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Abstract— Modern perception-based sensing schemes incor-
porate machine learning and high-dimensional image observa-
tions to control system states, but face issues of perception error
and incomplete dynamics and state information. To address
these issues, we propose a novel perception-based control
strategy using model-free output feedback Q-learning that
incorporates a Faster R-CNN convolutional neural network. We
specifically investigate the optimal control problem of a linear
time-invariant, discrete-time system given only the observation
image data. We evaluate the data-driven control design process
in ideal perception and degraded perception conditions. We
show that the resulting controller from output feedback Q-
learning is non-optimal, but the optimality loss is bounded with
bounded perception error. Simulated results on a simple missile,
whose seeker head observes synthetic images of the target heat
source modeled as a blurry ball of light, show the efficacy of
the proposed model-free perception-based control framework.

Index Terms— Perception, output feedback, Q-learning, con-
volutional neural network.

I. INTRODUCTION

Modern autonomous systems often incorporate sensing

schemes that measure the environment in real time to control

system states. For example, many quadcopters are equipped

with laser rangefinders or LiDAR to determine their altitude

or distance to obstacles. Particular attention is given to

perceptual sensing schemes, where observations instead of

sensor data contain information about system states. Obser-

vations are usually in the form of images, where confounding

information adds difficulty in the form of perception error.

This shift in focus is largely driven by the advent of self-

driving cars, which incorporate camera suites to detect other

vehicles, avoid pedestrians, and maintain lanes. This shift is

also driven by the popularization of machine learning tech-

niques in industry with real-time image stream processing

[1]. However, perception-based control presents many issues

not present in simpler sensor-based control schemes:

1) The observations are usually high-dimensional, with

camera images often in the megapixel range [1], [2].

Thus, perception schemes must process potentially

billions of bits of information, which makes real-time

control exceedingly difficult.

2) The perception error, i.e., the difference between the

true output and the perceived output from the obser-

vations, is highly nonlinear and state-dependent. Thus,
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it is difficult to design a robust controller that uses a

perception-sensing modality [2], [3].

3) Perception-based control is usually implemented on

board complex systems with highly nonlinear dynam-

ics, such as automobiles and unmanned aerial vehi-

cles [1]. This renders standard system identification

techniques and linear control design insufficient. In

addition, full or even partial knowledge of the system

dynamics is often prohibitive to determine with such

complex systems.

4) Rate information, such as velocity, is difficult to dis-

cern from still images observed by the perception

scheme. Thus, accurate full-state feedback is often im-

possible to implement with perception-based control.

Machine learning techniques address the first issue of

high-dimensional observations. Convolutional neural net-

works (CNNs) in particular are able to handle inputs of large

images much more effectively than other neural network

types [4], [5]. The perception error of such CNNs, however,

depends on a variety of factors including training time,

training data, and how confounding the environment is,

making the perception error difficult to characterize.

To handle this perception error issue, recent research

has produced theoretic robustness guarantees for perception-

based control. The work of [6] trained a CNN to use color

image observations to produce a sequence of intermediate

states, which were used as targets for a model-based optimal

controller implemented on robots. The authors of [2] uti-

lized System Level Synthesis (SLS) to derive an additional

robustness constraint for the controller synthesis, where

uncertainties from perception-based sensors with tractable

data-driven safety guarantees were quantified. The resulting

robust controller drove the system trajectories close to the

CNN training data set such that the perception error remained

bounded. The work of [7] then applied this robust SLS

controller to a quadrotor. Moreover, the authors in [8] proved

the existence of a trade-off between accuracy and robustness

in perception-based control.

However, all the aforementioned works assumed full

knowledge of the system dynamics, and they implemented

full-state feedback using techniques such as visual inertial

odometry that introduced additional perception error as state

estimation errors accumulated over time [7]. Therefore, it

is desirable to implement both model-free and output feed-

back control for the perception-based scheme. The objective

of this work is to address all four mentioned issues of

perception-based control. Specifically, our work examines the

feasibility of implementing a perception-based, output feed-
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back reinforcement learning algorithm to generate control

sequences. Reinforcement learning solves for optimal control

policies online, forward in time, along state trajectories, and

without knowing the system dynamics [9]–[11], which makes

it promising for the perception-based control of autonomous

systems.

