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Abstract—In this paper, we investigate the behavior of agents
with bounded rationality, attacking a set of stochastic sensors
measuring the state of a binary event. The coordination problem
between the attackers is formulated as a multi-player non-
zero-sum one-shot game. Each attacker aims to maximize the
probability that a certain detector will produce an erroneous
estimate of the true event, while they remain stealthy. To better
predict the outcome of this game, we categorize the players based
on the number of strategic thinking steps they will take. Each
level-% attacker behaves based on subjective beliefs of the others’
behaviors, which are quantified via a Poisson distribution over
the lower levels. The expected best responses for the type of each
attacker are derived. The limiting conditions as the cognitive
levels increase, as well as when the attackers fully coordinate,
are shown to converge to the Nash equilibrium.

Index Terms—Bounded reasoning, cognitive hierarchy, Byzan-
tine problem.

I. INTRODUCTION

Due to their complexity and their profound effect on mod-
ern infrastructure, e.g., in the automotive [1] and health [2]
industries, cyber-physical systems (CPS) must be made safe
and secure in their operation. This becomes more pressing
in the presence of malicious agents that strive to corrupt,
confuse or destabilize the system. It has become clear that
software-oriented defense mechanisms, like firewalls, are in-
capable of securing CPS on their own, and as such, the
control community has shifted its focus on developing rigorous
mathematical tools that examine all the different layers of a
complex system under attack [3]. These problems also emerge
in estimation processes, where decisions must be made about
the true state of the environment, given potentially corrupted
measurements. Game theory offers a unified framework for
analyzing the interactions between competing, selfish agents
[4]. Due to its flexibility, it has been extensively used in
CPS security applications, in order to develop defense and
mitigation strategies for a variety of attack scenarios. However,
the majority of the aforementioned works on the subject
has leveraged relatively simplistic attack models, operating
under the assumption of infinite rationality—allowing for the
derivation of equilibrium solutions—and by disregarding the
heterogeneity of the attackers on a system, as well as the
complex interactions that take place among them.
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Developing effective collaborations, when there are more
than one agents, is a challenging problem, since there are
cognitive limitations, which can be seen as a form of bounded
rationality [5]. Several recent experimental and empirical
studies [6] suggest that decision makers’ initial responses to
games often deviate systematically from equilibrium, and that
structural non-equilibrium (e.g., cognitive hierarchy) models
often out-predict equilibrium. In this sense, some player(s)
may be “making mistakes,” which is common. Thus, we
leverage ideas from cognitive hierarchy as a tool to examine
non-equilibrium behavior of boundedly rational players, in the
context of the model introduced in [7] that captures a binary
sensor system under Byzantine attacks.

Considering game-theoretic approaches to security, in [8],
the intrusion detection problem is formulated as a non-
cooperative game between an attacker and a defender of
infinite intelligence. The formulation utilized in this work
was introduced in [7], where the Byzantine attack problem
was solved as a zero-sum game between rational opponents
and closed-form Nash equilibria were computed under certain
assumptions. This can be applicable in high-stakes security
domains such as infrastructure protection where presumably
the adversary will conduct careful surveillance and planning
before attacking. However, there are some security domains
where adversary may not act perfectly rational due to short
planning windows or due to lower stakes associated with
the attack. Security strategies generated under the assumption
of a perfectly rational adversary might be significantly less
effective that ones generated to tackle specific suboptimal
attack patterns.

Therefore, addressing the boundedly rationality behavior
exhibited by adversaries is a fundamental challenge for ap-
plying security games to a wide variety of domains. In the
work of [9], the author describes several models of bounded
rationality, both for single optimizers, as well as competing
players through a combination of limited information about
the environment and intractability of the optimal decision
in complex scenarios. With the advent of behavioral game
theory [5], more sophisticated models of irrational players
were introduced. An important approach to bounded ratio-
nality in games is based on iterations of best responses.
Specifically, in level-k models [6], the authors suggest that
a player with k steps of strategic thinking optimally reacts
to the assumption that everyone else has conducted k£ — 1
steps. The same framework has been applied to a global
entry game with private and public information [10]. The
authors of [11], introduced cognitive hierarchy, according to
which the players are categorized in certain cognitive types
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according to the steps of strategic thinking, while each type is
equipped with a distribution of beliefs over lower-type players.
The method of cognitive hierarchy has been employed to
investigate the problem of distributed up-link random access
for the Internet of Things in [12]. Cognitive hierarchy was also
used alongside reinforcement learning in training autonomous
vehicles in [13]. Such approaches have been also developed for
dynamic environments; the authors in [14] propose a dynamic
model of bounded rationality based on prospect theory in a
controls context while in [15] an iterative thinking framework
is analyzed from a regret minimization point of view.

