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Abstract—In this article, we develop a learning-based secure
control framework for cyber-physical systems in the presence
of sensor and actuator attacks. Specifically, we use a bank of
observer-based estimators to detect the attacks while introduc-
ing a threat-detection level function. Under nominal conditions,
the system operates with a nominal-feedback controller with the
developed attack monitoring process checking the reliance of the
measurements. If there exists an attacker injecting attack sig-
nals to a subset of the sensors and/or actuators, then the attack
mitigation process is triggered and a two-player, zero-sum differ-
ential game is formulated with the defender being the minimizer
and the attacker being the maximizer. Next, we solve the under-
lying joint state estimation and attack mitigation problem and
learn the secure control policy using a reinforcement-learning-
based algorithm. Finally, two illustrative numerical examples are
provided to show the efficacy of the proposed framework.

Index Terms—Attack estimation, cyber-physical security, dif-
ferential games, mitigation, reinforcement learning (RL).

I. INTRODUCTION

C
YBER-PHYSICAL systems (CPSs) are systems that
integrate sensing, control, and actuation components

via a communication network. Cyber-physical security has
attracted considerable attention in recent years [1]–[7]
with a prominent focus on securing against adversarial
attacks [8]–[11]. More specifically, recent work has focused on
the effects of specific types of attacks, for example, deception
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and denial-of-service attacks [12]; false data-injection
attacks [13], [14]; and replay attacks or covert attacks affecting
system stability, performance, and/or state recovery.

Recently, increasing attention has been focused on the
detection and identification of attacks [15]–[20], with sev-
eral notions, such as detectability and identifiability of an
attack [13], [19] and sparse detectability and sparse strong
detectability [9] introduced in the literature. Chong et al. [10]
introduced the notion of observability under attacks and
pointed out that in order to characterize the resilience of a
system against sensor attacks, the system must be observable
under attacks, which requires the number of uncorrupted sen-
sors to be larger than twice the number of the attacked sensors.
Using [10], an adaptive switching framework was developed
in [9] to address the problem of secure state estimation in
the presence of sparse sensor attacks. Mo et al. [21], [22]
formulated a binary random state detection problem as a min–
max optimization, where an attacker can manipulate less than
half of the sensors. In [11], a satisfiability modulo theory
approach was presented to harness the complexity of secure
state estimation under sensor attacks.

Further research on cyber-physical security has been done
addressing various classes of attacks. In particular, Zhu and
Martinez [23] considered replay attackers who maliciously
repeated the messages sent from the operator to the actuators,
and analyzed the system performance degradation under an
attack-resilient receding horizon control law. Yuan et al. [24]
considered denial-of-service attacks and developed a coupled
design framework that incorporated a cyber configuration pol-
icy and robust control. Furthermore, considerable attention
has focused on false data-injection attacks and several results
have been obtained on secure state estimation and attack miti-
gation strategy under such attacks [13], [18], [25], [26]. An
observer-based, event-triggering consensus control problem
was investigated in [25] for a class of discrete-time multiagent
systems with lossy sensors. The remote state estimation
problem was studied in [26] in the presence of resource
constraints. For adversarial sensor and actuator attacks,
Jin et al. [8] developed an adaptive control architecture with
guaranteed uniform ultimate boundedness of the closed-loop
system when the attack signals are time varying and partial
asymptotic stability when the attack signals are time invari-
ant; Kanellopoulos and Vamvoudakis [27] developed a secure
control algorithm that consists of a proactive and a reactive
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defense mechanism, where the proactive mechanism utilizes
a stochastic switching structure to alter the parameters of
the system, while hindering the attacker’s ability to conduct
successful reconnaissance to the system and the reactive mech-
anism detects potentially attacked components, by leveraging
online data to compute an integral Bellman error.

To address cyber-physical security in CPS, several machine-
learning techniques have been introduced in [28]–[31].
Reinforcement learning (RL) is a machine-learning tech-
nique that enables the learning of optimal control actions by
interacting with the environment [32], [33]. It refers to a class
of methods that design adaptive policies that can learn the
solutions in real time to user-prescribed, optimization-based
problems [34], [35]. By considering different cyber-physical
layers, several game-theoretic methods have been proposed
in [36] and [37], which consider the interaction between the
defender and the attacker. Without any knowledge of the
system model, Vamvoudakis et al. [38], Gao et al. [39], and
Modares et al. [40] proposed RL-driven methods to learn the
optimal solutions under persistent adversaries. The strategies
proposed in [7], [10], and [11] can be adapted to the solution
of attack estimation problems. However, most of these results
have a static nature; that is, they do not update and adapt the
control policy to ensure that the CPS can continue to perform
well under attacks. This can affect the safety of the CPS and it
can potentially subvert system stability or deteriorate system
performance.

Although An and Yang [9], [41]; Chong et al. [10]; and
Mousavinejad et al. [16] proposed several observer-based
or filter-based attack monitoring strategies, they have not
used a threat-detection level function to characterize each
estimator. Moreover, because of the scalar property of the
threat-detection level functions, there is no need to know the
values nor the structure of such estimators. In this article, we
develop a learning-based secure framework for CPSs in the
presence of sensor and actuator attacks. Specifically, we use a
bank of observer-based estimators to detect the attacks while
introducing a threat-detection level function. Furthermore, our
work provides a new direction for the secure control problem
in the presence of sensor and/or actuator attacks, which is dif-
ferent from [8], [9], and [17] that require the attacked system
to run under a secure model by switching to a secure con-
trol strategy. Thus, if there is no attack, then the optimization
is reduced to the nominal performance function. Once the
attacker affects the performance of the system, a two-player,
zero-sum differential game is formulated and a joint state esti-
mation and attack mitigation problem is solved using RL. The
advantage of using an RL-driven attack mitigation strategy is
that the attack signal applied to the system is not required to be
adjustable. This article considerably expands our conference
work [42] by providing detailed proofs along with additional
results on actuator attacks as well as providing additional
discussions and several numerical examples.

The remainder of this article is organized as follows. In
Section II, we present the problem formulation and provide
the necessary mathematical background for this problem. In
Section III, we present a real-time attack monitoring strat-
egy and discuss conditions under which it is effective. In

Section IV, a learning-based mitigating algorithm is developed
using a two-player, zero-sum differential game framework. In
Section V, we discuss the practicality of our approach and pro-
vide two numerical examples to illustrate the efficacy of the
framework. Finally, we draw conclusions and discuss future
research directions in Section VI.

The notation used in this article is fairly standard.
Specifically, Rn denotes the n-dimensional Euclidean space,
for a matrix A ∈ R

n×n, we write A ≻ 0 and A � 0 to denote
that A is positive definite and positive semidefinite, respec-
tively. For a vector x ∈ R

n, xT denotes its transpose, ‖x‖
denotes the Euclidean norm, ‖M‖ denotes the induced matrix
norm for a real matrix M ∈ R

n×m, and ‖x‖2P denotes the
quadratic form xTPx for a real symmetric and positive semidef-
inite matrix P. Furthermore, Card(S) denotes the cardinality
of a set S , L2[0,∞) denotes the Banach space of square-
integrable Lebesgue measurable functions on [0,∞); that is,
for all v(·) ∈ L2[0,∞),

∫ ∞
0 ‖v(t)‖2dt < ∞, and Hm,n(�)

denotes the Sobolev space over � ⊂ R
n consisting of func-

tions in Lp(�), whose weak derivatives of order up to m are
also in Lp(�). Finally, Supp(·) denotes the support of a vector,
that is, the number of its nonzero components.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Modeling Cyber-Physical Systems and Attack

The physical plant is modeled in a continuous-time state-
space form given by

ẋ(t) = Ax(t)+ Bũ(t), x(0) = x0, t ≥ 0 (1)

where x ∈ R
n is the state vector and ũ ∈ R

m is the con-
trol input applied to the system. We assume that the pair
(A,B) is controllable and define B

△= [B1, . . . ,Bm] ∈ R
n×m.