Contributions: The contributions of our present work

are threefold. First, we develop a model-free perception-

based control framework. Second, we evaluate the data-

driven control design process in ideal perception and de-

graded perception conditions. Finally, we apply our model-

free perception-based control framework to a heat-seeking

missile application.

Structure: The remainder of our paper is structured as

follows. Section II formulates the perception-based optimal

control problem. Section III then presents the data-driven

perception and model-free output feedback control. Section

IV presents a background on a simple missile, while Section

V discusses the simulation results. The last section summa-

rizes the entire work and talks about future directions.

II. PROBLEM FORMULATION

Consider the linear time-invariant (LTI) system, @k P N,

xk`1 “ Axk ` Buk, (1)

zk “ qpxkq, (2)

where xk P R
n is the state, uk P R

m is the control action

or input, zk P R
M is the high-dimensional observation, and

A P R
nˆn and B P R

nˆm are the dynamical matrices. The

observation zk represents raw images taken by an M -pixel

camera according to the observation process qpxkq. The

system (1) has an output process, @k,

yk “ Cxk, (3)

where yk P R
p is the true output and C P R

pˆn is the output

matrix. We assume the system matrices pA,B,Cq and obser-

vation map q are unknown; thus, the true output yk cannot

be directly computed from the state xk. Instead, we define a

perception process ppzkq which inputs the observation image

zk and produces the perceived output ŷk P R
p, @k,

ŷk “ ppzkq “ yk ` ek “ Cxk ` ek, (4)

where ek P R
p is the perception error [2], [7]. The perception

map p is learned and thus known; however, the perception

error is as yet unknown since C is unknown.

We define ideal perception as the absence of perception

error such that @k ek ” 0 and ŷk “ yk. We define degraded

perception as the presence of non-zero perception error such

that Dk ek ‰ 0 and ŷk ‰ yk, and so the perception process

(4) can be thought of as a noisy sensor.

Suppose the control follows a fixed feedback policy µ,

such that @k uk “ µp¨q. We aim to find the optimal policy

that minimizes the infinite-horizon cost function, @pxk, eq,

V µpxk, eq “
8
ÿ

i“k

γi´kpŷTi Qŷi ` uT

i Ruiq, (5)

where Q “ QT P R
pˆp ľ 0 and R “ RT P R

mˆm ą 0 are

user-defined weighting matrices and 0 ă γ ď 1 is a discount

factor introduced to make the cost (5) finite and to mitigate

biasing effects due to probing noise [12].

In the ideal perception case (usually γ “ 1), minimizing

(5) becomes the linear quadratic regulator (LQR) problem.

Assuming pA,B,Cq are known and full-state feedback is

implemented, there exists a unique stabilizing optimal policy

µ‹ such that, @k,

u‹
k “ µ‹pxkq “ ´pR{γ ` BTP ‹Bq´1BTP ‹Axk, (6)

where P ‹ “ pP ‹qT ą 0 satisfies the Ricatti equation

γrATPA ´ ATPBpR{γ ` BTPBq´1BTPAs

´ P ` CTQC “ 0 (7)

under the conditions of pA,Bq being stabilizable and pA,Oq
being observable with OTO “ CTQC.

The reinforcement learning techniques of [12], [13] in-

stead find the optimal controller (6) in an online, model-free

way using only input-true output data. This output feedback

approach is of particular interest in our perception-based

setting, since it is difficult to measure rate information from

still images zk. In the degraded perception case, however,

the reinforcement learning techniques of [12], [13] are not

guaranteed to produce the optimal controller (6). Our goal

then is to implement the output-feedback reinforcement

learning using perceived output data (4), then quantify the

deleterious effects (if any) of non-zero perception error.

There are two main problems to be addressed: (1) how to

learn a suitable perception map p such that the perception

error is bounded; (2) how to find the optimal control policy

in a model-free way. Our solution strategy will be to use

a CNN to learn the perception map, and then use output

feedback Q-learning to generate the control sequence based

on the input and perceived output data.

