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Abstract— This article presents a novel scheme, namely,
an intermittent learning scheme based on Skinner’s operant con-
ditioning techniques that approximates the optimal policy while
decreasing the usage of the communication buses transferring
information. While traditional reinforcement learning schemes
continuously evaluate and subsequently improve, every action
taken by a specific learning agent based on received reinforcement
signals, this form of continuous transmission of reinforcement
signals and policy improvement signals can cause overutilization
of the system’s inherently limited resources. Moreover, the highly
complex nature of the operating environment for cyber-physical
systems (CPSs) creates a gap for malicious individuals to cor-
rupt the signal transmissions between various components. The
proposed schemes will increase uncertainty in the learning rate
and the extinction rate of the acquired behavior of the learning
agents. In this article, we investigate the use of fixed/variable
interval and fixed/variable ratio schedules in CPSs along with
their rate of success and loss in their optimal behavior incurred
during intermittent learning. Simulation results show the efficacy
of the proposed approach.

Index Terms— Cyber-physical systems (CPSs), intermittent
learning, operant conditioning, Q-learning.

I. INTRODUCTION

I
NTERCONNECTED computational subsystems that con-

trol physical devices interacting with the operating envi-

ronment make up a class of platforms called cyber-physical

systems (CPSs) [1]. Implementing decision-making mecha-

nisms aided by artificial intelligence (AI) constitutes a signif-

icant research endeavor that aims to render CPS autonomous.

Various military and civilian domains, such as aerospace [2],

healthcare [3], [4], transportation systems [5], network secu-

rity [6], human/robot interaction [7], and the Internet [8],

find applications for CPS. Subsequently, safety and efficiency
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concerns in the realm of CPS arise due to their exposure to the

human environment in all its complexities. A major challenge

that the AI industry faces today deals with the integration and

adaptation of the “closed-world” laboratory solutions into a

more volatile and unpredictable “open-world.”

It is evident that incorporating reinforcement learning (RL)

algorithms into the decision-making procedures shall allow the

CPS to unlock higher levels of smart autonomy, adaptivity,

and self-governance. Such algorithms in combination with

neuroscience concepts attempt, at a higher level of intelligence,

to aid data sharing and decision making [9]. Data sharing and

decentralized deployment of actions introduce “modularity,”

a double-edged sword, in CPS [10]. While decentralized

learning and deployment remain desirable, they also increase

the number of sensors and actuators interacting with each

other, and the communication network topology modeling this

exchange of information, thus fueling the added complexity of

such CPS platforms. Therefore, existing learning algorithms

create potential gaps for overutilization of resources, loss

in optimal behavior and learning strategies, and increased

vulnerability to malicious agents [11].

Continuous communication and data sharing between the

sensors, actuators, and learning subsystems, a typical assump-

tion in learning algorithms, leads to degradation of com-

munication effectiveness, and increased data-stream exposure

for adversarial agents to exploit and perform a successful

attack. This, along with a discrete action space and state space

limits smart, efficient, and secure autonomy due to an infinite

bandwidth requirement, lack of robustness in learning subsys-

tems, incomplete knowledge of the operating environment, and

inability to detect network compromises.

Behavioral scientists have validated the need for intermittent

data sharing in learning tasks [12]. They have shown that the

central nervous system in human beings minimizes effort and

sorts through impulses and stimuli by maintaining intermittent

signaling. Specifically, the spinal cord transmits a channel of

information and effectively exploits its neural resources via

intermittent strategies to produce a sequence of muscle-bone

interactions that induce movement [13]–[15]. Learning of

tracking movements works similarly via “step-hold” strategies

employing threshold-based rules [12], [16], and leveraging of

analogous mechanisms to explain the learning of rhythmic

movements [17], [18]. Some of those intermittency principles

have been utilized in the context of control systems as well.

Vamvoudakis et al. [19] employ an event-triggered controller,
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informed by an RL algorithm, to achieve target tracking.

Xie et al. [20] bring those ideas to a fuzzy system via the

design of an event-triggered scheduler. Similarly, Zhang and

Yang [21] propose an intermittent updating scheme for an

adaptive controller with the goal of alleviating the compu-

tational burden to the system. Finally, those event-triggered

ideas have been used with H∞ controllers in [22] alongside

an experience replay-inspired concurrent learning framework.

This article suggests a novel scheme in learning theory and

methodology that exploits the principles of operant condition-

ing [23] to alleviate the load on communication channels of a

CPS. Scheduling methods in the context of CPS discussed in

this article evolve with continuous dynamics in an adversarial

environment. The introduction of interval-based reinforcement

signals over predetermined “fixed intervals” and stochastic

“variable intervals” pave the path for the introduction of

ratio-based methods, as discussed in operant conditioning.

Ratio-based methods receive reinforcement signals from the

environment upon performing a predetermined or stochastic

number of positive actions, namely, the “fixed ratio” and the

“variable ratio” schedules, respectively.