In securing a CPS from adversaries, it is important to
develop accurate models of prediction, grounded on exper-
imental results regarding human behavior. Specifically, the
authors in [16] propose cumulative prospect theory to facilitate
unmanned aerial vehicle path planning. In the context of
estimation problems, the authors in [17] consider the problem
of the interaction between several self-interested sensors under
different solution concepts, such as Nash or Stackelberg equi-
libria. Furthermore, the need for security analysts to consider
more complex models of attacker behavior is addressed in [18]
where the authors examine experimental data that showcase
the appearance of complex relations between attackers with
both shared and competing objectives in the security domain.
Similarly, in [19], the authors provide a survey that showcases
the complexities of attacker behavior with the goal of achiev-
ing superior forecasting. Besides discovering, visualizing, and
predicting multi-stage attacks, a method such as ours, will
provide a framework to understand and profile behaviors of
attackers.

Contributions: The contributions of the present work are
threefold. Initially, we formulate the decentralized coordinated
sensor attack as a non-zero sum (NZS) game between selfish
attackers who seek a ‘“balance” between the probability of
successful attack and individual stealthiness. Subsequently, we
show that the game is guaranteed to have a Nash equilibrium.
This game is employed as a model for high-level binary
decision processes, such as fault sensors and alarm systems,
that are found in safety and mission—critical CPS. Second,
we introduce a cognitive hierarchy approach to bounded
rationality, by finding closed-form solutions to the internal
maximization problem of each level-% attacker. The inclusion
of non-equilibrium solution concepts allows us to gain insight
into attack policies of selfish agents—either computational
ones that are bounded by hardware constraints [20] or human
ones bounded by cognitive limits [11]—which do not operate
on the Nash equilibrium. To the best of our knowledge, this
is the first time that a structured non-equilibrium framework
is investigated in this context to analyze and predict attacking
behaviors on binary sensors. As such, we derive a more potent
prediction model driven by beliefs that may be constructed
from previous attack scenarios, thus enabling the defending
mechanism to better address realistic attacks. We finally high-
light how the game evolves as the attackers increase their
cognitive levels, and as they shift the weight of their decision-
making process towards successfully attacking, rather than
remaining stealthy.
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Structure: The remainder of the paper is structured as
follows. In Section II, we formulate the Byzantine problem.
Section III describes the coordination game that is taking place
between the decentralized attackers, and introduces competing
elements between them. The structure of this game, as well as
its equilibrium properties, are analyzed in Section IV. Bounded
rationality models are developed by leveraging a cognitive
hierarchy approach in Section V. Section VI discusses the
convergence properties of the non-equilibrium game. Finally,
Section VII concludes and discusses future work.

II. PROBLEM FORMULATION
A. Binary Hypothesis Testing

Consider a set of ng sensors measuring the value of a single
binary event X € X = {0,1}. In this work, we approach
the binary estimation problem from the attackers’ perspective
in order to understand, analyze, and eventually predict, their
behavior. The ultimate goal in this line of research is to
develop mechanisms that will act as predictive models in
adversarial environments in order to assist in the design of
defense mechanisms.

Consider the value X of a binary random variable with
Bernoulli distribution

P(X = 1) =1 — P(X = 0) = Pevent € (07 1) (1)

The defender has access to the, potentially corrupted by
noise or attacks, measurements of ng sensors, Z;, 7 €
{1,...,n}. In the case of sensors reporting strictly binary
values and the sensors are homogeneous in their behavior,
then it facilitates the analysis to consider the summation of
the, potentially corrupted, reported values, Z = >, | Zj.

