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Neural-Adaptive Stochastic
Attitude Filter on SO(3)
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Abstract—This letter proposes a novel stochastic non-
linear neural-adaptive-based filter on SO(3) for the attitude
estimation problem. The proposed filter produces good
results given measurements extracted from low-cost sens-
ing units (e.g., IMU or MARG sensor modules). The filter is
guaranteed to be almost semi-globally uniformly ultimately
bounded in the mean square. In addition to Lie Group for-
mulation, quaternion representation of the proposed filter
is provided. The effectiveness of the proposed neural-
adaptive filter is tested and evaluated in its discrete form
under the conditions of large initialization error and high
measurement uncertainties.

Index Terms—Neuro-adaptive, stochastic differential
equations (SDEs), Brownian motion process, attitude
estimator.

I. INTRODUCTION

R
OBOTICS and control applications are heavily reliant

on robust filtering solutions to guarantee feasibility of

accurate rigid-body orientation (attitude) estimation [1]–[4].

The attitude can be reconstructed algebraically given known

observations in the inertial-frame and the associated mea-

surements in the body-frame. Examples include QUEST

algorithm [5] and singular value decomposition (SVD) [1].

However, body-frame measurements might be attached with

uncertainties, in particular if they were supplied by low-

cost inertial measurement units (IMUs) or magnetic, angular

rate, and gravity (MARG) sensor. Hence, accounting for
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measurement imperfections requires substituting algebraic atti-

tude reconstruction with estimation filters.

The problem of attitude estimation is traditionally tackled

by the active control and robotics research community using

Gaussian filters, such as, Kalman filter (KF) [6], extended

Kalman filter (EKF) [7], multiplicative extended Kalman filter

(MEKF) [2], unscented Kalman filter (UKF) [3], and invariant

extended Kalman filter (IEKF) [8]. The unit-quaternion struc-

ture of the majority of Gaussian filters offers the benefit of

nonsingular attitude representation [12]. However, on the other

hand, unit-quaternion formulation is subject to nonunique-

ness [9], [12]. This motivated the researchers to explore posing

the attitude on the Special Orthogonal Group SO(3). Unlike

unit-quaternion, SO(3) offers unique and global representation

of the rotational matrix [4], [10]–[13]. Therefore, over the last

decade multiple nonlinear attitude filters on SO(3) have been

proposed, such as nonlinear deterministic filters [4], [10], [11]

and nonlinear stochastic filters [12], [13]. The nonlinear filter

design on SO(3) has proven to 1) have a simpler struc-

ture, 2) be computationally cheap, and 3) have better tracking

performance in contrast to Gaussian filters [4], [10]–[13].

It is widely known that neural networks (NNs) have capa-

bility to learn complex nonlinear relationships [14]–[17]. In

the recent years, adaptive artificial neural networks (ANNs)

learning, known as neural-adaptive learning, has been found

effective for approximating unknown nonlinear dynamics

online in several applications. Examples include two-degrees-

of-freedom robot [14], multi-agent systems [15], unknown

multi-input multi-output systems [16], and fault-tolerant con-

trol [17]. Accurate NN approximation of unknown nonlinear

dynamics allows for successful control process [14]–[17]. In

this work, the attitude dynamics are modelled on the Lie Group

of SO(3). The uncertainties inherent to attitude dynamics

and gyroscope measurements, are addressed using Brownian

motion process. The contributions of this letter are as fol-

lows: 1) a neural-adaptive nonlinear stochastic attitude filter on

SO(3) is proposed, 2) the measurement uncertainties are cor-

rected using neural-adaptive adaptation mechanisms extracted

by adopting Lyapunov stability, and 3) the closed loop sig-

nals are guaranteed to be almost semi-globally uniformly

ultimately bounded (SGUUB). While the filter is proposed

in a continuous form, its discrete form obtained using exact

integration methods is also presented. The filter is tested at a
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low sampling rate to reflect real-life applications. To the best

of the authors knowledge, the attitude estimation problem has

not been addressed using a neural-adaptive stochastic filter on

SO(3).

This letter is structured to include six sections. Section II

presents preliminaries of the attitude problem. Section III

defines the problem, contains the available measurements,

error criteria, and neural network approximation. Section IV

presents a novel neural-adaptive stochastic attitude filter.

