O, we denote the

players participating in the game, by J the rewards, and by S

the attacking policies. In this scenario, the players are the ma-

licious agents that seek to compromise the estimation process.

We will consider the attackers operating in a decentralized

fashion, without direct communication among themselves.

Such attackers may represent human agents or decentralized

bots. Specifically, the set S “ S1 ˆ S2 ˆ ¨ ¨ ¨ ˆ Sp contains

a tuple of policies for each player, i.e., pωj0, ωj1q P Sj ,

@j P t1, . . . , npu, which determine the values of Wi. Thus,

the sets Sj represent the action sets of the players.

Remark 1: Two elements describe the effect that an attacker

has to the system. The support Ij quantifies the maximum

number of measurements that are accessible to the j-th at-

tacker. His decision-making process is expressed through the

shaping of the distributions in Sj assuming that they has access

to the real value of the event. This enables him to consider

two separate distributions ωj0 and ωj1 as decision variables.

l

We adopt the standard game-theoretic notation for an arbi-

trary set Y “ Y1 ˆ ¨ ¨ ¨Yα, such that Y´j “ Y1 ˆ ¨ ¨ ¨Yj´1 ˆ
Yj`1 ˆ ¨ ¨ ¨ ˆ Yα, e.g., pω´j0, ω´j1q P S´j will denote the

profile of strategies for every player apart from j. Also,

the notation sj “ pωj0, ωj1q will be used interchangeably

to denote the strategy of the players. Each player of the

NZS game tries to maximize a specific reward Jj P J ,

@j P t1, . . . , npu as follows,

Jj “ J err
j ` J st

j , (2)

where J err
j denotes the reward an attacker receives by forcing

the estimator to make an erroneous decision. Based on the

work of [7], this reward will be quantified by the probability

of error, i.e.,

J err
j “ P

ˆ

`

X̂ “ 0 | X “ 1q
ď

pX̂ “ 1 | X “ 0
˘

˙

, (3)

with X̂ being the decision of the estimator/detector. The re-

ward J st
j forces the attackers to remain stealthy and introduces

a selfish element to the agents. Thus, while the attackers are

cooperating in order to increase the probability of error, each

of them wants to selfishly remain stealthy.

Remark 2: Even though they share a common goal, maxi-

mizing the probability of erroneous estimation, there has been

extensive research that supports the emergence of competitive

behavior in the cyber-crime community [18], [21], [22]. It

has been found that, either for sociological reasons, e.g.

recognition in the community, or due to more practical reasons,

e.g. minimizing their own exposure, agents targeting the same

system might do so while competing against each other. This

behavior is captured by the inclusion of J st
j . l

To allow for a general framework similar to [7], we denote

by σ0, σ1 the distributions of S when X is 1 or 0 respec-

tively and by ρ0, ρ1 the distributions of R. Furthermore, we

introduce the estimator function f : R Ñ r0, 1s, denoting the

stochastic decision of the defender given a measurement z P R
as

X̂ “

#

1, w.p. fpzq,

0, w.p. 1´ fpzq.

We note that in this work, we consider the game from

the attackers’ standpoint. Thus, the estimator function itself

is a parameter known to the attackers, as per Kerckhoffs’s

principle, according to which the defender cannot depend

upon the system’s obscurity to guarantee security [23]. For

examples of estimator strategies in the context of Byzantine

binary sensors, the reader is referred to [7]. Consequently, we

can express J err
j as a function of the attackers’ policies by

utilizing the law of total probability. As a result, we have for

J err
j (note that the derivation of this expression follows from

the Appendix of [7] and is omitted due to space restrictions),

J err
j pω11, ω10, . . . , ωp1, ωp0q “ pevent`

patp1´ peventq

ż

I1

¨ ¨ ¨

ż

Inp

ż

R

fpy `

np
ÿ

i“1

wiqσ0pdyq

np
ź

i“1

ωi0pdwiq

´ patpevent

ż

I1

¨ ¨ ¨

ż

Inp

ż

R

fpy `

np
ÿ

i“1

wiqσ1pdyq

np
ź

i“1

ωi1pdwiq

` p1´ patqP p"Eatq,

where pat denotes the probability of the system being targeted

by adversaries and P p"Eatq the probability of an erroneous

estimation when no attackers are involved. Since P p"Eatq,
and the additive term pevent is not affected by the attackers’

decisions, it will be omitted from the reward function.

