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Heat-Seeking Missile Guidance
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Abstract— Modern perception-based sensing schemes incor-
porate machine learning and high-dimensional image observa-
tions to control system states, but face issues of perception error
and incomplete dynamics and state information. To address
these issues, we propose a novel perception-based control
strategy using model-free output feedback Q-learning that
incorporates a Faster R-CNN convolutional neural network. We
specifically investigate the optimal control problem of a linear
time-invariant, discrete-time system given only the observation
image data. We evaluate the data-driven control design process
in ideal perception and degraded perception conditions. We
show that the resulting controller from output feedback Q-
learning is non-optimal, but the optimality loss is bounded with
bounded perception error. Simulated results on a simple missile,
whose seeker head observes synthetic images of the target heat
source modeled as a blurry ball of light, show the efficacy of
the proposed model-free perception-based control framework.

Index Terms— Perception, output feedback, Q-learning, con-
volutional neural network.

I. INTRODUCTION

Modern autonomous systems often incorporate sensing
schemes that measure the environment in real time to control
system states. For example, many quadcopters are equipped
with laser rangefinders or LiDAR to determine their altitude
or distance to obstacles. Particular attention is given to
perceptual sensing schemes, where observations instead of
sensor data contain information about system states. Obser-
vations are usually in the form of images, where confounding
information adds difficulty in the form of perception error.
This shift in focus is largely driven by the advent of self-
driving cars, which incorporate camera suites to detect other
vehicles, avoid pedestrians, and maintain lanes. This shift is
also driven by the popularization of machine learning tech-
niques in industry with real-time image stream processing
[1]. However, perception-based control presents many issues
not present in simpler sensor-based control schemes:

1) The observations are usually high-dimensional, with
camera images often in the megapixel range [1], [2].
Thus, perception schemes must process potentially
billions of bits of information, which makes real-time
control exceedingly difficult.

2) The perception error, i.e., the difference between the
true output and the perceived output from the obser-
vations, is highly nonlinear and state-dependent. Thus,
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it is difficult to design a robust controller that uses a
perception-sensing modality [2], [3].

3) Perception-based control is usually implemented on
board complex systems with highly nonlinear dynam-
ics, such as automobiles and unmanned aerial vehi-
cles [1]. This renders standard system identification
techniques and linear control design insufficient. In
addition, full or even partial knowledge of the system
dynamics is often prohibitive to determine with such
complex systems.

4) Rate information, such as velocity, is difficult to dis-
cern from still images observed by the perception
scheme. Thus, accurate full-state feedback is often im-
possible to implement with perception-based control.

Machine learning techniques address the first issue of
high-dimensional observations. Convolutional neural net-
works (CNNBs) in particular are able to handle inputs of large
images much more effectively than other neural network
types [4], [5]. The perception error of such CNNs, however,
depends on a variety of factors including training time,
training data, and how confounding the environment is,
making the perception error difficult to characterize.

To handle this perception error issue, recent research
has produced theoretic robustness guarantees for perception-
based control. The work of [6] trained a CNN to use color
image observations to produce a sequence of intermediate
states, which were used as targets for a model-based optimal
controller implemented on robots. The authors of [2] uti-
lized System Level Synthesis (SLS) to derive an additional
robustness constraint for the controller synthesis, where
uncertainties from perception-based sensors with tractable
data-driven safety guarantees were quantified. The resulting
robust controller drove the system trajectories close to the
CNN training data set such that the perception error remained
bounded. The work of [7] then applied this robust SLS
controller to a quadrotor. Moreover, the authors in [8] proved
the existence of a trade-off between accuracy and robustness
in perception-based control.

However, all the aforementioned works assumed full
knowledge of the system dynamics, and they implemented
full-state feedback using techniques such as visual inertial
odometry that introduced additional perception error as state
estimation errors accumulated over time [7]. Therefore, it
is desirable to implement both model-free and output feed-
back control for the perception-based scheme. The objective
of this work is to address all four mentioned issues of
perception-based control. Specifically, our work examines the
feasibility of implementing a perception-based, output feed-
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back reinforcement learning algorithm to generate control
sequences. Reinforcement learning solves for optimal control
policies online, forward in time, along state trajectories, and
without knowing the system dynamics [9]—[11], which makes
it promising for the perception-based control of autonomous
systems.

