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Neural-Adaptive Stochastic
Attitude Filter on SO(3)

Hashim A. Hashim

and Kyriakos G. Vamvoudakis

Abstract—This letter proposes a novel stochastic non-
linear neural-adaptive-based filter on SO(3) for the attitude
estimation problem. The proposed filter produces good
results given measurements extracted from low-cost sens-
ing units (e.g., IMU or MARG sensor modules). The filter is
guaranteed to be almost semi-globally uniformly ultimately
bounded in the mean square. In addition to Lie Group for-
mulation, quaternion representation of the proposed filter
is provided. The effectiveness of the proposed neural-
adaptive filter is tested and evaluated in its discrete form
under the conditions of large initialization error and high
measurement uncertainties.

Index Terms—Neuro-adaptive, stochastic differential
equations (SDEs), Brownian motion process, attitude
estimator.

. INTRODUCTION

OBOTICS and control applications are heavily reliant

on robust filtering solutions to guarantee feasibility of
accurate rigid-body orientation (attitude) estimation [1]—[4].
The attitude can be reconstructed algebraically given known
observations in the inertial-frame and the associated mea-
surements in the body-frame. Examples include QUEST
algorithm [5] and singular value decomposition (SVD) [1].
However, body-frame measurements might be attached with
uncertainties, in particular if they were supplied by low-
cost inertial measurement units (IMUs) or magnetic, angular
rate, and gravity (MARG) sensor. Hence, accounting for
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measurement imperfections requires substituting algebraic atti-
tude reconstruction with estimation filters.

The problem of attitude estimation is traditionally tackled
by the active control and robotics research community using
Gaussian filters, such as, Kalman filter (KF) [6], extended
Kalman filter (EKF) [7], multiplicative extended Kalman filter
(MEKEF) [2], unscented Kalman filter (UKF) [3], and invariant
extended Kalman filter (IEKF) [8]. The unit-quaternion struc-
ture of the majority of Gaussian filters offers the benefit of
nonsingular attitude representation [12]. However, on the other
hand, unit-quaternion formulation is subject to nonunique-
ness [9], [12]. This motivated the researchers to explore posing
the attitude on the Special Orthogonal Group SO(3). Unlike
unit-quaternion, SO(3) offers unique and global representation
of the rotational matrix [4], [10]—[13]. Therefore, over the last
decade multiple nonlinear attitude filters on SO(3) have been
proposed, such as nonlinear deterministic filters [4], [10], [11]
and nonlinear stochastic filters [12], [13]. The nonlinear filter
design on SO(3) has proven to 1) have a simpler struc-
ture, 2) be computationally cheap, and 3) have better tracking
performance in contrast to Gaussian filters [4], [10]-[13].

It is widely known that neural networks (NNs) have capa-
bility to learn complex nonlinear relationships [14]-[17]. In
the recent years, adaptive artificial neural networks (ANNSs)
learning, known as neural-adaptive learning, has been found
effective for approximating unknown nonlinear dynamics
online in several applications. Examples include two-degrees-
of-freedom robot [14], multi-agent systems [15], unknown
multi-input multi-output systems [16], and fault-tolerant con-
trol [17]. Accurate NN approximation of unknown nonlinear
dynamics allows for successful control process [14]-[17]. In
this work, the attitude dynamics are modelled on the Lie Group
of SO(3). The uncertainties inherent to attitude dynamics
and gyroscope measurements, are addressed using Brownian
motion process. The contributions of this letter are as fol-
lows: 1) a neural-adaptive nonlinear stochastic attitude filter on
SO(3) is proposed, 2) the measurement uncertainties are cor-
rected using neural-adaptive adaptation mechanisms extracted
by adopting Lyapunov stability, and 3) the closed loop sig-
nals are guaranteed to be almost semi-globally uniformly
ultimately bounded (SGUUB). While the filter is proposed
in a continuous form, its discrete form obtained using exact
integration methods is also presented. The filter is tested at a
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low sampling rate to reflect real-life applications. To the best
of the authors knowledge, the attitude estimation problem has
not been addressed using a neural-adaptive stochastic filter on
SO@Q3).

This letter is structured to include six sections. Section II
presents preliminaries of the attitude problem. Section III
defines the problem, contains the available measurements,
error criteria, and neural network approximation. Section IV
presents a novel neural-adaptive stochastic attitude filter.
Section V shows and discusses the obtained results. Lastly,
Section VI concludes this letter.