Assuming now that every sensor has the same probability
of reporting the wrong event value due to stochastic faults in
the absence of attacks, we have

R, wp 1 — pa
S + Z?il Wi7 WD Pat,

where, py 1S an a-priori estimation of the probability that the
sensors are attacked and n,, is the number of adversarial agents.
Also, we have that

R Binom(nsg, Perr), X=0
Binom(ng, 1 — per), X =1,
and
g Binom(ng — Y1 M, Perr), X=0
Binom(ns — Z?il mg, 1- perr): X = 17

where Binom(c, ps) denotes the binomial distribution, quanti-
fying the number of successes in a sequence of o experiments,
each with p, probability of success. Furthermore, pe, denotes
the probability that a single sensor will report erroneously due
to stochastic faults and it is a design parameter that quantifies
the quality of the sensor and is assumed to be known a-
priori. The distribution of the values W, are determined by
the attackers as a function of the real state of the world
X. Specifically, they shape this distribution according to the
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probability measure w;p when X = 0 and wj; when X =1,
each with support I; = {0,...,m;}, Vj € {1,...,n,}, where
m; is the number of sensors that the attacker j has access
to. We further assume that the subsets are disjoint, i.e., that
different attackers are not able to affect the same sensor. In
order to capture the interactions between them, we formulate a
NZS game among the various attackers of unknown rationality.
While all of them share the common goal of maximizing the
probability of error, each of them wishes to remain as stealthy
as possible. By assuming selfish attackers, we formulate the
following NZS game.

B. Non-Zero Sum Game

In order to fully describe the NZS game, we define the sets
contained in the tuple G = (0,J,S). By O, we denote the
players participating in the game, by J the rewards, and by S
the attacking policies. In this scenario, the players are the ma-
licious agents that seek to compromise the estimation process.
We will consider the attackers operating in a decentralized
fashion, without direct communication among themselves.
Such attackers may represent human agents or decentralized
bots. Specifically, the set S = S; x Sy x --- x S}, contains
a tuple of policies for each player, ie., (wjo,wj1) € Sj,
Vj e {1,...,np}, which determine the values of W;. Thus,
the sets S; represent the action sets of the players.

Remark 1: Two elements describe the effect that an attacker
has to the system. The support I; quantifies the maximum
number of measurements that are accessible to the j-th at-
tacker. His decision-making process is expressed through the
shaping of the distributions in S; assuming that they has access
to the real value of the event. This enables him to consider
two separate distributions w;o and w;; as decision variables.

O

We adopt the standard game-theoretic notation for an arbi-
trary set Y =Y x ---Y,, such that Y_; = Yy x ---Y;_; x
Yiy1 x -+ x Yy, eg., (w_jo,w—j1) € S—; will denote the
profile of strategies for every player apart from j. Also,
the notation s; = (wjo,w;1) Will be used interchangeably
to denote the strategy of the players. Each player of the
NZS game tries to maximize a specific reward J; € J,
Vje{l,...,ny} as follows,

Iy = JS 4 T 2

where J;™ denotes the reward an attacker receives by forcing
the estimator to make an erroneous decision. Based on the
work of [7], this reward will be quantified by the probability
of error, i.e.,

J;":P<(X:0|X=1)U(X=1|X=o)>, 3)

with X being the decision of the estimator/detector. The re-
ward J' ;‘ forces the attackers to remain stealthy and introduces
a selfish element to the agents. Thus, while the attackers are
cooperating in order to increase the probability of error, each
of them wants to selfishly remain stealthy.

Remark 2: Even though they share a common goal, maxi-
mizing the probability of erroneous estimation, there has been
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extensive research that supports the emergence of competitive
behavior in the cyber-crime community [18], [21], [22]. It
has been found that, either for sociological reasons, e.g.
recognition in the community, or due to more practical reasons,
e.g. minimizing their own exposure, agents targeting the same
system might do so while competing against each other. This
behavior is captured by the inclusion of J]S-‘. O

To allow for a general framework similar to [7], we denote
by op, o1 the distributions of S when X is 1 or 0 respec-
tively and by pg, p; the distributions of R. Furthermore, we
introduce the estimator function f : R — [0, 1], denoting the
stochastic decision of the defender given a measurement z € R

as
o (1 we s,
0, wp. 1-—f(2).