For the physical system (1), we denote the set of sensors by
S = {1, . . . , q} and the set of actuators by A = {1, . . . ,m}.
Thus, (1) can be rewritten as

ẋ(t) = Ax(t)+
m

∑

i=1

Biũi(t), x(0) = x0, t ≥ 0 (2)

yl(t) = xj(t), j = 1, . . . , n, l = 1, . . . , q (3)

where ũi is the control signal associated with the ith actu-
ator, and yj is the measured output associated with the jth
sensor. The physical plant operation is supported by a com-
munication network through which the sensor measurements
and actuator data are transmitted and correspond to y(t) and
ũ(t), respectively.

Since the communication network may be unreliable, the
data exchanged between the plant and the controller may be
altered. Here, we will assume that there are no packet losses
and delays occurring in the communication network. Instead,
we focus on data corruption due to malicious cyber attacks.
In the communication network, the system given by (2)
and (3) sends the q output signals y = [yT1 , . . . , yTq ]

T ∈ R
q

to a controller and the controller sends the control signals
u = [uT

1 , . . . , uT
m]

T ∈ R
m to the m actuators in (2). However,

due to the vulnerability of the communication channels, the
ith output that is received by the controller is corrupted to
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ỹi with ỹ = [ỹT1 , . . . , ỹTq ]
T∈ R

q. Furthermore, the ith con-
trol input that is received by (1) is corrupted to ũi with
ũ = [ũT

1 , . . . , ũT
m]

T∈ R
m.

Under nominal conditions, that is, ũ = u and ỹ = y, (2)
and (3) are controlled via an optimal-feedback control law

u(t) = −Kỹ(t) (4)

where K ∈ R
m×q is a feedback control gain that is to be

determined by optimizing the performance measure

J(x0, u(·)) =
∫ ∞

0

[

xT(τ )Qx(τ )+ uT(τ )Ru(τ )
]

dτ (5)

where Q � 0 and R ≻ 0 are symmetric sign-definite weighting
matrices with (A,

√
Q) observable. In this case, the optimal-

feedback control gain K in (4) can be characterized via a set
of coupled Lyapunov and Riccati equations coupled by an
oblique projection [43]–[46].

For (2) and (3), we consider a scenario in which the commu-
nication layer at a given instant of time t0 ≥ 0, system (2) with
an unknown initial state x0 is subjected to a stealthy attack and
the attacker is able to manipulate an unknown subset of the
sensors Sa ⊆ S and actuators Aa ⊆ A. In particular, for (2)
and (3), the sensor attacks are modeled as

ỹj(t) = yj(t)+ ay,j(t), j ∈ Sa (6)

where ay,j(t), t ≥ t0 represents the attack signal against the jth
sensor. We assume Card(Sa) = p ≤ q, which implies that p

sensors have been corrupted by the attacker. If Sa = {j1, . . . ,
jp} ⊆ S and ay

△= [aT
y,j1

, . . . , aT
y,jp

]T, then

ỹ(t) = y(t)+ Dyay(t) (7)

where Dy is a q × p matrix that depends on Sa and whose
entries (j1, 1), . . . , (jp, p) are equal to 1 and the remaining
entries are equal to 0. Next, we model the actuator attacks as

ũi(t) = ui(t)+ au,i(t), i ∈ Aa (8)

where au,i(t), t ≥ t0, represents the attack signal against the
ith actuator. We assume Card(Aa) = w ≤ m, which implies
that w actuators have been corrupted by the attacker. If Aa =
{i1 , . . . , iw} ⊆ A and au

△= [aT
u,i1

, . . . , aT
u,iw

]T, then

ũ(t) = u(t)+ Duau(t) (9)

where Du is an m × w matrix that depends on Aa and whose
entries (i1, 1), . . . , (iw,w) are equal to 1 and the remaining
entries are equal to 0.

Next, some standard assumptions are made on system (2)
and (3) under the attacks given by (7) and (9).

Assumption 1: System (2) is controllable under w̄ attacks
and observable under s̄ attacks.

Assumption 2: The sensor attack vector ay(t), t ≥ t0, in (7)
and the actuator attack vector au(t), t ≥ t0, in (9) only alter a
fixed, albeit unknown, subset of the sensors and the actuators,
respectively.

Remark 1: In order to monitor and mitigate the effects of
potential attacks, Assumption 1 implies that the attacker is not
able to compromise all of the actuators and sensors, that is,
Supp(ay(t)) < q and Supp(au(t)) < m, whereas Assumption 2
implies that Supp(ay(t)) and Supp(au(t)) are constant over any
time t ≥ 0.

B. Some Preliminaries

Following the result from [18] and [47], the actuator attacks
given by (9) and the sensor attacks given by (7) will eventu-
ally corrupt the output measurements that are received by the
controller. Thus, the compromised output measurements are
given by

ỹ(t) = y(t)+ ν(t) (10)

where ν(·) ∈ R
q captures the overall attack signal on the

actuators and sensors of the system and is given by

ν(t) = xa(t)+ Dyay(t) (11)

ẋa(t) = Axa(t)+ BDuau(t) (12)

where xa(0) = 0, ay(t) ∈ R
p, t ≥ t0, and au(t) ∈ R

w, t ≥ t0,
are obtained from (7) and (9), respectively. Note that (11)
and (12) describe the dynamics of the attacker. For (11)
and (12), we consider the following two cases.

1) For ν(t) = 0, t ≥ t0, the attack signal is an ineffective

attack. That is, the attacker does not affect our control
objective in minimizing (5). In this case, ay = 0, au = 0,
or Dyay = −xa 6= 0, au 6= 0, and hence, the attacker has
no dynamics.

2) For ν(t) 6= 0, t ≥ t0, the attack signal is an effective

attack. That is, the attacker can destabilize the system
or significantly deteriorate the system performance.

Using the arguments in [10], [41], [48], and [49] controlla-
bility and observability under an attack mode can be obtained,
which are intrinsic characteristics of the system [11]. Then,
to satisfy Assumption 1, we given the following two lem-
mas, which provide necessary and sufficient conditions for
the attacked system to be controllable and observable under
attacks.

Lemma 1 [41]: For every set ϒ ∈ {ϒ ⊂ A : Card(ϒ) =
max{w̄,m − w̄}, assume

rank
([

B−ϒ AB−ϒ · · · An−1B−ϒ
])

= n. (13)

Then, system (2) is controllable under w̄ attacks, where B−ϒ is
the matrix obtained from B by setting all the columns indexed
by the set ϒ to zero.

Lemma 2 [10]: System (2) is observable under s̄-attacks
if and only if 2s̄ < q and, for every J ⊂ S with
Card(J ) ≥ q − 2s̄, the pair (A,CJ ) is observable, where CJ

is a matrix obtained by stacking all the vectors Ci, i ∈ J , and
Ci denotes the vector with the ith component 1 and the other
components 0.

In this article, we let Supp(ν) = s ≤ q and assume that
the values of w and s are unknown with known upper bounds
denoted by w̄ and s̄, respectively. Then, the control objective
of this article is to check the reliance of the measured outputs
in real time using our attack monitoring process and design a
suboptimal control policy that guarantees resilience to the sen-
sor and actuator attacks while minimizing system performance
given by (5) in the absence of attacks.

III. ATTACK MONITORING

In this section, we develop a monitoring framework using
the attacked outputs from at least q − 2s̄ elements. For ease
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of exposition, we let J = {j1, . . . , jl} ⊂ S denote a subset of
the outputs from (10) with q − 2s̄ ≤ Card(J ) = l to collect
the partial outputs ỹJ (t) = [ỹTj1(t), . . . , ỹTjl (t)]

T, t ≥ 0, and let
x̂J (t), t ≥ 0, denote the state estimate that uses the partial
outputs ỹJ (t), t ≥ 0.

