Bioinformatics, 2022, 1-10
https://doi.org/10.1093/bioinformatics/btab875
Advance Access Publication Date: 3 January 2022
Original Paper

OXFORD

Phylogenetics
Completing gene trees without species trees in sub-

quadratic time

Uyen Mai ® " and Siavash Mirarab®*
'Department of Computer Science and Engineering, University of California San Diego, San Diego, CA 92093, USA and 2Department of
Electrical and Computer Engineering, University of California San Diego, San Diego, CA 92093, USA

*To whom correspondence should be addressed.
Associate Editor: Russell Schwartz

Received on June 23, 2021; revised on November 27, 2021; editorial decision on December 28, 2021; accepted on December 30, 2021

Abstract

Motivation: As genome-wide reconstruction of phylogenetic trees becomes more widespread, limitations of available
data are being appreciated more than ever before. One issue is that phylogenomic datasets are riddled with missing
data, and gene trees, in particular, almost always lack representatives from some species otherwise available in the
dataset. Since many downstream applications of gene trees require or can benefit from access to complete gene trees,
it will be beneficial to algorithmically complete gene trees. Also, gene trees are often unrooted, and rooting them is
useful for downstream applications. While completing and rooting a gene tree with respect to a given species tree has
been studied, those problems are not studied in depth when we lack such a reference species tree.

Results: We study completion of gene trees without a need for a reference species tree. We formulate an optimiza-
tion problem to complete the gene trees while minimizing their quartet distance to the given set of gene trees. We
extend a seminal algorithm by Brodal et al. to solve this problem in quasi-linear time. In simulated studies and on a
large empirical data, we show that completion of gene trees using other gene trees is relatively accurate and, unlike

the case where a species tree is available, is unbiased.

Availability and implementation: Our method, tripVote, is available at https://github.com/uym2/tripVote.

Contact: smirarab@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenetic analyses of genome-wide data (i.e. phylogenomics) typ-
ically infer a set of gene trees, each from a different region of the
genome (not necessarily a gene), and a species tree, which may be
obtained from combining the gene trees. These analyses, in prin-
ciple, benefit from the size of available data and can have high ac-
curacy. However, phylogenomic datasets are also known to suffer
from both partial incompleteness and undiscovered errors (Hosner
et al., 2016; Laurin-Lemay et al., 2012; Philippe et al., 2017,
Springer and Gatesy, 2018). The preparation of the data for phylo-
genomic analyses involves many steps, much of them error prone,
and these steps can easily miss parts of the sequences. The issue of
undetected errors is being increasingly addressed using new methods
(e.g. Mai and Mirarab, 2018; Zhang et al., 2020) and simple filter-
ing strategies (Doyle ez al., 2015; Hosner et al., 2016; Sayyari et al.,
2017). However, by further removing data, many of these methods
exacerbate the issue and sometimes have negative effects on tree in-
ference (Mclean et al., 2019; Tan et al., 2015).

There is growing evidence that species tree inference methods are
robust to presence of some missing data (Hovméller ez al., 2013;

Molloy and Warnow, 2018; Nute et al., 2018; Xi et al., 2016). The
incompleteness of gene trees, however, is not just a concern for spe-
cies tree inference. Gene trees are used for many other analyses,
including gene family evolution, functional analyses of proteins,
reconstructing ancestral gene content, and dating gene birth.
Moreover, many species tree inference methods internally rely on
completing gene trees, even if just approximately. For example,
ASTRAL completes input gene trees with respect to each other to
define a bipartitions set as its search space (Mirarab and Warnow,
2015). Thus, researchers have studied the problem of completing in-
complete gene trees using the rest of the data.

The existing gene tree completion methods mostly are based on
the same philosophy: that once a species tree is inferred, a gene tree
can be completed with respect to that species tree to minimize their
distance. What differentiates the methods is what measure of dis-
tance they use to achieve that goal. For example, Bayzid and
Warnow (2012) use a parsimony framework to minimize deep co-
alescence. More recently, Christensen et al. (2018); Bansal (2018)
and later Aiemvaravutigul and Wongwattanakij (2019) show how
Robinson and Foulds (1981) (RF) distance can be minimized
efficiently.

©The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

U.Mai and S.Mirarab

While these methods are all valuable, they do not directly pro-
vide a way to complete gene trees without a species tree. Such a
completion may be desired for two reasons. First, completing gene
trees with respect to the species tree may artificially reduce the
amount of observed discordance. For example, if we use the species
tree from the plant dataset of OneKP Initiative (2019), to complete
gene trees by minimizing the RF distances, the mean normalized RF
distance of the gene trees to the species tree drops by 8%, meaning
that the observed discordance paradoxically reduces as a result of
gene tree completion. This level of discordance leads to an increase
in estimated coalescent unit branch lengths of 0.26 on average.
Thus, the added taxa are artificially less discordant with the species
tree than the backbone species. Second, species trees are not always
available where gene trees are. For example, part of the ASTRAL al-
gorithm completes gene trees before the species tree is inferred.

We formulate gene tree completion without species trees as fol-
lows: Given a set of gene trees, complete each gene tree with respect
to the other gene trees such that its overall distance to the other trees
is minimized. Mathematically, the problem is similar to completion
based on a species tree with the difference being that a set of refer-
ence trees (i.e. other gene trees) are available. The benefit of species-
tree-free completion is that it may escape the paradoxical reduction
in gene tree discordance after completion, and it does not need a ref-
erence species tree. To our knowledge, very little work on this ques-
tion exists. Mirarab (2015) introduced a method for completing
gene trees by computing a quartet-based distance matrix from the
gene trees and repeated use of the four-point condition. Since this
heuristic method was just one step of the larger ASTRAL algorithm,
it was not empirically or theoretically evaluated on its own.

Gene tree completion is also intimately connected to another prob-
lem: phylogenetic placement given a set of input gene trees. Rabiee
and Mirarab (2020b) introduced a method called INSTRAL for add-
ing a new species into a species tree given a set of gene trees that al-
ready include the new species while minimizing total quartet
discordance between the updated tree and the gene trees. That same
mathematical problem can be used to update a gene tree using the
other gene trees. When more than one taxon is missing, ordering them
in some fashion and repeatedly applying the same algorithm can be
used to complete the gene tree. Similarly, Rabiee and Mirarab (2020a)
designed a version of ASTRAL that can satisfy constraints, and the
constrained version of ASTRAL can be used to complete gene trees.

In this article, we make several contributions. First, we empiric-
ally study the species-tree-free gene tree completion problem. While
past methods such as INSTRAL can be used to solve the problem,
we are not aware of any study that has used them for this purpose.
Second, we note that the running time of INSTRAL, which grows
quadratically with the size of the backbone tree for each insertion, is
sub-optimal. In a seminal work, Brodal et al. (2013) introduced an
algorithm (called B13 hereafter) that allows computation of the
quartet (or triplet) score between two trees in time that grows quasi-
linearly with the size of the tree. Here, we extend the B13 algorithm
so that it can insert new species into a tree while maximizing its total
quartet score with respect to a given set of trees. Thus, we improve
the asymptotic complexity of quartet-based taxon insertion
(whether for gene trees or species trees). Finally, we introduce some
techniques, including subsampling of quartets, that dramatically in-
crease the accuracy of gene tree completion compared with the van-
illa application of the optimization problem.