We note that in this work, we consider the game from
the attackers’ standpoint. Thus, the estimator function itself
is a parameter known to the attackers, as per Kerckhoffs’s
principle, according to which the defender cannot depend
upon the system’s obscurity to guarantee security [23]. For
examples of estimator strategies in the context of Byzantine
binary sensors, the reader is referred to [7]. Consequently, we
can express Ji'" as a function of the attackers’ policies by
utilizing the law of total probability. As a result, we have for
Ji™ (note that the derivation of this expression follows from
the Appendix of [7] and is omitted due to space restrictions),

J;H(Wllvwloa -, Wpl, pr) = Pevent T+
Tp p
pal=pen) | o[ [ Y wontan [ Jwin(aw)
I Iny, JR i=1 i=1

Tp p
— PatPevent J e J J f(y + Z wi)gl (dy) 1_[ wil(dwi)
I In, JR i=1 i=1

+ (1 _pat)P(ﬁ al)a

where p,; denotes the probability of the system being targeted
by adversaries and P(—&,) the probability of an erroneous
estimation when no attackers are involved. Since P(—&y),
and the additive term peyene i not affected by the attackers’
decisions, it will be omitted from the reward function.

Following [7], and in order to derive closed-form solutions
to the optimization problems of the attackers—which would be
impossible over the space of arbitrary measures—we leverage
the delta function 6(z) that yields the decision vectors

mj+1 mj+1

wjo(w) = 2 pjid(w—1i), wjr(w) = Z ¢;i0(w—1). (4)
i=0 i=0

Thus, the problem of finding the best attack policy for every
player j,e {1,...,ny}, amounts to finding the probabilities
Dji, qji of the jth attacker attacking 7 number sensors when
the real event is 0 or 1, respectively.

To formulate .J ;t we argue that an attacker is less exposed,
and by extension more stealthy, the less they affects the
normal operation of the sensors. To this end, we introduce
the probability distributions 7;9, 7;1, each with support on
1;, which denote the distributions of W; when the attacker j
does not decide to attack based on the true value of X. We
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choose the Kullback-Leibler (KL) divergence as a metric of
stealthiness, as

J;t = _ﬁ ((1 - pevent)D(ij H 7—jO) +pevemD(wj1 H le))a
&)

where D(a || b) is the KL-divergence between distributions
a and b, and (§ is a weighting parameter. Given that the
distributions are expressed according to (4), the KL-divergence

is D(wjo || 7jo) = — X2 piln 2.

III. EXISTENCE OF NASH EQUILIBRIA

In this section, we will analyze the behavior of the players
given that the Nash equilibrium assumptions are satisfied.
Specifically, the policies of the players are:

1. optimal, i.e., given a set of beliefs about the others’ poli-
cies, every player deterministically follows the policy
that maximizes the given reward,

2. consistent, i.e., all the players share the same beliefs
about everyone’s policy.

The game equilibrium is defined in the sense of Nash, i.e.,

satisfying the following inequalities V(wjo,wj1) € Sj, j €
{1,...,np},

Jj(‘”}o»“}v“%o#%ﬂ = Jj(wj()?wjl?wijovwijl) (6)

where (w3, wj;) € S; denote the optimal policies of player
j and (w4, w* ;) € S_;, are the optimal policies of all the
other players.

In order to facilitate the derivation of the Nash policies, we
formulate the following lemma where, for ease of exposition,
we define the decision tuple s; = (wjo, wj1).

Lemma 1: The NZS game described by the reward functions
(2), is a potential game with potential given by

(I)(Si, S—i) =

my Mny, p
(1=p) 3 % ey | o0z = 3 i)
i1=0  in,=0 R k=1
my My

— Perr e Z q1iqy - - - aninp X
i1=0  ip,=0
Np Np
X f f(2)o1(z — Z ir)dz + Z Ji
R k=1 k=0

Proof. Initially, we consider a game with rewards given by

Vi(sj,5-5) = (1 = Perr)

my m; Mnp
NS o,
=0 ;=0  ip,=0
p
| fr0te = Y, e
R k=1
mi m; Mny
ENTD SED ST s IR
i1=0 i;=0 i,lpzo