A. Threat-Detection Level Function

First, for ỹJ (t), t ≥ 0, where J ⊂ S , an observer-based
detector is designed as

˙̂xJ (t) = Ax̂J (t)+ Bu(t)+ LJ
(

ỹJ (t)− ŷJ (t)
)

x̂J (0) = x̂(0), t ≥ 0 (14)

ŷJ (t) = CJ x̂J (t) (15)

where x̂(0) is an estimate of the unknown initial state x0 and
LJ is a gain matrix. Using Lemma 2, the pair (A,CJ ) is
observable, and hence, there exists a matrix LJ such that
AJ

△= (A − LJ CJ ) is Hurwitz. For every J with Card(J ) =
l ≥ q−2s̄, we let the control layer of the system operate simul-
taneously with (14) and (15) and let x̃(0) = x0 − x̂(0). Thus,
we obtain

(

q
l

)

estimates x̂J (t), t ≥ 0, with a common initial

condition x̂(0) for all estimators. Defining x̃J (t)
△= x(t)−x̂J (t)

and using (1), (14) and (15), it follows that:

˙̃xJ (t) = AJ x̃J (t)− LJ νJ (t), x̃J (0) = x̃(0), t ≥ 0 (16)

where νJ (t) denotes the attacked signal corresponding to
the ỹJ (t)

Next, define the threat-detection level function

ϒJ (t)
△= rTJ (t)4rJ (t) (17)

for each estimate x̂J (t), t ≥ 0, where 4 ≻ 0 is a positive-
definite weighted matrix and rJ (t) ∈ R

q is the residual of the
measured outputs ỹJ (t) characterized by the subset J ⊂ S

and given by rJ (t)
△= ỹ(t)−x̂J (t) = x̃J (t)+ν(t), t ≥ 0. Given

an upper bound ϒ̄ ∈ R+ for (17), that is, a threshold for the
attack-free case with an unknown initial condition, if ϒJ (t) ≥
ϒ̄, t ≥ 0, then a violation of the threat level is triggered, and
if ϒJ (t) < ϒ̄, t ≥ 0, then the nominal control policy (4) does
not change. In other words, if ϒJ (t) < ϒ̄, t ≥ 0, then the
system executes a nominal mode of operation; otherwise, the
threat detector triggers an alarm.

Remark 2: Since the system initial condition is unknown,
we let ϒ̄ ≥ ϒ0, where ϒ0 = maxJ rT

J
(0)4rJ (0) and

rJ (0) = eAJ T0 x̃(0). In this case, ‖Gr,νJ ‖2∞ ≤ γ1, where

Gr,νJ (s)
△= −(sI − AJ )

−1LJ + I is the transfer function of
the system characterized by (16) and γ1 is a positive con-
stant. If ‖ν‖∞ ≤ γ2, indicating that the worst case stealthy
attack is upper bounded, then ϒ0 ≤ γ1ν

T
J
νJ ≤ γ1γ

2
2 . Thus,

γ2 ≤
√

(1/γ1)ϒ̄ implies ϒ0 ≤ ϒ̄ .

B. Min–Max Optimal Control Problem

Next, we use the threat detection level given by (17) to
construct a min–max optimal control problem to sort out
a subset of attack-resilient sensors. Consider the following
minimization problem:

O(t) = argmin
{J :J⊂S and Card(J )=l}

1J (t) (18)

Fig. 1. Obtain the attack-resilient set O by solving the min–max optimal
control problem.

subject to

1J (t) = max
{P :P⊂J and Card(P)=q−2s̄≤l}

∥

∥ϒJ (t)−ϒP (t)
∥

∥.

Then, we have the following observations.
1) Given the set J , we have 1J (t) ≥ 0, t ≥ t0. Thus,

given all
(

q
l

)

estimates, we can always find a set J that
achieves the smallest threat detection level and is the
same as all of its subsets P ⊂ J .

2) Although the attack-resilient set O(t) is a function of
the time t, Assumption 2 removes the time dependence
on the set O(t) because Assumption 2 indicates that the
set O(t) in (18), which achieves the minimum at the
triggered time, will not change.

3) If more than one subset achieves the minimum, then we
determine the attack-resilient set O by choosing the one
with the largest number of sensors.

The detailed framework is shown in Fig. 1. The following
proposition shows that the attack-resilient state estimation can
be generated using the set O.

Proposition 1: Consider systems (2) and (3) with sensor
attacks given by (7) and actuator attacks given by (9), and
assume that Assumptions 1 and 2 hold. Then, when the threat
detection level is triggered at some time t, we have O = O(t),
where O(t) is given by (18), and the attack-resilient state esti-
mation x̂(·) is given by x̂(t) = x̂O(t), where x̂O(t), t ≥ 0, is
the attack-resilient state estimate generated by the detector (14)
and (15) with the set O.

Proof: Since (1) is s̄-attack observable, it follows from
Lemma 2 that for every set J with Card(J ) ≥ q − 2s̄, the
pair (A,CJ ) is observable. Thus, using similar arguments as
in [10] and [47], it can be shown that νO(t) = 0, t ≥ 0, and
hence, x̂(0) = x̂O(0) and x̂(t) = x̂O(t), t ≥ 0.

Theorem 1: Consider the attacked system (2) and (3), and
assume that Assumptions 1 and 2 hold. Then, for every
unknown initial condition x0 ∈ R

n and input u(t), t ≥ 0,
the estimate of the attack vector ν̂(·) is given by

ν̂(t) = ỹ(t)− x̂(t) (19)

and asymptotically converges to the real attack signal
ν(t), t ≥ 0.

Proof: See Appendix A.

C. Summary of the Attack Monitoring Approach

Our proposed method describing the attack monitoring
process is summarized in Algorithm 1.
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Algorithm 1 Attack Monitoring Strategy
1: Verify Assumption 1 holds for system (1).
2: repeat

3: Physical layer runs with the nominal control law (4).
4: Control layer collects all the outputs and using (14)

and (15) generates all the
(

q
l

)

estimators for every set J
with Card(J ) = l ≥ q − 2s̄.

5: Control layer checks the threat detection level for each
set J in (17).

6: until One set J triggers an alarm with ϒJ (t) ≥ ϒ̄ at
time t.

7: Determine the attack-resilient set O using (17)-(18) and
reconstruct an estimate of the attack by (19).

Remark 3: Note that the estimation algorithm that permits
the initial state reconstruction under adversarial attacks is
proposed in [10] using a multiple model setup. If the initial
condition of system (2) is available, then Algorithm 1 can run
with an arbitrary bound. However, in the cases where the initial
condition is unknown, the threat detection level is introduced
and a threshold-based detection mechanism is developed to
sort out a subset of attack-resilient sensors.

IV. ATTACK MITIGATION

After an attacker triggers an alarm using our developed
attack monitoring approach, the next step is to develop an
attack mitigation framework to mitigate the attacks. In this sec-
tion, the attack mitigation framework is developed by solving
a joint attack-resilient state estimation and attack mitigation
problem using an RL-driven, zero-sum differential game with
the defender being the minimizer and the attacker being the
maximizer.

A. Two-Player, Zero-Sum Differential Game

In this section, a two-player, zero-sum differential game
problem is formulated and the solution to this game is
obtained. First, the attacked system with (10) can be rewrit-
ten as

ẋ(t) = Ax(t)+ B[u(t)− Kν(t)]

= Ax(t)+ Bu(t)− BKν(t), x(0) = x0, t ≥ 0 (20)

where ν(·) is given by (11) and (12). Using the observer-based
detector (14) and (15) for the attack-resilient set O gives

˙̂xO(t) = Ax̂O(t)+ Bu(t)+ LOCO x̃O(t), t ≥ 0 (21)

where x̂O(0) = x̂(0). Now, using (20) and (21), with x̃O(t) =
x(t)− x̂O(t), t ≥ 0, it follows that:

˙̃xO(t) = Ax̃O(t)− BKν(t)− LOCO x̃O(t)

= (A − LOCO)x̃O(t)− BKν(t), t ≥ 0 (22)

where x̃O(0) = x̃(0). Then, augmenting the states x̂O(t), t ≥ 0,
and x̃O(t), t ≥ 0, the augmented state ξ(t) = [x̂T

O
(t) x̃T

O
(t)]T ∈

R
2n satisfies

ξ̇ (t) = Aξ(t)+ Bu(t)+ Dν(t), ξ(t0) = ξ0, t ≥ 0 (23)

where

A =
[

A LOCO

0 A − LOCO

]

, B =
[

B

0

]

, D =
[

0
−BK

]

and ξ0
△= [x̂T(0) x̃T(0)]T.