II. BACKGROUND ON CLASSICAL REINFORCEMENT

LEARNING

Consider a CPS evolving as follows:

ẋ(t) = Ax(t)+ Bu(t), t ≥ 0, x(0) = x0 (1)

where x ∈ R
n is the state vector of the system, u ∈ R

m is the

control input or decision vector of the agent, and A ∈ R
n×n

and B ∈ R
n×m are the plant and input matrices, respectively.

To quantify the agent’s objectives, we shall define an

appropriate performance index that will serve as the reward,

given by

J (x(0); u) ≡
1

2

∫ ∞

0

(

xTMx + uTRu
)

dτ (2)

where M � 0 and R ≻ 0 are user defined matrices of

appropriate dimensions. The autonomous agent wishes to find

the policy u⋆(t) that optimizes the CPS operation in the sense

that J (x(0); u⋆(t)) ≤ J (x(0); u(t)), ∀u.

In order to derive a feedback rule that enables the agent to

extract decision policies autonomously, our ultimate goal is to

find the value function

V
⋆(x) = min

u

1

2

∫ ∞

t

(

xTMx + uTRu
)

dτ ∀x, t ≥ 0 (3)

that evaluates the cost-to-go from any given initial state x of

the CPS.

Furthermore, we can express the Hamiltonian function asso-

ciated with (3) and (1) as

H

(

x, u,
∂V

∂x

)

=
1

2
xTMx +

1

2
uTRu +

∂V

∂x

T

(Ax + Bu) ∀x, u.

According to [24], the optimal value function V⋆(x) satisfies

the following Hamilton–Jacobi–Bellman (HJB) equation:

min
u

H

(

x, u,
∂V⋆

∂x

)

= 0. (4)

Solving for the optimal policy u⋆ yields

u⋆(x) = −R−1BT
∂V⋆

∂x
∀x . (5)

Finally, it is known that for a functional (2) and sys-

tem given by (1), the optimal value function V⋆(x) takes

a quadratic in the states form, i.e., V⋆(x) = xTPx and

P ≻ 0, ∀x . Direct substitution into (4) yields the following

Riccati equation:

ATP + P A + M − PBR−1BTP = 0. (6)

Even though the problem of deriving the solution of (6)

has been investigated before [25], the solution of the non-

linear optimal decision making problem still suffers from

various facets of the curse of dimensionality introduced by

Bellman [24]. In the continuous-time state and action case,

this suffers from the difficulties arising in analytically solving

(4) without any knowledge of the system (1).

To solve the optimal feedback problem without the need for

explicit knowledge of the system matrices, we will employ

approximation-based RL methods. In order to derive approxi-

mate solutions to (4) and (5), we employ two distinct approxi-

mation structures, thus expressing the unknown value function

and optimal policy as linear in the parameters inside a simply

connected, compact subset � ⊆ R
n , V⋆(x) = θ ⋆

c
Tφ(x) + ǫ,

and u⋆ = θ ⋆
u
Tφu(x) + ǫu, ∀x ∈ �, respectively, where

φ(·) : R
n → R

l is the critic basis, φu(·) : R
n → R

lu the

actor basis, θ ⋆
c ∈ R

l the optimal critic weights, θ ⋆
u ∈ R

la the

optimal actor weights, and ǫ and ǫu the approximation errors

of the critic and the actor, respectively. However, since our

system (1) is linear and the cost (2) is quadratic, we can

employ approximation in the whole space � ≡ R
n and the

approximation errors will be zero.

In order to assess the current approximation of the critic

and the actor weights, we introduce the critic error signal

e(t) = H

(

x, û,
∂V̂

∂x

)

∀x

and the actor error signal

eu(t) = θ̂Tu φu − argmin
u

H

(

x, û,
∂V̂

∂x

)

∀x

respectively.

Once the appropriate reinforcement signals for the approx-

imation schemes have been transmitted from the environment

to the agent, a number of different parameter estimation

algorithms can be employed to update the weights θ̂c and θ̂u .

Throughout this work, we will employ a modified and

normalized gradient descent algorithm, which minimizes the

squared normed errors, Ec(t) = ‖e(t)‖2 and Eu(t) =

eTu (t)eu(t). Thus, the update laws are computed as follows for

the critic weight estimates ∀t ≥ 0:

˙̂θc(t) = −αc

1
(

1+ σ Tσ
)2

∂ Ec

∂θ̂c

= −αc

σ
(

1+ σ Tσ
)2

ec (7)

where σ(t) = φ(t) − φ(t − T ) and αc ∈ R
+ is a tuning

parameter that determines the speed of convergence.
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Similarly, the update law for the actor weight estimate will

be ∀t ≥ 0

˙̂θu = −αa

1
(

1+ φTu (t)φu(t)
)2

∂ Eu

∂θ̂u

= −αu

φu(t)
(

1+ φTu (t)φu(t)
)2

eTu (8)

where αu ∈ R
+ is a tuning gain that determines the speed of

convergence.