[1. PRELIMINARIES

In this work, R represents the set of real numbers, R
denotes the set of nonnegative real numbers, and R"*™ stands
for a real n-by-m dimensional space. I,, and 0, «,, denote an
n-by-n identity matrix and an n-by-m dimensional matrix of
zeros, respectively. For a € R" and A € R™"™, ||a|| = va'a
stands for Euclidean norm of x and ||Al|r = J/Tr{AA*}
describes the Frobenius norm of A where * denotes a con-
jugate transpose. For A € R™", define a set of eigenvalues
as AMA) = (A, A2, ..., A, where A4 = A(A) denotes
the maximum value, while A, = A(A) describes the mini-
mum value of A(A). {Z} defines a fixed inertial-frame and
{B} describes a fixed body-frame. Rigid-body’s orientation
in three-dimensional space, commonly known as attitude, is
expressed as R € SO(3) with

SO@3) = {R € R*3|RTR =1, det(R) = +1)}

where det(-) denotes a determinant. The Lie algebra associated
with SO(3) is termed so0(3) and can be described as

50(3) = {[alx € RVP|[a]], = —[al«,a € R’}
0 —das3 ar al
l[aly = | a3 0 —a; | €s0(3),a=| a»
—ap ay 0 ajs

The operator vex stands for the inverse mapping of [-]x with
the map vex : s0(3) — R> where vex([a]x) = a,Va € R.
The anti-symmetric projection has the map P, : R3*3 —
50(3) where

P.(M) = %(M - MT) € 50(3), YM € R3<3

For M = [m;lij=1,23 € R3*3, let us define

1 ma3p — mpy3
Y (M) = vex(Py,(M)) = S| ma—ma | € R (1)
ma1 —mjp2

For R € SO(3), define the Euclidean distance of R as
follows:

1
[IR|lr = Tr{ls — R} € [0. 1] 2)

with Tr{-} standing for a trace of a matrix. For A € R3*3 and
o € R3, considering the composition mapping in (1), let us
introduce the following identity:

Tr{Alelx} = Tr{P,(A)lalx) = 2T (A) e 3)

[1l. PROBLEM FORMULATION
A. Measurements and Dynamics

Let R € SO(3) be the attitude of a rigid-body in three-
dimensional space defined with respect to {5}. The true
attitude dynamics:

R = R[], 4)

where Q € R3 represents angular velocity of the rigid-body
defined with respect to {3}. The attitude of a rigid-body can be
obtained given a group of measurements in {8} and a group of
observations in {Z}. Let r; € R? denote an observation in {Z}.
As such, the measurement of r; with respect to {53} is given
by [13]

yvi=R"ri+neR3, Vi=1,2,....N 3)

where n; denotes unknown noise. The attitude can be obtained
given two or more non-collinear inertial observations (N > 2)
and the respective body-frame measurements. If N = 2,
the third observation and the associated measurement can be
defined by r3 = rp x r; and y3 =y X y; where x denotes a
cross product. The set of observations and measurements can
be normalized as follows:

L
T YT Tl

Low-cost IMU or MARG sensors can be utilized for attitude
determination or estimation, see [4], [10]-[13]. Gyroscope
(angular rate or angular velocity) measurements can be defined

as follows:

6)

r;

Qu=Q+neR? (7

with © being the true angular velocity defined in (4), and n
being unknown noise corrupting €2,,. The noise vector n is
bounded and Gaussian with a zero mean E[n] = 0 where
E[-] denotes expected value of a component. Derivative of a
Gaussian process results in a Gaussian process [13], [18], [19].
As such, n can be formulated as a Brownian motion process

_ o4
n=0Q°- @®)

where 8 € R3 and Q € R¥3 is an unknown time-variant
symmetric matrix with 0? = QoT being the noise covari-
ance. It is worth noting that P{$(0) = 0} = 1 and E[S] =0
where IP{-} denotes probability of a component. Therefore,
from (4), (7), and (8), the true attitude dynamics can be defined
in a stochastic sense as follows:

dR = R[2y]xdt — R[QdB]x &)

In view of (1)-(3), one obtains the normalized Euclidean

distance of R in (9) as follows:
d|IR|lt = 2Y(R) " Qudt — 2Y(R) " QdB. (10

Lemma 1 [13]: Let R € SO3), Y(R) = vex(P,(R)) as
in (1), and [|R||] = }‘Tr{I3 — R} as (2). Hence, the following
equality holds:

TP = 4(1 = [IRIIDIIR]]x.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2022 at 17:24:43 UTC from IEEE Xplore. Restrictions apply.



