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Abstract—This article presents a novel scheme, namely,
an intermittent learning scheme based on Skinner’s operant con-
ditioning techniques that approximates the optimal policy while
decreasing the usage of the communication buses transferring
information. While traditional reinforcement learning schemes
continuously evaluate and subsequently improve, every action
taken by a specific learning agent based on received reinforcement
signals, this form of continuous transmission of reinforcement
signals and policy improvement signals can cause overutilization
of the system’s inherently limited resources. Moreover, the highly
complex nature of the operating environment for cyber-physical
systems (CPSs) creates a gap for malicious individuals to cor-
rupt the signal transmissions between various components. The
proposed schemes will increase uncertainty in the learning rate
and the extinction rate of the acquired behavior of the learning
agents. In this article, we investigate the use of fixed/variable
interval and fixed/variable ratio schedules in CPSs along with
their rate of success and loss in their optimal behavior incurred
during intermittent learning. Simulation results show the efficacy
of the proposed approach.

Index Terms— Cyber-physical systems (CPSs), intermittent
learning, operant conditioning, Q-learning.

I. INTRODUCTION

NTERCONNECTED computational subsystems that con-

trol physical devices interacting with the operating envi-
ronment make up a class of platforms called cyber-physical
systems (CPSs) [1]. Implementing decision-making mecha-
nisms aided by artificial intelligence (AI) constitutes a signif-
icant research endeavor that aims to render CPS autonomous.
Various military and civilian domains, such as aerospace [2],
healthcare [3], [4], transportation systems [5], network secu-
rity [6], human/robot interaction [7], and the Internet [8],
find applications for CPS. Subsequently, safety and efficiency
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concerns in the realm of CPS arise due to their exposure to the
human environment in all its complexities. A major challenge
that the Al industry faces today deals with the integration and
adaptation of the “closed-world” laboratory solutions into a
more volatile and unpredictable “open-world.”

It is evident that incorporating reinforcement learning (RL)
algorithms into the decision-making procedures shall allow the
CPS to unlock higher levels of smart autonomy, adaptivity,
and self-governance. Such algorithms in combination with
neuroscience concepts attempt, at a higher level of intelligence,
to aid data sharing and decision making [9]. Data sharing and
decentralized deployment of actions introduce “modularity,”
a double-edged sword, in CPS [10]. While decentralized
learning and deployment remain desirable, they also increase
the number of sensors and actuators interacting with each
other, and the communication network topology modeling this
exchange of information, thus fueling the added complexity of
such CPS platforms. Therefore, existing learning algorithms
create potential gaps for overutilization of resources, loss
in optimal behavior and learning strategies, and increased
vulnerability to malicious agents [11].

Continuous communication and data sharing between the
sensors, actuators, and learning subsystems, a typical assump-
tion in learning algorithms, leads to degradation of com-
munication effectiveness, and increased data-stream exposure
for adversarial agents to exploit and perform a successful
attack. This, along with a discrete action space and state space
limits smart, efficient, and secure autonomy due to an infinite
bandwidth requirement, lack of robustness in learning subsys-
tems, incomplete knowledge of the operating environment, and
inability to detect network compromises.

Behavioral scientists have validated the need for intermittent
data sharing in learning tasks [12]. They have shown that the
central nervous system in human beings minimizes effort and
sorts through impulses and stimuli by maintaining intermittent
signaling. Specifically, the spinal cord transmits a channel of
information and effectively exploits its neural resources via
intermittent strategies to produce a sequence of muscle-bone
interactions that induce movement [13]-[15]. Learning of
tracking movements works similarly via “step-hold” strategies
employing threshold-based rules [12], [16], and leveraging of
analogous mechanisms to explain the learning of rhythmic
movements [17], [18]. Some of those intermittency principles
have been utilized in the context of control systems as well.
Vamvoudakis et al. [19] employ an event-triggered controller,
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informed by an RL algorithm, to achieve target tracking.
Xie et al. [20] bring those ideas to a fuzzy system via the
design of an event-triggered scheduler. Similarly, Zhang and
Yang [21] propose an intermittent updating scheme for an
adaptive controller with the goal of alleviating the compu-
tational burden to the system. Finally, those event-triggered
ideas have been used with H., controllers in [22] alongside
an experience replay-inspired concurrent learning framework.

This article suggests a novel scheme in learning theory and
methodology that exploits the principles of operant condition-
ing [23] to alleviate the load on communication channels of a
CPS. Scheduling methods in the context of CPS discussed in
this article evolve with continuous dynamics in an adversarial
environment. The introduction of interval-based reinforcement
signals over predetermined “fixed intervals” and stochastic
“variable intervals” pave the path for the introduction of
ratio-based methods, as discussed in operant conditioning.
Ratio-based methods receive reinforcement signals from the
environment upon performing a predetermined or stochastic
number of positive actions, namely, the “fixed ratio” and the
“variable ratio” schedules, respectively.