To obfuscate the need for partial knowledge of the sys-

tem dynamics which arises in formulations involving linear

and control-affine systems, Vamvoudakis [26] introduced a

Q-learning algorithm for continuous-time, continuous-state,

and action problems. A state-action dependent function,

i.e., Q-function, which maps both the current state and the

decision vector to the cost-to-go, is constructed as follows:

Q(x, u) := V
⋆(x)+H

(

x, u,
∂V⋆

∂x

)

= V
⋆(x)+

1

2
xTP(Ax + Bu)+

1

2
(Ax + Bu)TPx

+
1

2
x T Mx +

1

2
uTRu ∀x, u.

The value function and the Q-function achieve the same

minimum value. In compact form, the Q-function becomes

Q(x, u) =
1

2
UT

[

P + M + P A + ATP P B

BTP R

]

U

:=
1

2
UT

[

Qxx Qxu

Qux Quu

]

U :=
1

2
UT Q̄U ∀x, u

where U = [xT uT]T is the augmented state-action regression

vector. The compact Q-function, specifically the matrix Q̄,

comprises of data-driven basis weights, activated with states

and policies, encoded in the critic weight vector.

The construction of the basis, which is shown in Fig. 1(a),

allows complete approximation of the Q-function over finite

time intervals of duration T ∈ R
+. Each arrow corresponds to

a critic weight; these critic weights have dynamics that capture

the integral Bellman error [26] in appropriately approximating

the value function. We ensure this by setting the following:

Q̂(x, u) = θ̂c
T
(U ⊗U)

ec := Q̂(x(t), u(t))− Q̂(x(t − T ), u(t − T ))

+
1

2

∫ t

t−T

(

xTMx + uTRu
)

dt

ec = θ̂Tc (U(t)⊗U(t))− θ̂Tc (U(t − T )⊗U(t − T ))

+
1

2

∫ t

t−T

(

xTMx + uTRu
)

dt (9)

eu := θ̂Tu x + Q̂−1
uu Q̂uxx . (10)

Algorithm 1 presented next describes the Q-learning frame-

work with a “classical” RL structure.

Static Event-Triggering Q-Learning: The learning method

presented earlier, depends on a continuous stream of mea-

surements and updates from the environment that inform

the evolution of the critic and the actor approximators. The

problems arising from applying such continuous-time update

Fig. 1. Blue boxes in (a) stand for the states in the system while the orange
one shows the control inputs. The arrows summarize the basis described by
all combinations of the three states and two control inputs. Whereas, actor
weights indicated by the arrows in (b) establish connections between each
state (in blue) and each control input (in orange). The relationship captured
by the arrows stands for a single actor weight. There are mn actor weights
if there are n states and m control inputs. (a) Construction of the polynomial
basis employed in continuous state Q-learning. (b) Activation functions for
Actor Weights.

laws in complex systems, where the communication channels

have finite resources, have been extensively investigated [27]–

[29]. In the context of Q-learning, there exist event-triggered

mechanisms to inform actor updates, instead of a real-time

update schedule. To this end, [30] suggests that the actor

subsystem samples states in an event-triggered manner as:

x̂(t) =

{

x
(

r j

)

, ∀t ∈
(

r j , r j+1

]

x(t), t = r+j+1

where {r j } is a monotonically increasing sequence of time

stamps to sample state measurements. In the static event-

triggering framework, those instances are derived as

r j = min{t | 0 ≤ t ≤ r j−1, p(t) ≤ 0}

where the triggering signal p(t) is

p(t) :=
(

1− β2
)

λ(M)‖x‖2 + λ(R)‖ŴT
a x‖2 − L2λ̄(R)‖e‖2

with β ∈ (0, 1) and L a Lipschitz of the feedback control

mapping. The reader is referred to [31] for details on the

framework.
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Algorithm 1 Continuous Update in the Actor-Critic Frame-

work

1:Given initial state x0, initial critic weights θ̂c, initial actor

weights θ̂u ,

2: procedure

3: Propagate t , x(t) using (1).

4: Compute u(t) = −K̂ x(t) where K̂ = −θ̂Tu .

5: if t < Texp
6: Add probing noise u(t) ← u(t)+ uPE(t)

7: end if

8: Propagate θ̂c and θ̂u (
˙̂θc and

˙̂θu according to update laws

as in (7) and (8) respectively).

9: Estimate error in the Critic weights, ec, and Actor

weights, eu , as in (9) and (10) respectively.

10: if eu 6= 0 and ec 6= 0

11: Go to step 8

12: end if ⊲ eu ≈ 0 and ec ≈ 0

13: end procedure

In this case, the actor updates follow:

θ̂+u =











0, ∀t ∈
(

r j , r j+1

]

θ̂u

(

r j−1

)

− αu

φu
(

1+ φTu φu

)2
eTu

(

r j

)

, t = r j .