Next, augmenting the performance (5) with an attack atten-
uation level γ ∈ R+ as a differential game problem yields

J (ξ0, u(·), ν(·)) =
∫ ∞

t

[

ξT(τ )Qξ(τ )+ uT(τ )Ru(τ )

− γ 2νT(τ )ν(τ )
]

dτ, t ≥ 0 (24)

where Q = diag[Q,XO], XO ∈ R
n×n, γ > 0, and Q and R

are as defined in (5). The attack mitigation problem of finding
a secure control policy while optimizing (24) is equivalent to
solving the two-player, zero-sum game given by (23) for all
ξ0 ∈ R

2n and

V⋆(ξ) = min
u(·)

max
ν(·)

∫ ∞

t

[

ξT(τ )Qξ(τ )+ uT(τ )Ru(τ )

− γ 2νT(τ )ν(τ )
]

dτ, t ≥ 0 (25)

where V⋆(ξ) is the optimal value function and u⋆(ξ) and ν⋆(ξ)
denote the optimal control and attack policies, respectively.

Finally, given system (23) with a performance func-
tional (24), the Hamiltonian function in terms of the secure
control policy u and the attack policy ν is defined as

H
(

Vξ , u, ν
)

△= ξTQξ + uTRu − γ 2νTν

+ Vξ (Aξ + Bu + Dν) (26)

where Vξ = ∂V/∂ξ is the Fréchet derivative of the value
function V at ξ . Now, the stationary conditions for optimality
∂H/∂u = 0 and ∂H/∂ν = 0 yield

u⋆(ξ) = −1

2
R−1BTV⋆Tξ , ν⋆(ξ) = 1

2γ 2
DTV⋆Tξ . (27)

Lemma 3: Consider the attack mitigation problem formu-
lated as a two-player, zero-sum game (23) with the cost
functional (24) and let γ ∈ R+. If there exists a positive-
semidefinite matrix Z ∈ R

2n×2n satisfying the algebraic
bounded real Riccati equation

ATZ + ZA + Q − Z
(

BR−1BT − γ−2DDT
)

Z = 0 (28)

then the control and attack policies (u⋆, ν⋆) given by (27)
generate a saddle point solution in the sense that

J (ξ0, u⋆, ν) ≤ J (ξ0, u⋆, ν⋆) ≤ J (ξ0, u, ν⋆) (29)

with an optimal value function V⋆(ξ) = J (ξ0, u⋆, ν⋆) =
ξT0 Zξ0.

Proof: See [50, Sec. 9.2].

B. RL-Driven Mitigation Algorithm

In this section, we develop an RL-driven mitigation method
to approximate the optimal value function and the con-
trol and attack policies in (27). To that end, at each
iteration i, we define the control input and attack vectors
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as ui and νi, respectively. Then, (23) with ui and νi can be
rewritten as

ξ̇ (t) = Aξ(t)+ Bui(t)+ Dνi(t)+ B
(

u(t)− ui(t)
)

+ D
(

ν(t)− νi(t)
)

, ξ(0) = ξ0, t ≥ 0 (30)

where ui(t), t ≥ 0 and νi(t), t ≥ 0, are the control and attack
policies to be updated. Here, ν(t), t ≥ 0, is not known, and
hence, cannot be updated. Thus, to learn the secure control
policy, we use ν̂(t), t ≥ 0, in (19) to replace the unknown
attack signal ν(t), t ≥ 0.

Exploiting results from [40], V i can be found by solving
H(V i

ξ , ui, νi) = 0 for the control input ui and the attack νi.
Then, the learning-based secure control and attack policies are
iteratively updated by

ui+1 = argmin
u

H
(

V i
ξ , u, νi+1

)

= −1

2
R−1BTV iT

ξ (31)

νi+1 = argmax
ν

H
(

V i
ξ , ui, ν

)

= 1

2γ 2
DTV iT

ξ . (32)

Next, differentiating V i(ξ) along the solutions of (30) and
using (31) and (32) yields

V̇ i(ξ(t)) = V i
ξ (ξ(t))

(

Aξ(t)+ Bui(t)+ Dνi(t)
)

+ V i
ξ (ξ(t))

× B
(

u(t)− ui(t)
)

+ V i
ξ (ξ(t))D

(

ν(t)− νi(t)
)

= −ξT(t)Qξ(t)− uiT(t)Rui(t)+ γ 2νiT(t)νi(t)

− 2u(i+1)T(t)R
(

u(t)− ui(t)
)

+ 2γ 2ν(i+1)T(t)
(

ν(t)− νi(t)
)

. (33)

Now, integrating (33) over the time interval [t, t + δt], where
δt is the sampling period, we obtain

V i(ξ(t + δt))− V i(ξ(t))

=
∫ t+δt

t

[

−ξT(τ )Qξ(τ )− uiT(τ )Rui(τ )+ γ 2νiT(τ )νi(τ )

]

dτ

− 2
∫ t+δt

t

[

u(i+1)T(τ )R
(

u(τ )− ui(τ )
)

− γ 2ν(i+1)T(τ )
(

ν(τ )− νi(τ )
)

]

dτ. (34)

Next, we define N samples satisfying 0 ≤ tj = jδt, j =
1, . . . ,N, and then we use these data samples to iteratively
solve (34) for ui+1 and νi+1, which converge to the control
and attack policies u⋆ and ν⋆ given in (27). For a sufficiently
large number of data samples, (34) can be solved using a least-
squares method. In particular, to solve (34), we construct three
approximators consisting of one critic and two actors as

V̂ i(ξ(t)) = Ŵ iT
1 φ(ξ(t)) (35)

ûi+1(ξ(t)) = Ŵ iT
2 ϕ(ξ(t)) (36)

ν̂i+1(ξ(t)) = Ŵ iT
3 ψ(ξ(t)) (37)

where φ(ξ)= [φ1(ξ) , . . . , φl1(ξ)]
T ∈ R

l1 , ϕ(ξ) = [ϕ1(ξ)
, . . . , ϕl2(ξ)]

T ∈ R
l2 , and ψ(ξ) = [ψ1(ξ) , . . . , ψl3(ξ)]

T ∈ R
l3

are suitable basis functions, Ŵ i
1 ∈ R

l1 is a constant weight
vector, Ŵ i

2=[Ŵ i
2,1 , . . . , Ŵ i

2,m] ∈ R
l2×m and Ŵ i

3 = [Ŵ i
3,1 , . . . ,

Ŵ i
3,q] ∈ R

l3×q are constant weight matrices, and l1, l2, and l3
are the number of basis functions.