Contributions: The contributions of our present work
are threefold. First, we develop a model-free perception-
based control framework. Second, we evaluate the data-
driven control design process in ideal perception and de-
graded perception conditions. Finally, we apply our model-
free perception-based control framework to a heat-seeking
missile application.

Structure: The remainder of our paper is structured as
follows. Section II formulates the perception-based optimal
control problem. Section III then presents the data-driven
perception and model-free output feedback control. Section
IV presents a background on a simple missile, while Section
V discusses the simulation results. The last section summa-
rizes the entire work and talks about future directions.

II. PROBLEM FORMULATION

Consider the linear time-invariant (LTT) system, Yk € N,

Tp1 = Azy + Buy, (D
2, = q(zr), 2

where x;, € R™ is the state, u, € R™ is the control action
or input, z, € RM is the high-dimensional observation, and
A e R"™™ and B € R™*™ are the dynamical matrices. The
observation zj represents raw images taken by an M -pixel
camera according to the observation process g(xy). The
system (1) has an output process, Vk,

yr = Cxyp, 3)

where y;, € R? is the true output and C' € RP*™ is the output
matrix. We assume the system matrices (A, B, C') and obser-
vation map q are unknown; thus, the true output y; cannot
be directly computed from the state x. Instead, we define a
perception process p(zx) which inputs the observation image
21, and produces the perceived output g € RP, Vk,

Ux = p(2k) = Yk + ex = Cxy + ey, 4

where e € R? is the perception error [2], [7]. The perception
map p is learned and thus known; however, the perception
error is as yet unknown since C' is unknown.

We define ideal perception as the absence of perception
error such that Vk e, = 0 and g = yi. We define degraded
perception as the presence of non-zero perception error such
that 3k ey, # 0 and 9, # yi, and so the perception process
(4) can be thought of as a noisy sensor.

Suppose the control follows a fixed feedback policy ,
such that Yk uy = u(-). We aim to find the optimal policy
that minimizes the infinite-horizon cost function, V(xy, €),

where Q = QT e RP*P > 0 and R = RT e R™*™ > ( are
user-defined weighting matrices and 0 < v < 1 is a discount
factor introduced to make the cost (5) finite and to mitigate
biasing effects due to probing noise [12].

In the ideal perception case (usually v = 1), minimizing
(5) becomes the linear quadratic regulator (LQR) problem.
Assuming (A, B,C) are known and full-state feedback is
implemented, there exists a unique stabilizing optimal policy
w* such that, Vk,

uf = p*(xy) = —(R/y + BYP*B)"'BTP*Azy,  (6)

where P* = (P*)T > 0 satisfies the Ricatti equation

Y[ATPA - ATPB(R/y + BYPB) " 'BTPA]
—-P+CtQc =0

under the conditions of (A, B) being stabilizable and (A, O)
being observable with OTO = CTQC.

The reinforcement learning techniques of [12], [13] in-
stead find the optimal controller (6) in an online, model-free
way using only input-true output data. This output feedback
approach is of particular interest in our perception-based
setting, since it is difficult to measure rate information from
still images zj. In the degraded perception case, however,
the reinforcement learning techniques of [12], [13] are not
guaranteed to produce the optimal controller (6). Our goal
then is to implement the output-feedback reinforcement
learning using perceived output data (4), then quantify the
deleterious effects (if any) of non-zero perception error.

There are two main problems to be addressed: (1) how to
learn a suitable perception map p such that the perception
error is bounded; (2) how to find the optimal control policy
in a model-free way. Our solution strategy will be to use
a CNN to learn the perception map, and then use output
feedback Q-learning to generate the control sequence based
on the input and perceived output data.

III. DATA-DRIVEN PERCEPTION AND CONTROL

In this section, we present our perception-based output
feedback Q-learning framework as summarized in Figure 1.