(11)

This procedure is described in Algorithm 2

Algorithm 2 Event-Triggered Updates in the Actor-Critic

Framework

1:Given initial state x0, initial critic weights θ̂c, initial actor

weights θ̂u ,

2: procedure

3: Propagate t , x(t) using (1) ∀t ∈ (r j , r j + 1].

4: if If t = r j , then set x̂(t) := x(t), ∀t ∈ (r j , r j + 1].

5: else x̂(t) = x(r j), ∀t ∈ (r j , r j+1] and use the previous

control input with zero-order-hold.

6: end if

7: Compute u(t) = −K̂ x(t) where K̂ = −θ̂Tu .

8: if t < Texp
9: Add probing noise u(t) ← u(t)+ uPE(t)

10: end if

11: Propagate θ̂c and θ̂u according to update laws as in (7)

and (11) respectively.

12: Estimate error in the Critic weights, ec, and Actor

weights, eu , as in (9) and (10) respectively.

13: if eu 6= 0 and ec 6= 0

14: Go to step 8

15: end if ⊲ eu ≈ 0 and ec ≈ 0

16: end procedure

III. INTERMITTENT REINFORCEMENT LEARNING

In this section, we aim to construct intermittent learning

frameworks for critic networks, unlike the algorithms pre-

sented in Section II, wherein agents will remain connected

through the cloud. The existence of a centralized processing

unit within the cloud will enable improved utilization of

the network resources. Acting as a supervising mechanism,

we design intermittent rules that are implemented in the cloud

and determine the transmission time, the transmission content,

or both, on the data from which the agent will learn.

Remark 1: While previous work on reduction of trans-

mission loads for learning-enabled CPS has focused on

event-triggered updates for the actor and the controller in

an effort to stabilize the system [19], [30], [31], the pro-

posed intermittent learning framework aims to optimally use

environmental measurements to facilitate expedited learning

and, therefore, introducing discontinuities in the critic’s tuning

mechanism, instead of the actor’s. �

Toward constructing the intermittent RL framework, we turn

to the theory of operant conditioning which originated in

Skinner’s [23], [32], [33] work. During his experiments,

Skinner [34] reported the emergence of intermittent learning,

which, furthermore, could be scheduled via different methods.

Such learning is used instead of continuous reinforcement once

the desired response is conditioned by continuous reinforce-

ment and the reinforce-er seeks to reduce or eliminate the

number of reinforcements necessary to encourage the intended

response and to slow extinction. Skinner found that continuous

reinforcement in the early stages of training seems to increase

the rate of learning.

A. Schedules of Intermittent Learning

In this section, we will introduce the four different schedules

proposed in the framework of operant conditioning.

1) Fixed Interval Schedule: This update schedule focuses on

rewarding the training agent every fixed interval of time. This

allows for the agent to expect a reward every fixed interval

of time despite the occurrence of negative behaviors, given at

least one occurrence of desirable behavior occurs in the time

interval. The training agent learns the optimal behavior slower

than the continuous reinforcement schedule but retains estab-

lished optimal behavior for longer, thus making it resistant to

temporary changes in the operating environment.

Through this schedule, the supervising cloud transmits the

reinforcement signal to the agent after a set amount of time.

In describing this approach, we define the transmission time

vector, given by {t j}
∞
j=0, where t j is the j -th consecutive

sampling instant that satisfy 0 ≤ t0 < t1 < · · · < t j < · · · and

lim j→∞ t j = ∞.

This way, the continuously evolving agent, utilizes a zero-

order hold (ZOH) structure on the weight estimates, resulting

in the overall hybrid dynamics combining the continuous-time

interaction of the agent with the environment (1), and the

intermittent update laws






˙̂θc = 0, t 6= t j

θ̂+c = θ̂c

(

t j−1

)

− αc

σ
(

1+ σ Tσ
)2

eTc
(

t j

)

, t = t j
(12)

for the critic, and similar for the actor, the continuous update

law given by

˙̂θu = −αu

φu
(

1+ φTu φu

)2
eTu = −αu xeTu .
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Remark 2: It can be seen that while we consider inter-

mittent updates in the critic network, the actor operates in

a continuous fashion. It is possible to have both networks

update with specific triggering schedules; however, for ease

of exposition, we retain a simple actor update law, so that

we are able to focus on the different critic schedules; which

constitute the main contribution of our work. There is a large

body of literature in event-triggered RL algorithms where the

actor-network is updated intermittently [19], [22], [31], [35],

whereas this is not the case for the critic. �

Note that in a fixed interval schedule the reinforcement sig-

nal is transmitted—and, by extension, the weight estimates are

updated—over predetermined intervals, such that the update

instances {t j} satisfy 1t = t j+1 − t j , ∀ j ∈ {1, 2, . . .}, where

1t is the value of the fixed interval. Algorithm 3 describes the

learning method of an autonomous agent under fixed interval

operant conditioning.

In practice, the algorithm used is outlined in Fig. 2(a)

wherein the critic updates every t j = 2 s, and in the meantime,

we employ a ZOH mechanism to mitigate the tuning action

of the critic weights.