Section V shows and discusses the obtained results. Lastly,

Section VI concludes this letter.

II. PRELIMINARIES

In this work, R represents the set of real numbers, R+
denotes the set of nonnegative real numbers, and R

n×m stands

for a real n-by-m dimensional space. In and 0n×m denote an

n-by-n identity matrix and an n-by-m dimensional matrix of

zeros, respectively. For a ∈ R
n and A ∈ R

n×m, ||a|| =
√

a⊤a

stands for Euclidean norm of x and ||A||F =
√

Tr{AA∗}
describes the Frobenius norm of A where ∗ denotes a con-

jugate transpose. For A ∈ R
n×n, define a set of eigenvalues

as λ(A) = {λ1, λ2, . . . , λn} where λA = λ(A) denotes

the maximum value, while λA = λ(A) describes the mini-

mum value of λ(A). {I} defines a fixed inertial-frame and

{B} describes a fixed body-frame. Rigid-body’s orientation

in three-dimensional space, commonly known as attitude, is

expressed as R ∈ SO(3) with

SO(3) = {R ∈ R
3×3|R⊤R = I3, det(R) = +1}

where det(·) denotes a determinant. The Lie algebra associated

with SO(3) is termed so(3) and can be described as

so(3) = {[a]× ∈ R
3×3|[a]⊤× = −[a]×, a ∈ R

3}

[a]× =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 ∈ so(3), a =





a1

a2

a3





The operator vex stands for the inverse mapping of [·]× with

the map vex : so(3) → R
3 where vex([a]×) = a,∀a ∈ R

3.

The anti-symmetric projection has the map Pa : R
3×3 →

so(3) where

Pa(M) = 1

2

(

M − M⊤
)

∈ so(3),∀M ∈ R
3×3

For M = [mi,j]i,j=1,2,3 ∈ R
3×3, let us define

ϒ(M) = vex(Pa(M)) = 1

2





m32 − m23

m13 − m31

m21 − m12



 ∈ R
3 (1)

For R ∈ SO(3), define the Euclidean distance of R as

follows:

||R||I = 1

4
Tr{I3 − R} ∈ [0, 1] (2)

with Tr{·} standing for a trace of a matrix. For A ∈ R
3×3 and

α ∈ R
3, considering the composition mapping in (1), let us

introduce the following identity:

Tr{A[α]×} = Tr{Pa(A)[α]×} = −2ϒ(A)⊤α. (3)

III. PROBLEM FORMULATION

A. Measurements and Dynamics

Let R ∈ SO(3) be the attitude of a rigid-body in three-

dimensional space defined with respect to {B}. The true

attitude dynamics:

Ṙ = R[�]× (4)

where � ∈ R
3 represents angular velocity of the rigid-body

defined with respect to {B}. The attitude of a rigid-body can be

obtained given a group of measurements in {B} and a group of

observations in {I}. Let ri ∈ R
3 denote an observation in {I}.

As such, the measurement of ri with respect to {B} is given

by [13]

yi = R⊤ri + ni ∈ R
3, ∀i = 1, 2, . . . ,N (5)

where ni denotes unknown noise. The attitude can be obtained

given two or more non-collinear inertial observations (N ≥ 2)

and the respective body-frame measurements. If N = 2,

the third observation and the associated measurement can be

defined by r3 = r2 × r1 and y3 = y2 × y1 where × denotes a

cross product. The set of observations and measurements can

be normalized as follows:

ri = ri

||ri||
, yi = yi

||yi||
(6)

Low-cost IMU or MARG sensors can be utilized for attitude

determination or estimation, see [4], [10]–[13]. Gyroscope

(angular rate or angular velocity) measurements can be defined

as follows:

�m = �+ n ∈ R
3 (7)

with � being the true angular velocity defined in (4), and n

being unknown noise corrupting �m. The noise vector n is

bounded and Gaussian with a zero mean E[n] = 0 where

E[·] denotes expected value of a component. Derivative of a

Gaussian process results in a Gaussian process [13], [18], [19].