Following [7], and in order to derive closed-form solutions

to the optimization problems of the attackers—which would be

impossible over the space of arbitrary measures—we leverage

the delta function δpzq that yields the decision vectors

ωj0pwq “

mj`1
ÿ

i“0

pjiδpw´ iq, ωj1pwq “

mj`1
ÿ

i“0

qjiδpw´ iq. (4)

Thus, the problem of finding the best attack policy for every

player j, P t1, . . . , npu, amounts to finding the probabilities

pji, qji of the jth attacker attacking i number sensors when

the real event is 0 or 1, respectively.

To formulate J st
j , we argue that an attacker is less exposed,

and by extension more stealthy, the less they affects the

normal operation of the sensors. To this end, we introduce

the probability distributions τj0, τj1, each with support on

Ij , which denote the distributions of Wj when the attacker j

does not decide to attack based on the true value of X . We
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choose the Kullback-Leibler (KL) divergence as a metric of

stealthiness, as

J st
j “ ´β

ˆ

p1´ peventqDpωj0 || τj0q ` peventDpωj1 || τj1q

˙

,

(5)

where Dpa || bq is the KL-divergence between distributions

a and b, and β is a weighting parameter. Given that the

distributions are expressed according to (4), the KL-divergence

is Dpωj0 || τj0q “ ´
řmj

i“0
piln

pji

τi0
.

III. EXISTENCE OF NASH EQUILIBRIA

In this section, we will analyze the behavior of the players

given that the Nash equilibrium assumptions are satisfied.

Specifically, the policies of the players are:

1. optimal, i.e., given a set of beliefs about the others’ poli-

cies, every player deterministically follows the policy

that maximizes the given reward,

2. consistent, i.e., all the players share the same beliefs

about everyone’s policy.

The game equilibrium is defined in the sense of Nash, i.e.,

satisfying the following inequalities @pωj0, ωj1q P Sj , j P
t1, . . . , npu,

Jjpω
‹

j0, ω
‹

j1, ω
‹

´j0, ω
‹

´j1q ě Jjpωj0, ωj1, ω
‹

´j0, ω
‹

´j1q (6)

where pω‹

j0, ω‹

j1q P Sj denote the optimal policies of player

j and pω‹

´j0, ω‹

´j1q P S´j , are the optimal policies of all the

other players.

In order to facilitate the derivation of the Nash policies, we

formulate the following lemma where, for ease of exposition,

we define the decision tuple sj “ pωj0, ωj1q.
Lemma 1: The NZS game described by the reward functions

(2), is a potential game with potential given by

Φpsi, s´iq “

p1´ perrq
m1
ÿ

i1“0

¨ ¨ ¨

mnp
ÿ

inp “0

p1i1 . . . pnpinp

ż

R

fpzqσ0pz ´

np
ÿ

k“1

ikqdz

´ perr

m1
ÿ

i1“0

¨ ¨ ¨

mnp
ÿ

inp “0

q1i1 . . . qnpinp
ˆ

ˆ

ż

R

fpzqσ1pz ´

np
ÿ

k“1

ikqdz `

np
ÿ

k“0

J st
k .

Proof. Initially, we consider a game with rewards given by

Vjpsj , s´jq “ p1´ perrq

m1
ÿ

i1“0

¨ ¨ ¨

mj
ÿ

ij“0

¨ ¨ ¨

mnp
ÿ

inp “0

p1i1 . . . pnpinp

ż

R

fpzqσ0pz ´

np
ÿ

k“1

ikqdz

´ perr

m1
ÿ

i1“0

¨ ¨ ¨

mj
ÿ

ij“0

¨ ¨ ¨

mnp
ÿ

inp “0

q1i1 . . . qnpinp

ż

R

fpzqσ1pz ´

np
ÿ

k“1

ikqdz. (7)

Given policies s̃j , @j, we can evaluate the cost and subtract

from (7) to write

Vjpsj , s´jq ´ Vjps̃j , s´jq “

p1´ perrq
m1
ÿ

i1“0

¨ ¨ ¨

mj
ÿ

ij“0

¨ ¨ ¨

mnp
ÿ

inp “0

ppjij ´ p̃jij q

p1i1 . . . pnpinp

ż

R

fpzqσ0pz ´

np
ÿ

k“1

ikqdz

´ perr

m1
ÿ

i1“0

¨ ¨ ¨

mj
ÿ

ij“0

¨ ¨ ¨

mnp
ÿ

inp “0

pqjij ´ q̃jij q

q1i1 . . . qnpinp

ż

R

fpzqσ1pz ´

np
ÿ

k“1

ikqdz,

which is constant @i P t1, . . . , npu.