II. BACKGROUND ON CLASSICAL REINFORCEMENT
LEARNING

Consider a CPS evolving as follows:

X(t) = Ax(t) + Bu(t), t >0, x(0) =xg (D)

where x € R” is the state vector of the system, u € R™ is the
control input or decision vector of the agent, and A € R"*"
and B € R™" are the plant and input matrices, respectively.

To quantify the agent’s objectives, we shall define an
appropriate performance index that will serve as the reward,
given by

J(x0); u) = %/Ooo(xTMx + uTRu)dT 2)

where M > 0 and R > 0 are user defined matrices of
appropriate dimensions. The autonomous agent wishes to find
the policy u*(r) that optimizes the CPS operation in the sense
that 7 (x(0); u*(2)) < J(x(0); u(t)), Vu.

In order to derive a feedback rule that enables the agent to
extract decision policies autonomously, our ultimate goal is to
find the value function

1 o0
V*(x) = min 5/ (xTMx + uTRu)dr Vx, t>0 (3)
u t

that evaluates the cost-to-go from any given initial state x of
the CPS.

Furthermore, we can express the Hamiltonian function asso-
ciated with (3) and (1) as

oV 1 1 VT
Hlx,u,— ) = =x"Mx + —u"Ru + — (Ax + Bu) Vx,u.
ox 2 2 ox

According to [24], the optimal value function V*(x) satisfies
the following Hamilton—Jacobi—Bellman (HJB) equation:

minH(x,u, 6612 ) =0. 4)

X
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Solving for the optimal policy u* yields
oV*
u*(x) = —R'BT— WVx. (5)
ox

Finally, it is known that for a functional (2) and sys-
tem given by (1), the optimal value function V*(x) takes
a quadratic in the states form, i.e., V*(x) = xTPx and
P > 0, Vx. Direct substitution into (4) yields the following
Riccati equation:

ATP+ PA+M —PBR'BTP =0. 6)

Even though the problem of deriving the solution of (6)
has been investigated before [25], the solution of the non-
linear optimal decision making problem still suffers from
various facets of the curse of dimensionality introduced by
Bellman [24]. In the continuous-time state and action case,
this suffers from the difficulties arising in analytically solving
(4) without any knowledge of the system (1).

To solve the optimal feedback problem without the need for
explicit knowledge of the system matrices, we will employ
approximation-based RL methods. In order to derive approxi-
mate solutions to (4) and (5), we employ two distinct approxi-
mation structures, thus expressing the unknown value function
and optimal policy as linear in the parameters inside a simply
connected, compact subset Q C R", V*(x) = 0:T¢ (x) +e€,
and u* = HJTqﬁu(x) + €,, Vx € Q, respectively, where
#() : R* — R! is the critic basis, ¢,(-) : R” — Rk the
actor basis, 0 € R’ the optimal critic weights, 0 € Rla the
optimal actor weights, and € and ¢, the approximation errors
of the critic and the actor, respectively. However, since our
system (1) is linear and the cost (2) is quadratic, we can
employ approximation in the whole space Q = R”" and the
approximation errors will be zero.

In order to assess the current approximation of the critic
and the actor weights, we introduce the critic error signal

ov
e(t) = 'H(x, i, —) Vx
ox

and the actor error signal

eu(t) = 07 p, — argmin H(x, i, %) Vx
u ox
respectively.

Once the appropriate reinforcement signals for the approx-
imation schemes have been transmitted from the environment
to the agent, a number of different parameter estimation
algorithms can be employed to update the weights 0, and &,.

Throughout this work, we will employ a modified and
normalized gradient descent algorithm, which minimizes the
squared normed errors, E.(t) = |le()|* and E,(t) =
el (t)e,(t). Thus, the update laws are computed as follows for
the critic weight estimates V¢ > 0:

1 ok, " o . )
(1+07s)" 00, “(+070)" "

where 6 (t) = ¢(t) — p(t — T) and a. € R" is a tuning
parameter that determines the speed of convergence.

éc(t) = —a,
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Similarly, the update law for the actor weight estimate will
be Vt >0

(9; _ 1 oFE,
' “(1+ ¢T(0)pu (1)) 8Os
P 10 B "
(14 T pu(1))

where @, € R" is a tuning gain that determines the speed of
convergence.