Then, we let û1 = u and ν̂1 = ν̂, and given ûi and ν̂i, define
ζ̂ i △= [ζ̂ i

1, . . . , ζ̂
i
m]

T = u − ûi, ς̂ i △= [ς̂ i
1, . . . , ς̂

i
q]

T = ν − ν̂i.
Thus, taking R = diag [r1, . . . , rm] and substituting (35)–(37)
into (34) yields

Ŵ iT
1 [φ(ξ(t + δt))− φ(ξ(t))]

=
∫ t+δt

t

[

−ξT(τ )Qξ(τ )− ûiT(τ )Rûi(τ )+ γ 2ν̂iT(τ )ν̂i(τ )
]

dτ

− 2
m

∑

k=1

rk

∫ t+δt

t

Ŵ iT
2,kϕ(ξ(τ ))ζ̂

i
kdτ

+ 2γ 2
q

∑

j=1

∫ t+δt

t

Ŵ iT
3,jψ(ξ(τ))ς̂

i
j dτ + µi(t), t ≥ 0 (38)

where µi(t), t ≥ 0, is the Bellman approximation error, Ŵ i
2,k

is the kth column of Ŵ i
2, and Ŵ i

3,j is the jth column of Ŵ i
3.

Note that µi(t), t ≥ 0, is continuous, and if the approxima-
tion is performed over a compact set �, then µi(t), t ≥ 0, is
bounded [40].

Finally, we rewrite (38) as

π i(t)+ µi(t) = Ŵ iTθ i(t) (39)

where π i(t) =
∫ t+δt

t
[ − ξT(τ )Qξ(τ ) − ûiT(τ )Rûi(τ ) + γ 2

ν̂iT(τ )ν̂i(τ )]dτ ∈ R, Ŵ i = [Ŵ iT
1 , Ŵ iT

2,1 , . . . , Ŵ iT
2,m, Ŵ iT

3,1 , . . . ,

Ŵ iT
3,q]

T ∈ R
l1+l2×m+l3×q, θ i(t) = [θ iT

1 (t) , . . . , θ
iT
1+m+q(t)]

T

∈ R
l1+l2×m+l3×q, and θ i

1(t) = φ(ξ(t + δt)) − φ(ξ(t)),
θ i

k(t) = 2rk

∫ t+δt
t

ϕ(ξ(τ ))ζ̂ i
kdτ for k ∈ {2, . . . ,m + 1}, and

θ i
j (t) = −2γ 2

∫ t+δt
t

ψ(ξ(τ))ς̂ i
jdτ for j ∈ {m+2, . . . , 1+m+q}.

Furthermore, we assume that the data samples are collected
with N ≫ l1 + l2 × m + l3 × q (the number of independent
entries in Ŵ) points in the state space and ûi and ν̂i computed
over the time interval [tj, tj + δt], j = 1, . . . ,N.

Assumption 3: There exist N̄ ∈ N+ and λ > 0 such that for
all N ≥ N̄

2(i)2(i)T � λIl1+l2×m+l3×q

where 2(i) = [θ i(t1), . . . , θ
i(tN)] ∈ R

(l1+l2×m+l3×q)×N .
Using Assumption 3, the weight Ŵ i in (35)–(37) that min-

imizes the approximation error
∑N

j=1 µ
iT(tj)µ

i(tj) is given
by

Ŵ i =
(

2(i)2(i)T
)−1

2(i)5(i)T (40)

where 5(i) = [π i(t1), . . . , π
i(tN)] ∈ R

1×N .
Lemma 4: Consider the two-player, zero-sum game

problem defined in (25) given the dynamics (23). Then,
the approximate control and attack policies (31) and (32)
converge to the optimal control and attack policies (27) at the
rate of O(1/2i), while the value function in (34) converges
to (25) at the rate of O(1/2i). Furthermore, the closed-loop
system (23) and (27) has an asymptotically stable equilibrium
point.

Proof: See Appendix B.
Theorem 2: Consider the augmented system (23) and

assume that Assumption 3 holds. Then, for ε > 0, there
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Algorithm 2 Attack Mitigation Strategy
1: Run the attack monitoring process of Algorithm 1 until
ϒJ (t) ≥ ϒ̄ is triggered at some time t. Select a suffi-
ciently small constant ε > 0 and an integer N satisfying
Assumption 3.

2: repeat

3: Data collection: Define the N different samples as tj =
jδt, j = 1, . . . ,N, obtain ξ(tj), û(tj), and ν̂(tj), and then,
form 2(i) and 5(i).

4: Policy search: Compute the solutions to (40).
5: until ‖ûi+1 − ûi‖ ≤ ε.
6: Apply u(t) = ûi(t) to the attacked system (2) instead of

(4) and use ν̂i(t) as an output amendment to (10).

exist integers i⋆ > 0 and l⋆ > 0, such that for i > i⋆ and
min{l1, l2, l3} > l⋆

∣

∣

∣
V̂ i(ξ)− V⋆(ξ)

∣

∣

∣
< ε

∥

∥

∥
ûi+1(ξ)− u⋆(ξ)

∥

∥

∥
< ε

∥

∥

∥
ν̂i+1(ξ)− ν⋆(ξ)

∥

∥

∥
< ε

where ξ belongs to a compact set � ∈ R
2n.

Proof: See Appendix C.

C. Summary of the Attack Mitigation Approach

Algorithm 2 gives the proposed attack mitigation method.
Remark 4: Note that in [9] the performance function needs

to be redesigned after it removes the tampered-feedback sig-
nals. However, in our work, the performance function given
by (24) corresponds to an H∞ norm bound with γ denot-
ing the attack attenuation level. If x̂O(0) = x0 and ν(t) =
0, t ≥ 0, then (24) is reduced to the performance criterion (5)
reflecting the absence of adversarial attacks. In addition, we
optimize (24) only when we detect the attacks.

Remark 5: Note that (28) gives the condition for selecting
γ in (24) and, solving (28), which is nonlinear in Z, requires
a priori knowledge of the system matrices in (23). Inspired
by [40], an RL-driven mitigation method without using the
exact knowledge of system dynamics is developed in this
section.

Remark 6: Note that the nominal controller (4) associated
with the compromised outputs (10) is used as an exploring
control policy to collect online data over the time interval
[0, t]. Based on these data samples, we execute Algorithm 2
to mitigate the attacks.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, two illustrative numerical examples are pro-
vided to show the effectiveness of the proposed framework.
The first example is an aircraft system in the face of sensor
attacks. The second example is a multivehicle system under
actuator attacks.

A. Example 1: Aircraft System

Consider the lateral directional dynamics of a transport
aircraft system adopted from [54] given by








α̇(t)

β̇(t)

δ̇P(t)

δ̇R(t)









=









−0.037 0.0123 0.00055 −1.0
0 0 1.0 0

−6.37 0 −0.23 0.0618
1.25 0 0.016 −0.0457

















α(t)

β(t)

δP(t)

δR(t)









+









0.00084 0.000236
0 0

0.08 0.804
−0.0862 −0.0665









u(t), t ≥ 0

y1(t) = β(t), C1 =
[

0 1 0 0
]

y2(t) = δP(t), C2 =
[

0 0 1 0
]

y3(t) = δR(t), C3 =
[

0 0 0 1
]

where α(t), β(t), δP(t), and δR(t) are the sideslip angle in
deg, the roll angle in deg, the roll rate in deg/s, and the yaw
rate in deg/s of the aircraft, respectively, and the control input
u(t) = [τR(t), τA(t)]T, t ≥ 0, involves the rudder deflection in
deg and the aileron deflection in deg, respectively. Note that
the system has q = 3 sensors with S = {1, 2, 3} and m = 2
actuators with A = {1, 2}.

Using Lemmas 1 and 2, it follows that Assumption 1 holds
with w̄ = 0 and s̄ = 1. The initial values for the state variables
are randomly selected around the origin and are assumed to
be unknown. With the weighting matrices set to Q = I4 and
R = I2, the nominal output-feedback control gain is obtained
by using the recursive algorithm developed in [45] is given by

K =
[

−0.36 −1.53 −7.61
1.27 3.54 5.06

]

.