2) Variable Interval Schedule: According to this scheduling

approach, the supervising cloud transmits the reinforcement

signal to the agent according to a time-based stochastic

triggering mechanism. Rewarding on the variable interval

reinforcement schedule occurs at specific timestamps that

follow a uniform, a normal, and an exponential distribution.

The use of different distributions allows for varied learning

times and better retention of optimal behavior over time.

The triggering instances {t j}, j ∈ {1, 2, . . .}, are such that

the algorithm selects a schedule with variable update time

stamps t j ∈ [0, Texp]. At these specific times, the critic weights

update according to steepest gradient descent tuning laws in

(7), meanwhile not updating at other times. These timestamps

are subject to change based on the type of distribution used.

For example, the exponential distribution has a higher likely

hood to pick values near Texp, while the normal distribution

will likely concentrate update timestamps in the middle of the

exploration window. Algorithm 3 describes this procedure that

is visualized in Fig. 2.

3) Fixed Ratio Schedule: A fixed ratio update schedule

reinforces every time a desirable or optimal action takes place

a fixed number of times. These updates encourage the training

agent to perform the desired task many times in order to earn a

reward or update the critic. This reinforcement method ensures

a very fast response rate. Updates occur more often, and

upon exploring portions of the state space that reduce the

cost. To formulate ratio-based schedules in control systems,

it is imperative to define an appropriate metric that differen-

tiates desirable behaviors from undesirable ones is integral to

intermittent reward generation. The metric proposed in this

work involves the use of a buffer that collects information on

the number of desired behaviors. Once the buffer has stored

a predetermined number of behaviors, the supervising cloud

transmits the appropriate reinforcement signal. The criteria

were chosen to be met to qualify as “desirable action” is

Algorithm 3 Fixed/Variable Interval Update Schedule for

Operant Conditioning in Actor-Critic Framework

1:Given initial state x0, initial critic weights θ̂c, initial actor

weights θ̂u , and

1) tup = updateInterval for fixed interval update sched-

ule, and

2) sequence of tup = [updateIntervals] for variable inter-

val update schedule

2: procedure

3: Propagate t , x(t) using (1).

4: Compute u(t) = −K̂ x(t) where K̂ = −θ̂Tu .

5: if t < Texp
6: Add probing noise u(t) ← u(t)+ uPE(t)

7: end if

8: while mod (t, tup) ≈ 0

9: Propagate θ̂c using the update law for
˙̂θc as in (12)

for 0.05 s.

10: end while

11: Propagate θ̂u using the update law for
˙̂θu as in (16) for

all time t.

12: Estimate error in the Critic weights, ec, and Actor

weights, eu , as in (9) and (10) respectively.

13: if eu 6= 0 and ec 6= 0

14: Go to step 8

15: end if ⊲ eu ≈ 0 and ec ≈ 0

16: end procedure

given by

6 = θ̂Tc σ (13)

estimates how well the current estimate of the critic weights

evaluates the value function between two points of time in the

exploration window.

The resulting hybrid system has the following form:



















˙̂θc = 0

θ̂+c = θ̂c

(

t j−1

)

− αc

σ
(

1+ σ Tσ
)2

eTc
(

t j

)

, when 6

is negative for a fixed number of actor updates

˙̂θu = −αu

φu
(

1+ φTu φu

)2
eTu = −αu xeTu (14)

where αu ∈ R
+ is a tuning gain. In the fixed ratio

update schedule, the reinforcement signal enables critic weight

updates when 6 remains negative for a fixed number of

times, e.g., 75. After updating the critic weights, we go

back to employing the ZOH until 6 criteria is met again 75

times, as outlined in Fig. 3 and descriptively showcased in

Algorithm 4.

Remark 3: For computational purposes, in Algorithm 4,

the critic update occurs for δt = 0.05 s. Theoretically, this

jump in critic tuning law occurs “instantaneously;” however,

to realize this using Runge–Kutta methods for numerical

integration, we must provide some buffer time δt . �
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Fig. 2. Flowchart visualizing the interval-based reinforcement schedules. (a) Fixed interval. (b) Variable interval.

Fig. 3. Flowchart visualizing the fixed ratio and variable ratio update schedule implementations.

4) Variable Ratio Schedule: Variable Ratio, the most unpre-

dictable rewarding policy, generates the fastest response rate

while also ensuring slowest extinction rate by embedding a

stochastic process to the transmission algorithm. Once again,

the criterion for a desirable action, given by (13), estimates

quality of value-function evaluation by critic weights to trigger
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Algorithm 4 Fixed/Variable Ratio Update Schedule for Oper-

ant Conditioning in Actor-Critic Framework

1:Given initial state x0, initial critic weights θ̂c, initial actor

weights θ̂u , and

1) update ratio Rup for fixed ratio update schedule, and

2) vector of randomized update ratios Rrand(t) for vari-

able ratio update schedule.