To obfuscate the need for partial knowledge of the sys-
tem dynamics which arises in formulations involving linear
and control-affine systems, Vamvoudakis [26] introduced a
Q-learning algorithm for continuous-time, continuous-state,
and action problems. A state-action dependent function,
i.e., Q-function, which maps both the current state and the
decision vector to the cost-to-go, is constructed as follows:

ov*
Q(x’ M) = V*('x) + H(-xa u, —)
Ox
1 1
= V'(x)+ ExTP(Ax + Bu) + E(Ax + Bu)"Px

+ LT m + LRy v
—x'"Mx + -u Ru Vx,u.
2 2

The value function and the Q-function achieve the same

minimum value. In compact form, the Q-function becomes

P+M+PA+ATP PB}U

1
Q(X,M) = EUTI: BTP R

1 [0 © 1 .-
= U 2% 2NIU = -UTQU Vx,
2 [qu QUJ U QU Wxu
where U = [x" u"]" is the augmented state-action regression

vector. The compact Q-function, specifically the matrix Q,
comprises of data-driven basis weights, activated with states
and policies, encoded in the critic weight vector.

The construction of the basis, which is shown in Fig. 1(a),
allows complete approximation of the Q-function over finite
time intervals of duration T € R*. Each arrow corresponds to
a critic weight; these critic weights have dynamics that capture
the integral Bellman error [26] in appropriately approximating
the value function. We ensure this by setting the following:

O(,u) = 0." (U U)
Q(x(), u(t)) — Q(x(t — T),u(t — T))
+ % /FT (xTMx + uTRu)dt

e :

ee =01 UMRUW) T UE-T)QU( —T))
+ % /rlr (xTMx + uTRu)dt )

e, = 93)6 + Q;ul qux. (10)

Algorithm 1 presented next describes the Q-learning frame-
work with a “classical” RL structure.

Static Event-Triggering Q-Learning: The learning method
presented earlier, depends on a continuous stream of mea-
surements and updates from the environment that inform
the evolution of the critic and the actor approximators. The
problems arising from applying such continuous-time update

x1 x1
x2 x2
*x3 *3
ul ul
u2 u2
(@)
%1
ul
X2
u2
x3
(b)

Fig. 1. Blue boxes in (a) stand for the states in the system while the orange
one shows the control inputs. The arrows summarize the basis described by
all combinations of the three states and two control inputs. Whereas, actor
weights indicated by the arrows in (b) establish connections between each
state (in blue) and each control input (in orange). The relationship captured
by the arrows stands for a single actor weight. There are mn actor weights
if there are n states and m control inputs. (a) Construction of the polynomial
basis employed in continuous state Q-learning. (b) Activation functions for
Actor Weights.

laws in complex systems, where the communication channels
have finite resources, have been extensively investigated [27]—
[29]. In the context of Q-learning, there exist event-triggered
mechanisms to inform actor updates, instead of a real-time
update schedule. To this end, [30] suggests that the actor
subsystem samples states in an event-triggered manner as:

x(rj), Vt e (rj,er]

x(), t=rt

J+l1

(@)=

where {r;} is a monotonically increasing sequence of time
stamps to sample state measurements. In the static event-
triggering framework, those instances are derived as

ri=min{t |0 <t <r;_y, pt) <0}
where the triggering signal p(f) is
p() == (1= B2 AMDx|* + AR W x> = L*Z(R)lle]®
with # € (0,1) and L a Lipschitz of the feedback control

mapping. The reader is referred to [31] for details on the
framework.
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Algorithm 1 Continuous Update in the Actor-Critic Frame-
work
1: Given initial state x, initial critic weights 90, initial actor
weights 0,,
2: procedure

3:  Propagate ¢, x(¢) using (1).

4 Compute u(t) = —Kx(t) where K = —0T.
50 0 1 < Ty

6: Add probing noise u(t) < u(t) + upg(t)
7. end if

3:

. Propagate 0. and 0, (9C and 0, according to update laws
as in (7) and (8) respectively).

9:  Estimate error in the Critic weights, e., and Actor
weights, e,, as in (9) and (10) respectively.

10. if e, A0 and e, # 0

11: Go to step 8

12:  end if

13: end procedure

>e, ~0and e. ~0

In this case, the actor updates follow:
0, Vt € (rj,rj_H]

9; =10, (r Pu T
u\llj—1) —Oy—————H¢€,\'j),
( J ) (1 +¢E¢”)2 ( -/)

I =rj.

(1)
This procedure is described in Algorithm 2

Algorithm 2 Event-Triggered Updates in the Actor-Critic
Framework
1: Given initial state x, initial critic weights 0., initial actor
weights Q,,
2: procedure
3:  Propagate ¢, x(¢) using (1) Vt € (rj,r; +1].
4:  if If t =rj, then set £(¢) :=x(¢), YVt € (rj,r; +1].
5. else X(1) = x(r;), Yt € (r;,rj+1] and use the previous
control input with zero-order-hold.
6: end if
7. Compute u(r) = —Kx(r) where K = —éuT.
8: if t < Ty
9 Add probing noise u(t) < u(t) + upg(t)
10:  end if
11:  Propagate 9c and HAM according to update laws as in (7)
and (11) respectively.
12:  Estimate error in the Critic weights, e., and Actor
weights, ¢,, as in (9) and (10) respectively.
13: if ¢, #0 and ¢, # 0
14: Go to step 8
15:  end if
16: end procedure

>e,~0and e. ~0

III. INTERMITTENT REINFORCEMENT LEARNING

In this section, we aim to construct intermittent learning
frameworks for critic networks, unlike the algorithms pre-
sented in Section II, wherein agents will remain connected
through the cloud. The existence of a centralized processing
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unit within the cloud will enable improved utilization of
the network resources. Acting as a supervising mechanism,
we design intermittent rules that are implemented in the cloud
and determine the transmission time, the transmission content,
or both, on the data from which the agent will learn.