J f(z)o1(z — Zp] i )dz. (7
R k=1

Given policies 55, Vj, we can evaluate the cost and subtract
from (7) to write

‘/}(Sj?s—j) - Vj(gj’s—j) =

mi m; Mnyp
(1_perr) Z Z Z (pjij_ﬁjij)
i1=0  ij=0  i,,=0

p
Pliy - - - Pryin, JR f(z)oo(z — Z i)dz
k=1

mi
— Perr Z

i1=0

mnp

my;
e Z e Z (qJ’LJ 76‘]%)
;=0 in,=0
p
Q1iy - - - npin, f f(2)o1(z — Z ir)dz,
R k=1

which is constant Vi € {1,...,n,}.
Consequently, the game defined by V' is a potential game,
with potential function given by

‘I)l(Si, Sfi) =
mi Mn, np

(1 — perr) 2 e Z Piiq - - 'pnpinp f f(Z)O'O(Z — Z ’Lk)dz
i1=0  in,=0 R k=1

Mny,

mi np
— Perr Z o Z 1iy - - - Anyin, f f(Z)O‘l (Z - Z 'Lk>d2
i1=0  in,=0 R k=1

We now define another game with reward functions given
by, V'(si,8-;) = J*(s4,5—;). This game is decoupled, since
V'(siys—;) = V'(si,5-;), Vi, whose potential function is
CI)Q(Si, S_i) = Z?p V/(Si, S_i).

Consequently, the coordination game between the attack-
ers is a potential game with potential function given by,
D(s5,8-;) = D1(si,5-i) + Pa(s;, s—;), which completes the
proof. ]

Corollary 1: The coordination game with rewards given by
(2) has a Nash equilibrium.

Proof. The proof follows from [24], given a potential game
with strategies in a compact set. [ |

Remark 3: Corollary 1 shows existence of a Nash equilib-
rium. However, computing this strategy profile can be compu-
tationally, and cognitively, expensive. Therefore, it is natural
to approach the problem from a behavioral game perspective,
where the players are modeled as irrational agents. OJ

IV. BOUNDED RATIONALITY

In this section, we will introduce the models of non-
equilibrium solution concepts that will be used to analyze the
sensor attack problem when players of bounded rationality are
involved in the process.
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A. Cognitive Types and Cognitive Hierarchy

We have shown in Section III, that the consistency with
equilibrium profiles depends heavily on the optimality of each
individual response, as well as, the mutual subjective belief
consistency, i.e., how close each player can approximate (by
measuring the cost) the true strategy of every other player.

In this work, we will focus on agents that optimize over
their perception of the game, but who are heterogeneous in
this perception. Towards this, we utilize the framework of
cognitive hierarchy, by following the work of [11]. According
to this bounded rationality approach, the players in a game
are differentiated via a “cognitive level,” which describes both
their behavior, and their beliefs regarding the rest of the
players. This will lead to heterogeneous strategies depending
on the level of thinking of an agent, which is denoted by
the appropriate superscript, i.e., for the strategy of a level-
k player—himself indexed by j—will be denoted by s% =
(W?Oa w;'CO)'

Remark 4: The emergence of non-equilibrium play in games
has been extensively investigated [5]. Since the Byzantine
problem can be utilized to model a plethora of different
realistic scenarios, this apparent irrationality of the players
can be attributed to different causes. Specifically, for human
players, it might stem from limited cognitive ability, lack of
time or incentive to succeed, while for autonomous agents,
the computational complexity of computing Nash equilibria
can lead to boundedly rational behavior. ]

Level-0: In order to initialize the iterative best-response
process, we consider the behavior of a “level-0" attacker, i.e.,
of an attacker that does not perform any steps of strategic
thinking. This policy, denoted “anchor policy”, has been shown
to affect the decision making process of higher-level thinking
players in some cases. Even in the presence of such sensitivity,
these is no consensus over what ought to constitute a level-0
policy, with suggested approaches being uniform distributions
over the action space, focal points of the game or even com-
plex solutions, such as no-regret policies [25]. In this work,
we assume that a level-0 attacker, indexed by j, uniformly
randomizes over the number of sensors they can attack, leading
to the decision vectors, wfy = w; = ﬁ S 6 (w — ).