HASHIM et al.: NEURAL-ADAPTIVE STOCHASTIC ATTITUDE FILTER ON SO(3)

1551

Definition 1 ([13], [20]): Consider the stochastic attitude
dynamics in (10) and let 79 be the initial time. ||R]||1 = [|[R(?)]|]1
is said to be almost SGUUB if for a given set 7 € R
and ||R(tp)||1 a constant « > O exists and a time constant
Ty = Ty (k, ||R(tp)|]1) such that E[||R(t)||1] < «, YVt > ty + «.

Lemma 2 [21]: Recall the stochastic attitude dynamics
in (10) and assume that V(||R||;) be a twice differentiable
potential function such that

LV(IRIID =V, f + %Tr{nggTVz} (11)
with f = 2YR)'Q, € R, g = —2YR)" e R3,
LV(||IR||1) being a differential operator, Vi = dV/d||R||1, and
Vo = 9%V/3||R||?. Let @, (-) and @>(-) be class Ko functions,
and assume that the constants 8 > 0 and 1 > 0 such that

o, (IRl < V(IRIL) < @(IRIl) (12)
1
LV(IRIL) = V] f+ zTr{nggTvz}
< —BV(IRIID) +n (13)

Hence, the stochastic attitude dynamics in (10) have an
almost unique strong solution on [0, co). Moreover, the solu-
tion ||R]|y is upper bounded in probability with

E[V{IRIID] = VUIRO)|[Dexp(—p1) +n/B

Also, (14) implies that ||R]||; is SGUUBIin the mean square.
Define R as the estimate of R. Define the error in
estimation by

(14)

R=R'R. (15)
B. Filter Structure and Error Dynamics
Define the filter dynamics as follows:
R =RIQu — €, (16)

with C € R3*! being a neural-adaptive-based correction
matrix to be designed in the subsequent Section. From (4)
and (16), the error dynamics are as follows:

dR =R"dR + dR'R
= (R[22 — C)x + [Q1LR)dr + R[QdB]

= RIQ]x — [Q]«R — R[Clydt + R[QdBlx  (17)

In view of (3) and (17), one obtains the Euclidean distance
of (17) as below:

3 1 3 1 .
dl|Rll = d Tr(ls ~ R} = —  Tr(dR)
= %TI‘{]N?[Cdl — Qdﬂ]x} — %TT{R[Q]X - [Q]Xk}
= TP R)Clr — QaBL)
— —%T(R)TCdt + %T(R)TQdﬁ (18)

where Tr{R[Q2]x — [Q2]<R} = 0.

C. Neural Network Structure

In this work, NNs with a linear in parameter structure will
be employed. For x € R"” and a function f(x) € R”, one has

f) =Wiox) + o

where W e R?*™ denotes a g-by-m-dimensional matrix of
synaptic weights, ¢(x) € R? denotes an activation function, g
denotes number of neurons, and oy € R™ denotes an approxi-
mated error vector. The activation function may contain high
order connections, for instance, Gaussian functions [22], radial
basis functions (RBFs) [23], sigmoid functions [24]. Our
objectives are to achieve accurate estimation of the attitude
matrix, estimate the nonlinear attitude dynamics, and compen-
sate for the uncertainties. NNs have been proven to be suc-
cessful in estimating high-order nonlinear dynamics [14]-[17].
Recall the nonlinear dynamics in (18)

- 1 - 1 -
d||R||; = —5T<R>TCdr+ ET(R)TQdﬂ

Define ¢(Y(R)) as an activation function, and let us
approximate

C™YR) = C'Tp(Y(R) + ap
QY (R) = W, (Y (R)) +

where ¢(Y(R)) € R?*! is an activation function, I', € R?*3
is a known weighted matrix, C € R**! is a correction weights
vector to be adaptively tuned, W, € R9*3 are the unknown
NN weights to be adaptively tuned, ¢ > 0 is an integer that
denotes the number of neurons, and o € R and «, € R are
the approximated error components. Note that «p, ||ots || — O
as g — oo. Therefore, the error dynamics of the Euclidean
distance in (18) can be reformulated as below:

- ~ 1 -
dlIR|ly = fdt + §Qdp = —5<CTFI (Y (R)) + ap)dt

+ %(w(r(ie)fwa +a )dB (19)

Define W, as an unknown symmetric constant matrix of
NN weights where W, = W, WGT e R9*4, Let W, € R7*1 be
the estimate of W, and the error in NN weights be

W, =W, — W, € RI¥4, (20)

IV. NEURAL-ADAPTIVE-BASED STOCHASTIC
FILTER DESIGN

In this Section, our objective is to develop a nonlinear
stochastic filter based on neural-adaptive techniques for the
attitude estimation problem. Consider the following neural-
adaptive-based nonlinear stochastic filter design:

R =RI%, - Cl
Wo = LT, 0(YR)Q(TR)T — ko Ty W,
c = (rj + JETTTO T W o (OC(R)

21

where k, € R and k. € R are positive constants, I, €
RY%4 is a positive diagonal matrix, I'. € R?*3 with '/ T,
being positive definite, ¢ denotes the number of neurons,
W, € R9%4 is the estimate of W,, and R = R)TR with Ry

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2022 at 17:24:43 UTC from IEEE Xplore. Restrictions apply.



1552

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

being the reconstructed attitude, see QUEST [5] or SVD [1].
Y(R) = vex(Pa(R)), IRl = ;Tr(ls — R}, y1 = 3(1 +
IRl exp(||RI[D). and > = 3(2 + [IR]|D) exp(|[R[|D. It is
becomes apparent that Wa is symmetric for Wa 0) = Wg o7,
It is worth noting that I'. defines the convergence rate of
lIR||1 to the nelghborhood of the origin, while I', defines the
convergence rate of W, to W,.

Theorem 1: Recall the stochastic attitude dynamics in (9).
Assume the availability of at least two observations and their
respective measurements in (5) at each time instant. Consider
the nonlinear neural-adaptive stochastic filter in (21) supplied
with measurements in (7) ©,, = Q +n and (5) y; = RTr
for all Vi = 1,2, ..., N. Hence, for ||R(0)||; # +1 (unstable
equilibria), all the closed-loop errors are SGUUB in the mean
square.

Proof: Let V. = V(||R||l1, W,) be a Lyapunov function
candidate defined as

- - | D
V = 2[|R|yexp(||R|]1) + ETr{WJ U, Wyl (22)

with the map V : SO(3) x R7*? — R,. Since exp(||R||) <

exp(l) < 3, one obtains
3 0
V<el — i e
- [0 SAT, 1)]
[y S —

Tt 0 }

e e
[o YN =
—_——

H, Hy

such that

LHD|lel)? <V < X(Ha)||e|?

where e = [\/||R||1, [|Wy||F]T and A(T';') and A(I';!) stand
for the minimum and the maximum eigenvalues of I'; I
respectively. Since both A(I' Iy = 0 and X(I“; hy > o,
A(Hy) and A(H>) are positive and V(||R||;, Wy) > 0 for all
e € R2\{0}. Consequently, on has

a”RHI = 2y = 2(1 + [|RI]D exp(|[R|])
2
SRE = 2V2 = 2@+ [IRIID exp(IIRI 1)

In view of (22), (23), and Lemma 2, the following differ-
ential operator is obtained:

LV = gif + 5Te]@E v | -T2

From (21)
LV = =y Tr{Cp(Y (R)) "Tc} + Y1
e 7 THW 9 (CR) + o) Wy (Y (R) + ) )
— Tr{W;— r;'W,) (25)

Acco~rding_ to  Young’s inequality, a;WJ e(Y(R) <
%(p(T(R))TW(,q)(T(R)) + %||a(,||. Therefore, one obtains
LV < —y1Tr{Cp(Y(R) T} — Te{W, T, ' W, )

)

+ fw(Y(R))w(T(R)) Wo + Yriap + 1/lfllotall (26)

Note that ¢ < exp(||R|[r) < 3 and ¥2 < 3exp(/|R|I)) < 9.
In view of (20), let us replace Wy, in (21) by Wy, = W, +W,,.