2 Materials and methods

2.1 Notations and definitions

Let T = (V,E) be a single leaf-labeled rooted tree where all edges are
directed toward a root node denoted by rr. Let e = (v,u) or e, for
short denote the edge that connects node v to u, and use u = p(v) to
denote that u is the parent of v and v is a child of u. The set of children
of an internal node u# € V is denoted as c(u). We give each leaf of T a
unique index in the leafset Lt = {1...n}. We use [x] as shorthand
for {0,1,...,x}. We use n7 and dr to denote the number of leaves
and the maximum degree of any nodes in tree T, respectively

(omitting the subscript when clear by context). To reroot the tree T at
an edge e, = (v,u) € E, we first divide e into two edges by adding a
new vertex 7, to V and replacing e, with edges (u,7,) and (v, 7,), then
we reverse the direction of all edges on the path from # to 1, and op-
tionally, remove the old root 71 from V and make each of its children
point toward its parent. The resulting graph, T,, is a new rooted tree
with the same topology as T and is called an alternative rooting of T
on v. We use 7, to denote the root of T, if we were to reroot T on e,,.

A triplet is a subtree of T induced by any three leaves in Lt (note
that, because T is single leaf-labeled, a triplet can be uniquely
defined by a set of three leaf labels). For each triplet of T, the least
common ancestor (LCA) in T of the three leaves is called the anchor
node of that triplet. A triplet is resolved if the LCA of one pair of its
species is not the anchor; otherwise, the triplet is unresolved. A quar-
tet is an unrooted subtree of T induced by any four leaves in Ly.
Note that, while triplets depend on the rooting of T, quartets do
not.

For two trees T; and T> whose leafsets intersect on a set S of #
leaves and a given triplet {a, b, c} C S, we say that Ty matches T, on
{a, b, c} if T restricted on {a, b, ¢} has identical topology to T,
restricted on {a, b, c}. The number of matching triplets of T; and T,
n
3
and is denoted by W(T1, T2). For unresolved triplets, we count them
as matching only if they are unresolved in both trees. Similarly, for a
quartet {a,b, c,d} C S and two unrooted trees Ty and T, we can de-
fine ®(T4, T>) as the number of quartet topologies that matches be-
tween the two trees.

is the number of triplets that are shared among (> triplets on §

2.2 Problem formulations
We start by defining five interconnected computational problems.
Problem 1 [Maximum-matching quartet placement (MQP)].
Given an unrooted reference tree R with n+1 leaves and an
unrooted query tree T on all leaves of R except a leaf x, find an opti-
mal completion T, of T by placing x onto T to maximize ®(T, R).
Problem 2 [Maximum-matching triplet rooting (MTR)]. Given a
rooted reference tree R and an unrooted query tree T, find a rooting
T, of T that maximizes ¥(T,, R).
Problem 3 [Multi-reference MQP (m-MQP)]. Given a collection
of k reference trees R = {Rq,Ra,...,R;} all including a leaf x
(among other leaves) and a query tree T missing x, find a placement

k
T, of x on T to maximize Y ®(Ty, R;).
=1
Problem 4 [Multi-reference MTR (m-MTR).]. Given a collection

of k rooted reference trees R = {R1,Ra,...,R;} and an unrooted
k
query tree T, find a rooting T, of T that maximizes Y ¥(T,, R;).

i=1

The MQP problem is equivalent to the MTR problem: first root
R at the taxon x, then remove x from R to obtain R’, next solve
MTR on R’ and T to obtain the optimal rooting of T, and finally,
place x on the new root of T to obtain T,. As proved in the
Supplementary Appendix:

Claim 1. The tree T, obtained by applying MTR on the query
tree T using the reference tree R' and adding x as an outgroup is a
solution to the MQP problem on T, x and R.

Now consider a more general problem:

Problem 5 [Multi-reference multi-query MQP (mm-MQP)].
Given a query tree T missing a set X of leaves, and a set of k refer-
ence trees R = {Ry,Ra,..., Ry} with USLg, = Ly U X, find a tree
Tx on LpUX that is compatible with T and maximizes
Y (T, Ry).

Note that, the mm-MQP problem is similar to the problem
solved by ASTRAL with an input constraint (Rabiee and Mirarab,
2020a), and is NP-hard (Lafond and Scornavacca, 2019). Below, we
introduce algorithms to solve MTR, MQP, m-MTR and m-MQP,
and a heuristic to solve mm-MQP by sequentially applying m-MQP
for each query x in X.

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

Sub-quadratic gene tree completion

2.3 Algorithms to solve MTR, MQP, m-MTR and m-MQP
We extend the B13 algorithm to compute ¥(T,, R) for every rooting
T, of T and select the maximum score. We first assume T and R
share the same leafset of size 7 and then show that it is straightfor-
ward to extend the algorithm to trees with different leafsets.

The B13 Overview. To compute ¥(T1,T>), the B13 algorithm
traverses T top down, and when a node u is visited, it counts the
number of triplets anchoring at # in T, that matches T,. To do so, it
colors leaves according to which side of u they belong to. To obtain
the quasi-linear complexity, a Hierarchical Decomposition Tree
(HDT) data structure representing T5 is maintained. The HDT keeps
a set of counters that allow computing the number of matching trip-
lets for the anchor node # of T;. HDT needs to be updated each time
we move to a new node of T and colors change; however, thanks to
its careful design that guarantees a locally balanced structure, updat-
ing the HDT for each leaf only takes sub-linear time.

Algorithm overview. Naively using the B13 algorithm to exam-
ine each edge and choose the one with the maximum score has
quasi-quadratic running time. Such a solution would be worse
than that of Rabiee and Mirarab (2020b), which is worst-case
quadratic time. Here, we extend the B13 algorithm to solve the
MTR problem in quasi-linear time (Algorithm 1). When we visit
each node # in T in the top-down traversal, we compute several
new counters per node (i.e. the number of triplets anchoring at u in
T that match the reference tree, the number of triplets anchoring at
u in each alternative rooting T, for the d — 1 children vy ...v4 4
of u that match the reference tree, and the number of triplets
anchoring at r,, in T,, that match the reference tree) that allow us to
score all possible rootings. To efficiently compute these counters,
we also augment the HDT with a new set of counters. Next, we
first describe the node coloring scheme, then HDT and its coun-
ters, and finally our extensions.

Algorithm 1 Quasi-linear-time algorithm to solve the MTR
problem. Color(u, i) colors all the leaves below u with 7. d,, is
the of degree u.

function SolveMTR(T = (V,E),R)
HDT rooted at R « Build HDT(R)
et al. (2013)
color (root of T, 1)
ColorAndQuery (root of T)
qj(rOOtOf T) - Z u€ internal nodes of TTL
for edge (v, u) in pre-order traversal of T do
YY) =(u) -7, -+ +1,
return T rooted at argmax, ¥ (v)

> See Brodal

function ColorAndQuery/(u)
if u is a leaf then
color(u , 0) and return
V1,02, .., 04, 1 < c(u)
Swap v, with the largest v; clade
fori=2tod,—1do
color(v;, 1)
nz)z, . ,anuil,pR «— update HDT using Equations. (2)—(5)

o o—

T, ="

fori=1tod,—1do
1 —l

fori=2tod,—1do
color(v;, 0)

ColorAndQuery(v;)

fori=2tod,—1do
color(v; , 1)
ColorAndQuery(v;)

2.3.1 Coloring and scoring the query tree T

Consider an arbitrary node # in T (except the root) that has degree
d, p(u) = vo, and c(u) = {v1,...,v4_1}. The node u defines a set of
d subtrees on T: the d—1 clades rooted at vq,v;,...,v4_1, and the
complement subtree of the clade rooted at u. To color T by u, we
give all leaves belonging to each subtree of u the same color index
i € [d — 1]. By convention, the subtree on the direction from # to the
root always gets the color 0 (Fig. 1a). When T is colored according
to u, each triplet of T that anchors at # must have leaves with two
distinct non-zero colors.