III. DATA-DRIVEN PERCEPTION AND CONTROL

In this section, we present our perception-based output

feedback Q-learning framework as summarized in Figure 1.

A. Data-Driven Perception via CNN

We utilize a convolutional neural network that accepts the

observation images zk as an input and produces the perceived

outputs ŷk. Our missile simulation images will be in the

kilopixel range. So compared to other neural network types,

the convolution and pooling operations of a CNN allow the

large images to be processed much faster and with less com-

putational expense. For ease of implementation, we exploit

transfer learning on a pre-trained deep CNN called Faster

R-CNN [4], which is available from the PyTorch library for

Python 3. Instead of initializing a new neural network with

random weights and biases, transfer learning initializes the

pre-trained Faster R-CNN, whose weights and biases have

already been trained using an ImageNet data set. The weights

and biases are then further tuned using our custom synthetic

image data set such that the CNN is adapted for the missile
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simulation. With transfer learning implemented, the training

time is drastically reduced since the weights and biases only

need to be adjusted by small amounts.

We later demonstrate that the perception map learned from

the Faster R-CNN produces a small and bounded perception

error for the regulation of a moving ball. This feature is

useful for the perception-based Q-learning discussed next.

B. Data-Driven Control via Output Feedback Q-Learning

Here we extend the output feedback Q-learning approach

of [13] by applying it to our perception-based setting. We

first define the ideal and degraded Q-functions, then make

boundedness guarantees in the presence of perception error,

and finally implement Q-learning to solve for the control

policy in a model-free way. We point the reader to [10], [14]

for more details on Q-learning.

Notation: Given any vector ηk P R
l, we define its data

vector as η̄k´1,k´N “
“

ηTk´1
ηTk´2

¨ ¨ ¨ ηTk´N

‰T
P R

lN .

1) Ideal Perception Q-Function: In the case of ideal

perception, the following lemma from [12] allows us to

represent the state xk in terms of input-true output data.

Lemma 1. Assume pA,Cq is observable with an observabil-

ity index K. Then the state can be represented as, @k,

xk “
“

Mu My

‰

„

ūk´1,k´N

ȳk´1,k´N



, (8)

where Mu “ UN ´ AN pV T

N VN q´1V T

N TN P R
nˆmN ,

My “ AN pV T

N VN q´1V T

N P R
nˆpN , and N ě K,

with matrices UN “
“

B AB ¨ ¨ ¨ AN´1B
‰

P R
nˆmN ,

VN “
“

pCAN´1qT ¨ ¨ ¨ pCAqT CT
‰T

P R
pNˆn, and

TN “

»

—

—

—

—

—

–

0 CB CAB ¨ ¨ ¨ CAN´2B

0 0 CB ¨ ¨ ¨ CAN´3B
...

...
. . .

. . .
...

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 CB

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

P R
pNˆmN .

We next define the ideal Q-function as the following

recursive Bellman equation, given a policy µ and @pxk, ukq,

Qµpxk, ukq “ yTk Qyk ` uT

kRuk ` γQµpxk`1, µpxk`1qq,
(9)

which is the cost of selecting an arbitrary control uk at

time k plus the cost of implementing a fixed state feedback

policy uk`1 “ µpxk`1q from time k ` 1 onward. Note that

Qµpxk`1, µpxk`1qq “ V µpxk`1q. Assuming that the cost

is quadratic in state such that V µpxkq “ xT

k Pxk, where

P “ PT ą 0, then substitution of (8) for xk and (1) for xk`1

into the ideal Q-function (9) yields, @pxk, ukq,

Qµpxk, ukq “ γφT

k Sφk (10)

“ γ

»

–

ūk´1,k´N

ȳk´1,k´N

uk

fi

fl

T »

–

Sūū Sūȳ Sūu

Sȳū Sȳȳ Sȳu

Suū Suȳ Suu

fi

fl

»

–

ūk´1,k´N

ȳk´1,k´N

uk

fi

fl ,

where φk “
”

ūT

k´1,k´N ȳTk´1,k´N uT

k

ıT

P R
mN`pN`m

is the input-true output data vector and S “ ST P
R

pmN`pN`mqˆpmN`pN`mq is the Q-function kernel matrix.