Higher-level policies: According to the limited depth of
reasoning approaches to bounded rationality, every player has
a limit £ to the number of strategic that they can perform.
Moreover, in cognitive hierarchy, every level assigns a specific
belief over the levels of the rest of the players. Following
[11], we claim that a level-k player reasons that the rest
of the players’ levels are distributed according to a Poisson
distribution over [ = {1,...,k — 1}. For example, consider
the attacker j, belonging to cognitive level k. The iterative
strategic thinking of this player is based on the belief that the
probability of another player i belonging to a level | < k is

)\lefk
) = S ®)
h=0 h!

where A is the Poisson parameter that uniquely defines the
distribution. Following [11], we will model every player as
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deterministically optimal. Thus, each level-£ thinker acts based
on his best-response given his subjective beliefs.

Remark 5: Even though there is a plethora of different
bounded rationality solution concepts for games—many of
which consider models of subjective beliefs—in this paper
we utilize the approach of [11], where those subjective
beliefs follow a Poisson distribution. Such distributions—
being univariate—are able to capture phenomena of bounded
rationality with limited computational complexity. Specifically,
by adjusting the mean of the Poisson distribution, one can
shift the level over which most agents reside, while keeping
the probability that agents are extremely low, or extremely
high level, relatively small. Furthermore, those beliefs are
assumed by each agent to be true during the design of their
strategy. ]

B. Iterative-Thinking Process

Level-1: For ease of exposition, we present the analysis
of the approach for 3 attackers. All the results will be shown to
generalize in a straightforward manner. Initially, let us consider
a level-1 attacker that has access to my sensors. Such an agent
operates based on the assumption that the rest of the attackers,
are level-0, i.e., they uniformly randomize their actions. The
reward of this attacker, conditioned by the randomized policies
is

1 1
m2+1) (m3+1)

2 Z fRf(z)oo(z —i—j—k)dz =B prn2t

=0 k=0 i=0 0

Jll(s}aslfl) = (1 = Perr) 2]911'(
i=0

s 1 1
—Pp q1i
e ZO (m2 + 1) (mg + 1)

1=

i i fR f(2)o1(z—i—j — k)dz — B 2 quln%. )

§j=0k=0 i=0 il

Due to the independence of the decision vectors p;, ¢; as well
as the independence of their corresponding terms in the reward
function, it is possible to analyze them separately. Therefore,
the level-1 attacker maximizes deterministically for p; and g;.

Let us denote by p}, and ¢j, the elements of the decision
vectors there are derived as best-response strategies to level-0
players. As player 1 performs further strategic thinking steps,
he needs to compute every other players’ current level strategy
as well as perform one more optimization step. This fact
highlights the possible computational intractability of Nash
equilibrium policies, which are infinite best-response paths for
the joint strategy profile of all the players.

Higher-level of thinking: When computing any higher
level strategy, agent 1 holds certain beliefs on the frequency
of each cognitive level. On a multi-player, NZS game, this
can be modeled through the following reward function, for
arbitrary number of attackers n, and arbitrarily large thinking
iterations as

my
Jf(sllc7s’il) = (1 _perr) 2 pllcil

i1=0
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mn,p

k—1 k—1 mao
( Z Qi(h) T Z g(h) Z pg@ T Z pgip00i>
h=0 ip=0

h=0 i2=0
ma 2
P14
— 5y il
i;) 1 10
my k—1 k—1 mo m’"p
k j j h h
— Perr Z (Ju‘( Z gi(h) T Z gi<h) Z QZLiz e Z Qpipcli)
i=0 h=0 h=0 i2=0 ip=0
ma q24
— B ) aiiln—, (10)
i:ZO 14 m
where co; = § f(2)oo(z — i — j — k)dz and ¢; =

o f(2)o1(z —i—j—k)dz.

It is possible to find a closed form solution for the strategy
of an attacker of level-k by solving the corresponding maxi-
mization problem.