Triplet counters of the query tree. To solve the MTR problem,
we extend the B13 algorithm to also count the #-anchored triplets of
each alternative rooting T,, of T. These triplets can be determined
by the u coloring: each triplet of T,, anchored at # must have leaves
colored with two distinct colors other than 7 (see Fig. 1b). As the
query tree is traversed top down in the B13 algorithm, we update it
to compute and store a set of counters for each node v in T (other
than the root). Let # = p(v) and recall that 7, is the root of T,; we
maintain the following counters for v:

e <l triplets inside v. This is the number of triplets anchored at v
that match the reference tree.

* 10: triplets outside v. This is the number of triplets anchored at u
in the alternative rooting T, that match the reference tree.

* 1: triplets at the rerooting point. This is the number of triplets
anchored at 7, in T, that match the reference tree.

Note 19 of T equals to ¢, of T,, (Fig. 1a and b). Below, we show
how to compute these counters using new HDT counters updated
after each coloring of T.

Score of alternative rooting. After the first top-down traversal,
we compute the triplet score of T (original rooting) to R by summing
up 7, for all nodes of T. Then, we compute the triplet score for all al-
ternative rooting T, of T using a second top-down traversal and the
following recursive formula:

Y(v)=Y({p()) — r;,(u) — Ty T T+ T, (1)

Here, to move from the parent to a child, we remove matching
triplets anchored at the parent or nodes outside it and add those
anchored at the child or any node outside it (a triplet may be added
and subtracted back).

2.3.2 Building and using the HDT of the reference tree

Building the HDT. We use the linear-time algorithm of Brodal ez al.
(2013) to build the HDT data structure from the reference tree R.
Each node of HDT is a combination of multiple nodes in R carefully
selected in a way that ensures the HDT tree is locally balanced,
meaning that each node with m leaves has O(m) height. This local
balance property enables efficient query of the number of matching
triplets according to a coloring by an internal node of T. Johansen
and Holt (2013) refer to the nodes in the HDT as components, each
of which is classified into one of the three types: C, G or I (see
Supplementary Table S1 and Supplementary Fig. S5, or refer to the
original text and fig. 2.5 of Johansen and Holt, 2013). We use terms
node and component interchangeably.

Updating HDT counters. To compute the number of matching
triplets, each node of HDT keeps a set of counters (Table 1). These
counters only depend on the coloring of leaves, and when a leaf
changes color, the HDT counters must be updated. Brodal et al.
(2013) and Johansen and Holt (2013) have derived recursive for-
mula to compute these counters for each component in the HDT
given its children; thus, we can update the counters by visiting all
the nodes from the leaf that has changed color to the root.

Let T be colored by node # with degree d,, and children of u,
vi,...,v4,—1 by 1,...,d, — 1. Note that, d,, < d and recall that the
subtree above # has color 0. In addition to counters defined by B13,
we add the following two sets of counters to each component X of
HDT.

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

U.Mai and S.Mirarab

Fig. 1. (a) The query tree T colored by node # with degree d,,. Leaves under each v; are given the same color 7, and the leaves outside # are colored 0. Any triplet of T anchoring
at # must have two leaves taken from leaves under v; and the other from a clade v; different from v; (exclude v, as it does not define a clade below u). Thus, the colors of a trip-

let anchoring at # must be (4, 7,) or one of its permutations, where i # j,i,j € {1,2,...

,d, — 1}. (b) The alternative rooting T,, of T. A new node r,, is added between # and v,

to split the edge into two, and the edge directions are adjusted accordingly to have all nodes pointing to the new root. To count the triplets anchoring at « in T, , we exclude v,
instead of v as in T. To count the triplets anchoring at r,, , we group all colors other than 1 into one group, and count the triplets that have colors (7,7,1) or (1,1,7), or a per-

mutation of these two, where 7 # 1

* p*: the number of triplets of R that belong to component X and
match the corresponding triplets of T, that are anchored at 7,,.

* : the number of triplets of R that belong to component X and
match the corresponding triplets of T,, that are anchored at u. If
d, < d,we setn/x =0forallj >d, —1.

We now show recursions for pX and n,X and prove them in
Supplementary Appendix. If X is an I or L, we simply skip it. If X is
an IG —C, we copy over the counters of its G child.

If X is a CC —C component with children C; and C, (by the
convention, C; is below C,; see Supplementary Fig. S5), then

Ci

C C. n: G C.
’sz—"f”F”f“FZi%f((2 >("'CZ_”/'—”I'Z)+

nt.C' (nc,Z - "1%) + (S — nc' — nt-c')n(%+ (2)

Ci(,,C Cy Cy C
n; (n‘D - n/'o — N +ni/')

p ,pC1+pC2 +1’IC111(():T2.

nC —
g "0 anTO

c1 c1 _ .G 3
o e —n€2>+("- 2) ©

C. C: C
+(”§' —"01)”(00 +n (n .ZD) (02.))

If X is a GG —G component with children G; and G,, then

X__G G G G G G
nt=m" +m o+ Zl%,(N — it —ml)+

S (n n,‘f -)+ (4)
nGh (n$* = nf - CZ) nG (nSr = nft —n"))

pX = pC! o+ T g (0 — ng?) + (G — g gt +

G G G G y,G
Hog (&t — ") + (1 = mgh)ng”

(5)

These HDT counters readily give us the d + 1 counters assoc1ated
to node u of T as defined earlier. More precisely, t, = ¥, ©, = p®

and 1) = n,R for each j = [d,] where R is the root of ‘the HDT.

2.3.3 Generalizations

Note that, Algorithm 1 computes and stores the score ¥(T,, R) for
every alternative rooting T, of T. Thus, solving m-MTR is straight-
forward: we first apply Algorithm 1 to each reference tree R; and T
to compute ¥(T,, R;) for all node v of T. Then, for each node v of

k
T, we compute ¥, = >~ ¥(T,,R;). Finally, we select the node v*
i=1
with maximum ¥, and reroot T at v*. By Claim 1, this algorithm
also solves m-MQP.
Algorithm 1 can be adopted to cases where T and R have differ-
ent leafsets Ly NLg =S with minor modifications. Because the
leaves in Lg \' S and L1\ S do not contribute to the number of

matching triplets, we can simply ignore them. To do so, we restrict
R on § by removing from R all the leaves in Lg \ S. We mark all the
leaves in T that are not in S as inactive and ignore the inactive leaves
by not coloring them during the top-down traversal of T. The result-
ing algorithm is clearly correct.