Consequently, the game defined by V is a potential game,

with potential function given by

Φ1psi, s´iq “

p1´ perrq
m1
ÿ

i1“0

¨ ¨ ¨

mnp
ÿ

inp “0

p1i1 . . . pnpinp

ż

R

fpzqσ0pz ´

np
ÿ

k“1

ikqdz

´ perr

m1
ÿ

i1“0

¨ ¨ ¨

mnp
ÿ

inp “0

q1i1 . . . qnpinp

ż

R

fpzqσ1pz ´

np
ÿ

k“1

ikqdz.

We now define another game with reward functions given

by, V 1psi, s´iq “ J st
i psi, s´iq. This game is decoupled, since

V 1psi, s´iq “ V 1psi, s̃´iq, @i, whose potential function is

Φ2psi, s´iq “
řnp

i V 1psi, s´iq.

Consequently, the coordination game between the attack-

ers is a potential game with potential function given by,

Φpsi, s´iq “ Φ1psi, s´iq ` Φ2psi, s´iq, which completes the

proof.

Corollary 1: The coordination game with rewards given by

(2) has a Nash equilibrium.

Proof. The proof follows from [24], given a potential game

with strategies in a compact set.

Remark 3: Corollary 1 shows existence of a Nash equilib-

rium. However, computing this strategy profile can be compu-

tationally, and cognitively, expensive. Therefore, it is natural

to approach the problem from a behavioral game perspective,

where the players are modeled as irrational agents. l

IV. BOUNDED RATIONALITY

In this section, we will introduce the models of non-

equilibrium solution concepts that will be used to analyze the

sensor attack problem when players of bounded rationality are

involved in the process.
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A. Cognitive Types and Cognitive Hierarchy

We have shown in Section III, that the consistency with

equilibrium profiles depends heavily on the optimality of each

individual response, as well as, the mutual subjective belief

consistency, i.e., how close each player can approximate (by

measuring the cost) the true strategy of every other player.

In this work, we will focus on agents that optimize over

their perception of the game, but who are heterogeneous in

this perception. Towards this, we utilize the framework of

cognitive hierarchy, by following the work of [11]. According

to this bounded rationality approach, the players in a game

are differentiated via a “cognitive level,” which describes both

their behavior, and their beliefs regarding the rest of the

players. This will lead to heterogeneous strategies depending

on the level of thinking of an agent, which is denoted by

the appropriate superscript, i.e., for the strategy of a level-

k player—himself indexed by j—will be denoted by skj “
pωk

j0, ω
k
j0q.

Remark 4: The emergence of non-equilibrium play in games

has been extensively investigated [5]. Since the Byzantine

problem can be utilized to model a plethora of different

realistic scenarios, this apparent irrationality of the players

can be attributed to different causes. Specifically, for human

players, it might stem from limited cognitive ability, lack of

time or incentive to succeed, while for autonomous agents,

the computational complexity of computing Nash equilibria

can lead to boundedly rational behavior. l

Level-0: In order to initialize the iterative best-response

process, we consider the behavior of a “level-0” attacker, i.e.,

of an attacker that does not perform any steps of strategic

thinking. This policy, denoted “anchor policy”, has been shown

to affect the decision making process of higher-level thinking

players in some cases. Even in the presence of such sensitivity,

these is no consensus over what ought to constitute a level-0

policy, with suggested approaches being uniform distributions

over the action space, focal points of the game or even com-

plex solutions, such as no-regret policies [25]. In this work,

we assume that a level-0 attacker, indexed by j, uniformly

randomizes over the number of sensors they can attack, leading

to the decision vectors, ω0
j0 “ ω0

j1 “
1

mj`1

řmj

i“0
δpw ´ iq.

Higher-level policies: According to the limited depth of

reasoning approaches to bounded rationality, every player has

a limit k to the number of strategic that they can perform.

Moreover, in cognitive hierarchy, every level assigns a specific

belief over the levels of the rest of the players. Following

[11], we claim that a level-k player reasons that the rest

of the players’ levels are distributed according to a Poisson

distribution over l “ t1, . . . , k ´ 1u. For example, consider

the attacker j, belonging to cognitive level k. The iterative

strategic thinking of this player is based on the belief that the

probability of another player i belonging to a level l ă k is

g
j
kplq “

λle´λ

l!
řk´1

h“0

λhe´λ

h!