Theorem 1: Consider an attacker, arbitrarily indexed as 1 of
cognitive level-k, with a reward function given by (10). The
best-response solution, expressed through the probabilities pq;
and ¢1;, when the observed real event is X = 0 and X =1
respectively, is given by

&
T10€7°
Pli= Sy (1)
Zj:l T10€70%
where
k—1 k—1 ma Mnp
ko j J h hok
Coi = Z AR Z 93 (h) Z P2y Z Ppi, Cois
h=0 h=0 i2=0 ip=0
and
~k
T11€°L8
q1i = np ok (12)
j=1T11€71
where
k—1 k—1 mo Mny
sk J J h h )
€1y = Z gy (h) -+ Z g3 (h) Z 42i, " Z pi,Cli-
h=0 h=0 is=0 ip=0

Proof. Initially, we formulate only the optimization over p; to
write

mi mi p2
k Ak 2 Li
m?x Z PriCo; — B Z plilna
i =0 =0
my
subject to: Z pk. =1 and p¥; > 0.
i=0
Thus, we can define the Lagrangian of the optimization in
terms of the multipliers p, and v as

mi ma p2 mi mi
L= phét— B, plin= + u( ok - 1) + > vipi.
i=0 i=0 710 i=0 i=0

We apply the Karush-Kuhn-Tucker conditions, which lead
to a set of m; + 1 equations

=0=ch — B(1 —Inmp +Inp3,) + p +v; =0, (13)

(7P]fz'

my;

as well as the complementarity condition )™, vipk = 0.
Since the term In(p¥) will be undefined if any p; = 0, we
can determine that the optimal solution will be an interior point
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of the simplex. As a result v; = 0, V4, and solving (13) for pf
Ak

. ko €01 A_q . . my 1
yields, p? = mpe? fﬂ . Since it holds that ijlpj =1,
we get, p; = —H0———. m

V. DISCUSSION AND VALIDATION

A. Convergence to the Nash equilibrium

We can leverage now the special structure of the game to
show that the cognitive hierarchy approach converges to the
equilibrium as all the agents increase their cognitive abilities.

Lemma 2: For every potential game with infinite, compact
action spaces, every improvement path, i.e., a sequence of
profiles in which one player optimizes at each step, terminates
arbitrarily close to an equilibrium.

Proof. The proof follows from [24]. |

Theorem 2: Consider the coordinated attack game played by
attackers of bounded rationality. As all the attackers increase
their cognitive level-k, the strategy profile converges to the
Nash equilibrium.

Proof. The single parameter used in the Poisson distribution
of the intelligent levels, i.e., A, is the average level of all the
players. Therefore, if k& — oo for all the players, then A\ —
co. This leads to all the players having mutually consistent
beliefs over everyone’s strategy, i.e., 3g(h), h € N, such that,
limy o0 g7.(h) = g(h), Vj € {1,...,n,}. Coupled with the
deterministic optimality assumption, the iteration converges to
a Nash equilibrium due to Lemma 2 and the properties of
cognitive hierarchy [26]. [ ]

B. Cooperation Between Attackers

In this section, we will analyze the behavior of the coordi-
nating attackers when there is no cost of attacking/stealthiness.
‘We note that in this case, the reward function for each attacker
will be Vj(s;,s—;), given by (7). In such a scenario, it is
possible to explicitly compute the Nash equilibrium of the
game for agents of unbounded cognitive capabilities, given that
the decision making is known and all the players are aware of
the underlying game.

Theorem 3: Consider the problem of attack coordination
with reward functions given by (7). Let us assume that,

f f(z)oo(z —a)dz < J f(2)oo(z —b)dz < a < b,
R R
(14

—f f(2)o1(z —a)dz < —J f(2)o1(z —b)dz < a < b,
R R as)

then, the Nash equilibrium profile of strategies for this game
is given Vj € {1,...,n,} by

1, when 7 = m;,
= 16
Pi 0, otherwise, (16)

ublications/rights/index.html for more information.
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and

1, when ¢ = 0, a7

Qji = .
" 0, otherwise.

Proof. It can be seen that the game of attack coordination
without the stealthiness reward is a game of identical interests,
since every player maximizes over the same reward function

(7). Consequently, by assumption (14) it holds that

J;R f(z)og(z —i — Z m;j)dz <

Jel—;

JRf(z)ao(z —my; — Z m;)dz,

Jel_;

(18)

and
- j (2o (= — i)dz < — f f@oo(2)dz, (19)
R R

for all attackers 1.