2.4 Complexity analysis

Thanks to the smaller-half trick of Brodal er al. (2013), at most
O(nlogn) leaves change color in the (recursive) top-down traversal
of Algorithm 1 (i.e. the ColorAndQuery function). Therefore, the
coloring module performs at most O(7logn) operations. To incorp-
orate our extensions, three extra counters are maintained for each
node in T, all of which are computed in O(1) using the same top-
down traversal for coloring. Thus, the asymptotic complexity of col-
oring does not change. The B13 algorithm builds HDT in linear
time. Because the HDT has O(n) components and is locally bal-
anced, the original HDT used in B13 can be queried in O(log#) per
leaf recoloring (see Brodal et al. (2013) and Johansen and Holt
(2013)). Our extensions require O(d?) counters per HDT compo-
nent (instead of O(1) counters used in B13), so the complexity per
HDT query increases by a factor of O(d?). Thus, the total time com-
plexity of Algorithm 1 is O(d?nlog?#). In a tree where d is bounded
by a constant (e.g. a fully resolved binary tree), the complexity is
O(nlog?#n). With k reference trees, the time complexity of both m-
MTR and m-MQP is O(kd*nlog?#).

2.5 tripVote: completing gene trees (mm-MQP)

We develop a heuristic method using m-MQP to complete a set of
incomplete gene trees (mm-MQP). To complete a gene tree T;, we
sequentially apply the m-MQP algorithm to place each missing
taxon onto T;, using the other gene trees as references. This greedy
algorithm optimizes the number of shared quartets with reference
trees that include at least three of their four leaves coming from T;.
However, it does not solve the NP-Hard problem (Lafond and
Scornavacca, 2019) of finding a complete tree with optimal quartet
score over all quartets. Thus, the order of placements can change the
outcome. In tripVote, we order missing taxa by their descending fre-
quency of presence in the input gene trees, breaking ties arbitrarily.
Note that tripVote only works on single-labeled gene trees.

2.5.1 Quartet sampling

As long appreciated, quartets with shorter terminal branches (i.e.
short quartets) have better theoretical (Erdos et al., 1999) and em-
pirical (Snir ez al., 2008) performance than long quartets, motivating
some quartet-based methods to select short quartets (e.g. Nelesen
et al., 2012; Warnow et al., 2001). Inspired by these methods, we
propose a stochastic approach to down-weight the votes of long
quartets around the query taxon in reference trees. After rooting a
gene tree at the query taxon, we sample random paths from the root
to a leaf, selecting a child of a node uniformly at random at each
step (Supplementary Fig. S4). For each reference tree, we sample s
taxa with replacement, then remove duplicates and restrict the tree
to the selected set of taxa. We repeat this sampling procedure 7 times

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

Sub-quadratic gene tree completion

(@)

0. 4 tripVote - ASTRAL completion -~ OCTAL

4~ medium - high 4 very high
0. '

o
o

Normalized RF
o
=

o
w

0.2

(b)

- tripVote - ASTRAL completion - OCTAL

4~ medium - - high 4 - very high
10

Induced RF

0.0

0 20 50 100
Number of missing taxa

(C) 06

0.5

Normalized RF

0.4

-+- \ow-é- medium -* high
4 tripVote -$-ocTaL

- ASTRAL completion

2 20 50 100
Number of missing taxa

(d) 4~ low - - medium 4 - high

- tripVote - ASTRAL completion - OCTAL

0.6

04

Induced RF

0.2

0.0

8
Number of missing taxa

8
Number of missing taxa

Fig. 2. (a and ¢) Normalized RF error of tripVote, OCTAL and ASTRAL-completion on the 201-taxon dataset with different levels of ILS (a), and the 31-taxon dataset with
different levels of clock deviations (c); 72 = 0 shows the average RF error of the complete gene trees estimated by FastTree. (b and d) Induced RF error of tripVote, OCTAL and
ASTRAL-completion on the 201-taxon dataset (b) and the 31-taxon dataset (d). See Supplementary Figures S8 and S9 for the random completion as control

Table 1. HDT counters

Entity Is the number of ...
nX i-colored leaves below X.
nf/-(Pairs of leaves below X where one is colored 7, the other is colored j. If X is a C type, the LCA of these two leaves must be on the exter-

nal path of X and the path from the LCA to either of these two leaves does not pass through any other node on the external path. If

Xis a G type, the two leaves must belong to two distinct subtrees of the super root of X (Supplementary Fig. S5).

nﬁl Pairs of leaves where one is colored i, the other is colored j and the i-colored leaf is below the j-colored leaf in X (only defined for C
type; see Supplementary Fig. S5).

néi) Pairs of leaves below X both with color i. If X is a C type, the LCA of these leaves must not belong to the external path. If Xisa G
type, the LCA must not be the super root of X.

nff),) Pairs of leaves below X with one leaf colored 0 and the other colored different from 0 whose LCA is ot a node on the external path if

X is a C component or the super root if X is a G component.

Note: Everywhere, i,j € [d]. As in Johansen and Holt (2013), we use the descriptors ® and [] to represent any color (unlike Johansen and Holt (2013), we in-

clude 0, which is needed for rooting). Thus, 7}, = el nisml =3 mnd =

to generate r sampled trees for each reference tree. After sampling,
we combine all the generated sample trees across all genes as the ref-
erence trees in m-MQP.

While hyperparameters s and r can be set by users, by default, we
choose them such that leaves close to the root have a sufficiently high
probability of being sampled at least once across the s x r draws. We
first set s such that a taxon at the distance 4 log, # from the root is
expected to be sampled once in each round. Since the probability of
samphng a leaf at distance 4 log,n from the root in one traversal is
W = ﬁ, setting s = \/n achieves the goal. Thus, we choose
s = [v/n]. To select the number of rounds, we set r such that a taxon
with distance at most h (a predefined constant) from the root is

X, X _ X
i e = 2 e

sampled with high probability. That is, for a false-negative tolerance
¢, we require: 1 — (1 —i)” > 1—¢. By default, we set h=35 and

€= 0.05; thus, s x r = lé‘;g(g% ~ 95 to satisfy the above inequality.

Thus, by default s = [\/n] and r = (\ﬂ

2.5.2 Software package

We updated the C++ software by Sand ez al. (2014) to incorporate
our algorithm to solve MTR. We built a Python wrapper, tripVote,
for the C++ package and added new functions for gene tree

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

U.Mai and S.Mirarab

medium | |

high | | very high |

0.204

Species tree error (normalized RF)

0 25 50 75 100 0 25

50 75 100 0 25 50 75 100

Number of missing taxa

-¢- search space only -@- search and score

-4~ ASTRAL complete - tripVote - OCTAL on ASTRAL tree

Fig. 3. Topological error of the ASTRAL species tree estimated using different set of gene trees (the 201-taxon dataset). The three panels show different levels of ILS. In ‘search
space only’, the completed gene trees (by ASTRAL-complete, tripVote or OCTAL) were only used to guide ASTRAL’s search space, whereas in ‘search and score’, the com-
pleted gene trees were used as the actual input to ASTRAL. To obtain the results for OCTAL, two rounds of ASTRAL was run: in the first round the search space was produced
by ASTRAL-complete given the incomplete trees; in the second round, ASTRAL was run using the OCTAL-completed gene trees, both for search space and as input

completion using mm-MQP heuristics, with or without the quartet
sampling strategy.