As such, n can be formulated as a Brownian motion process

n = Q
dβ

dt
(8)

where β ∈ R
3 and Q ∈ R

3×3 is an unknown time-variant

symmetric matrix with Q2 = QQ⊤ being the noise covari-

ance. It is worth noting that P{β(0) = 0} = 1 and E[β] = 0

where P{·} denotes probability of a component. Therefore,

from (4), (7), and (8), the true attitude dynamics can be defined

in a stochastic sense as follows:

dR = R[�m]×dt − R[Qdβ]× (9)

In view of (1)-(3), one obtains the normalized Euclidean

distance of R in (9) as follows:

d||R||I = 2ϒ(R)⊤�mdt − 2ϒ(R)⊤Qdβ. (10)

Lemma 1 [13]: Let R ∈ SO(3), ϒ(R) = vex(Pa(R)) as

in (1), and ||R||I = 1
4
Tr{I3 − R} as (2). Hence, the following

equality holds:

||ϒ(R)||2 = 4(1 − ||R||I)||R||I.
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Definition 1 ([13], [20]): Consider the stochastic attitude

dynamics in (10) and let t0 be the initial time. ||R||I = ||R(t)||I
is said to be almost SGUUB if for a given set π ∈ R

and ||R(t0)||I a constant α > 0 exists and a time constant

Tα = Tα(κ, ||R(t0)||I) such that E[||R(t0)||I] < α,∀t > t0 + α.

Lemma 2 [21]: Recall the stochastic attitude dynamics

in (10) and assume that V(||R||I) be a twice differentiable

potential function such that

LV(||R||I) = V⊤
1 f + 1

2
Tr{gQ2g⊤V2} (11)

with f = 2ϒ(R)⊤�m ∈ R, g = −2ϒ(R)⊤ ∈ R
1×3,

LV(||R||I) being a differential operator, V1 = ∂V/∂||R||I, and

V2 = ∂2V/∂||R||2I . Let α1(·) and α2(·) be class K∞ functions,

and assume that the constants β > 0 and η ≥ 0 such that

α1(||R||I) ≤ V(||R||I) ≤ α2(||R||I) (12)

LV(||R||I) = V⊤
1 f + 1

2
Tr{gQ2g⊤V2}

≤ −βV(||R||I)+ η (13)

Hence, the stochastic attitude dynamics in (10) have an

almost unique strong solution on [0,∞). Moreover, the solu-

tion ||R||I is upper bounded in probability with

E[V(||R||I)] ≤ V(||R(0)||I)exp(−βt)+ η/β (14)

Also, (14) implies that ||R||I is SGUUBin the mean square.

Define R̂ as the estimate of R. Define the error in

estimation by

R̃ = R⊤R̂. (15)

B. Filter Structure and Error Dynamics

Define the filter dynamics as follows:

˙̂
R = R̂[�m − C]× (16)

with C ∈ R
3×1 being a neural-adaptive-based correction

matrix to be designed in the subsequent Section. From (4)

and (16), the error dynamics are as follows:

dR̃ = R⊤dR̂ + dR⊤R̂

= (R̃[�− C]× + [�]⊤×R̃)dt + R̃[Qdβ]×
= R̃[�]× − [�]×R̃ − R̃[C]×dt + R̃[Qdβ]× (17)

In view of (3) and (17), one obtains the Euclidean distance

of (17) as below:

d||R̃||I = d
1

4
Tr{I3 − R̃} = −1

4
Tr{dR̃}

= 1

4
Tr{R̃[Cdt − Qdβ]×} − 1

4
Tr{R̃[�]× − [�]×R̃}

= 1

4
Tr{Pa(R̃)[Cdt − Qdβ]×}

= −1

2
ϒ(R̃)⊤Cdt + 1

2
ϒ(R̃)⊤Qdβ (18)

where Tr{R̃[�]× − [�]×R̃} = 0.

C. Neural Network Structure

In this work, NNs with a linear in parameter structure will

be employed. For x ∈ R
n and a function f (x) ∈ R

m, one has

f (x) = W⊤ϕ(x)+ αf

where W ∈ R
q×m denotes a q-by-m-dimensional matrix of

synaptic weights, ϕ(x) ∈ R
q denotes an activation function, q

denotes number of neurons, and αf ∈ R
m denotes an approxi-

mated error vector. The activation function may contain high

order connections, for instance, Gaussian functions [22], radial

basis functions (RBFs) [23], sigmoid functions [24]. Our

objectives are to achieve accurate estimation of the attitude

matrix, estimate the nonlinear attitude dynamics, and compen-

sate for the uncertainties. NNs have been proven to be suc-

cessful in estimating high-order nonlinear dynamics [14]–[17].