Thus, using W(, and C in (21), the expression (26) can be
reformulated in an inequality form as follows:

LV < =i [ITTo(CXR)|1? = ko || Wo |3

- — 9
+ ks [IWs lIFIIWollF + 3ap + EII%II2 27)

1 oung’s  inequality, ko ||Wollp|[Wollr <
1‘7<’||W(,||12F + %’HWJH%. Consider a hyperbolic tangent acti-
vation function ¢(a) = % where a € R. One finds
that 4T (Y (R)|I* = k|| (R)||* where k. = AT [T,).
Hence, for a hyperbolic tangent activation function one has

Based on Young’s

ke ~ kp -~
LV = =ZIC R = S Wo I+ (28)
where 7 = sup,- %HWG ||%+3ah+ %Hagllz. This shows that
LV is ultimately bounded. Let § > 1 — |[|R(0)||; and recall

Lemma 1. Accordingly, one shows

Ske 0

T
£V§e|:0 k,

]e+n§—A(H3)IIe||2+n
H3

where e = [/||IR|I1, ||Wy||F]". Since ky > 0 and k. > 0 and

given that ||R(0)||; does not belong to the unstable equilibria,
it becomes apparent that A(H3) > 0. Hence, LV < 0 if

lell? > ——
A(H3)
Consequently, one finds
dE[V A
WM v = -2 gy o)
dt
Let us define g = XEZS; Therefore, one obtains
0 < V() < V(0)exp(—p1) + %(1 —exp(—=pn) (30

As such, it becomes apparent that e is almost SGUUB which
completes the proof. |

The comprehensive steps of the neural-adaptive stochastic
attitude filter implementation in its discrete form are listed in
Algorithm 1 with At being a small sampling time. Singular
value decomposition [1] has been utilized a method of atti-
tude reconstruction. In Algorithm 1, s; denotes ith sensor
measurement confidence level with vaz 1si=1.

V. SIMULATION RESULTS

This section illustrates the functionality of the proposed
neural-adaptive stochastic filter on the Lie group of SO(3).
The discrete filter presented in Algorithm 1 has been tested at
a sampling rate of At = 0.01 seconds. Assume that the initial
value of R is R(0) = I3 € SO(3) and the true angular velocity
be as below:

.
Q= O.6[sin(0.4t), sin(0.77 + %), 0.4 cos(0.3t)] . (rad/sec)

Let the true angular velocity be attached with unknown nor-
mally distributed random noise n = N'(0, 0.11) (rad/sec) (zero
mean and standard deviation of 0.11), see (7). Define two
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Algorithm 1: Stochastic ~ Attitude

Estimator

Neural-Adaptive

1 Initialization:
1: Set R[0] = Ry € SO@3), W [0] = Wyj0 = Ogxgs
q>0,s; >0 forall i > 2, select 'y, ks > 0, A(TJ T¢) > 0, and

set k= 0.
while
/* Attitude reconstruction using Singular Value Decomposition */
. — "l Vi i —
NSl YT =l N
B =Y" syr] =UsVT
2: YU+ =U-diag(l, 1, det(U))

Vi =V -diag(l,1,det(V))
T
Ry =V U,
3: Ry =R Ry and Y = Y (Ry) = vex(Pu(R))
Y)—exp(—Y .
4: (Y1) = Z’;pg.r;_‘_iz’;gﬁ_yi /* hyperbolic tangent
activation function */

50 Woik = Wolk—1 + Ao (Y20 (N@(0) T — ko Woi—1)
6: €= (I + 22 T T~ T Wo ) o ()
/* angle-axis parameterization */
0 = Qi — O At
H =llell, x=2o/llell
Rep =13 +sin()[xlx + (1 — cos(u)[x1%
8: Rk-}—l = i?kRexp

9 k+1—k
end while

>

observations in {Z}: r; = [1,—1,1]T and », = [0,0,1]T.
Let {B} measurements be corrupted with unknown normally
distributed random noise ny = ny = N (0, 0.1), see (5). Let us
consider three neurons (¢ = 3). Consider selecting the design
parameters as follows: I', = 2I3, ' = 2I3, and k, = 1.
Let the initial estimate of neural network weights be set to
W(O) = 03«3 and the initial estimate of the attitude be