A. Data-Driven Perception via CNN

We utilize a convolutional neural network that accepts the
observation images zj as an input and produces the perceived
outputs yi. Our missile simulation images will be in the
kilopixel range. So compared to other neural network types,
the convolution and pooling operations of a CNN allow the
large images to be processed much faster and with less com-
putational expense. For ease of implementation, we exploit
transfer learning on a pre-trained deep CNN called Faster
R-CNN [4], which is available from the PyTorch library for
Python 3. Instead of initializing a new neural network with
random weights and biases, transfer learning initializes the
pre-trained Faster R-CNN, whose weights and biases have
already been trained using an ImageNet data set. The weights

o8]
VH(zp, €) = Z vz—k(g;ngi + u;[‘ Ru;), (5) gnd biases are then further tuned using our custom synt'heFlc
= image data set such that the CNN is adapted for the missile
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simulation. With transfer learning implemented, the training
time is drastically reduced since the weights and biases only
need to be adjusted by small amounts.

We later demonstrate that the perception map learned from
the Faster R-CNN produces a small and bounded perception
error for the regulation of a moving ball. This feature is
useful for the perception-based Q-learning discussed next.

B. Data-Driven Control via Output Feedback Q-Learning

Here we extend the output feedback Q-learning approach
of [13] by applying it to our perception-based setting. We
first define the ideal and degraded Q-functions, then make
boundedness guarantees in the presence of perception error,
and finally implement Q-learning to solve for the control
policy in a model-free way. We point the reader to [10], [14]
for more details on Q-learning.

Notation: Given any vector 7, € R!, we define its data
- _ 1,7 T ...17 17T IN
vector as fy—1k—N = [Mi_1 Mo m_n] € R,

1) Ideal Perception Q-Function: In the case of ideal
perception, the following lemma from [12] allows us to
represent the state zj in terms of input-true output data.

Lemma 1. Assume (A, C) is observable with an observabil-
ity index K. Then the state can be represented as, Vk,

Uk—1,k—N
= Mu M1 — ’ ) 8
o [ J] [yk—l,k—N] ®
where M, = Uy — AN(VIVN)WITNy € RoxmN,
M, = AVVIVN)WT e RPN and N> K,
with matrices Uy = |B AB --- AN"1B| e RV,
Vy = [(CAN-1)T (CA)T )T eRPN, and

0 CB CAB CAN—2B
0 O CB CAN-3B
TN: : : . . G]RpNXmN.

We next define the ideal Q-function as the following
recursive Bellman equation, given a policy p and V(xy, uy),

Q" (w,ur) = yi Qyr + up Rug + vQ" (Ths1, i(T41)),

©))
which is the cost of selecting an arbitrary control w at
time k plus the cost of implementing a fixed state feedback
policy ugt1 = p(xg41) from time k& + 1 onward. Note that
Q" (xps1, (xps1)) = VH(xgy1). Assuming that the cost
is quadratic in state such that V*(xy) =z} Px), where
P = PT > 0, then substitution of (8) for z;, and (1) for Tht1
into the ideal Q-function (9) yields, V(x, uk),

Q" (ke uk) = Vo5 S, (10)
- T -
Uk—1,k—N Saa  Sag  Sau | | Uk—1,k-N
= | Yk—1,k—N Sga  Sgg Sgu | | Yk—=1,k—N | »

T
_ |57 ~T T mN+pN+m
where ¢ = [Uk_l,k_N Uk—1k-N uk] e R p

is the input-true output data vector and S = ST €
R(mN+pN+m)x(mN+pN+m) iq the Q-function kernel matrix.

Policy evaluation

j j+1
Policy improvement ST st Input-output data
ul - ul*t l e e Pres Pres
ST 3
! ) Perceived
+ Input State Observation output
! w Xk . Zy Vi
| 1
L \ >
L r A’ B > q : > D »>
7 | Jypeppmp—————————————
v 1 |
System (unknown) CNN

Fig. 1: Proposed perception-based output feedback frame-
work using reinforcement learning and a convolutional neural
network for model-free control.

The partitioned matrices in S are Sz = M (CTQC /v +
ATPAM, € R™V*mN_ G = MI(CTQC/y +
ATPAM, = Sgg e RPNXmN g o — MyT(C’TQC/V +
ATPAYM, € RPN*PN_ G . = BYPAM, = S, €
Rm*mN G - = BYPAM, = Sl;fu e R™*PN and S, =
R/’Y + BTPB c Rmxm.

A necessary condition for optimality is the stationarity
condition 0Q*(xy, uy)/0u = 0. Application to (10) yields
the optimal output feedback policy p* such that, Vk,

up = W (Uk—1k—Ns Yh—1,k—N)
= =S, (Sualtk—1 k—N + SugUk—1,5-n). (11)

Substitution of (8) proves that (11) is equivalent to the state
feedback controller (6) that solves the LQR problem [13].