Fig. 1: Proposed perception-based output feedback frame-

work using reinforcement learning and a convolutional neural

network for model-free control.

The partitioned matrices in S are Sūū “ MT

u pCTQC{γ `
ATPAqMu P R

mNˆmN , Sȳū “ MT

y pCTQC{γ `
ATPAqMu “ ST

ūȳ P R
pNˆmN , Sȳȳ “ MT

y pCTQC{γ `
ATPAqMy P R

pNˆpN , Suū “ BTPAMu “ ST

ūu P
R

mˆmN , Suȳ “ BTPAMy “ ST

ȳu P R
mˆpN , and Suu “

R{γ ` BTPB P R
mˆm.

A necessary condition for optimality is the stationarity

condition BQµpxk, ukq{Buk “ 0. Application to (10) yields

the optimal output feedback policy µ‹ such that, @k,

u‹
k “ µ‹pūk´1,k´N , ȳk´1,k´N q

“ ´S´1

uu pSuūūk´1,k´N ` Suȳ ȳk´1,k´N q. (11)

Substitution of (8) proves that (11) is equivalent to the state

feedback controller (6) that solves the LQR problem [13].

2) Degraded Perception Q-Function: In the case of de-

graded perception, we define the perceived state x̂k by

replacing the true output data in (8) with the perceived output

data, @k,

x̂k “
“

Mu My

‰

„

ūk´1,k´N
¯̂yk´1,k´N



“ xk ` My ēk´1,k´N . (12)

Note that ¯̂yk´1,k´N “ ȳk´1,k´N ` ēk´1,k´N . We next de-

fine the degraded Q-function, @px̂k, ukq,

Qµpx̂k, ukq “ γφ̂T

k Sφ̂k (13)

“ γ

»

–

ūk´1,k´N
¯̂yk´1,k´N

uk

fi

fl

T »

–

Sūū Sūȳ Sūu

Sȳū Sȳȳ Sȳu

Suū Suȳ Suu

fi

fl

»

–

ūk´1,k´N
¯̂yk´1,k´N

uk

fi

fl ,

where the partitioned matrices in S are still defined as

in the ideal Q-function (10). Application of stationarity

BQµpx̂k, ukq{Buk “ 0 yields the policy µ̂‹ such that, @k,

û‹
k “ µ̂‹pūk´1,k´N , ¯̂yk´1,k´N q

“ ´S´1

uu pSuūūk´1,k´N ` Suȳ
¯̂yk´1,k´N q. (14)

Note that û‹
k is not necessarily equivalent to the optimal

controller u‹
k from (6) due to the presence of potentially

non-zero perception error in ¯̂yk´1,k´N .

For the degraded Q-function (13) to produce an admissible

control policy, we must now guarantee that any deleterious

effects of non-zero perception error are bounded.
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Lemma 2. Assume a degraded perception process (4) is

implemented such that @k }ek} ‰ 0. Then the control policy

in (14) does not minimize the cost (5).

Proof. Replacement of ¯̂yk´1,k´N “ ȳk´1,k´N ` ēk´1,k´N

into (14) yields the controller û‹
k “ ´S´1

uu pSuūūk´1,k´N`
Suȳ ȳk´1,k´N q ´ S´1

uuSuȳ ēk´1,k´N . Inspection with the op-

timal controller (11) implies that û‹
k ´ u‹

k “ ∆u‹
k “

´S´1

uuSuȳ ēk´1,k´N . Since @k }ek} ‰ 0, }∆u‹
k} ‰ 0 and so

the policy in (14) does not equal the optimal policy in (11)

that minimizes the cost (5). This completes the proof.

Lemma 3. Assume the perception error in Lemma 2 is

bounded, i.e., @k DM ą 0 such that }ek} ď M . Then the

control difference ∆u‹
k “ û‹

k ´ u‹
k is also bounded, i.e.,

@k DL ą 0 such that }∆u‹
k} ď L.

Proof. It follows from Lemma 2 and the definition of

the induced norm that }∆u‹
k} “ }S´1

uuSuȳ ēk´1,k´N } ď
}S´1

uuSuȳ}}ēk´1,k´N }. This completes the proof.