Utilizing now the inequalities (18) and (19), we can find
a bound of the reward function (7), as, Vj(s;‘, s*,) =
Vi(si,s*;), Vje{l,...,ny}, which, by definition, constitutes
a Nash equilibrium and completes the proof. [ |

C. Simulation Results

In order to highlight the behavior shift as different param-
eters change, we utilize a set of ng = 100 sensors, where
n, = 3 attackers have access to m; = my = mg = 10
sensors each. The cost function is constructed according to
(10) where the estimator strategy—known to the attackers—is
a probabilistic majority voting mechanism as described in [7].
The anchor strategy of each attacker is a uniform distribution
over their available actions while the probability of erroneous
measurement is homogeneous throughout the sensors and is
chosen to be pe = 0.1.

Figure 1 shows the different optimal actions for an attacker
as their intelligence level increases. For this scenario, the dis-
tribution of intelligence levels led to a Poisson parameter value
of A = 5 and the attackers were considered relatively selfless,
with the weight on stealthiness chose to be 3 = 5 x 1073,
It is worth noting that due to the high level of intelligence
amongst the attackers, the optimal strategies converge to the
fully cooperative Nash equilibrium. Figure 2, shows that the
selfish component of an attacker’s cost function—in our case
the one corresponding to their stealthiness—dramatically shifts
their behavior. We observe that the limiting behavior converges
to full coordination as 3 goes to 0, a phenomenon that is also
evident in Figure 3 where we present the KL divergence of the
optimal policy of an attacker to the Nash equilibrium corre-
sponding to perfect coordination. As the weight 5 decreases,
the attackers tend to cooperate more.

The importance of accurate attacker modeling becomes
apparent by examining Figure 4, which highlights a crucial
phenomenon arising in NZS games. In this scenario, we
present the accumulated cost of a high-level thinker, operating
in a environments of different levels of intelligence. Although
the increased level of this player shifts their strategy towards
the Nash equilibrium, it can be seen that their optimality is
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Fig. 1. The decision probabilities as the levels of an attacker increase for
A = 5. The strategy converges to the Nash equilibrium, and for small S, this
is close to the probability of attacking all the available sensors.

Sensitivity of attack strategy on 4

0.8

0.6

04

0.2

Fig. 2. The decision probabilities as the weight on stealthiness changes. It can
be seen that the probability converges to a Dirac distribution on the maximum
number of compromised sensors.

decreased when they “overthink by believing that the rest of
the players are of high-level as well, as is shown in the blue
bars. This showcases a scenario where the high intelligence of
a player may create erroneous beliefs due to an overestimation
of the capabilities of their opponents. An important implication
for a security scenario in this case is that Nash strategies might
be inadequate in protecting a system, even against attackers
of limited capabilities due to the “overthinking” effect of the
equilibrium solutions.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a framework to predict the
way decentralized attacking agents with bounded cognitive
capabilities attempt to compromise a set of faulty binary
sensors. To this end, we leveraged results from behavioral
game theory. Through a cognitive hierarchy approach, we
analyzed the expected responses of the attackers with different
intelligent levels via the solutions of iterated maximization
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Fig. 3. The KL divergence of the attack strategies from perfect coordination,
as their selfishness decreases.

The “overthinking’ effect in low-level environments
0.14 T T T
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Fig. 4. The cost function of a highly intelligent player operating in environ-
ments where they believe that the attackers are of high-level and of low-level,
respectively. It can be seen that if the player “overthinks,” it is possible for
them to play more complex strategies and acquire suboptimal rewards.

problems. Results from potential game theory were utilized
to prove convergence of the attack strategies to the Nash
equilibrium as the adversaries increase their intelligence level
and cooperate to inflict the most damage to the system.

Future efforts will focus on extending the framework to
repeated plays, allowing for the attackers to learn the cognitive
abilities of each other, as well as in prediction models for
sets of heterogeneous sensors with real-valued measurements.
Accurate attack prediction models will be used to inform the
optimal detection rule for the CPS in a realistic adversarial
environment, in which the binary measurements can be derived
as alarm signals by redundant fault—detection mechanisms. We
will also further theoretically investigate the “overthinking”
problem that emerges in bounded rationality contexts. Finally,
the computational complexity of the derived expressions with
respect to the problem parameters will be quantified in order
to investigate connections between complexity and bounded
rationality.
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