, (8)

where λ is the Poisson parameter that uniquely defines the

distribution. Following [11], we will model every player as

deterministically optimal. Thus, each level-k thinker acts based

on his best-response given his subjective beliefs.

Remark 5: Even though there is a plethora of different

bounded rationality solution concepts for games—many of

which consider models of subjective beliefs—in this paper

we utilize the approach of [11], where those subjective

beliefs follow a Poisson distribution. Such distributions—

being univariate—are able to capture phenomena of bounded

rationality with limited computational complexity. Specifically,

by adjusting the mean of the Poisson distribution, one can

shift the level over which most agents reside, while keeping

the probability that agents are extremely low, or extremely

high level, relatively small. Furthermore, those beliefs are

assumed by each agent to be true during the design of their

strategy. l

B. Iterative-Thinking Process

Level-1: For ease of exposition, we present the analysis

of the approach for 3 attackers. All the results will be shown to

generalize in a straightforward manner. Initially, let us consider

a level-1 attacker that has access to m1 sensors. Such an agent

operates based on the assumption that the rest of the attackers,

are level-0, i.e., they uniformly randomize their actions. The

reward of this attacker, conditioned by the randomized policies

is

J1

1 ps
1

1, s
1

´1q “ p1´ perrq
m1
ÿ

i“0

p1i
1

pm2 ` 1q

1

pm3 ` 1q
m2
ÿ

j“0

m3
ÿ

k“0

ż

R

fpzqσ0pz ´ i´ j ´ kqdz ´ β

m1
ÿ

i“0

p1iln
p1i

τi0

´ perr

m1
ÿ

i“0

q1i
1

pm2 ` 1q

1

pm3 ` 1q
m2
ÿ

j“0

m3
ÿ

k“0

ż

R

fpzqσ1pz ´ i´ j ´ kqdz ´ β

m1
ÿ

i“0

q1iln
q1i

τi1
. (9)

Due to the independence of the decision vectors pi, qi as well

as the independence of their corresponding terms in the reward

function, it is possible to analyze them separately. Therefore,

the level-1 attacker maximizes deterministically for pi and qi.

Let us denote by p1
1i and q1

1i the elements of the decision

vectors there are derived as best-response strategies to level-0

players. As player 1 performs further strategic thinking steps,

he needs to compute every other players’ current level strategy

as well as perform one more optimization step. This fact

highlights the possible computational intractability of Nash

equilibrium policies, which are infinite best-response paths for

the joint strategy profile of all the players.

Higher-level of thinking: When computing any higher

level strategy, agent 1 holds certain beliefs on the frequency

of each cognitive level. On a multi-player, NZS game, this

can be modeled through the following reward function, for

arbitrary number of attackers np and arbitrarily large thinking

iterations as

Jk
1 ps

k
1 , s

k
´1q “ p1´ perrq

m1
ÿ

i1“0

pk1i1
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ˆ k´1
ÿ

h“0

g
j
kphq ¨ ¨ ¨

k´1
ÿ

h“0

gphq
m2
ÿ

i2“0

ph2i2 ¨ ¨ ¨

mnp
ÿ

ip“0

phpip
c0i

˙

´ β

m1
ÿ

i“0

p21iln
p2
1i

τ10

´ perr

mi
ÿ

i“0

qk1i

ˆ k´1
ÿ

h“0

g
j
kphq ¨ ¨ ¨

k´1
ÿ

h“0

g
j
kphq

m2
ÿ

i2“0

qh2i2 ¨ ¨ ¨

mnp
ÿ

ip“0

qhpip
c1i

˙

´ β

m1
ÿ

i“0

q21iln
q2
1i

τ11
, (10)

where c0i “
ş

R
fpzqσ0pz ´ i ´ j ´ kqdz and c1i “

ş

R
fpzqσ1pz ´ i´ j ´ kqdz.

It is possible to find a closed form solution for the strategy

of an attacker of level-k by solving the corresponding maxi-

mization problem.

Theorem 1: Consider an attacker, arbitrarily indexed as 1 of

cognitive level-k, with a reward function given by (10). The

best-response solution, expressed through the probabilities p1i
and q1i, when the observed real event is X “ 0 and X “ 1

respectively, is given by

p1i “
τ10e

ĉk
0i

řnp

j“1
τ10e

ĉk
0i

, (11)

where

ĉk0i “
k´1
ÿ

h“0

g
j
kphq ¨ ¨ ¨

k´1
ÿ

h“0

g
j
kphq

m2
ÿ

i2“0

ph2i2 ¨ ¨ ¨

mnp
ÿ

ip“0

phpip
ck0i,

and

q1i “
τ11e

ĉk
1i

řnp

j“1
τ11e

ĉk
1i

, (12)

where

ĉk1i “
k´1
ÿ

h“0

g
j
kphq ¨ ¨ ¨

k´1
ÿ

h“0

g
j
kphq

m2
ÿ

i2“0

qh2i2 ¨ ¨ ¨

mnp
ÿ

ip“0

qhpip
c1i.