2: procedure

3: Propagate t , x(t) using (1).

4: Compute u(t) = −K̂ x(t) where K̂ = −θ̂Tu .

5: if t < Texp
6: Add probing noise u(t) ← u(t)+ uPE(t)

7: end if

8: while sgn(θ̂Tc (U(t)⊗U(t)−U(t −T )⊗U(t−T ))) < 0

9: counter← counter+ 1

10: if counter = Rrand(t) for variable ratio and counter =

Rup for fixed ratio updates

11: Propagate θ̂c using the update law for
˙̂θc as in (14)

for 0.05 s.

12: counter← 0

13: end if

14: end while

15: Propagate θ̂u using the update law for
˙̂θu as in (16) for

all time t.

16: Estimate error in the Critic weights, ec, and Actor

weights, eu , as in (9) and (10) respectively.

17: if eu 6= 0 and ec 6= 0

18: Go to step 8

19: end if ⊲ eu ≈ 0 and ec ≈ 0

20: end procedure

future updates. The critic network weights, which update

every time 6, remain negative for a variable number of

times, dictated by a uniform, a normal, and an exponential

randomizer.

The algorithm, visualized in Fig. 3 and outlined in Algo-

rithm 4, represents the critic update procedure undertaken to

implement this reinforcement schedule, with an optimal policy

given as

u⋆(x) = arg min
u

Q(x, u) = −Q−1
uu Quxx . (15)

Actor weights populate the feedback gain matrix, derived

from the Q-function upon employing the stationary condition,

in (15). These weights correspond to each arrow shown

in Fig. 1. The relationship between the states and the actor

weight matrix, given by û(x) = θ̂Tu (x) induced the actor-error

eu := θ̂Tu x + Q̂−1
uu Q̂uxx .

The tuning law employed to mitigate the error in (10)

between the actor weights approximating the feedback gain

matrix and that obtained from the stationary condition

applied to the Q-function, ensures that the actor weights

tune appropriately to produce the optimal policy. This tuning

law, given by

˙̂θu = −αu

∂

(

1

2
‖eu‖

2

)

∂θ̂u

= −αu xeTu (16)

uses the error in actor weights and provides dynamics for

these weights. Finally, appending the states, critics, actor, and

Bellman error along with their dynamics, numerically com-

pute trajectories which completes the cycle of synchronous

learning.

IV. ASYMPTOTIC STABILITY OF STATES, CRITIC

WEIGHTS, AND ACTOR WEIGHTS

We define estimation error for the critic and actor weights as

θ̃c := θc− θ̂c, and θ̃u := −QxuQ−1
uu − θ̂u . The critic estimation

error dynamics can be summarized as follows:











˙̃θc = 0, t 6= t j

θ̃+c = θ̃c

(

t j

)−
− αc

σσ T

(

1+ σ Tσ
)2

θ̃c

(

t j

)−
, t = t j

(17)

while the actor estimation error dynamics can be shown by

ˆ̃θu = −αu xxTθ̃u − αu xxT Q̃xuR−1. (18)

Assumption 1: For each operant conditioning update sched-

ule, we assume that the sequence {t j} j of updating time

instances is such that lim j→∞ t j = ∞. �

Remark 4: Assumption 1 implies that the update process of

the critic network does not terminate during the system run,

even under probabilistic schedules. �

Initially, the following lemma and fact are needed.

Lemma 1: Consider the critic error dynamics given in (17),

which can be rewritten as

{

˙̃θc = 0, t 6= t j

θ̃+c =
(

I − αc1M1T
M

)

θ̃c

(

t j

)−
, t = t j

(19)

wherein 1M := (σ/(1+ σ Tσ)). The critic error dynamics

evolve by means of an infinite sequence due to Assumption 1.

This sequence converges to zero, i.e., ‖θ̃c‖ → 0 as the length

of the sequence tends toward infinity (t →∞).

Proof: According to the conditions for exponential conver-

gence of LMS in [36]; and when the signal 1M is sufficiently

and persistently excited, this result follows.

Fact 1: The entrywise norm of a submatrix is always at

most the entrywise norm of the parent matrix itself. For

example, ‖Q̃(.)‖ ≤ ‖θ̃c‖. This is adopted from [37]. �

Now, we are able to show stability and convergence of the

system via the following theorem.