3 Evaluation procedures

3.1 Datasets

We test tripVote on published simulated datasets by Mirarab and
Warnow (2015) and Mai et al. (2017) and a real plant dataset by
OneKP Initiative (2019). The simulated datasets were both created
using Simphy to generate gene and species trees under the multi-
species coalescent model and heterogeneous parameters, and
Indelible to simulate nucleotide sequences on gene trees according to
the GTR +T model with varying sequence lengths and sequence
evolution parameters. FastTree2 was used to estimate gene trees
based on the GTR +I' model. Original papers provide full details on
the parameters used in each of these two datasets.

The 201-taxon dataset by Mirarab and Warnow (2015) enables
us to examine the effect of incomplete lineage sorting (ILS) on gene
tree completion methods. From this dataset, we use 3 model condi-
tions with 200 taxa where tree length is 2M and speciation rate is
le-6, and use the first 20 out of the 50 replicates of the original data-
set (to save computational time). In each replicate, we use the first
500 (out of 1000) estimated gene trees that are fully resolved. The
three model conditions have medium, high and very high levels of
ILS, resulting in 21, 33 and 69% RF distance between true gene
trees and the species tree. They also have high levels of gene tree esti-
mation error (15, 22 and 34% RF between estimated and true gene
trees).

The 31-taxon dataset by Mai et al. (2017) is used to examine the
effect of clock deviations on gene tree completion methods. Here,
we use the three model conditions with the root to crown ratio equal
to 1.0, but varying levels of deviation from the clock (low, medium,
high). We only use the first 20 out of the 100 replicates of the origin-
al dataset because our experiments are computationally intensive.
The average coefficient of variation of root-to-tip distances of low,
medium and high deviations are 0.04, 0.30 and 0.69, respectively.
These replicates have moderately high level of ILS (with 24% mean
RF distance between true gene trees and the species tree). The
amount of gene tree estimation error increases with deviations from
the clock (RF errors are 30, 41, and 52%).

The real OneKP biological dataset of 1178 plants by OneKP
Initiative (2019) has 384 gene trees, all of which miss some of the
species. The original study provide an ASTRAL species tree inferred
from 384 gene trees, inferred using RAXML, each with at least
1178/2 = 589 species.

3.2 Experiments

We compare tripVote with two alternatives tree completion algo-
rithms: ASTRAL-completion, the method used in ASTRAL and
described in Mirarab (2015), and OCTAL, the gene tree completion
method that minimizes RF distance of each gene tree to the species
tree. ASTRAL-completion is run using the ASTRAL software, and
OCTAL is run using the TRACTION-RF software (Christensen
et al., 2018). In addition, to guide visualization and interpretation,
we add a lower-bound control by randomly completing the gene
trees (repeated 100 times and averaged).

In simulated datasets, we randomly remove m leaves from each
estimated gene tree to create incomplete gene trees; m €
{0,1,2,20,50,100} for the 201-taxon dataset and m €
{0,1,2,3,8,15} for the 31-taxon dataset. We use tripVote, OCTAL
and ASTRAL-completion to complete each set. For the 201-taxon
dataset with m=1, we compare the accuracy of tripVote with and
without the sampling.

We use two different error metric: the normalized RF distance
and the induced RF distance, as described below. To separate the
gene tree estimation error from the error by completion methods,
we define the induced (normalized) RF distance, as follow: given
two trees Ty, T> and a reference tree R, the induced RF distance of

T, on T with respect to R is W where RF denotes the

normalized RF distance of two trees after restricting them to their
shared leafset. Positive (negative) induced RF distances show that
Ty (T>) is closer to the reference tree. On the simulated datasets, we
use the estimated gene tree by FastTree as T4, the tree completed by
a completion method (e.g. ASTRAL-completion, tripVote, etc.) as
T, and the true gene tree as R.

In addition, we test the ability of tripVote to improve species tree
estimation. On the 201-taxon dataset, we compare five versions of
ASTRAL for inferring species trees from incomplete gene trees.
(i) The default ASTRAL uses ASTRAL-completion to construct the
search space and original trees to score. (ii) We use tripVote in place
of ASTRAL-completion but continue to score trees using incomplete
trees. (iii) We use OCTAL in place of ASTRAL-completion. Since
running OCTAL needs a species tree, we use the ASTRAL species
tree inferred in (i) as input to OCTAL. Thus, in this setting,
ASTRAL is run twice. (iv) We use the gene trees completed by
ASTRAL-completion as input to ASTRAL, making them used both
for search space creation and scoring. (v) Similarly, we use tripVote
completed trees as input. We measure the error of these ASTRAL
trees by computing their RF distances to the true species tree.

We also test tripVote and ASTRAL-completion on their ability
to root an unrooted gene tree with respect to other rooted gene trees.
On the two simulated datasets, we remove the outgroup from a set

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

Sub-quadratic gene tree completion

of n — k gene trees (arbitrarily selected) and use the k remaining
trees to infer the outgroup placement. We vary k in
{1,10,50,100,250,500}. To measure error, we compute the opti-
mal rooting that minimizes the triplet distance to the true tree and
report the delta triplet error, defined as the difference between the
triplet distances of a rooted tree and the optimal tree to the true tree.
In addition to ASTRAL-completion, we also compare tripVote to
other rooting methods, including the outgroup rooting (root at the
original placement of the outgroup before removing it), mid-point
rooting and MinVar rooting (Mai et al., 2017) and add the random
rooting as a control.

For the OneKP dataset, we set up two versions: one where the
original gene trees are used directly and one with extra missing data
where we prune out an extra p% of the taxa from each gene tree (for
p €{5,10,15,20}). With original data, where the completed gene
trees are unknown, we measure the induced RF distance of the com-
pleted gene tree (T5) on the original (incomplete) one (T;) with re-
spect to the species tree (R). For the extra missing data, after
running the methods to complete the gene trees, we reduce the com-
pleted gene trees to the same leafset as the original gene trees and
compute their normalized RF distances.

4 Results

4.1 Simulated datasets

4.1.1 Gene tree completion

Across all model conditions with 72 =1, the sub-sampling strategy
dramatically lowers the error compared to full quartet sampling
(Supplementary Fig. S6). Both versions of tripVote have higher error
when the ILS level increases. The averaged error of tripVote with
and without sampling are 0.51 versus 0.84, 0.77 versus 1.75, and
3.77 versus 5.42 for medium, high and very high ILS, respectively.
Thus, the error is less than half for the high ILS level and is reduced
everywhere. Looking beyond the average error and examining the
full distribution shows that while in the majority of cases error is at
most one branch with sampling, the same is not true when sampling
is not performed. Both versions suffer from a tail of placements with
very high error (e.g. five edges or more), a condition that unsurpris-
ingly is observed mostly for the highest level of ILS. However, the
tail of large errors is clearly reduced after sampling. Because restrict-
ing the calculations to shorter quartets has a clear positive impact on
the results, we use sampling by default in tripVote and use it in the
remaining experiments.

Comparing tripVote and ASTRAL-completion, across all condi-
tions, tripVote always has lower error and the difference between
the two methods is more pronounced when the number of missing
taxa increases (Fig. 2). The relative improvements of tripVote com-
pared with ASTRAL-completion are quite large. On the 201-taxon
dataset at 50% missing data (i.e. 72 =100), the induced RF error of
tripVote is 32%, 34%, and 6% lower than that of ASTRAL-
completion in medium, high and very high ILS levels, respectively
(Fig. 2b). Similarly, tripVote dominates ASTRAL-completion on the
31-taxon dataset across all conditions of clock deviation, albeit with
smaller differences compared to 201-taxon dataset. For example,
with 7= 135, the induced RF error of tripVote is 11%, 2%, and 4%
lower in low, medium and high clock deviations, respectively
(Fig. 2d).