Remark 1: While previous work on reduction of trans-
mission loads for learning-enabled CPS has focused on
event-triggered updates for the actor and the controller in
an effort to stabilize the system [19], [30], [31], the pro-
posed intermittent learning framework aims to optimally use
environmental measurements to facilitate expedited learning
and, therefore, introducing discontinuities in the critic’s tuning
mechanism, instead of the actor’s. ]

Toward constructing the intermittent RL framework, we turn
to the theory of operant conditioning which originated in
Skinner’s [23], [32], [33] work. During his experiments,
Skinner [34] reported the emergence of intermittent learning,
which, furthermore, could be scheduled via different methods.
Such learning is used instead of continuous reinforcement once
the desired response is conditioned by continuous reinforce-
ment and the reinforce-er seeks to reduce or eliminate the
number of reinforcements necessary to encourage the intended
response and to slow extinction. Skinner found that continuous
reinforcement in the early stages of training seems to increase
the rate of learning.

A. Schedules of Intermittent Learning

In this section, we will introduce the four different schedules
proposed in the framework of operant conditioning.

1) Fixed Interval Schedule: This update schedule focuses on
rewarding the training agent every fixed interval of time. This
allows for the agent to expect a reward every fixed interval
of time despite the occurrence of negative behaviors, given at
least one occurrence of desirable behavior occurs in the time
interval. The training agent learns the optimal behavior slower
than the continuous reinforcement schedule but retains estab-
lished optimal behavior for longer, thus making it resistant to
temporary changes in the operating environment.

Through this schedule, the supervising cloud transmits the
reinforcement signal to the agent after a set amount of time.
In describing this approach, we define the transmission time
vector, given by {r j}iio, where t; is the j-th consecutive
sampling instant that satisfy 0 <# <# <--- <t; <--- and
lim j>oolj = 00.

This way, the continuously evolving agent, utilizes a zero-
order hold (ZOH) structure on the weight estimates, resulting
in the overall hybrid dynamics combining the continuous-time
interaction of the agent with the environment (1), and the
intermittent update laws

r# 1

- T( ) — .

e. (t =t
2 i) J

(1 + O'TO') ‘

for the critic, and similar for the actor, the continuous update

law given by

04 = 0:(1j1) — e (12

Pu T
€y
) 2

1+ T4

T
= — = —auxe,.
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Remark 2: It can be seen that while we consider inter-
mittent updates in the critic network, the actor operates in
a continuous fashion. It is possible to have both networks
update with specific triggering schedules; however, for ease
of exposition, we retain a simple actor update law, so that
we are able to focus on the different critic schedules; which
constitute the main contribution of our work. There is a large
body of literature in event-triggered RL algorithms where the
actor-network is updated intermittently [19], [22], [31], [35],
whereas this is not the case for the critic. (]

Note that in a fixed interval schedule the reinforcement sig-
nal is transmitted—and, by extension, the weight estimates are
updated—over predetermined intervals, such that the update
instances {¢;} satisfy At =1t;4; —t;, Vj € {1,2,...}, where
At is the value of the fixed interval. Algorithm 3 describes the
learning method of an autonomous agent under fixed interval
operant conditioning.

In practice, the algorithm used is outlined in Fig. 2(a)
wherein the critic updates every t; = 2 s, and in the meantime,
we employ a ZOH mechanism to mitigate the tuning action
of the critic weights.

2) Variable Interval Schedule: According to this scheduling
approach, the supervising cloud transmits the reinforcement
signal to the agent according to a time-based stochastic
triggering mechanism. Rewarding on the variable interval
reinforcement schedule occurs at specific timestamps that
follow a uniform, a normal, and an exponential distribution.
The use of different distributions allows for varied learning
times and better retention of optimal behavior over time.
The triggering instances {t;}, j € {1,2,...}, are such that
the algorithm selects a schedule with variable update time
stamps ¢; € [0, Texp]. At these specific times, the critic weights
update according to steepest gradient descent tuning laws in
(7), meanwhile not updating at other times. These timestamps
are subject to change based on the type of distribution used.
For example, the exponential distribution has a higher likely
hood to pick values near Te,, while the normal distribution
will likely concentrate update timestamps in the middle of the
exploration window. Algorithm 3 describes this procedure that
is visualized in Fig. 2.