Theorem 1: Consider the system dynamics given by (1),

the critic approximator error dynamics given by (17), actor

error dynamics given by (18), and the optimal control given

by K = −θ̂Tu . The critic dynamics are given by (14) and the

actor dynamics are given by (16). Then, the equilibrium point

of the closed-loop system with state γ := [xT, θ̃Tc , θ̃Tu ]
T for

initial conditions γ (0) is asymptotically stable given a tuning

gain for the hybrid critic tuning αc is picked according to

1 < αu <
2
[

λ
(

M + QxuR−1Qux

)

− λ̄(QxuQux)
]

δλ̄
(

R−1
) (20)

where δ is of unity order.
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Proof: To prove stability of the hybrid, intermittent

learning model, we analyze the dynamics first. We write the

following Lyapunov function:

V = V1 + V2 + V3

=
1

2
xTPx +

1

2
‖θ̃c‖

2 +
1

2
tr
{

θ̃Tu θ̃u

}

. (21)

Taking the time derivative of V during flow trajectories,

when t 6= t j , and keeping in mind that the critic weights, θ̂c,

are constant, we get

V̇ = xTP(Ax + Bû)+ tr
{

θ̃Tu
˙̃θu

}

. (22)

This can be further reduced to

V̇ = xTP(Ax + Bû)+ tr
{

θ̃Tu
˙̃θu

}

= xTP
(

Ax + Bu∗ − B θ̃Tu x
)

− αu tr
{

θ̃Tu xxTθ̃u + αu xxTQ̃xuR−1
}

.

Defining T1 as follows and using (5) and (6) and using

Young’s Inequalities, we get the reduction:

T1 = xTP(Ax + Bû)

=
1

2
xT

(

M + QxuR−1Qux

)

x − xTQxuθ̃
T
a x

≤ −

[

λ
(

M + QxuR−1Qux

)

−
1

2
λ̄(QxuQux)

]

‖x‖2

+
1

2
‖xTθ̃u‖

2. (23)

Defining T3 as follows provides the bounds:

T3 = −αu tr
{

θ̃Tu xxTθ̃u

}

− αu tr
{

αu xxT Q̃xuR−1
}

≤ −
αu

2
‖xTθ̃u‖

2 − αu tr
{

θ̃Tu xxT Q̃xuR−1
}

. (24)

Following result in Lemma 1, where we establish that the

discrete infinite sequence governing θ̃c—which is independent

of the rest of the system states—is asymptotically stable under

appropriate persistence of excitation conditions, according

to [36] and [38]. Thus, we can conclude that ‖θ̃c‖ → 0 is

piecewise constant, discrete jumps. Thus, we can conclude

that T2 = (1/2)‖θ̃c‖
2 → 0.

Putting (22), (23), and (24) for flow dynamics, we get

V̇ ≤ −

[

λ
(

M + QxuR−1Qux

)

−
1

2
λ̄(QxuQux)

]

‖x‖2

−
1

2
(αu − 1)‖xTθ̃u‖

2 − αu tr
{

θ̃Tu xxTQ̃xuR−1
}

.

Now, taking Lemma 1 along with Fact 1 to rewrite

αu tr{θ̃
T
u xxTQ̃xuR−1}, we have

V̇ ≤ −

[

λ
(

M + QxuR−1Qux

)

−
1

2
λ̄(QxuQux)

]

‖x‖2

−
1

2
(αu − 1)‖xTθ̃u‖

2 +
αuδ

2
λ̄
(

R−1
)

‖x‖2. (25)

From (25), as long as (20) holds, the equilibrium point (ori-

gin) is asymptotically stable.

This completes our stability analysis for the proposed oper-

ant conditioning framework.

V. SIMULATION AND RESULTS

Simulations serve to validate our results from an operant

conditioning standpoint. This article uses a linear model of

the F-16 fighter jet [39] with three states and two actuators,

with the dynamics and parameters given by

ẋ =





−1.0189 −0.9051 −0.0022

0.8223 −1.0774 −0.1756

0 0 −1.0000



x +





0 1

0 1

1 1



u

M = diag([1 1 1]), R = diag([5 5])

αc = 50, αu = 2, Texp = 40 s, T = 0.001 s.

Running the framework multiple times drew up error bars

and the region of likelihood to update for critic weights. Figs. 4

and 5 visualize this.

The distribution functions, namely the normal, uniform,

and exponential distribution functions, used to trigger updates

in the variable interval and variable-ratio update schedules

introduce unpredictability to the updated law. This increases

the learning rate and produces a “behavior” that lasts “longer.”

The error bars in Fig. 4 capture this unpredictability, and the

degree of change in the adaptive tuning laws. For example,

the variable interval reinforcement schedule using an expo-

nential distribution, in Fig. 4(c), shows the most uncertainty

in update pattern and tuning behavior, while the variable

ratio reinforcement schedule using a uniform distribution,

in Fig. 4(b), shows the least divergence. The confidence inter-

val lines, shown in red, corresponding to the upper confidence

interval, and blue, corresponding to the lower confidence

interval, represent 68.3% confidence that the critic weights

will lie inside this interval.

The mean and standard deviation of an exponential distri-

bution, given by the ratio (1/λ), where λ = 0.01, chosen

for inherent similarities to Poisson process models updates

as a random arrival pattern [Fig. 4(c) and (d)]. The uniform

distribution function has compact, finite support and selects

any number in the allowable range, given by 60–100, by the

same probability.