The comparison between tripVote and OCTAL depends on the
dataset and the level of missing data. On the 31-taxon dataset,
tripVote has better accuracy, and the improvements are most pro-
nounced with higher clock deviations and medium level of missing
data (e.g. eight taxa). On the other hand, OCTAL is more accurate
in most conditions of the 201-taxon dataset and especially when the
amount of missing data exceeds 50 taxa. Improvements of OCTAL
over tripVote are non-existent or negligible for the highest levels of
ILS and are increased for lower levels.

All methods are affected by the level of missing data, ILS (Fig. 2a
and b) and clock deviations (Fig. 2c and d). Even before completion,
gene trees have higher levels of errors when the ILS is higher or
when the deviations from the clock are more pronounced.

e i g I Vo]
[i\:\ -----------
> o
So2 ¢
) e
g 1
% L\ O,
2
s
o4 e e e e e —————
ool T _____________
|
boe o o mmmmmmm—eeeee
00 kS
T 10 200 a0 400 500 6 100 200 0 40 50 6 100 20 300 400 6o
Number of vote trees
4 ASTRAL completion 4~ Minvar 4~ Random - tipVote samping
4 Midkoin 4 Ougroup - ripvota o samping

o I o [g

Delta triplet error

0 100 200 300 400 500 0 100 200 300 400 500 O 100 200 300 400 500
Number of vote trees

4 ASTRAL completion - Minvar 4~ Random
- Migpoint 4+ Ougrow 4~ tipvote no sampling

4 tipVote samping

Fig. 4. Accuracy of rooting based on different methods for (a) The 201-taxon data-
set and (b) The 31-taxon dataset. The outgroup is removed from m randomly
selected trees and inserted back using either ASTRAL-completion or tripVote, then
each of these trees is rerooted at the reinserted outgroup. The x-axis shows the num-
ber of voting trees for ASTRAL-completion and tripVote (i.e. 7 — m) and the y-axis
shows the delta triplet error (i.e. the triplet error to the true rooted tree subtracting
the triplet error of the optimal rooting that has minimum triplet error to the true
tree). We added alternative rooting methods (Outgroup, MinVar, MidPoint and
Random) that do not use other gene trees (dotted lines). Outgroup rooting was done
on the complete estimated trees with outgroup included. MidPoint and MinVar
were run after the outgroup was removed. The Random rooting was repeated 50
times and the average error is reported. See also Supplementary Figure S3 where the
error is measured by the raw triplet error

Completion always increases error compared with estimated gene
trees, especially when there are more missing data. However, this in-
crease in error is more pronounced for the highest level of ILS than
lower levels. Thus, for very high ILS, not only gene tree estimation is
difficult, completion is also difficult. In particular, RF distances after
completion can reach 0.7 for the highest ILS case. In contrast, aver-
age levels of RF remain below 0.33 after completion for medium or
high ILS. Thus, gene tree-based completion using tripVote fails to be
accurate at the highest levels of ILS. In contrast to ILS levels, we did
not detect a reduction in effectiveness of tripVote as deviations from
the clock increase. In fact, induced RF errors go down with increas-
ing levels of clock deviations (Fig. 2d). Note that, with high devia-
tions, the error is already very high before completion and there is
relatively little room left for increased error.

4.1.2 Effects on species tree accuracy

We ran ASTRAL to infer the species trees from incomplete gene
trees using five methods described earlier and compared their nor-
malized RF errors (Fig. 3). All ways of running ASTRAL showed
some level of sensitivity to missing data, especially for high ILS and
more than 50 missing taxa per gene (~25% of the leaves). In con-
trast, the condition with the lowest level of ILS is remarkably robust
to even extreme levels of missing data (=50% of the leaves).

At all levels of ILS, the accuracy is always higher when the com-
pleted gene trees are only used to construct search space than when
they are also used for scoring species trees. Overall, the best accur-
acy is obtained when tripVote is used only for building the search
space. In this setting, tripVote slightly improves upon the default
ASTRAL-completion method when ILS is very high and there is
moderate amount of missing data (i.e. up to 50 taxa). Thus,
tripVote can be used in place of ASTRAL-completion inside
ASTRAL to improve its accuracy. Moreover, tripVote has far better
accuracy than ASTRAL-complete when the completed gene trees are
used both for search space and scoring. Comparing with the original

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

U.Mai and S.Mirarab

setting of ASTRAL (which uses ASTRAL-completion for search
space only), the ASTRAL tree inferred using OCTAL either has the
same accuracy (when ILS is medium) or worse. Note that, the
OCTAL setting uses the default ASTRAL species as input.
Therefore, our results do not show any benefit in using OCTAL for
improving the search space of ASTRAL.

4.1.3 Gene tree rooting

The accuracy of tripVote for rooting is mixed. The absolute error of
tripVote rooting clearly increases with the level of ILS (Fig. 4, top),
but not with deviations from the clock (Fig. 4, bottom). The accur-
acy of tripVote (and also ASTRAL-completion) rapidly increases as
the number of voting trees increases to 100, but there is relatively lit-
tle improvement after that. Overall, the accuracy of tripVote
improves as a result of adding the sampling strategy; however, the
improvements are more subtle than those observed for the place-
ment problem.

In all model conditions, tripVote is more accurate than
ASTRAL-completion, but its accuracy comparing to other methods
depends on the model condition. With medium ILS, tripVote is the
best method and even outperforms outgroup rooting (Fig. 4a). With
high ILS, tripVote is similar in accuracy to MinVar. However, when
ILS is very high, tripVote is not a good choice (Fig. 4a). Overall, if
an outgroup is available, it is clearly a better choice than tripVote
when ILS levels are high or very high. When clock deviation is low,
branch-length-based rooting methods are very accurate and better
than outgroups and tripVote. (Fig. 4b). In medium clock, the error
of MinVar and MidPoint go up but still slightly dominate tripVote,
and outgroup rooting is the most accurate. When the clock deviation
is high, MinVar and MidPoint have higher error, and tripVote is the
best method given enough number of voting trees (Fig. 4b).

4.1.4 Running time

We note that tripVote, if run without the sampling strategy to com-
plete the species tree, solves a similar problem to INSTRAL. Using
the dataset from the original study by Rabiee and Mirarab (2020b),
we compare the running time of INSTRAL and the two versions of
tripVote with and without sampling (Supplementary Fig. S2). Here,
the species tree (not a gene tree) is being completed, and the two
methods are guaranteed to return the same solution; the only differ-
ence is the running time. The running times of the two methods are
comparable when they both use complete input gene trees as input.
The theoretical running time of INSTRAL depends on the number
of unique nodes across all gene trees (e.g. tripartitions for a binary
tree), and thus, very similar gene trees do not increase its running
time dramatically. However, in practice, gene trees often miss at
least some leaves, forcing most nodes to be distinct. Thus, we also
tested a case where gene trees missed only 1% of the leaves. Under

(a) (b)
Species tree discordance (original data)

31 = tipvote

=== RANDOM
m== OCTAL
=== ASTRAL completion 0.3

[N

0.1

Gene tree error (extra missing)

-9 ASTRAL complete

w

4

B w

S « -4 tip\ote
3

£ 8 -4~ RANDOM
o 502

g £ -4 OCTAL
© o

g z

5

z

these conditions, tripVote is much faster. For example, with 10 000
species, INSTRAL takes on average 71 min while tripVote takes
only 14 min.