~0.9214 —0.0103 0.3884
RO)=| 02753 —0.7227 0.634 | e SO@3)
02742 0.6911  0.6687

where |[R(0)||1 = 3Tr{I3 — R Ro} ~ 0.994 approaching the
unstable equilibrium +1. As to activation function, we selected
a hyperbolic tangent activation function:
_exp(a) —exp(—a)

~ exp(@) +exp(—a)’

p(a) aeR

Fig. 1 illustrates the high level of noise corrupting the
angular velocity measurements in comparison to the true
data. In Fig. 2, the estimated Euler angles (roll ) pitch
(é), and yaw (lﬁ)) are plotted against the true Euler angles
(¢, 0, ¥). Fig. 2 demonstrates fast and strong tracking capabil-
ity of the proposed approach. The effectiveness and robustness
of the neural-adaptive approach are illustrated in Fig. 3
where the error initiates at a large value and rapidly reaches
close neighborhood of the origin. Table I shows statistical anal-
ysis of mean and standard deviation (std) of the steady-state
error values between 5 to 29 seconds with respect to the num-
ber of neurons. As illustrated by Table I, greater number of
neurons results in improved steady-state error convergence.
Finally, Fig. 4 depicts the boundedness of the neural-adaptive
estimates as they converge close to zero as IR} — O.

“o 5 10 15 20 25 30
Time (sec)

Fig. 1. Rate gyro: True (black center-line) and measurements (colored).

L
0 5 10 15 20 25 30

Time (sec)

Fig. 2. Euler angles: True (green solid-line) and estimated (blue dash-
line) using 3 neurons.

—50 neurons
10 neurons
- -3 neurons

e I I R )

4,8 g
ity

>,
¢
|
24 26

SRR I S S U =S SR * WU SR~ WU B S

5 10 15 20 25 30
Time (sec)

Fig. 3. Normalized Euclidean error ||R||; = %Tr{l3 - R;:Ew’k}.

VI. CONCLUSION

This work addressed the attitude estimation problem using
a neural-adaptive stochastic filter on the Special Orthogonal
Group SO(3). The novel filter accounts for the noise present
in the gyroscope measurements. The proposed filter is ensured
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TABLE |
STATISTICAL ANALYSIS OF THE STEADY-STATE ERROR
WITH RESPECT TO THE NUMBER OF NEURONS

Output data of ||R||; = Arr{1s — R;Rk} over the period (5-29 sec)

Neurons number l 3 l 10 l 50
Mean ‘ 2.3 x 1073 ‘ 2% 1073 ‘ 1.4 x 1073
STD \ 1.9 x 1073 \ 1.4 x 1073 \ 9x10~4

0.25 A
- -[[W]
02t -
I
"
o
0asi!
it
1
1
0.1r| 4

0 5 10 15 20 25 30
Time (sec)

Fig. 4. Frobenius norm of neural-adaptive estimates (3 neurons).

to be almost SGUUB in the mean square. The numerical
simulation illustrates robustness and rapid adaptability of the
proposed neural-adaptive approach.

APPENDIX
Neural-Adaptive Filter Quaternion Representation

Let S = {Q € RY|IQll = /gi+q ¢ = 1} and let

0 = [qo, qT]T €SP bea unit-quaternion vector with gp € R
and ¢ € R3. Let 07! = [go —¢" 1" € S? be the inverse
of Q€S> Consider © to be a quaternion product. Then, for
01 =1qo1 ¢ 1" €S> and Q> = [g02 ¢; 1" €S, one has

0160, = [ q01902 — 4 42 }

90192 + 90291 + [911xq2
S* can be mapped to SO(3) as below

Ro = (g5 — lglMH1s + 299" +2q0[q], € SOB3) (1)

Let Qy be the reconstructed attitude, obtained for instance,
using QUEST [5]. Define Q =1[g0,4"1" €S? as the estimate
of O = [qo, qT]T € S3, and let the error in estimation be
0= 0y o0 = [§0.4"1" € S3. The quaternion representation
of the neural-adaptive stochastic attitude filter in (21) is as
below:

Wo = LT, 023009 2408) T — ko To We
¢ = (FI + L @ITO T W )¢ (2000)
u = Qm - C (32)
o =|u ]
o Lu—lulk
0 =390
where Y(Rg) = 2407, lIRolh = 1 — 3@, y1 = 31 +

IR ol exp(/|Rolh), and ¥ = 32 + [ RollD) exp(|[RollD).
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