We now define the optimality loss as the cost difference

between implementing the non-optimal policy µ̂‹ in the

degraded perception case (14) and the optimal policy µ‹ in

the ideal perception case (11) such that, @k,

∆V “ V µ̂‹

pxk, eq ´ V µ‹

pxk, 0q. (15)

The optimality loss serves as our metric for the deleterious

effects of perception error. We prove the boundedness of the

optimality loss in the following theorem.

Theorem 1. Assume that pA,Bq is stabilizable and pA,Oq
is observable. Assume the perception error is bounded, i.e.,

@k DM ą 0 such that }ek} ď M . Then the optimality loss

(15) is also bounded, i.e., @k DL ą 0 such that |∆V | ď L.

Proof. Substituting ŷk “ yk ` ek and û‹
k “ u‹

k ` ∆u‹
k

into (15) and upon further expansion yields ∆V “
ř8

i“k γ
i´kreTi Qei ` 2eTi Qyi ` p∆u‹

i qTR∆u‹
i ` 2p∆u‹

i qT

Ru‹
i s. Using the Cauchy-Schwarz inequality, the first

and third terms inside the summation can be bounded as

|eTkQek| ď ρpQq}ek}2 and |p∆u‹
kqTR∆u‹

k| ď ρpRq}∆u‹
k}2,

respectively, where ρp¨q denotes the spectral radius and

}∆u‹
k} is bounded from Lemma 3. The second and fourth

terms can be bounded as |eTkQyk| ď }ek}}Qyk} and

|p∆u‹
kqTRu‹

k| ď }∆u‹
k}}Ru‹

k}, respectively. Since pA,Bq is

stabilizable and pA,Oq is observable, the system (1) under

the optimal policy in (6) is asymptotically stable, so }xk} is

bounded and thus }yk} and }u‹
k} are also bounded. |∆V | is

now entirely bounded. This completes the proof.

Theorem 1 demonstrates that although the resulting con-

troller (14) is no longer optimal in degraded perception case,

the deleterious effects of non-zero perception error (in the

form of the optimality loss) are bounded.

3) Degraded Perception Q-Learning: Currently, the Q-

function kernel in (13) still requires knowledge of the system

dynamics pA,B,Cq. The reinforcement learning strategy of

Q-learning instead allows us to solve for the kernel in a

model-free way.

The perception-based policy iteration (PI) algorithm of Q-

learning is summarized in Algorithm 1. We select PI over

other Q-learning algorithms (e.g., cost iteration [10], episodic

Q-learning [15]) since PI evaluation is generally faster, which

is helpful to pair with the Faster R-CNN perception model.

Implementation of PI often involves parameterizing S and

φ̂k in vector-basis form, then performing least-squares with

probing noise to estimate the elements in S. We point the

reader to [12], [13] for an exhaustive procedure.

Algorithm 1: Policy Iteration for Perception-based Out-

put Feedback Q-Learning

Initialization. Given the degraded Q-function (13), begin

with any kernel S0 and stabilizing policy µ0. Then for

j “ 0, 1, 2, ..., perform until convergence, }Sj`1 ´Sj} ă ε:

Policy Evaluation. Using current policy, where u
j
k “ µjp¨q,

solve for Sj`1 such that

φ̂T

k S
j`1φ̂k “ ŷTk Qŷk ` puj

kqTRpuj
kq ` γφ̂T

k`1
Sj`1φ̂k`1.

Policy Improvement. Update policy to µj`1, where

u
j`1

k “ ´pSj`1

uu q´1pSj`1

uū ūk´1,k´N ` S
j`1

uȳ
¯̂yk´1,k´N q.

IV. HEAT-SEEKING MISSILE BACKGROUND

We shall test our framework in a simulation of a heat-

seeking missile, whose seeker head generates synthetic im-

ages of a moving blurry white ball representing the infrared

exhaust signature of a target aircraft. The missile setup is

shown in Figure 2. We first derive a state-space representa-

tion for the angle of attack and sideslip angle of the missile.