Consistent with the theory, the asymptotic running time of
INSTRAL grows faster than linearly (close to 7!*) without missing
data and close to quadratically with missing data. In contrast,
tripVote running time without sampling increases close to linearly
with or without missing data. With sampling, because we set the
sampling size to a sublinear function of #, the running time of
tripVote further reduces and is sublinear (close to 70?).

4.2 Real datasets

On the real dataset, we show the incongruence of the completed
gene trees (original data) with the species tree (Fig. 5a), the error of
the completed gene trees at different levels of extra missing data
(Fig. 5b), and the estimated branch length of the species tree (for ori-
ginal and extra missing data at 20%, Fig. 5c). Consistent with the
results of simulated data, here we also see that tripVote is more ac-
curate than ASTRAL-complete, but is not as accurate as OCTAL,
especially with higher levels of missing data. Thus, in terms of topo-
logical accuracy of gene trees alone, using the species tree to com-
plete the gene trees gives the best results.

The completed OCTAL trees, however, are biased. Ideally, the
completed trees should be no more or less distant to the species tree
than the original incomplete trees, and the induced RF distance
should be distributed around 0. Both the random and the OCTAL
methods substantially change the distance to the species tree, espe-
cially when the number of missing taxa increases. The random com-
pletion sharply increases the induced RF distance with a high
variance. While the induced RF distance of the OCTAL method has
very low variance at all levels of missing data, the value decreases
below 0 when the missing data increases. This reduction shows that
the OCTAL method produces completed gene trees that have lower
discordance with the species tree than incomplete gene trees, and
indicates that the resulting completed trees may be overfit to the spe-
cies tree. ASTRAL-completion and tripVote have relatively little ef-
fect on induced RF distance and keep it around 0 even at the highest
levels of missing data. The two methods have the opposite tenden-
cies: ASTRAL-completion tends to slightly increase the distance to
species tree (mean induced RF: 0.035) while tripVote tends to slight-
ly decrease the distance (mean induced RF: —0.015). Also,
ASTRAL-completion has a higher variance compared to tripVote
(0.006 versus 0.002).

As a result of these biases, when OCTAL-completed gene trees
are used to estimate the species tree, the OCTAL trees cause an over-
estimation in the species tree branch lengths compared with using
the original gene trees (Fig. 5c). Such a problem is far less severe
when tripVote or ASTRAL-completion is used. Both original data
and the extra 20% missing data show a consistent pattern. As

(c)

Species tree branch lengths.

original Il extra missing (20%)

ST branch length ratio (after/before)
o

100 200 300 400 500 600 5 10
Number of missing taxa

Extra missing data (%)

15 20

. tripVote . RANDOM . OCTAL . ASTRAL complete

Fig. 5. The OneKP results for (a and left panel of ¢) completing incomplete gene trees, and (b and right panel of ¢) completing gene trees with extra (introduced) missing data.
(a) Induced RF distance to the species tree of different completion methods on the original incomplete gene trees versus the number of missing taxa. (b) The ratio of the species
tree branch lengths after versus before completion by different methods; the y-axis is shown in logarithmic scale. See Supplementary Figure S7 for normalized RF and another

view of the branch length estimation

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

Sub-quadratic gene tree completion

expected, the branches of the species tree estimated using random
completed gene trees are underestimated compared with the original
branch lengths obtained from incomplete gene trees.

5 Discussion

We introduced a quasi-linear time algorithm for adding a new taxon
to a tree to maximize its total matching quartets to a given set of refer-
ence trees that already include the taxon. We built a method called
tripVote around this algorithm using a sampling strategy to further
improve accuracy and a simple greedy algorithm to allow adding mul-
tiple taxa. Overall, results indicate that species-tree-free completion of
gene trees does add to the error of the trees, compared with what
could be achieved if sequences were available. This much should not
be surprising. Gene-tree-based completion was also not always more
accurate than species tree aware completion. However, results indi-
cate that gene-tree-based completion is able to maintain the overall
levels of gene tree discordance with the species tree. Thus, unlike spe-
cies tree aware completion, the method does not seem biased toward
increasing or decreasing the gene tree discordance. Two main factors
limiting the accuracy of gene tree completion seem to be the true levels
of gene tree discordance (e.g. ILS) and the amount of gene tree error
(controlled in our experiments using deviations from the clock).

Comparing the species tree aware method, OCTAL, with
tripVote, we saw mixed results. While tripVote has better accuracy
with higher clock deviations and moderate levels of missing data,
OCTAL is more accurate in other settings and the gap increases
with the number of missing taxa. While part of the differences may
be due to the inherent advantage of using a species tree, the more
subtle issue of optimality needs to be also considered. While
OCTAL is an exact algorithms that minimizes the RF distance of
each gene tree to the species tree, tripVote is a greedy heuristic when
there are more than one missing taxon. Its heuristic nature may ex-
plain why tripVote’s accuracy degrades with the level of missing
data more quickly than OCTAL, as its error after each m-MQP ap-
plication can add up. Note that, since OCTAL requires a species
tree to operate, it has two limitations: it makes the completed gene
trees biased toward the species tree used and it is not useful for the
species tree estimation problem (even in the two-iteration setting
where we tested it). In contrast, tripVote works directly on a set of
gene trees and maintains a more faithful distribution of the gene
trees discordance after completion. Therefore, tripVote is more suit-
able than OCTAL in use cases that need to maintain the discordance
level or have to avoid the use of a reference tree.

While we tested tripVote for gene tree completion, the MQP and
m-MQP algorithms can be used in other contexts such as species tree
completion. In that usage, tripVote (without sampling) would be iden-
tical to INSTRAL in terms of the resulting placement (both solve the
same problem exactly) but will have a better worst-case running time
complexity. This better running time also opens the door for develop-
ing methods that can infer an entire species tree by repeated place-
ments (i.e. using a greedy algorithm to solve an NP-Hard problem).
While a simple greedy search may not outperform methods such as
ASTRAL (Zhang et al., 2018), repeated applications of the greedy
search may provide a better running time versus optimality tradeoff.
We leave the exploration of such directions to future work.

The ability of tripVote to root trees was mixed and depended on
the dataset. Given the difficulty of knowing the model condition on
real data, we do not necessarily advocate using tripVote for rooting,
unless when researchers know the levels of ILS are not high and some
deviations from the clock are expected. Otherwise, using methods
such as MinVar seems preferable. Future works can improve the root-
ing accuracy by combining tripVote and branch-length-based rooting.
One direction could be incorporating the MinVar score of each
branch in addition to the tripVote score, but that approach requires a
way to combine the two scores. Taking the idea further, machine
learning techniques could perhaps be used to combine the scores from
multiple methods to find the best rooting overall by training for
parameters of a function that combines these scores as features.