3) Fixed Ratio Schedule: A fixed ratio update schedule
reinforces every time a desirable or optimal action takes place
a fixed number of times. These updates encourage the training
agent to perform the desired task many times in order to earn a
reward or update the critic. This reinforcement method ensures
a very fast response rate. Updates occur more often, and
upon exploring portions of the state space that reduce the
cost. To formulate ratio-based schedules in control systems,
it is imperative to define an appropriate metric that differen-
tiates desirable behaviors from undesirable ones is integral to
intermittent reward generation. The metric proposed in this
work involves the use of a buffer that collects information on
the number of desired behaviors. Once the buffer has stored
a predetermined number of behaviors, the supervising cloud
transmits the appropriate reinforcement signal. The criteria
were chosen to be met to qualify as “desirable action” is

Algorithm 3 Fixed/Variable Interval Update Schedule for
Operant Conditioning in Actor-Critic Framework

1: Given initial state x, initial critic weights 90, initial actor
weights d,, and
1) typ = updatelnterval for fixed interval update sched-
ule, and
2) sequence of t,, = [updatelntervals] for variable inter-
val update schedule

2: procedure

3:  Propagate t, x(t) using (1).

4. Compute u(t) = —Kx(t) where K = —0T.

50 0 1 < Ty

6: Add probing noise u(t) < u(t) + upg(t)

7. end if

8:  while mod (7, ;) ~ 0 )

9 Propagate . using the update law for 4. as in (12)
for 0.05 s.

10: end while .

11:  Propagate 0, using the update law for 0, as in (16) for
all time t.

12:  Estimate error in the Critic weights, e., and Actor
weights, ¢,, as in (9) and (10) respectively.

13: if e, Z0 and e, #0

14: Go to step 8

15 end if

16: end procedure

>e, ~0ande. ~0

given by

_ AT
X=0o0

13)

estimates how well the current estimate of the critic weights
evaluates the value function between two points of time in the
exploration window.

The resulting hybrid system has the following form:

T
A —a.— e, (tj), when X
(1+ 0T0)2 )
is negative for a fixed number of actor updates
6’:, = —auLeT = —auxeg (14)

(1+¢lp) "

where a, € RT is a tuning gain. In the fixed ratio
update schedule, the reinforcement signal enables critic weight
updates when X remains negative for a fixed number of
times, e.g., 75. After updating the critic weights, we go
back to employing the ZOH until X criteria is met again 75
times, as outlined in Fig. 3 and descriptively showcased in
Algorithm 4.

Remark 3: For computational purposes, in Algorithm 4,
the critic update occurs for ¢ = 0.05 s. Theoretically, this
jump in critic tuning law occurs “instantaneously;” however,
to realize this using Runge—Kutta methods for numerical
integration, we must provide some buffer time oz. 0
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Update
. Critic |tj= {2,4,6,8, 10...}‘
| Critie b/ weights
(@)
ETiss i | e
2 ;_‘}
Update
— Critic t:={1,2,6,11...}
(b)
Fig. 2. Flowchart visualizing the interval-based reinforcement schedules. (a) Fixed interval. (b) Variable interval.

— -

Fig. 3.

4) Variable Ratio Schedule: Variable Ratio, the most unpre-
dictable rewarding policy, generates the fastest response rate
while also ensuring slowest extinction rate by embedding a

counter|update ratio = 0
States ™
Control |0———'
Update
= Critic Fixed Ratio:
Critic Welghts The update ratio
remains constant
Variable Ratio:
The update ratio
Actor changes every
update
—»— Counter=o0

Flowchart visualizing the fixed ratio and variable ratio update schedule implementations.

counter|update ratio # o

stochastic process to the transmission algorithm. Once again,
the criterion for a desirable action, given by (13), estimates
quality of value-function evaluation by critic weights to trigger
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Algorithm 4 Fixed/Variable Ratio Update Schedule for Oper-
ant Conditioning in Actor-Critic Framework

1: Given initial state x, initial critic weights 90, initial actor
weights 6,, and
1) update ratio Ry, for fixed ratio update schedule, and
2) vector of randomized update ratios Ryg(¢) for vari-
able ratio update schedule.

2: procedure

3:  Propagate ¢, x(¢) using (1).

4 Compute u(t) = —Kx(t) where K = —0T.

50 0 1 < Ty

6: Add probing noise u(t) < u(t) + upg(t)

7. end if

8 while sgn@T(U(QUt) - Ut —T)QU(t—T))) <0

9 counter <— counter + 1

10: if counter = Ry,,q(¢) for variable ratio and counter =
Ry for fixed ratio updates

11: Propagate 6, using the update law for 0, as in (14)
for 0.05 s.