Then, we implement a simple line-of-sight guidance law

where the missile controller attempts to regulate the position

of the ball to the center of the image. The intent is to keep the

line of sight constant, thus ensuring intercept with the target

[16]. Finally, we use the Faster R-CNN for the perception

process and Q-learning to solve for the controller in the

presence of degraded perception. We compare any optimality

loss to an LQR controller of ideal perception.

A. Linearized Missile Dynamics

Assumption 1. Assume an axisymmetric cruciform missile

body; no roll dynamics; negligible gravity differential effects;

the relative velocity vector of the missile always pointing

along the line of sight, i.e., toward the ball; and the missile

always being sufficiently far away from the target. l

Define the missile state to be x “ rα 9α β 9βsT, where α

is the angle of attack and β is the sideslip angle. The control

input is u “ rδe δrsT, where δe is the elevator fin deflection

and δr is the rudder fin deflection. With the assumption of

no roll dynamics, elevator deflection only effects a change in

angle of attack and angle-of-attack rate, while rudder deflec-

tion only effects a change in sideslip angle and sideslip rate.

By starting with the exact nonlinear six-degree-of-freedom

equations of motion for aircraft dynamics [17], then lineariz-

ing about the steady level flight conditions x̄ “ r0 0 0 0sT
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and ū “ r0 0sT and applying Assumption 1, we get LTI,

continuous-time second-order dynamics where the angle-

of-attack and sideslip-angle dynamics are decoupled—i.e.,

x “ rα 9αsT and u “ δe for the angle-of-attack system and

x “ rβ 9βsT and u “ δr for the sideslip-angle system. The

dynamics matrices A and B are pulled from [18]. The angle-

of-attack system has the dynamics, @t ě 0,
„

9α

:α



“

„

´2.7 1

´5.5 ´0.4

 „

α

9α



`

„

0.27

´19



δe. (16)

A zero-order hold with a sampling time of 0.01 s is applied

to discretize (16), @k P N,
„

αk`1

9αk`1



“

„

0.97 0.0098

´0.054 0.99

 „

αk

9αk



`

„

0.17

´19



δe,k. (17)

Since the missile is axisymmetric, the discretized linearized

sideslip dynamics are identical to (17) with the corresponding

state xk “ rβk
9βksT and control input uk “ δr,k.

B. Observation Process using Synthetic Images

To simulate the missile seeker head, synthetic images zk
are generated given the current missile state xk. The images

are of a moving blurry white ball on a black background

similar to [2]. The images are 240 ˆ 240 pixels in size for

computation and storage considerations. A white 30-pixel

diameter ball is first drawn on the image such that the entire

ball is inside the image boundary, which is then blurred

using a Gaussian filter. Given Assumption 1, the sideslip

angle and angle of attack are directly proportional to the x-

and y-coordinates of the center of the ball on the image,

respectively. The true output is thus yk “ rXk YksT, where

the pair pX,Y q represents the coordinates of the center of

the ball in pixels. The gain between α and Y (which depends

on the target distance, the pixel pitch of the camera sensor,

and the focal length of the camera lens) is set to be 10˝

or 0.175 rad per 120 pixels. Thus, the angle of attack is

limited to ˘10˝ which allows the linearized system (17)

to accurately describe the missile dynamics, and the output

process is Yk “ r´687.5 0s rαk 9αksT. The same gain is

chosen between β and X such that the sideslip output process

is identical.

C. Perception Process using Trained Faster R-CNN

Given a synthetic image, the Faster R-CNN outputs the

coordinates of a bounding box around the ball such that the

perceived output ŷk “ rX̂k ŶksT is simply the midpoint of

the bounding box. Note the bounding box has pixel reso-

lution, and so the midpoint will have half-pixel resolution;

this contributes to the perception error. The transfer learning

process that learns the perception map p to generate these

bounding boxes is as follows: First, a set of 440 images

is created with the ball at random locations on the image.

The data set is then randomly batched into a 400-image

training data set and a 40-image validation data set. The

Faster R-CNN is trained using the training data set, whereas

the validation data set is used to assess the accuracy at the

end of every training epoch. The Faster R-CNN is trained for

five epochs. The perception error is assessed by passing 1000

images with random ball locations through Faster R-CNN.