Recall the nonlinear dynamics in (18)

d||R̃||I = −1

2
ϒ(R̃)⊤Cdt + 1

2
ϒ(R̃)⊤Qdβ

Define ϕ(ϒ(R̃)) as an activation function, and let us

approximate

C⊤ϒ(R̃) = C⊤Ŵ⊤
c ϕ(ϒ(R̃))+ αb

Qϒ(R̃) = W⊤
σ ϕ(ϒ(R̃))+ ασ

where ϕ(ϒ(R̃)) ∈ R
q×1 is an activation function, Ŵc ∈ R

q×3

is a known weighted matrix, C ∈ R
3×1 is a correction weights

vector to be adaptively tuned, Wσ ∈ R
q×3 are the unknown

NN weights to be adaptively tuned, q > 0 is an integer that

denotes the number of neurons, and αb ∈ R and ασ ∈ R
3 are

the approximated error components. Note that αb, ||ασ || → 0

as q → ∞. Therefore, the error dynamics of the Euclidean

distance in (18) can be reformulated as below:

d||R̃||I = f̃ dt + g̃Qdβ = −1

2
(C⊤Ŵ⊤

c ϕ(ϒ(R̃))+ αb)dt

+ 1

2
(ϕ(ϒ(R̃))⊤Wσ + α⊤

σ )dβ (19)

Define Wσ as an unknown symmetric constant matrix of

NN weights where Wσ = WσW⊤
σ ∈ R

q×q. Let Ŵσ ∈ R
q×q be

the estimate of Wσ , and the error in NN weights be

W̃σ = Wσ − Ŵσ ∈ R
q×q. (20)

IV. NEURAL-ADAPTIVE-BASED STOCHASTIC

FILTER DESIGN

In this Section, our objective is to develop a nonlinear

stochastic filter based on neural-adaptive techniques for the

attitude estimation problem. Consider the following neural-

adaptive-based nonlinear stochastic filter design:










˙̂
R = R̂[�m − C]×
˙̂

Wσ = ψ2

2
Ŵσϕ(ϒ(R̃))ϕ(ϒ(R̃))

⊤ − kσŴσ Ŵσ

C =
(

Ŵ⊤
c + ψ2

2ψ1
(Ŵ⊤

c Ŵc)
−1Ŵ⊤

c Ŵσ

)

ϕ(ϒ(R̃))

(21)

where kσ ∈ R and kc ∈ R are positive constants, Ŵσ ∈
R

q×q is a positive diagonal matrix, Ŵc ∈ R
q×3 with Ŵ⊤

c Ŵc

being positive definite, q denotes the number of neurons,

Ŵσ ∈ R
q×q is the estimate of Wσ , and R̃ = R⊤

y R̂ with Ry
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being the reconstructed attitude, see QUEST [5] or SVD [1].

ϒ(R̃) = vex(Pa(R̃)), ||R̃||I = 1
4

Tr{I3 − R̃}, ψ1 = 1
2
(1 +

||R̃||I) exp(||R̃||I), and ψ2 = 1
2
(2 + ||R̃||I) exp(||R̃||I). It is

becomes apparent that Ŵσ is symmetric for Ŵσ (0) = Ŵσ (0)
⊤.

It is worth noting that Ŵc defines the convergence rate of

||R̃||I to the neighborhood of the origin, while Ŵσ defines the

convergence rate of Ŵσ to Wσ .

Theorem 1: Recall the stochastic attitude dynamics in (9).

Assume the availability of at least two observations and their

respective measurements in (5) at each time instant. Consider

the nonlinear neural-adaptive stochastic filter in (21) supplied

with measurements in (7) �m = � + n and (5) yi = R⊤ri

for all ∀i = 1, 2, . . . ,N. Hence, for ||R̃(0)||I 6= +1 (unstable

equilibria), all the closed-loop errors are SGUUB in the mean

square.