12: counter <— 0

13: end if

14:  end while )

15:  Propagate , using the update law for &, as in (16) for
all time t.

16:  Estimate error in the Critic weights, e., and Actor
weights, ¢,, as in (9) and (10) respectively.

17: if e, #0 and e, # 0

18: Go to step 8

19:  end if

20: end procedure

>e, ~0and e. ~0

future updates. The critic network weights, which update
every time X, remain negative for a variable number of
times, dictated by a uniform, a normal, and an exponential
randomizer.

The algorithm, visualized in Fig. 3 and outlined in Algo-
rithm 4, represents the critic update procedure undertaken to
implement this reinforcement schedule, with an optimal policy
given as

u*(x) = arg min Q(x, u) = — Q. Quxx. (15)

Actor weights populate the feedback gain matrix, derived
from the Q-function upon employing the stationary condition,
in (15). These weights correspond to each arrow shown
in Fig. 1. The relationship between the states and the actor
weight matrix, given by i(x) = 93 (x) induced the actor-error
ey = HAuTx + Q;ul Quxx.

The tuning law employed to mitigate the error in (10)
between the actor weights approximating the feedback gain
matrix and that obtained from the stationary condition
applied to the Q-function, ensures that the actor weights
tune appropriately to produce the optimal policy. This tuning
law, given by

1
, 6(5 ||eu||2)
A o\ 7 T

0, = —o, — = —auxe,

16
a0, (16)

uses the error in actor weights and provides dynamics for
these weights. Finally, appending the states, critics, actor, and
Bellman error along with their dynamics, numerically com-
pute trajectories which completes the cycle of synchronous
learning.

IV. ASYMPTOTIC STABILITY OF STATES, CRITIC
WEIGHTS, AND ACTOR WEIGHTS

We define estimation error for the critic and actor weights as
0.:=0.—0., and 0, :== —Qxy ;u' — 6,. The critic estimation
error dynamics can be summarized as follows:

; [;é[j
oo ~ _ 17
T

while the actor estimation error dynamics can be shown by

0, = —auxngu — auxxTQXUR’l. (18)
Assumption 1: For each operant conditioning update sched-
ule, we assume that the sequence {¢;}; of updating time
instances is such that lim;_, o ¢; = oo. O
Remark 4: Assumption 1 implies that the update process of
the critic network does not terminate during the system run,
even under probabilistic schedules. 0
Initially, the following lemma and fact are needed.
Lemma 1: Consider the critic error dynamics given in (17),
which can be rewritten as

éc =0, t#£t;
- ™A _ at 19)
0F = (I —acAmAY)O:(1;), t=1;

wherein Ay := (6/(1 4+ 06"0)). The critic error dynamics

evolve by means of an infinite sequence due to Assumption 1.
This sequence converges to zero, i.e., [|f.]| — 0 as the length
of the sequence tends toward infinity (f — ©0).

Proof: According to the conditions for exponential conver-
gence of LMS in [36]; and when the signal Ay is sufficiently
and persistently excited, this result follows. n

Fact 1: The entrywise norm of a submatrix is always at
most the entrywise norm of the parent matrix itself. For
example, ||Q(,)|| < |16, This is adopted from [37]. 0

Now, we are able to show stability and convergence of the
system via the following theorem.

Theorem 1: Consider the system dynamics given by (1),
the critic approximator error dynamics given by (17), actor
error dynamics given by (18), and the optimal control given
by K = —93 . The critic dynamics are given by (14) and the
actor dynamics are given by (16). Then, the equilibrium point
of the closed-loop system with state y := [xT,écT ,guT 1% for
initial conditions y (0) is asymptotically stable given a tuning
gain for the hybrid critic tuning a. is picked according to

2[A(M 4+ QxR Qux) — 2(Qxu Qux) ]
57.(R)

l<a, < (20)

where J is of unity order.
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Proof: To prove stability of the hybrid, intermittent
learning model, we analyze the dynamics first. We write the
following Lyapunov function:

V=Vi+W+W
I ¢ | B By v
=5 Px + §||<9€|| + Etr{eu 91,}. 21

Taking the time derivative of V' during flow trajectories,
when t # t;, and keeping in mind that the critic weights, 0.,
are constant, we get

V = xTP(Ax + Bi) + tr{é}éu}. 22)

This can be further reduced to
V = xTP(Ax + Bi) + u{070,]
= xTP(Ax + Bu* — Bégx)
—a,tr{0; xx"0, + ayxx" O R}

Defining 77 as follows and using (5) and (6) and using
Young’s Inequalities, we get the reduction:

T, = xT"P(Ax + Bi)
1 ~
= EXT(M + quR_lqu)x - xTque;[‘x

1.
= _|:i(M + quR_1 qu) - Ei(ququ):| ||x||2
1 ~
+ I 01 (23)
Defining T3 as follows provides the bounds:
T; = —autr{ggxxTéu} — autr{auxxTQwR’I}
= _% ”ngqu - autr{é;,rxxTquR_l}o (24)

Following result in Lemma 1, where we establish that the
discrete infinite sequence governing §,—which is independent
of the rest of the system states—is asymptotically stable under
appropriate persistence of excitation conditions, according
to [36] and [38]. Thus, we can conclude that ||8,] — O is
piecewise constant, discrete jumps. Thus, we can conclude
that 7> = (1/2)]10.]> — 0.