Average accuracy of the perceived output is 99.8% with a

minimum accuracy of 98.2% (i.e., perception error magni-

tude of 0.25 and 3 pixels, respectively). Such low errors after

only five epochs of training demonstrates the advantage of

transfer learning. More importantly, it demonstrates that the

perception error is bounded.

D. Missile Control Policy via Q-Learning

Given the state xk, input uk, and perceived output ŷk,

we define Q-functions for the angle-of-attack system and for

the sideslip-angle system in the form of (13). The angle-of-

attack system (17) is of second order, so we select N “ 2 for

the data vectors. If the Q-function is instead parameterized

in vector-basis form, where the redundant elements in S are

removed, then Q-learning requires at least 15 samples to fully

solve for the elements of S via least-squares (thus updating

every 0.15 s). The same procedure is applied simultaneously

to the sideslip-angle system such that the sequences for δe,k
and δr,k are generated in parallel.

V. SIMULATION RESULTS

We wish to regulate the ball to the center of the image,

i.e., to y “ r0 0sT. This is a pure pursuit guidance law and

will result in intercept if the missile-to-target speed ratio does

not exceed two [16]. If lead pursuit is desired, then the ball

can simply be regulated to another point in the image given

the angle-off is known. We pick Q “ 1, R “ 1, and γ “ 0.5.

The PI algorithm can then be initialized with S0 “ I and

u0

k “ 0, which is stabilizing since the system (17) is open-

loop stable. For each iteration step, input-perceived output

data are collected over 15 time steps to estimate the Q-

function kernel using least-squares with zero-mean Gaussian

probing noise added to the control to maintain excitation.

The PI algorithm is then iterated until below ε “ 0.025.

Figure 3 shows the normalized perceived output trajecto-

ries of the angle-of-attack system for eight random initial

ball locations, along with the optimal LQR trajectory as

reference. We observe that the Q-learning control sequences

are always able to regulate the ball to the center of the

image and hold its position thereafter, and so the missile is

successfully guided until intercept. Moreover, the missile is

guided without knowing any angle-of-attack rate information

nor the system dynamics, showing our perception-based Q-

learning framework successfully learns the control policy in

a model-free way. Figure 2 shows a trajectory animation as

observed by the missile seeker head for one of the runs.

Here, the control sequence for both the angle of attack and

sideslip angle are found simultaneously. The Faster R-CNN

produces very little perception error throughout.

Figure 3 also shows the effects of non-zero perception

error. For all eight runs, the degraded Q-function kernels

Ŝ converge to values slightly different than the optimal

kernel S‹ (obtained via (10)), and so the generated con-

trol sequences are indeed non-optimal. In addition, the Q-

learning control sequences regulate the ball much slower than
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Fig. 2: Missile perception setup. (inset) Animation for an

initial location of y0 “ r55 65sT pixels. Still frames taken

every 20 time steps up to k = 200, with accuracy numbers

and progressively lighter frames as the animation progresses.

Fig. 3: Normalized output trajectories and Q-function kernel

convergence (first entry plotted) of the angle-of-attack sys-

tem for eight random initial ball locations. LQR trajectory

included as reference.

the LQR sequence, likely due to perception error and the

0.15-s kernel update time. However, Figure 3 also validates

Theorem 1 as the kernel differences (and thus optimality

losses) remain bounded throughout the simulation.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a perception-based framework

by incorporating a Faster R-CNN neural network into the

control policy design via output feedback Q-learning. We

evaluated the data-driven control design process in the

degraded perception condition. We demonstrated that the

optimality loss of output feedback Q-learning with bounded

perception error was bounded. Simulation results on a simple

missile showed the efficacy of the proposed model-free

perception-based control framework.

Future work directions include relaxing many of the

missile assumptions by introducing roll dynamics and grav-

ity dynamics; considering more realistic environments with

confounding heat signatures (e.g., the sun, ground clutter,

defensive flares); and characterizing the perception error

using a data-driven model, then incorporating it into the Q-

learning framework to reduce the optimality loss.
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