When update ratios are selected from a uniform distribution,

Fig. 4(b), we see very tight bounds in the confidence interval,

while variable interval update schedule, Fig. 4(a), shows looser

bounds in confidence. This likely arises because the learning

agent updates its critic weights whenever it explores positively

reinforcing state–space domain repeatedly for a number of

times, 6 that lies in a small range of values. Ratios strictly

between 60 and 100 are very similar, compared with those

generated by the normal and exponential distributions.

Normal distributions have infinite support and can generate

update ratios that are very large or very small to diversify the

tuning law and creating looser confidence intervals, as shown

in Fig. 4(e) and (f). In general, the variable-ratio update laws

have smaller error bars than the variable interval update laws.

This implies that the variable interval update schedule remains

less predictable than the variable-ratio update schedule, thus

revealing that learned behavior is better reinforced with a

variable ratio update schedule.

Fig. 5(a) shows the difference in tuning history between

update schedules for the same critic weight to highlight
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Fig. 4. Plot shows a critic weight’s dynamic average learning pattern, in black, which represents the mean trajectory of the learned behavior over ten trials,
while the blue and red lines represent the 68.3% confidence intervals. Fig. 4(b), (d), and (f) shows a smaller deviation (pink) from the mean learning pattern,
when compared with their variable interval counterparts in Fig. 4(a), (c), and (e) (cyan). (a) Variable interval with uniform distribution. (b) Variable ratio
with uniform distribution. (c) Variable interval with exponential distribution. (d) Variable ratio with exponential distribution. (e) Variable interval with normal
distribution. (f) Variable ratio with normal distribution.

features of each update schedule and contrast it from classical

RL by Skinner, shown in Fig. 5(b). This visualization of

triggering critic updates draws a parallel between our tech-

nique to “learn” the optimal “behavior” and Skinner’s operant

conditioning schedules. The error, defined by

E =
‖θ̂c − θc,optimal‖

‖θc,optimal‖

compares the different update schedules used for oper-

ant conditioning in the actor-critic framework described in

Section IV. The run-time for each experiment is set to 30 s,

with added exploration noise for the first 20 s.

The fixed interval update schedule produces an error, given

by E Intfix = 0.5041. Compared with the constant update

regime that produces Econstant = 0.5899, the fixed interval

update schedule provides a better estimate of optimal critic

weights. The variable interval update regime approximates
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Fig. 5. Comparison of the different schedules: Each of the four subplots in Fig. 5(a) shows a different update schedule in the context of a CPS. The blue
line represents a single critic weight’s dynamics, while the red dots indicate the instant of time updates were triggered for the various schedules. In contrast,
Fig. 5(b) shows the performance of fixed and variable schedules of reinforcements based on Skinner’s hypothesis as seen in [40]. (a) Comparison between
different reinforcement schedules. (b) Skinner’s [40] response for variable/fixed reinforcements.

the optimal critic weights with an error E Intvar = 0.6208.

Compared with the constant update schedule and the fixed

interval schedule, the variable interval update performs poorly.

However, the variable interval update schedule depends on the

random triggering instances of the update law. The number

of updates may be constrained by the user, but the time of

each update remains random. The fixed ratio update schedule

yields an error of ERatiofix = 0.5834, making it a weaker

approximation of the optimal values of the critic weights as

opposed to the variable-ratio update schedule which has an

error of ERatiovar = 0.5679. The numbers picked from a uniform

distribution trigger the critic updates for these values in the

cases of variable interval and variable-ratio update regimens.

VI. CONCLUSION

We present a framework that incorporates Skinner’s oper-

ant conditioning reinforcement schedules to induce an RL

algorithm that enables autonomous agents to find optimal

policies through direct interaction with their environment via

intermittent tuning of critic weights. Intermittent tuning of

critic weights prevents overutilization of the limited resources

possessed by the CPS. These novel intermittent reinforcement

schemes increase uncertainty in the learning rate of the desired

behavior and the extinction rate of the acquired behavior of

the learning agents. Thus, they create a buffer of uncertainty

that prevents malicious agents from disrupting the smooth

operation of the CPS. Simulation results compare each rein-

forcement schedule, fixed/variable interval, and fixed/variable

ratio, based on the standardized error between tuned critic

weights, and their optimal counterparts.

Future research endeavors will focus on extending the ideas

presented in this work on intermittent learning, by consid-

ering the use of compressed sensing algorithms for com-

munication transmission decrease. Furthermore, we will seek

to increase the autonomy of the CPS agents by designing

learning schemes that develop reward representations online

based on high-level control objectives. Bounded rationality

concepts will be leveraged, allowing the CPS to successfully

predict the evolution of human-centric environments based on

experimental results from behavioral economics and cognitive

sciences. Intelligent autonomous vehicles will be employed as

experimental platforms for our proposed algorithms. Finally,

we will investigate the effect of our approach to issues of secu-

rity and privacy of CPS, by building on our previous results,

both on the co-design of moving target defense algorithms for

unpredictability and Q-learning [41] and on issues of privacy

in learning under attacks [42].
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