Putting (22), (23), and (24) for flow dynamics, we get

. 1.
1% = _[i(M + quRilqu) - Ei(ququ):|”x”2
1 - < ~
= 5 (@ = DIX0 — autr{fxx" O R ™'}

Now, taking Lemma 1 along with Fact 1 to rewrite
o, tr{0TxxT O R7'}, we have

. 1-
1% = _[i(M + quRilqu) - Ei(ququ):| ”x”2
1 ~ 0yl
=5 (@ = DG + == AR 1. (25)
From (25), as long as (20) holds, the equilibrium point (ori-
gin) is asymptotically stable. ]

This completes our stability analysis for the proposed oper-
ant conditioning framework.
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V. SIMULATION AND RESULTS

Simulations serve to validate our results from an operant
conditioning standpoint. This article uses a linear model of
the F-16 fighter jet [39] with three states and two actuators,
with the dynamics and parameters given by

~1.0189 —0.9051 —0.0022 0 1
=] 08223 —1.0774 —0.1756 |x+ |0 1 |u

0 0 —1.0000 11
M = diag([1 1 1]), R = diag([5 5])

a. =50, a, =2, Txp=40s, T =0.001s.

Running the framework multiple times drew up error bars
and the region of likelihood to update for critic weights. Figs. 4
and 5 visualize this.

The distribution functions, namely the normal, uniform,
and exponential distribution functions, used to trigger updates
in the variable interval and variable-ratio update schedules
introduce unpredictability to the updated law. This increases
the learning rate and produces a “behavior” that lasts “longer.”
The error bars in Fig. 4 capture this unpredictability, and the
degree of change in the adaptive tuning laws. For example,
the variable interval reinforcement schedule using an expo-
nential distribution, in Fig. 4(c), shows the most uncertainty
in update pattern and tuning behavior, while the variable
ratio reinforcement schedule using a uniform distribution,
in Fig. 4(b), shows the least divergence. The confidence inter-
val lines, shown in red, corresponding to the upper confidence
interval, and blue, corresponding to the lower confidence
interval, represent 68.3% confidence that the critic weights
will lie inside this interval.

The mean and standard deviation of an exponential distri-
bution, given by the ratio (1/1), where 4 = 0.01, chosen
for inherent similarities to Poisson process models updates
as a random arrival pattern [Fig. 4(c) and (d)]. The uniform
distribution function has compact, finite support and selects
any number in the allowable range, given by 60-100, by the
same probability.

When update ratios are selected from a uniform distribution,
Fig. 4(b), we see very tight bounds in the confidence interval,
while variable interval update schedule, Fig. 4(a), shows looser
bounds in confidence. This likely arises because the learning
agent updates its critic weights whenever it explores positively
reinforcing state—space domain repeatedly for a number of
times, X that lies in a small range of values. Ratios strictly
between 60 and 100 are very similar, compared with those
generated by the normal and exponential distributions.

Normal distributions have infinite support and can generate
update ratios that are very large or very small to diversify the
tuning law and creating looser confidence intervals, as shown
in Fig. 4(e) and (f). In general, the variable-ratio update laws
have smaller error bars than the variable interval update laws.
This implies that the variable interval update schedule remains
less predictable than the variable-ratio update schedule, thus
revealing that learned behavior is better reinforced with a
variable ratio update schedule.

Fig. 5(a) shows the difference in tuning history between
update schedules for the same critic weight to highlight

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 22,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAHOO et al.: INTERMITTENT LEARNING THROUGH OPERANT CONDITIONING FOR CPSs 9

o
©
@

Upper Bound
Lower Bound

5.9 [___195% confidence interval | |
— \\&an

niform Distribution

==

&

£

=

&

5

et

=

(]

k>

b

.

~ 56 L | | | L s s | |

0 5 10 15 20 25 30 35 40 45 50

Time
(@)

5.9 T T T T T T T T T
Upper Bound

Lower Bound
[195% confidence interval

— \lcan

5.85

5.8

575

57

Critic Weight for Exponential Distribution

s i | | | | ! T T ;
0 5 1 15 20 25 30 35 40 45 50
Time
(©)
59 T . . . . T . . .