2) Degraded Perception Q-Function: In the case of de-
graded perception, we define the perceived state Zj by
replacing the true output data in (8) with the perceived output
data, VEk,

. Uk—1,k—N _
=[M, M,)|F" =z + Myég_1p-n. (12
Tk [ y] [yk_Lk_N] Tk yeh—1,k—nN- (12)

Note that §x_1k—N = Yb—1,k—N + Ex—1,k—n. We next de-
fine the degraded Q-function, ¥ (&, u),

Q" (k, ur) = Yo Son (13)
_ T _
Uk—1,k—N Sau Sag Sau Uk—1,k—N
=7 @k—l,k—N ngﬁ Sgg ngu @k—Lk—N s
Uk Sua Sug Suu Uk

where the partitioned matrices in S are still defined as
in the ideal Q-function (10). Application of stationarity
0Q* (&g, ug)/0ui, = 0 yields the policy i* such that, Vk,

>

o= (k=1 k=N, Uk—1,5—N)
= —S, (Sualtk—1 kN + SugUk—1,5-n). (14)

Note that 4 is not necessarily equivalent to the optimal
controller u; from (6) due to the presence of potentially
non-zero perception error in gjk_L E—N-

For the degraded Q-function (13) to produce an admissible
control policy, we must now guarantee that any deleterious
effects of non-zero perception error are bounded.
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Lemma 2. Assume a degraded perception process (4) is
implemented such that Vk |ey| # 0. Then the control policy
in (14) does not minimize the cost (5).

Proof. Replacement of 14N = Uk—1k—N + Eh—1,k—N
into (14) yields the controller @} = —S,. (Sualik—1 6N+
SugUk—1,k—N) — S;ulSugék_Lk_N. Inspection with the op-
timal controller (11) implies that u; — uj = Au; =
=St Suger—1k—n- Since Vk |ex| # 0, ||Au}|l # 0 and so
the policy in (14) does not equal the optimal policy in (11)
that minimizes the cost (5). This completes the proof. ]

Lemma 3. Assume the perception error in Lemma 2 is
bounded, i.e., Yk IM > 0 such that |ey| < M. Then the
control difference Auj, = u; —uj, is also bounded, i.e.,
Vk 3L > 0 such that |Auf| < L.

Proof. Tt follows from Lemma 2 and the definition of
the induced norm that [Au}| = [S,lSugér—16-n] <
IS0 Sugll|€k—1k—n|- This completes the proof. ]

We now define the optimality loss as the cost difference
between implementing the non-optimal policy i* in the
degraded perception case (14) and the optimal policy p* in
the ideal perception case (11) such that, V£,

AV = V* (21, e) — V¥ (x4, 0). (15)

The optimality loss serves as our metric for the deleterious
effects of perception error. We prove the boundedness of the
optimality loss in the following theorem.

Theorem 1. Assume that (A, B) is stabilizable and (A, O)
is observable. Assume the perception error is bounded, i.e.,
Vk 3M > 0 such that |ley| < M. Then the optimality loss
(15) is also bounded, i.e., Yk 3L > 0 such that |AV| < L.

Proof. Substituting g = yr + e, and U = uj + Auj,
into (15) and upon further expansion yields AV =
Y2 vk el Qe + 2¢fQui + (Aup)TRAW! + 2(Aul)T
Ru?]. Using the Cauchy-Schwarz inequality, the first
and third terms inside the summation can be bounded as
€T Qex] < p(Q)lexl? and |(Auf)TRAE| < p(R)| A2,
respectively, where p(-) denotes the spectral radius and
[Au|l is bounded from Lemma 3. The second and fourth
terms can be bounded as |efQux| < |ex||Qux| and
|(Aup)T Ru}| < |Au||Ruy, respectively. Since (A, B) is
stabilizable and (A, O) is observable, the system (1) under
the optimal policy in (6) is asymptotically stable, so |z is
bounded and thus |yx| and |u}| are also bounded. |AV] is
now entirely bounded. This completes the proof. [ |

Theorem 1 demonstrates that although the resulting con-
troller (14) is no longer optimal in degraded perception case,
the deleterious effects of non-zero perception error (in the
form of the optimality loss) are bounded.