Proof. Initially, we formulate only the optimization over pi to

write

max
pk
1i

m1
ÿ

i“0

pk1iĉ
k
0i ´ β

m1
ÿ

i“0

p21iln
p2
1i

τ10

subject to:

m1
ÿ

i“0

pk1i “ 1 and pk1i ě 0.

Thus, we can define the Lagrangian of the optimization in

terms of the multipliers µ, and ν as

L “
m1
ÿ

i“0

pk1iĉ
k
01 ´ β

m1
ÿ

i“0

p21iln
p2
1i

τ10
` µ

ˆ m1
ÿ

i“0

pk1i ´ 1

˙

`
m1
ÿ

i“0

νipi.

We apply the Karush-Kuhn-Tucker conditions, which lead

to a set of m1 ` 1 equations

BL

Bpk
1i

“ 0ñ ck01 ´ βp1´ lnτ10 ` lnp21iq ` µ` νi “ 0, (13)

as well as the complementarity condition
řmi

i“0
νip

k
i “ 0.

Since the term lnppki q will be undefined if any pi “ 0, we

can determine that the optimal solution will be an interior point

of the simplex. As a result νi “ 0, @i, and solving (13) for pki

yields, pki “ τ10e
ĉk
01

β e
λ
β

´1. Since it holds that
řm1

j“1
p1j “ 1,

we get, p1i “
τ10e

ĉk
01i
β

řm1

j“0
τ10e

ĉk
01j
β

.

V. DISCUSSION AND VALIDATION

A. Convergence to the Nash equilibrium

We can leverage now the special structure of the game to

show that the cognitive hierarchy approach converges to the

equilibrium as all the agents increase their cognitive abilities.

Lemma 2: For every potential game with infinite, compact

action spaces, every improvement path, i.e., a sequence of

profiles in which one player optimizes at each step, terminates

arbitrarily close to an equilibrium.

Proof. The proof follows from [24].

Theorem 2: Consider the coordinated attack game played by

attackers of bounded rationality. As all the attackers increase

their cognitive level-k, the strategy profile converges to the

Nash equilibrium.

Proof. The single parameter used in the Poisson distribution

of the intelligent levels, i.e., λ, is the average level of all the

players. Therefore, if k Ñ 8 for all the players, then λ Ñ
8. This leads to all the players having mutually consistent

beliefs over everyone’s strategy, i.e., Dḡphq, h P N , such that,

limkÑ8 g
j
kphq “ ḡphq, @j P t1, . . . , npu. Coupled with the

deterministic optimality assumption, the iteration converges to

a Nash equilibrium due to Lemma 2 and the properties of

cognitive hierarchy [26].

B. Cooperation Between Attackers

In this section, we will analyze the behavior of the coordi-

nating attackers when there is no cost of attacking/stealthiness.

We note that in this case, the reward function for each attacker

will be Vjpsj , s´jq, given by (7). In such a scenario, it is

possible to explicitly compute the Nash equilibrium of the

game for agents of unbounded cognitive capabilities, given that

the decision making is known and all the players are aware of

the underlying game.

Theorem 3: Consider the problem of attack coordination

with reward functions given by (7). Let us assume that,
ż

R

fpzqσ0pz ´ aqdz ď

ż

R

fpzqσ0pz ´ bqdz ô a ď b,

(14)

´

ż

R

fpzqσ1pz ´ aqdz ď ´

ż

R

fpzqσ1pz ´ bqdz ô a ď b,

(15)

then, the Nash equilibrium profile of strategies for this game

is given @j P t1, . . . , npu by

pji “

#

1, when i “ mj ,

0, otherwise,
(16)
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and

qji “

#

1, when i “ 0,

0, otherwise.
(17)

Proof. It can be seen that the game of attack coordination

without the stealthiness reward is a game of identical interests,

since every player maximizes over the same reward function

(7). Consequently, by assumption (14) it holds that
ż

R

fpzqσ0pz ´ i´
ÿ

jPI
´i

mjqdz ď

ż

R

fpzqσ0pz ´mi ´
ÿ

jPI
´i

mjqdz, (18)

and

´

ż

R

fpzqσ1pz ´ iqdz ď ´

ż

R

fpzqσ0pzqdz, (19)

for all attackers i.