Next, suppose that over the time interval t = 10 s and t = 25
s, an attacker has access to sensor two and launches an attack
signal ay,2(t) = 1.2 cos(0.8t)+4.2 cos(2t) sin(δP(t)), 10 ≤ t ≤
25. In this case, Sa = {2}, Aa = ∅, Dy = [0, 1, 0]T,
Du = 02×1, ay = ay,2, and au = 0. By (11) and (12),
the aircraft system is subjected to the adversarial attack
ν(t) = [0, ay, 0]T, 10 ≤ t ≤ 25. Although we do not know
which sensor is attacked, there are three real-time monitors
running from t = 0 and driven by the subsets of the sensors,
namely, J1 using {y2(t), y3(t)}, J2 using {y1(t), y3(t)}, and J3
using {y1(t), y2(t)}. In this case

LJ1 =
[

−0.0196 1.2424 0.6878 −0.0375
−0.5839 8.1866 −2.6322 1.1285

]

LJ2 =
[

0.0179 0.8919 0.0335 0.0171
−0.8129 −4.8449 −4.0095 0.9244

]

LJ3 =
[

1.3843 0.6445 −8.9198 1.4413
0.1023 0.9999 1.1718 −0.2391

]

.

Since the initial values are unknown, we set x̂(0) = x̂J1(0) =
x̂J2(0) = x̂J3(0) = [0.0055, 0.2767, 0.1829, 0.2399]T and set
ϒ̄ = 2.2377 and 4 = I2.

Using Algorithm 1, the threat detection levels of the three
monitors are shown in Fig. 2. It can be seen from Fig. 2 that the
attack-resilient set is O = J2, which illustrates the efficacy of
our attack monitoring strategy, and the attack mitigation pro-
cess is triggered at t = 10.1 s, which reflects the sensitivity of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2022 at 17:21:49 UTC from IEEE Xplore.  Restrictions apply.



ZHOU et al.: SECURE CONTROL LEARNING FRAMEWORK FOR CPSs 4655

Fig. 2. Threat detection level for the three monitors under the attacks.

Fig. 3. System performance in the face of adversarial attacks and with
Algorithm 2 engaged.

threat detection function. Then, Algorithm 2 is initialized with
γ = 10 and XO = I4. Here, for the critic given by (35) we con-
sider second-order and fourth-order polynomials of the states
and the two actors (36) and (37) are characterized by first-order
and third-order polynomials of the states. With δt = 0.01 and
ε = 10−8, the learning process is executed and then the con-
troller is updated starting at t = 10.1 s and continuing to the
end of the simulation. The system performance in the face of
sensor attacks and with Algorithm 2 engaged is depicted in
Fig. 3. It can be seen from Figs. 2 and 3 that when the detec-
tor triggers an alarm, the secure control learning framework
ensures that the attacked system converges to zero.

B. Example 2: Multivehicle System

Consider a network of three vehicles moving in a plane with
the dynamics of each described by a single integrator as [55]

ζ̇i(t) = ui(t), ζi(0) = ζi0, t ≥ 0, i = 1, 2, 3

Fig. 4. Communication network for three vehicles.

where ζi ∈ R is the state of the ith vehicle. To achieve asymp-
totic consensus, we assume that there is a nearest-neighbor
interconnection topology between the three vehicles given in
Fig. 4 and the signals representing the exchange of relative
information have the form

zi(t) =
∑

j∈Ni

(

ζi(t)− ζj(t)
)

, i = 1, 2, 3

where N1 = {2}, N2 = {1, 3}, and N3 = {2}, and each vehicle
is controlled by a control law with the form [56]

ui = −Ki

[

ζi(t)

zi(t)

]

△= −
[

Ki 3iKi

]

[

ζi(t)

zi(t)

]

where Ki ∈ R
1×2, Ki ∈ R, and 3i ∈ R, i = 1, 2, 3.

Finally, defining x
△= [ζ1, ζ2, ζ3]T and u

△= [u1, u2, u3]T, the
multivehicle system is represented by

ẋ(t) =





1 0 0
0 1 0
0 0 1



u(t), x(0) = x0, t ≥ 0

y1(t) = x1(t), C1 =
[

1 0 0
]

y2(t) = x2(t), C2 =
[

0 1 0
]

y3(t) = x3(t), C3 =
[

0 0 1
]

where x0 = [ζ10, ζ20, ζ30]T, with the controller (4) given by

u(t) = −





K1 31K1 0 0 0 0
0 0 K2 32K2 0 0
0 0 0 0 K3 33K3





















ζ1(t)

z1(t)

ζ2(t)

z2(t)

ζ3(t)

z3(t)

















= −





(1 +31)K1 −31K1 0
−32K2 (1 + 232)K2 −32K2

0 −33K3 (1 +33)K3









y1(t)

y2(t)

y3(t)



.

Using Lemmas 1 and 2, it follows that Assumption 1 holds
with w̄ = 1 and s̄ = 0. The weighting matrices in (5) are set
as Q = I3 ⊗ Q1 + L ⊗ Q2 and R = I3 ⊗ R1, where Q1 = 10,
Q2 = 25, R1 = 1, ⊗ denotes the Kronecker product, and L is
the Laplacian matrix for the network. Now, solving a standard
LQR problem with performance given by (5) yields

Ki = 3.1623, 3i = 0.6736, i = 1, 2, 3.

Next, suppose that over the time interval t = 1 s and
t = 2.5 s, an attacker has access to the signal z1(t) that
is transmitted to vehicle 1 and launches an attack signal
au,1(t) = −4.2 cos(10t), 1 ≤ t ≤ 2.5, which corrupts the
control signal u1(t). In this case, Sa = ∅, Aa = {1},
Dy = 03×1, Du = [1, 0, 0]T, ay = 0, and au = au,1.
The multivehicle system is subjected to the adversarial attack
ν(t) satisfying ν̇(t) = BDuau(t), 1 ≤ t ≤ 2.5. Along with
the system, there are three real-time monitors running from
t = 0 and driven by the subsets of the sensors, namely,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2022 at 17:21:49 UTC from IEEE Xplore.  Restrictions apply.



4656 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 9, SEPTEMBER 2021

Fig. 5. Threat detection level for the three monitors under the sensor attacks.

Fig. 6. System performance in the face of adversarial attacks and with
Algorithm 2 engaged.

J1 using {y2(t), y3(t)}, J2 using {y1(t), y3(t)}, and J3 using
{y1(t), y2(t))}. In this case, the gains LJ1 ,LJ2 , and LJ3 are
designed so that AJ1 ,AJ2 , and AJ3 are Hurwitz and having
eigenvalues {−1.4465,−2.3460,−5.6460}. Since the initial
values are unknown, we set x̂(0) = x̂J1(0) = x̂J2(0) =
x̂J3(0) = [0.4, 0.8, 1.2]T and set ϒ̄ = 6.2393 and 4 = I2.

Using Algorithm 1, the threat detection levels of the three
monitors are shown in Fig. 5. It can be seen from Fig. 5 that the
attack-resilient set is O = J1 and the attack mitigation process
is triggered at t = 1.01 s. Then, Algorithm 2 is initialized with
γ = 13 and XO = I3, and the same basis functions as Example
1 are used for the critic (35) and the two actors (36) and (37).
The learning process is executed with ε = 10−8 and then the
controller is updated starting at t = 1.01 s and continuing to
the end of the simulation. The system performance in the face
of sensor attacks and with Algorithm 2 engaged is depicted in
Fig. 6. This reflects the efficacy of the secure control learning
framework.

VI. CONCLUSION

In this article, we developed a learning-based secure control
framework for CPS in the presence of sensor and actuator
attacks. The attack mitigation problem is addressed using a

secure estimation approach and a game-theoretic architecture
is provided for solving the underlying joint state estimation
and attack mitigation problems. The implementation algorithm
is based on an RL-driven attack mitigating architecture. Future
research will focus on exploiting the possibility of the defender
and the attacker adapting to their respective control and attack
policies.