3) Degraded Perception Q-Learning: Currently, the Q-
function kernel in (13) still requires knowledge of the system
dynamics (A, B, C'). The reinforcement learning strategy of
Q-learning instead allows us to solve for the kernel in a
model-free way.

The perception-based policy iteration (PI) algorithm of Q-
learning is summarized in Algorithm 1. We select PI over
other Q-learning algorithms (e.g., cost iteration [10], episodic
Q-learning [15]) since PI evaluation is generally faster, which
is helpful to pair with the Faster R-CNN perception model.
Implementation of PI often involves parameterizing S and
qgk in vector-basis form, then performing least-squares with
probing noise to estimate the elements in S. We point the
reader to [12], [13] for an exhaustive procedure.

Algorithm 1: Policy Iteration for Perception-based Out-
put Feedback Q-Learning

Initialization. Given the degraded Q-function (13), begin
with any kernel S° and stabilizing policy u°. Then for
j=0,1,2, ..., perform until convergence, S/ — S7|| < e:

Policy Evaluation. Using current policy, where u,i =1 ("),
solve for S7*! such that

Ok ST b1 = 0 Qi + (ud) T R(u) + vhF 1 S ey
Policy Improvement. Update policy to p/ !, where

ultt = — (S TSI e + ST 1)

IV. HEAT-SEEKING MISSILE BACKGROUND

We shall test our framework in a simulation of a heat-
seeking missile, whose seeker head generates synthetic im-
ages of a moving blurry white ball representing the infrared
exhaust signature of a target aircraft. The missile setup is
shown in Figure 2. We first derive a state-space representa-
tion for the angle of attack and sideslip angle of the missile.
Then, we implement a simple line-of-sight guidance law
where the missile controller attempts to regulate the position
of the ball to the center of the image. The intent is to keep the
line of sight constant, thus ensuring intercept with the target
[16]. Finally, we use the Faster R-CNN for the perception
process and Q-learning to solve for the controller in the
presence of degraded perception. We compare any optimality
loss to an LQR controller of ideal perception.

A. Linearized Missile Dynamics

Assumption 1. Assume an axisymmetric cruciform missile
body; no roll dynamics; negligible gravity differential effects;
the relative velocity vector of the missile always pointing
along the line of sight, i.e., toward the ball; and the missile
always being sufficiently far away from the target. O

Define the missile state to be = = [ & 8 3]T, where «
is the angle of attack and [ is the sideslip angle. The control
input is u = [d. d,]T, where §. is the elevator fin deflection
and ¢, is the rudder fin deflection. With the assumption of
no roll dynamics, elevator deflection only effects a change in
angle of attack and angle-of-attack rate, while rudder deflec-
tion only effects a change in sideslip angle and sideslip rate.
By starting with the exact nonlinear six-degree-of-freedom
equations of motion for aircraft dynamics [17], then lineariz-
ing about the steady level flight conditions z = [0 0 0 0]T
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and u = [0 0]T and applying Assumption 1, we get LTI,
continuous-time second-order dynamics where the angle-
of-attack and sideslip-angle dynamics are decoupled—i.e.,
2 =[a &]" and u = 4. for the angle-of-attack system and
x = [B B]T and u = §, for the sideslip-angle system. The
dynamics matrices A and B are pulled from [18]. The angle-
of-attack system has the dynamics, V¢ > 0,

-2 )

A zero-order hold with a sampling time of 0.01 s is applied
to discretize (16), Vk € N,

are1| | 0.97 0.0098 | |ax 0.17
[ak+1] = [—0.054 099 | o] T |-19]%n U7
Since the missile is axisymmetric, the discretized linearized

sideslip dynamics are identical to (17) with the corresponding
state 7, = [B1 BT and control input uy = d, .