Proof: Let V = V(||R̃||I, W̃σ ) be a Lyapunov function

candidate defined as

V = 2||R̃||I exp(||R̃||I)+ 1

2
Tr{W̃⊤

σ Ŵ
−1
σ W̃σ } (22)

with the map V : SO(3) × R
q×q → R+. Since exp(||R̃||I) ≤

exp(1) < 3, one obtains

e⊤
[

1 0

0 1
2
λ(Ŵ−1

σ )

]

︸ ︷︷ ︸

H1

e ≤ V ≤ e⊤
[

3 0

0 1
2
λ(Ŵ−1

σ )

]

︸ ︷︷ ︸

H2

e

such that

λ(H1)||e||2 ≤ V ≤ λ(H2)||e||2

where e = [

√

||R̃||I, ||W̃σ ||F]⊤ and λ(Ŵ−1
σ ) and λ(Ŵ−1

σ ) stand

for the minimum and the maximum eigenvalues of Ŵ−1
σ ,

respectively. Since both λ(Ŵ−1
σ ) > 0 and λ(Ŵ−1

σ ) > 0,

λ(H1) and λ(H2) are positive and V(||R̃||I, W̃σ ) > 0 for all

e ∈ R
2\{0}. Consequently, on has







∂V

∂||R̃||I
= 2ψ1 = 2(1 + ||R̃||I) exp(||R̃||I)

∂2V

∂||R̃||2I
= 2ψ2 = 2(2 + ||R̃||I) exp(||R̃||I)

(23)

In view of (22), (23), and Lemma 2, the following differ-

ential operator is obtained:

LV = ψ1 f̃ + 1

2
Tr

{

g̃g̃⊤ψ2

}

− Tr{W̃⊤
σ Ŵ

−1
σ

˙̂
Wσ } (24)

From (21)

LV = −ψ1Tr{Cϕ(ϒ(R̃))⊤Ŵc} + ψ1αb

+ ψ2

4
Tr{(W⊤

σ ϕ(ϒ(R̃))+ ασ )(W
⊤
σ ϕ(ϒ(R̃))+ ασ )

⊤}

− Tr{W̃⊤
σ Ŵ

−1
σ

˙̂
Wσ } (25)

According to Young’s inequality, α⊤
σ W⊤

σ ϕ(ϒ(R̃)) ≤
1
2
ϕ(ϒ(R̃))⊤Wσϕ(ϒ(R̃))+ 1

2
||ασ ||. Therefore, one obtains

LV ≤ −ψ1Tr{Cϕ(ϒ(R̃))⊤Ŵc} − Tr{W̃⊤
σ Ŵ

−1
σ

˙̂
Wσ }

+ ψ2

2
ϕ(ϒ(R̃))ϕ(ϒ(R̃))⊤Wσ + ψ1αb + ψ2

2
||ασ ||2 (26)

Note that ψ1 ≤ exp(||R̃||I) < 3 and ψ2 ≤ 3 exp(||R̃||I) < 9.

In view of (20), let us replace Wσ in (21) by Wσ = W̃σ +Ŵσ .

Thus, using
˙̂

Wσ and C in (21), the expression (26) can be

reformulated in an inequality form as follows:

LV ≤ −ψ1||Ŵ⊤
c ϕ(ϒ(R̃))||2 − kσ ||W̃σ ||2F

+ kσ ||W̃σ ||F||Wσ ||F + 3αb + 9

2
||ασ ||2 (27)

Based on Young’s inequality, kσ ||W̃σ ||F||Wσ ||F ≤
kσ
2

||W̃σ ||2F + kσ
2

||Wσ ||2F . Consider a hyperbolic tangent acti-

vation function ϕ(a) = exp(a)−exp(−a)
exp(a)+exp(−a)

where a ∈ R. One finds

that 4||Ŵ⊤
c ϕ(ϒ(R̃))||2 ≥ kc||ϒ(R̃)||2 where kc = λ(Ŵ⊤

c Ŵc).

Hence, for a hyperbolic tangent activation function one has

LV ≤ −kc

4
||ϒ(R̃)||2 − kb

2
||W̃σ ||2F + η (28)

where η = supt≥0
kb

2
||Wσ ||2F +3αb + 9

2
||ασ ||2. This shows that

LV is ultimately bounded. Let δ ≥ 1 − ||R̃(0)||I and recall

Lemma 1. Accordingly, one shows

LV ≤ −e⊤
[

δ kc 0

0 kσ

]

︸ ︷︷ ︸

H3

e + η ≤ −λ(H3)||e||2 + η

where e = [

√

||R̃||I, ||W̃σ ||F]⊤. Since kσ > 0 and kc > 0 and

given that ||R̃(0)||I does not belong to the unstable equilibria,

it becomes apparent that λ(H3) > 0. Hence, LV < 0 if

||e||2 > η

λ(H3)

Consequently, one finds

dE[V]

dt
= E[LV] ≤ −λ(H3)

λ(H2)
E[V] + η (29)

Let us define β = λ(H3)

λ(H2)
. Therefore, one obtains

0 ≤ V(t) ≤ V(0) exp(−βt)+ η

β
(1 − exp(−βt)) (30)

As such, it becomes apparent that e is almost SGUUB which

completes the proof.