APPENDIX A
PROOF OF THEOREM 1

Using Proposition (1), one has x̂(t) = x̂O(t), t ≥ 0, where
O is given by (18). From (10), we have ν(t) = ỹ(t) − Cx(t),
t ≥ 0, and thus, (19) can be obtained. Finally, we have

˙̃xJ (t) = AJ x̃J (t)− LJ νJ (t), t ≥ 0 (41)

where x̃J (0) = x̃(0).
Now, note that AJ is a Hurwitz matrix and all the

observers are initialized at common initial condition x̂(0).
Thus, using [10], there exist positive constants κ > 0 and
α > 0 such that the solution to (41) satisfies

∥

∥x(t)− x̂(t)
∥

∥ ≤ κe−αt‖x̃(0)‖, t ≥ 0.

Finally, defining eν(t) = ν̂(t) − ν(t), t ≥ 0, and using (2)
and (19), it follows that:

‖eν(t)‖ =
∥

∥ỹ(t)− Cx̂(t)− ν(t)
∥

∥

=
∥

∥y(t)− Cx̂(t)
∥

∥

≤
∥

∥x(t)− Cx̂(t)
∥

∥

≤ κe−αt‖C‖‖x̃(0)‖, t ≥ 0.

Thus, we obtain the asymptotic convergence of the estimated
attack ν̂(t) to the real attack signal ν(t), t ≥ 0. This completes
the proof.

APPENDIX B
PROOF OF LEMMA 4

First, given ui and νi, we solve (31)–(33) for V i, ui+1, and
νi+1. Since dynamics (23) are linear, we define V i = ξTPiξ

and using (28), we obtain

T
(

Pi
)

= ATPi + PiA + Q − PiBR−1BTPi

+ γ−2PiDDTPi = 0 (42)

with T(Z) = 0. Now, let T : Rn×n → R
n×n

T (P) = P −
(

T ′(P)
)−1

T(P). (43)

Then, (31) and (32) are equivalent to the Newton iteration [52]

Pi+1 = T
(

Pi
)

(44)

with ui+1 = −(1/2)R−1BTPi+1ξ , νi+1 =
(1/2)γ−2DTPi+1ξ [40].

Next, we let c0 ≥ ‖(T ′(P0))−1‖, η ≥ ‖(T ′(P0))−1T(P0)‖
and define h = c0Kη ≤ (1/2), where K satisfies ‖T ′(P1) −
T ′(P2)‖ ≤ K‖P1 − P2‖. Using Kantorovtich’s theorem [53]
and the result from [52], we obtain

∣

∣V i − V⋆
∣

∣ ≤ η

h

(

1 −
√
1 − 2h

)2i

2i
≤ η

h

1

2i
(45)
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for i = 0, 1, 2, . . . This implies that the value function in (34)
converges to (25) at the rate of O(1/2i). It follows that the
updated control and attack sequences ui+1 and νi+1 con-
verge to the optimal control and attack policies u⋆ and ν⋆

given by (27) at the same rate. Furthermore, it follows from
Lemma 3 that, with the optimal control and attack poli-
cies (27), the closed-loop system (23) has an asymptotically
stable equilibrium point. This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Let ûi and ν̂i be given and let Ṽ i(ξ) be the solution to

0 = ξTQξ + ûiTRûi − γ 2ν̂iTν̂i + Ṽ i
ξ

(

Aξ + Bûi + Dν̂i
)

(46)

with Ṽ i(0) = 0. Furthermore, let

ũi+1(ξ) = −1

2
R−1BTṼ iT

ξ (47)

ν̃i+1(ξ) = 1

2γ 2
DTṼ iT

ξ . (48)

The following lemma is needed to complete the proof.
Lemma 5: For every i > 0 and all ξ ∈ �

lim
l1,l2,l3→∞

V̂ i(ξ) = Ṽ i(ξ)

lim
l1,l2,l3→∞

ûi+1(ξ) = ũi+1(ξ)

lim
l1,l2,l3→∞

ν̂i+1(ξ) = ν̃i+1(ξ).

Proof: Using (46)–(48), it follows that:

Ṽ i(ξ(t + δt))− Ṽ i(ξ(t))

=
∫ t+δt

t

[

−ξT(τ )Qξ(τ )− ûiT(τ )Rûi(τ )+ γ 2ν̂iT(τ )ν̂i(τ )
]

dτ

− 2
∫ t+δt

t

[

ũ(i+1)T(τ )Rζ̂ i(τ )− γ 2ν̃(i+1)T(τ )ς̂ i(τ )
]

dτ.(49)

Next, we expand the three sets of basis functions in (35)–
(37). As shown in [35] and [51], given an arbitrary ǫ > 0,
there exists l10 > 0 such that for l⋆1 > max{l1, l10}

∣

∣Ṽ i(ξ(t))− W̃ iT
1 φ̄(ξ(t))

∣

∣ ≤ ǫ

2
(50)

where W̃ i
1 = [Ŵ iT

1 , W̃ iT
j1
]T denotes a constant weight vector,

φ̄(ξ) = [φ1(ξ) , . . . , φl1(ξ), φ̄l1+1(ξ) , . . . , φ̄l⋆1
(ξ)]T denotes

a linearly independent and continuous function vector, W̃ i
j1

∈
R

l⋆1−l1+1 is an expanded weighting vector, and {φ̄j(·)}
l⋆1
j=l1+1

denote an expanded basis functions for {φj(·)}l1
j=1.

Analogously, there exists l20 > 0 such that for l⋆2 >

max{l2, l20}
∥

∥

∥
ũi+1(ξ(t))− W̃ iT

2 ϕ̄(ξ(t))

∥

∥

∥
≤ ǫ

2
(51)

where W̃ i
2 = [W̃ i

2,1, . . . , W̃ i
2,m] denotes a constant weight

matrix with W̃ i
2,j = [Ŵ iT

2,j, W̃ iT
2,jl2

]T, j = 1 , . . . , m,

ϕ̄(ξ) = [ϕ1(ξ) , . . . , ϕl2(ξ), ϕ̄l2+1(ξ) , . . . , ϕ̄l⋆2
(ξ)]T denotes

a linearly independent and continuous function vector,

W̃ i
2,jl2

∈ R
(l⋆2−l2+1)×m is an expanded weighting matrix, and

{ϕ̄j(·)}
l⋆2
j=l2+1 denote an expanded basis functions for {ϕj(·)}l2

j=1.
Finally, there exists l30 > 0 such that for l⋆3 > max{l3, l30}

∥

∥

∥
ν̃i+1(ξ(t))− W̃ iT

3 ψ̄(ξ(t))

∥

∥

∥
≤ ǫ

2
(52)

where W̃ i
3 = [W̃ i

3,1, . . . , W̃ i
3,q] denotes a constant weight

matrix with W̃ i
3,j = [Ŵ iT

3,j, W̃ iT
3,jl3

]T, j = 1, . . . , q,

ψ̄(ξ) = [ψ1(ξ), . . ., ψl3(ξ), ψ̄l3+1(ξ), . . . , ψ̄l⋆3
(ξ)]T denotes

a linearly independent and continuous function vector,
W̃ i

3,jl3
∈ R

(l⋆3−l3+1)×q is an expanded weighting matrix,

and {ψ̄j(·)}
l⋆3
j=l3+1 denote an expanded basis functions for

{ψj(·)}l3
j=1.