(16)

B. Observation Process using Synthetic Images

To simulate the missile seeker head, synthetic images zj,
are generated given the current missile state zj. The images
are of a moving blurry white ball on a black background
similar to [2]. The images are 240 x 240 pixels in size for
computation and storage considerations. A white 30-pixel
diameter ball is first drawn on the image such that the entire
ball is inside the image boundary, which is then blurred
using a Gaussian filter. Given Assumption 1, the sideslip
angle and angle of attack are directly proportional to the x-
and y-coordinates of the center of the ball on the image,
respectively. The true output is thus y, = [ X Y], where
the pair (X,Y") represents the coordinates of the center of
the ball in pixels. The gain between « and Y (which depends
on the target distance, the pixel pitch of the camera sensor,
and the focal length of the camera lens) is set to be 10°
or 0.175 rad per 120 pixels. Thus, the angle of attack is
limited to +10° which allows the linearized system (17)
to accurately describe the missile dynamics, and the output
process is Y, = [—687.5 0] [ay c]". The same gain is
chosen between [ and X such that the sideslip output process
is identical.

C. Perception Process using Trained Faster R-CNN

Given a synthetic image, the Faster R-CNN outputs the
coordinates of a bounding box around the ball such that the
perceived output g, = [X), Y;]T is simply the midpoint of
the bounding box. Note the bounding box has pixel reso-
lution, and so the midpoint will have half-pixel resolution;
this contributes to the perception error. The transfer learning
process that learns the perception map p to generate these
bounding boxes is as follows: First, a set of 440 images
is created with the ball at random locations on the image.
The data set is then randomly batched into a 400-image
training data set and a 40-image validation data set. The
Faster R-CNN is trained using the training data set, whereas
the validation data set is used to assess the accuracy at the
end of every training epoch. The Faster R-CNN is trained for

five epochs. The perception error is assessed by passing 1000
images with random ball locations through Faster R-CNN.
Average accuracy of the perceived output is 99.8% with a
minimum accuracy of 98.2% (i.e., perception error magni-
tude of 0.25 and 3 pixels, respectively). Such low errors after
only five epochs of training demonstrates the advantage of
transfer learning. More importantly, it demonstrates that the
perception error is bounded.

D. Missile Control Policy via Q-Learning

Given the state xj, input ug, and perceived output gy,
we define Q-functions for the angle-of-attack system and for
the sideslip-angle system in the form of (13). The angle-of-
attack system (17) is of second order, so we select N = 2 for
the data vectors. If the Q-function is instead parameterized
in vector-basis form, where the redundant elements in S are
removed, then Q-learning requires at least 15 samples to fully
solve for the elements of S via least-squares (thus updating
every 0.15 s). The same procedure is applied simultaneously
to the sideslip-angle system such that the sequences for d j
and 0, j are generated in parallel.

V. SIMULATION RESULTS

We wish to regulate the ball to the center of the image,
i.e., to y = [0 0]T. This is a pure pursuit guidance law and
will result in intercept if the missile-to-target speed ratio does
not exceed two [16]. If lead pursuit is desired, then the ball
can simply be regulated to another point in the image given
the angle-off is known. We pick @ = 1, R = 1, and v = 0.5.
The PI algorithm can then be initialized with S° = I and
u? = 0, which is stabilizing since the system (17) is open-
loop stable. For each iteration step, input-perceived output
data are collected over 15 time steps to estimate the Q-
function kernel using least-squares with zero-mean Gaussian
probing noise added to the control to maintain excitation.
The PI algorithm is then iterated until below € = 0.025.

Figure 3 shows the normalized perceived output trajecto-
ries of the angle-of-attack system for eight random initial
ball locations, along with the optimal LQR trajectory as
reference. We observe that the Q-learning control sequences
are always able to regulate the ball to the center of the
image and hold its position thereafter, and so the missile is
successfully guided until intercept. Moreover, the missile is
guided without knowing any angle-of-attack rate information
nor the system dynamics, showing our perception-based Q-
learning framework successfully learns the control policy in
a model-free way. Figure 2 shows a trajectory animation as
observed by the missile seeker head for one of the runs.
Here, the control sequence for both the angle of attack and
sideslip angle are found simultaneously. The Faster R-CNN
produces very little perception error throughout.