The comprehensive steps of the neural-adaptive stochastic

attitude filter implementation in its discrete form are listed in

Algorithm 1 with 1t being a small sampling time. Singular

value decomposition [1] has been utilized a method of atti-

tude reconstruction. In Algorithm 1, si denotes ith sensor

measurement confidence level with
∑N

i=1 si = 1.

V. SIMULATION RESULTS

This section illustrates the functionality of the proposed

neural-adaptive stochastic filter on the Lie group of SO(3).

The discrete filter presented in Algorithm 1 has been tested at

a sampling rate of 1t = 0.01 seconds. Assume that the initial

value of R is R(0) = I3 ∈ SO(3) and the true angular velocity

be as below:

� = 0.6
[

sin(0.4t), sin(0.7t + π

4
), 0.4 cos(0.3t)

]⊤
, (rad/sec)

Let the true angular velocity be attached with unknown nor-

mally distributed random noise n = N (0, 0.11) (rad/sec) (zero

mean and standard deviation of 0.11), see (7). Define two

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2022 at 17:24:43 UTC from IEEE Xplore.  Restrictions apply.
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Algorithm 1: Neural-Adaptive Stochastic Attitude

Estimator
1 Initialization:

1: Set R̂[0] = R̂0 ∈ SO(3), Ŵσ [0] = Ŵσ |0 = 0q×q,

q > 0, si ≥ 0 for all i ≥ 2, select Ŵσ , kσ > 0, λ(Ŵ⊤
c Ŵc) > 0, and

set k = 0.

while

/* Attitude reconstruction using Singular Value Decomposition */

2:

















ri = ri
||ri|| , yi = yi

||yi|| , i = 1, 2, . . . ,N

B =
∑n

i=1 siyir
⊤
i = USV⊤

U+ = U · diag(1, 1, det(U))

V+ = V · diag(1, 1, det(V))

Ry = V+U⊤
+

3: R̃k = R⊤
y R̂k and ϒ = ϒ(R̃k) = vex(Pa(R̃))

4: ϕ(ϒ) = exp(ϒ)−exp(−ϒ)
exp(ϒ)+exp(−ϒ)

/* hyperbolic tangent

activation function */

5: Ŵσ |k = Ŵσ |k−1 +1tŴσ (ψ2ϕ(ϒ)ϕ(ϒ)
⊤ − kσ Ŵσ |k−1)

6: C =
(

Ŵ⊤
c + ψ2

2ψ1
(Ŵ⊤

c Ŵc)
−1Ŵ⊤

c Ŵσ |k
)

ϕ(ϒ)

/* angle-axis parameterization */

7:









̺ = (�m|k − C)1t

µ = ||̺||, x = ̺/||̺||
Rexp = I3 + sin(µ)[x]× + (1 − cos(µ))[x]2

×
8: R̂k+1 = R̂kRexp

9: k + 1 → k

end while

observations in {I}: r1 = [1,−1, 1]⊤ and r2 = [0, 0, 1]⊤.

Let {B} measurements be corrupted with unknown normally

distributed random noise n1 = n2 = N (0, 0.1), see (5). Let us

consider three neurons (q = 3). Consider selecting the design

parameters as follows: Ŵc = 2I3, Ŵσ = 2I3, and kσ = 1.