Utilizing now the inequalities (18) and (19), we can find

a bound of the reward function (7), as, Vjps
‹

i , s
‹

´iq ě
Vjpsi, s

‹

´iq, @j P t1, . . . , npu, which, by definition, constitutes

a Nash equilibrium and completes the proof.

C. Simulation Results

In order to highlight the behavior shift as different param-

eters change, we utilize a set of ns “ 100 sensors, where

np “ 3 attackers have access to m1 “ m2 “ m3 “ 10

sensors each. The cost function is constructed according to

(10) where the estimator strategy—known to the attackers—is

a probabilistic majority voting mechanism as described in [7].

The anchor strategy of each attacker is a uniform distribution

over their available actions while the probability of erroneous

measurement is homogeneous throughout the sensors and is

chosen to be perr “ 0.1.

Figure 1 shows the different optimal actions for an attacker

as their intelligence level increases. For this scenario, the dis-

tribution of intelligence levels led to a Poisson parameter value

of λ “ 5 and the attackers were considered relatively selfless,

with the weight on stealthiness chose to be β “ 5 ˆ 10
´3.

It is worth noting that due to the high level of intelligence

amongst the attackers, the optimal strategies converge to the

fully cooperative Nash equilibrium. Figure 2, shows that the

selfish component of an attacker’s cost function—in our case

the one corresponding to their stealthiness—dramatically shifts

their behavior. We observe that the limiting behavior converges

to full coordination as β goes to 0, a phenomenon that is also

evident in Figure 3 where we present the KL divergence of the

optimal policy of an attacker to the Nash equilibrium corre-

sponding to perfect coordination. As the weight β decreases,

the attackers tend to cooperate more.

The importance of accurate attacker modeling becomes

apparent by examining Figure 4, which highlights a crucial

phenomenon arising in NZS games. In this scenario, we

present the accumulated cost of a high-level thinker, operating

in a environments of different levels of intelligence. Although

the increased level of this player shifts their strategy towards

the Nash equilibrium, it can be seen that their optimality is
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Fig. 1. The decision probabilities as the levels of an attacker increase for
λ “ 5. The strategy converges to the Nash equilibrium, and for small β, this
is close to the probability of attacking all the available sensors.

Fig. 2. The decision probabilities as the weight on stealthiness changes. It can
be seen that the probability converges to a Dirac distribution on the maximum
number of compromised sensors.

decreased when they “overthink” by believing that the rest of

the players are of high-level as well, as is shown in the blue

bars. This showcases a scenario where the high intelligence of

a player may create erroneous beliefs due to an overestimation

of the capabilities of their opponents. An important implication

for a security scenario in this case is that Nash strategies might

be inadequate in protecting a system, even against attackers

of limited capabilities due to the “overthinking” effect of the

equilibrium solutions.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a framework to predict the

way decentralized attacking agents with bounded cognitive

capabilities attempt to compromise a set of faulty binary

sensors. To this end, we leveraged results from behavioral

game theory. Through a cognitive hierarchy approach, we

analyzed the expected responses of the attackers with different

intelligent levels via the solutions of iterated maximization
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Fig. 3. The KL divergence of the attack strategies from perfect coordination,
as their selfishness decreases.
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Fig. 4. The cost function of a highly intelligent player operating in environ-
ments where they believe that the attackers are of high-level and of low-level,
respectively. It can be seen that if the player “overthinks,” it is possible for
them to play more complex strategies and acquire suboptimal rewards.

problems. Results from potential game theory were utilized

to prove convergence of the attack strategies to the Nash

equilibrium as the adversaries increase their intelligence level

and cooperate to inflict the most damage to the system.

Future efforts will focus on extending the framework to

repeated plays, allowing for the attackers to learn the cognitive

abilities of each other, as well as in prediction models for

sets of heterogeneous sensors with real-valued measurements.

Accurate attack prediction models will be used to inform the

optimal detection rule for the CPS in a realistic adversarial

environment, in which the binary measurements can be derived

as alarm signals by redundant fault–detection mechanisms. We

will also further theoretically investigate the “overthinking”

problem that emerges in bounded rationality contexts. Finally,

the computational complexity of the derived expressions with

respect to the problem parameters will be quantified in order

to investigate connections between complexity and bounded

rationality.
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