Figure 3 also shows the effects of non-zero perception
error. For all eight runs, the degraded Q-function kernels
S converge to values slightly different than the optimal
kernel S* (obtained via (10)), and so the generated con-
trol sequences are indeed non-optimal. In addition, the Q-
learning control sequences regulate the ball much slower than
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Velocity always toward ball

Fig. 2: Missile perception setup. (inset) Animation for an
initial location of yo = [55 65]T pixels. Still frames taken
every 20 time steps up to k = 200, with accuracy numbers
and progressively lighter frames as the animation progresses.

the LQR sequence, likely due to perception error and the
0.15-s kernel update time. However, Figure 3 also validates
Theorem 1 as the kernel differences (and thus optimality
losses) remain bounded throughout the simulation.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a perception-based framework
by incorporating a Faster R-CNN neural network into the
control policy design via output feedback Q-learning. We
evaluated the data-driven control design process in the
degraded perception condition. We demonstrated that the
optimality loss of output feedback Q-learning with bounded
perception error was bounded. Simulation results on a simple
missile showed the efficacy of the proposed model-free
perception-based control framework.

Future work directions include relaxing many of the
missile assumptions by introducing roll dynamics and grav-
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Fig. 3: Normalized output trajectories and Q-function kernel
convergence (first entry plotted) of the angle-of-attack sys-
tem for eight random initial ball locations. LQR trajectory
included as reference.

[5] B. T. Nugraha, S.-F. Su et al., “Towards self-driving car using

[6]

[7]

[9]
[10]

[11]
ity dynamics; considering more realistic environments with
confounding heat signatures (e.g., the sun, ground clutter, [12]
defensive flares); and characterizing the perception error
using a data-driven model, then incorporating it into the Q-
learning framework to reduce the optimality loss. [13]

REFERENCES
[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to [14]
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016. [15]
[2] S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for
perception-based control,” in Learning for Dynamics and Control. [16]
PMLR, 2020, pp. 350-360.
[3] Y. Abbasi-Yadkori and C. Szepesvari, “Regret bounds for the adaptive
control of linear quadratic systems,” in Proceedings of the 24th Annual [17]
Conference on Learning Theory. JMLR Workshop and Conference
Proceedings, 2011, pp. 1-26. [18]
[4] S.Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards real-time
object detection with region proposal networks,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 6, pp. 1137-
1149, 2016.
1147

convolutional neural network and road lane detector,” in 2017 2nd
International Conference on Automation, Cognitive Science, Optics,
Micro Electro-Mechanical System, and Information Technology (ICA-
COMIT). IEEE, 2017, pp. 65-69.

S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin, “Combining
optimal control and learning for visual navigation in novel environ-
ments,” in Conference on Robot Learning. PMLR, 2020, pp. 420—-429.
L. Jarin-Lipschitz, R. Li, T. Nguyen, V. Kumar, and N. Matni,
“Robust, perception based control with quadrotors,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
October 2020, pp. 7737-7743.

A. A. Al Makdah, V. Katewa, and F. Pasqualetti, “Accuracy prevents
robustness in perception-based control,” in 2020 American Control
Conference (ACC). 1EEE, 2020, pp. 3940-3946.

F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control.
Wiley & Sons, 2012.

F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to
design optimal adaptive controllers,” IEEE Control Systems Magazine,
vol. 32, no. 6, pp. 76-105, 2012.

D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal adaptive
control and differential games by reinforcement learning principles.
IET, 2013, vol. 2.

F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for par-
tially observable dynamic processes: Adaptive dynamic programming
using measured output data,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 41, no. 1, pp. 14-25, 2010.
S. A. A. Rizvi and Z. Lin, “Output feedback reinforcement g-learning
control for the discrete-time linear quadratic regulator problem,” in
2017 IEEE 56th annual conference on decision and control (CDC).
IEEE, 2017, pp. 1311-1316.

T. Landelius and H. Knutsson, “Greedy adaptive critics for Iqr prob-
lems: Convergence proofs,” Linkoping, Sweden, October 1996.

C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge University, Cambridge, U.K., 1989.

F. P. Adler, “Missile guidance by three-dimensional proportional
navigation,” Journal of Applied Physics, vol. 27, no. 5, pp. 500-507,
1956.

B. Etkin and L. Reid, Dynamics of flight: Stability and control, 3rd ed.
Toronto, Canada: John Wiley & Sons, Inc., 1996.

S. Das and K. Halder, “Missile attitude control via a hybrid 1qg-ltr-
Igi control scheme with optimum weight selection,” in 2014 First
International Conference on Automation, Control, Energy and Systems
(ACES). IEEE, 2014, pp. 1-6.

John

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 31,2022 at 17:27:09 UTC from IEEE Xplore. Restrictions apply.