Let the initial estimate of neural network weights be set to

Ŵ(0) = 03×3 and the initial estimate of the attitude be

R̂(0) =





−0.9214 −0.0103 0.3884

0.2753 −0.7227 0.634

0.2742 0.6911 0.6687



 ∈ SO(3)

where ||R̃(0)||I = 1
4

Tr{I3 − R⊤
0 R̂0} ≈ 0.994 approaching the

unstable equilibrium +1. As to activation function, we selected

a hyperbolic tangent activation function:

ϕ(α) = exp(α)− exp(−α)
exp(α)+ exp(−α) , α ∈ R

Fig. 1 illustrates the high level of noise corrupting the

angular velocity measurements in comparison to the true

data. In Fig. 2, the estimated Euler angles (roll (φ̂), pitch

(θ̂), and yaw (ψ̂)) are plotted against the true Euler angles

(φ, θ , ψ). Fig. 2 demonstrates fast and strong tracking capabil-

ity of the proposed approach. The effectiveness and robustness

of the neural-adaptive approach are illustrated in Fig. 3

where the error initiates at a large value and rapidly reaches

close neighborhood of the origin. Table I shows statistical anal-

ysis of mean and standard deviation (std) of the steady-state

error values between 5 to 29 seconds with respect to the num-

ber of neurons. As illustrated by Table I, greater number of

neurons results in improved steady-state error convergence.

Finally, Fig. 4 depicts the boundedness of the neural-adaptive

estimates as they converge close to zero as ||R̃||I → 0.

Fig. 1. Rate gyro: True (black center-line) and measurements (colored).

Fig. 2. Euler angles: True (green solid-line) and estimated (blue dash-
line) using 3 neurons.

Fig. 3. Normalized Euclidean error ||R̃||I = 1
4

Tr{I3 − R⊤
k

R̂k }.

VI. CONCLUSION

This work addressed the attitude estimation problem using

a neural-adaptive stochastic filter on the Special Orthogonal

Group SO(3). The novel filter accounts for the noise present

in the gyroscope measurements. The proposed filter is ensured

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2022 at 17:24:43 UTC from IEEE Xplore.  Restrictions apply.



1554 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

TABLE I
STATISTICAL ANALYSIS OF THE STEADY-STATE ERROR

WITH RESPECT TO THE NUMBER OF NEURONS

Fig. 4. Frobenius norm of neural-adaptive estimates (3 neurons).

to be almost SGUUB in the mean square. The numerical

simulation illustrates robustness and rapid adaptability of the

proposed neural-adaptive approach.

APPENDIX

Neural-Adaptive Filter Quaternion Representation

Let S
3 = {Q ∈ R

4|||Q|| =
√

q2
0 + q⊤q = 1} and let

Q = [q0, q⊤]⊤ ∈ S
3 be a unit-quaternion vector with q0 ∈ R

and q ∈ R
3. Let Q−1 = [ q0 −q⊤ ]⊤ ∈ S

3 be the inverse

of Q ∈ S
3. Consider ⊙ to be a quaternion product. Then, for

Q1 = [ q01 q⊤
1 ]⊤ ∈ S

3 and Q2 = [ q02 q⊤
2 ]⊤ ∈ S

3, one has

Q1 ⊙ Q2 =
[

q01q02 − q⊤
1 q2

q01q2 + q02q1 + [q1]×q2

]

S
3 can be mapped to SO(3) as below

RQ = (q2
0 − ||q||2)I3 + 2qq⊤ + 2q0

[

q
]

× ∈ SO(3) (31)

Let Qy be the reconstructed attitude, obtained for instance,

using QUEST [5]. Define Q̂ = [q̂0, q̂⊤]⊤ ∈ S
3 as the estimate

of Q = [q0, q⊤]⊤ ∈ S
3, and let the error in estimation be

Q̃ = Q−1
y ⊙Q̂ = [q̃0, q̃⊤]⊤ ∈ S

3. The quaternion representation

of the neural-adaptive stochastic attitude filter in (21) is as

below:






















˙̂
Wσ = ψ2

2
Ŵσϕ(2q̃0q̃)ϕ(2q̃0q̃)⊤ − kσŴσ Ŵσ

C =
(

Ŵ⊤
c + ψ2

2ψ1
(Ŵ⊤

c Ŵc)
−1Ŵ⊤

c Ŵσ

)

ϕ(2q̃0q̃)

u = �m − C

8 =
[

0 −u⊤

u −[u]×

]

˙̂
Q = 1

2
8Q̂

(32)

where ϒ(R̃Q) = 2q̃0q̃, ||R̃Q||I = 1 − q̃2
0, ψ1 = 1

2
(1 +

||R̃Q||I) exp(||R̃Q||I), and ψ2 = 1
2
(2 + ||R̃Q||I) exp(||R̃Q||I).
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