The tripVote method can also be improved in several ways. First,
since tripVote is a greedy algorithm, the ordering of the taxa to be

inserted may affect its accuracy. Future works can explore different
strategies to order the queries or run multiple times and summarize
results across multiple orderings. Second, the current setting gives
the same weight to the vote of every reference tree, regardless of its
distance to the backbone tree. As the topology of different gene trees
can vary substantially, a weighting scheme that discounts the votes
of distant gene trees to the backbone tree should be explored.
Finally, while tripVote computes all the individual votes of every ref-
erence tree, it only uses their sum to select the placement branch.
Another research direction is to explore other strategies to summar-
ize the votes, such as using the median, or a non-linear transform-
ation of each triplet score before summing. Alternatively, one can
also take a machine learning approach to use the set of votes from
the reference trees as features to learn and predict the best placement
branch, in a framework such as that of Jiang ez al. (2021).

Funding

This work was supported by the National Science Foundation (NSF) [IIS-
1845967 to U.M. and M.R.]. Computations were performed on the San
Diego Supercomputer Center (SDSC) through XSEDE allocations, which was
supported by the NSF [ACI-1053575].

Conflict of Interest: none declared.

Data availability

All data used in this paper and the tripVote software are available at
https://uym?2.github.io/tripVote/

References

Aiemvaravutigul,C. and Wongwattanakij,N. (2019) A linear-time algorithm
for optimal tree completion. In: 2019 16th International Joint Conference
on Computer Science and Software Engineering (JCSSE). IEEE, Chonburi,
Thailand.

Bansal,M.S. (2018) Linear-time algorithms for some phylogenetic tree comple-
tion problems under robinson-foulds distance. In: RECOMB International
conference on Comparative Genomics. Springer, Paris, France, pp.
209-226.

Bayzid,M.S. and Warnow,T. (2012) Estimating optimal species trees from in-
complete gene trees under deep coalescence. J. Comput. Biol., 19, 591-605.

Brodal,G.S. et al. (2013) Efficient algorithms for computing the triplet and quartet
distance between trees of arbitrary degree. In: Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 13. Society for
Industrial and Applied Mathematics, USA, pp. 1814-1832.

Christensen,S. et al. (2018) Octal: optimal completion of gene trees in polyno-
mial time. Algorithms Mol. Biol., 13, 6.

Doyle,V.P. et al. (2015) Can we identify genes with increased phylogenetic re-
liability? Syst. Biol., 64, 824-837.

Erdos,P. et al. (1999) A few logs suffice to build (almost) all trees: part II.
Theor. Comput. Sci., 221, 77-118.

Hosner,P.A. et al. (2016) Avoiding missing data biases in phylogenomic infer-
ence: an empirical study in the Landfowl (Aves: Galliformes). Mol. Biol.
Ewvol.,33, 1110-1125.

Hovmoller,R. et al. (2013) Effects of missing data on species tree estimation
under the coalescent. Mol. Phylogenet. Evol., 69, 1057-1062.

Jiang,Y. et al. (2021) DEPP: deep learning enables extending species trees using
single genes. bioRxiv (abstract in RECOMB 2021), Padova, Italy,
2021.01.22.427808.

Johansen,]. and Holt, M.K. (2013) Computing Triplet and Quartet Distances.
Master’s thesis, Department of Computer Science, Aarhus University,
Aarhus, Denmark.

Lafond,M. and Scornavacca,C. (2019) On the weighted quartet consensus
problem. Theor. Comput. Sci., 769, 1-17.

Laurin-Lemay,S. et al. (2012) Origin of land plants revisited in the light of se-
quence contamination and missing data. Curr. Biol., 22, R593-R594.

Mai,U. and Mirarab,S. (2018) TreeShrink: fast and accurate detection of outlier
long branches in collections of phylogenetic trees. BMC Genomics, 19, 272.

Mai,U. et al. (2017) Minimum variance rooting of phylogenetic trees and
implications for species tree reconstruction. PLoS One, 12,e0182238.

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

10

U.Mai and S.Mirarab

Mclean,B.S. et al. (2019) Impacts of inference method and data set filtering on
phylogenomic resolution in a rapid radiation of ground squirrels (Xerinae:
Marmotini). Syst. Biol., 68, 298-316.

Mirarab,S. (2015) Novel scalable approaches for multiple sequence alignment
and phylogenomic reconstruction. http://hdl.handle.net/2152/31377.

Mirarab,S. and Warnow,T. (2015) ASTRAL-IIL: coalescent-based species tree
estimation with many hundreds of taxa and thousands of genes.
Bioinformatics, 31, 144-152.

Molloy,E.K. and Warnow,T. (2018) To include or not to include: the impact
of gene filtering on species tree estimation methods. System. Biol., 67,
285-303.

Nelesen,S.M. et al. (2012) DACTAL: divide-and-conquer trees (almost) with-
out alignments. Bioinformatics, 28, 1274-i282.

Nute,M. et al. (2018) The performance of coalescent-based species tree
estimation methods under models of missing data. BMC Genomics, 19,
133.

OneKP Initiative,O.T.P.T. (2019) One thousand plant transcriptomes and the
phylogenomics of green plants. Nature, 574, 679-685.

Philippe,H. et al. (2017) Pitfalls in supermatrix phylogenomics. Eur.].
Taxonomy, 280, 1-25.

Rabiee,M. and Mirarab,S. (2020a) Forcing external constraints on tree infer-
ence using ASTRAL. BMC Genomics, 21, 218.

Rabiee,M. and Mirarab,S. (2020b) INSTRAL: discordance-aware phylogenet-
ic placement using quartet scores. Syst. Biol., 69, 384-391.

Robinson,D. and Foulds,L. (1981) Comparison of phylogenetic trees. Math.
Biosci., 53, 131-147.

Sand,A. et al. (2014) tqDist: a library for computing the quartet and triplet dis-
tances between binary or general trees. Bioinformatics, 30,2079-2080.

Sayyari,E. et al. (2017) Fragmentary gene sequences negatively impact gene
tree and species tree reconstruction. Mol. Biol. Evol., 34, 3279-3291.

Snir,S. et al. (2008) Short quartet puzzling: a new quartet-based phylogeny re-
construction algorithm. J. Comput. Biol., 15,91-103. PMID: 18199023.

Springer,M.S. and Gatesy,]. (2018) On the importance of homology in the age
of phylogenomics. Syst. Biodiversity, 16,210-228.

Tan,G. et al. (2015) Current methods for automated filtering of multiple se-
quence alignments frequently worsen single-gene phylogenetic inference.
Syst. Biol., 64, 778-791.

Warnow,T. et al. (2001). Absolute convergence: True trees from short sequen-
ces. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA °01. Society for Industrial and Applied
Mathematics, USA, pp. 186-195.

Xi,Z. et al. (2016) The impact of missing data on species tree estimation. Mol.
Biol. Evol., 33, 838-860.

Zhang,C. et al. (2018) ASTRAL-IIL: polynomial time species tree reconstruc-
tion from partially resolved gene trees. BMC Bioinformatics, 19, 153.

Zhang,C. et al. (2020) TAPER: pinpointing errors in multiple sequence align-
ments despite varying rates of evolution, 12, 2145-58. https:
/ldoi.org/10.1111/2041-210X.13696. .

220z Asenuer 9z uo Jasn obelp ues eluioled Jo AlsieAlun Aq 0SZE619/S/80B10/SONBWIOIUIOIG/SE0 "0 L /I0p/8]|01B-80UBAPER/SOIIBWIOIUIOICG/WOo0 dNo olwapede//:sdiy Woll papeojumo(]