Next, define ϒφ(ξ)
△= [φ̄l1+1(ξ), . . . , φ̄l⋆1

(ξ)]T, ϒϕ(ξ)
△=

[ϕ̄l2+1(ξ), . . . , ϕ̄l⋆2
(ξ)]T, and ϒψ (ξ)

△= [ψ̄l2+1(ξ), . . . ,

ψ̄l⋆2
(ξ)]T and note that

W̃ iT
1 φ̄(ξ(t)) = Ŵ iT

1 φ(ξ(t))+ W̃ i
j1
ϒφ(ξ(t))

W̃ iT
2 ϕ̄(ξ(t)) = Ŵ iT

2 ϕ(ξ(t))+ W̃ i
j2
ϒϕ(ξ(t))

W̃ iT
3 ψ̄(ξ(t)) = Ŵ iT

3 ψ(ξ(t)+ W̃ i
j3
ϒψ (ξ(t))

where W̃ i
j2

= [Ŵ iT
2,1l2

, . . . , W̃ iT
2,ml2

]T and W̃ i
j3

=
[Ŵ iT

3,1l2
, . . . , W̃ iT

3,ql3
]T. Now, using (35),–(37), and

subtracting (38) from (49), it follows that, for all samples tj

µi(tj) = −W̃ i
j1

[

ϒφ(ξ(tj + δt))−ϒφ(ξ(tj))
]

− 2
m

∑

k=1

rk

∫ tj+δt

tj

W̃ i
j2
ϒϕ(ξ(τ ))ζ̂

i
kdτ

+ 2γ 2
r

∑

l=1

∫ tj+δt

tj

W̃ i
j3
ϒψ (ξ(τ ))ς̂

i
ldτ (53)

where j = 1, . . . ,N.
Next, the weights Ŵ i in (39) are obtained using a least-

square method, and by Assumption 3, it follows that:

N
∑

j=1

µiT(

tj
)

µi
(

tj
)

≤ ǫ

N(4 + 2m42 + 2q43)
(54)

where 42 = 2δt maxk=1,...,m{rkζ̂
i
k} > 0 and 43 =

2γ 2δt maxl=1,...,q{ς̂ i
l } > 0. Thus, by continuity of the

expanded basis function ϒφ(ξ), it follows that, for all ξ(tk) ∈
�, k = 1, 2, . . . ,N, and large enough N

∣

∣

∣
W̃ i

j1
ϒφ(ξ(t))

∣

∣

∣
≤ max

k=1,...,N

∣

∣

∣
W̃ i

j1
ϒφ(ξ(tk))

∣

∣

∣

≤ 2ǫ

(4 + 2m42 + 2q43)
≤ ǫ

2
. (55)

Hence, for l⋆1 > max{l1, l10} and ξ ∈ �
∣

∣

∣
V̂ i(ξ)− Ṽ i(ξ)

∣

∣

∣
≤

∣

∣Ṽ i(ξ)− W̃ iT
1 φ̄(ξ)

∣

∣ +
∣

∣

∣
W̃ i

j1
ϒφ(ξ)

∣

∣

∣

≤ ǫ

2
+ ǫ

2
≤ ǫ. (56)
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Similarly, it can be shown that for all ξ ∈ �
∥

∥

∥
ûi+1(ξ)− ũi+1(ξ)

∥

∥

∥
≤

∥

∥

∥
ũi+1(ξ)− W̃ iT

2 ϕ̄(ξ)

∥

∥

∥
+

∥

∥

∥
W̃ i

j2
ϒϕ(ξ)

∥

∥

∥

≤ ǫ

2
+ ǫ

2
≤ ǫ (57)

∥

∥

∥
ν̂i+1(ξ)− ν̃i+1(ξ)

∥

∥

∥
≤

∥

∥

∥
ν̃i+1(ξ)− W̃ iT

3 ψ̄(ξ)

∥

∥

∥
+

∥

∥

∥
W̃ i

j3
ϒψ (ξ)

∥

∥

∥

≤ ǫ

2
+ ǫ

2
≤ ǫ (58)

which proves the lemma.
Now, the proof of Theorem 2 follows by mathematical

induction. Specifically:
1) For i = 0, we have Ṽ0(ξ) = V(ξ), and hence, it fol-

lows that ũ1(ξ) = u1(ξ) and ν̃1(ξ) = ν1(ξ). Now,
convergence follows from Lemmas 4 and 5.

2) Suppose that for some i > 0 and all ξ ∈ �,
liml1,l2,l3→∞ V̂ i−1(ξ) = V i−1(ξ), liml1,l2,l3→∞ ûi(ξ) =
ui(ξ), and liml1,l2,l3→∞ ν̂i(ξ) = νi(ξ).

Then, given V̂ i−1(ξ), ûi(ξ), and ν̂i(ξ), consider the relationship
between V̂ i(ξ) and V i(ξ), the relationship between ûi+1(ξ) and
ui+1(ξ), and the relationship between ν̂i+1(ξ) and νi+1(ξ).
First, using ûi(ξ) and ν̂i(ξ) to solve (46), Ṽ i(ξ) is obtained,
and using (34) and (49), it follows that:

∣

∣V i(ξ)− Ṽ i(ξ)
∣

∣

≤
∣

∣

∣

∣

∫ ∞

t

(

uiT(ξ)Rui(ξ)− ûiT(ξ)Rûi(ξ)
)

dτ

∣

∣

∣

∣

+ γ 2
∣

∣

∣

∣

∫ ∞

t

(

νiT(ξ)Rνi(ξ)− ν̂iT(ξ)Rν̂i(ξ)
)

dτ

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∫ ∞

t

(

u(i+1)T(ξ)Rζ i − ũ(i+1)T(ξ)Rζ̂ i
)

dτ

∣

∣

∣

∣

+ 2γ 2
∣

∣

∣

∣

∫ ∞

t

(

ν(i+1)T(ξ)ς i − ν̃(i+1)T(ξ)ς̂ i
)

dτ

∣

∣

∣

∣

. (59)

Next, using induction, we have

lim
l1,l2,l3→∞

∣

∣

∣

∣

∫ ∞

t

(

uiT(ξ)Rui(ξ)− ûiT(ξ)Rûi(ξ)
)

dτ

∣

∣

∣

∣

= 0

lim
l1,l2,l3→∞

∣

∣

∣

∣

∫ ∞

t

(

νiT(ξ)Rνi(ξ)− ν̂iT(ξ)Rν̂i(ξ)
)

dτ

∣

∣

∣

∣

= 0.

Now, since liml1,l2,l3→∞ ûi(ξ) = ui(ξ) and
liml1,l2,l3→∞ ν̂i(ξ) = νi(ξ), and using (31), (32), (47),
and (48), it follows that for all ξ ∈ �, liml1,l2,l3→∞ ‖ui+1(ξ)−
ũi+1(ξ)‖ = 0, liml1,l2,l3→∞ ‖νi+1(ξ)− ν̃i+1(ξ)‖ = 0. Finally,
we obtain

lim
l1,l2,l3→∞

∣

∣V i(ξ)− Ṽ i(ξ)
∣

∣ = 0. (60)

In addition, since
∣

∣

∣
V̂ i(ξ)− V i(ξ)

∣

∣

∣
≤

∣

∣

∣
V̂ i(ξ)− Ṽ i(ξ)

∣

∣

∣
+

∣

∣V i(ξ)− Ṽ i(ξ)
∣

∣ (61)

and, by Lemma 5, liml1,l2,l3→∞ |V̂ i(ξ)− Ṽ i(ξ)| = 0, it follows
that:

lim
l1,l2,l3→∞

V̂ i(ξ) = V i(ξ)

Now, it follows from Lemma 4 that liml1,l2,l3→∞ V i(ξ) =
V⋆(ξ), which verifies the first result of Lemma 5.

Next, using similar arguments used to prove
liml1,l2,l3→∞ V̂ i(ξ) = V i(ξ) and Lemma 5, and using
mathematical induction, it follows that:

lim
l1,l2,l3→∞

ûi+1(ξ) = ui+1(ξ)

lim
l1,l2,l3→∞

ν̂i+1(ξ) = νi+1(ξ).

Then, using Lemma 4, it follows that liml1,l2,l3→∞ ui+1(ξ) =
u⋆(ξ), liml1,l2,l3→∞ νi+1(ξ) = ν⋆(ξ). Thus, we obtain
that for all ξ ∈ �, liml1,l2,l3→∞ ûi+1(ξ) = u⋆(ξ) and
liml1,l2,l3→∞ ν̂i+1(ξ) = ν⋆(ξ). This completes the proof.
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