Upper Bound
Lower Bound
[195% confidence interval | -
Mean

5.85

5.8

575

5.7

565

Critic Weight for Normal Distribution

56 L L L i L L L I I

Time

(e)

o 589 : : : : : : ‘ ‘ :
9 Upper Bound
E Lower Bound
= 5.88 [___195% confidence interval | |
B — \lean
A 586 | .
g
=
35 5.84 1
}ﬁ
-
w582 g
s
=
=)
e 5.8 ]
NS
ot
= t_::
o 578 N —
=
b
-
~ 576 ! s | | L L L L L

0 5 10 15 20 25 30 35 40 45 50

Time
(b)

5.9 T T T T T T T T T
Upper Bound

5.88 Lower Bound
[—195% confidence interval

— \lcan

Critic Weight for Exponential Distribution

59 T T T T

Upper Bound
Lower Bound
[___195% confidence interval

J — \leaN

o1
o™
@

58 F

Critic Weight for Normal Distribution

o
)
3

Fig. 4. Plot shows a critic weight’s dynamic average learning pattern, in black, which represents the mean trajectory of the learned behavior over ten trials,
while the blue and red lines represent the 68.3% confidence intervals. Fig. 4(b), (d), and (f) shows a smaller deviation (pink) from the mean learning pattern,
when compared with their variable interval counterparts in Fig. 4(a), (c), and (e) (cyan). (a) Variable interval with uniform distribution. (b) Variable ratio
with uniform distribution. (c) Variable interval with exponential distribution. (d) Variable ratio with exponential distribution. (e) Variable interval with normal

distribution. (f) Variable ratio with normal distribution.

features of each update schedule and contrast it from classical
RL by Skinner, shown in Fig. 5(b). This visualization of
triggering critic updates draws a parallel between our tech-
nique to “learn” the optimal “behavior” and Skinner’s operant
conditioning schedules. The error, defined by

_ ||(9c - ec,optimaln

||90,optimal ”

compares the different update schedules used for oper-
ant conditioning in the actor-critic framework described in
Section IV. The run-time for each experiment is set to 30 s,
with added exploration noise for the first 20 s.

The fixed interval update schedule produces an error, given
by EM = 0.5041. Compared with the constant update
regime that produces Ecopstant = 0.5899, the fixed interval
update schedule provides a better estimate of optimal critic
weights. The variable interval update regime approximates
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Comparison of the different schedules: Each of the four subplots in Fig. 5(a) shows a different update schedule in the context of a CPS. The blue

line represents a single critic weight’s dynamics, while the red dots indicate the instant of time updates were triggered for the various schedules. In contrast,
Fig. 5(b) shows the performance of fixed and variable schedules of reinforcements based on Skinner’s hypothesis as seen in [40]. (a) Comparison between
different reinforcement schedules. (b) Skinner’s [40] response for variable/fixed reinforcements.

the optimal critic weights with an error EM =

v 0.6208.
Compared with the constant update schedule and the fixed
interval schedule, the variable interval update performs poorly.
However, the variable interval update schedule depends on the
random triggering instances of the update law. The number
of updates may be constrained by the user, but the time of
each update remains random. The fixed ratio update schedule
yields an error of ERut 0.5834, making it a weaker
approximation of the optimal values of the critic weights as
opposed to the variable-ratio update schedule which has an
error of ER© — (.5679. The numbers picked from a uniform

distribution trigger the critic updates for these values in the
cases of variable interval and variable-ratio update regimens.

VI. CONCLUSION

We present a framework that incorporates Skinner’s oper-
ant conditioning reinforcement schedules to induce an RL
algorithm that enables autonomous agents to find optimal
policies through direct interaction with their environment via
intermittent tuning of critic weights. Intermittent tuning of
critic weights prevents overutilization of the limited resources
possessed by the CPS. These novel intermittent reinforcement
schemes increase uncertainty in the learning rate of the desired
behavior and the extinction rate of the acquired behavior of
the learning agents. Thus, they create a buffer of uncertainty
that prevents malicious agents from disrupting the smooth
operation of the CPS. Simulation results compare each rein-
forcement schedule, fixed/variable interval, and fixed/variable
ratio, based on the standardized error between tuned critic
weights, and their optimal counterparts.

Future research endeavors will focus on extending the ideas
presented in this work on intermittent learning, by consid-
ering the use of compressed sensing algorithms for com-
munication transmission decrease. Furthermore, we will seek
to increase the autonomy of the CPS agents by designing
learning schemes that develop reward representations online
based on high-level control objectives. Bounded rationality
concepts will be leveraged, allowing the CPS to successfully
predict the evolution of human-centric environments based on

experimental results from behavioral economics and cognitive
sciences. Intelligent autonomous vehicles will be employed as
experimental platforms for our proposed algorithms. Finally,
we will investigate the effect of our approach to issues of secu-
rity and privacy of CPS, by building on our previous results,
both on the co-design of moving target defense algorithms for
unpredictability and Q-learning [41] and on issues of privacy
in learning under attacks [42].
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