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Abstract—1In this paper, a data-based moving target de-
fense framework for cyber-physical systems evolving with
unknown and discrete-time dynamics is proposed. Specifically,
we develop a proactive mechanism to increase the attacking
surface through entropy-based unpredictability measures, and
a reactive mechanism to detect and mitigate sensor/actuator
attacks. In order to handle worst-case disturbances, we formu-
late our problem as a zero-sum game, where the minimizing
player is the control input and the maximizing player is the
disturbance input. We amalgamate a model-free and data-based
approximate dynamic programming technique that learns the
saddle-point strategies with a Bellman-based intrusion detection
mechanism. Switching rules that asymptotically stabilize the
switched system are derived. We validate the effectiveness of
our proposed framework through simulation results.

Index Terms— Cyber-physical security, zero-sum games,
switched systems, moving target defense, model-free.

I. INTRODUCTION

Cyber-physical systems (CPS) are an ensemble of physical
systems and computers. These systems are quite complex
and work by deep collaboration and integration of physical,
communication and computational components. CPS aim
to achieve reliable, safe and dynamic cooperation of the
cyber domain with the physical system in real time. The
computational component of the CPS monitors and controls
the physical system with feedback loops. The growing link
between the physical and cyber domain and the creation of
more advanced learning-based technologies [1] has led to the
evolution of CPS into the next-generation smart CPS (sCPS)
[2] but opened more vulnerabilities for potential adversaries.
In recent years, securing sCPS against malicious attacks has
attracted much attention of researchers [3]-[6].

Adversaries can attack sCPS from several angles from
availability and integrity to confidentiality [7]. In practice,
high-dimensional sCPS are generally easier for malicious
attacks to implement successful attacks due to their static and
deterministic properties. As a consequence, changing system
parameters or structures to generate time-varying and more
unpredictable sCPS is a feasible solution. This technique
is known as moving target defense (MTD) [8]. In general,
time-varying and less static properties introduced by MTD
as a moving target enable defenders to deceive attackers and
increase attack surface. Applying MTD to addressing CPS
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security is a growing research area [9]. Various MTD mecha-
nisms have been proposed, such as switching system parame-
ters among multiple modes, adding an extended system with
the same performance to the original plant [10], considering
a trade-off between security and usability through a game-
theoretic framework [11]. One of the most important issues
of applying MTD is the design of switching strategies which
add unpredictability and guarantee the stability of switched
systems [12]-[15]. Two kinds of switching strategies are
commonly considered in the literature: a time strategy with
an average dwell time [16], [17] and a state-based strat-
egy [17]-[19]. A common quadratic Lyapunov function ap-
proach [18], [20] and a less conservative switched (multiple)
quadratic Lyapunov functions approach [21]-[23] are utilized
to prove the stability of switched systems. Most of the
aforementioned works require partial or full knowledge of
system dynamics, offline computations which are intractable
for large-scale systems. Apart from information of system
dynamics, generated data also play important role in sCPS.
Data-based learning techniques for CPS security attract much
interest in the research community [24], [25], especially
approximate/adaptive dynamic programming (ADP) [26].

Contributions: This work expands our previous work
[27] to a zero-sum game structure. The contributions of
the present work are threefold. First, we develop a data-
based MTD framework combined with ADP to solve zero-
sum games in a model-free fashion. Moreover, we propose
an intrusion detection mechanism in terms of a Bellman
error formulation. Finally, switching rules guaranteeing the
stability of switched systems with proactive and reactive
mechanisms are derived.

Structure: The remainder of the work is organized as
follows. We begin with the switching zero-sum games fol-
lowed by the description of ADP techniques in Section II.
In Section III, an intrusion detection mechanism and a data-
based MTD framework are proposed. Section IV presents
simulation results and Section V summarizes the entire work.

II. PROBLEM FORMULATION
A. Model Setup
Consider a discrete-time linear switched system in the
following form, Vk € Z,
Try1 = Aok)Tk + Bogyur + Do(rydk, (D
Yk = Co (k) Ths 2)

where z1, € R™, u; € RY, d, € RY and y;, € R™ denote
state, control input, disturbance input, measurement output,
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respectively. A,y € R"*™, B,y € R™!, Dy € R™¥4,
and C, ;) € R™*"™ are the state, control input, disturbance
input, and output matrices, respectively. The switching signal
o(k) is a piecewise function of time, representing an active
mode selected from M > 1 available modes, i.e., o(k) =
i eI ={1,2,...,M}, k € Z. We assume that every
subsystem (1)-(2) is controllable and observable with input
uy, and output yy, Vk € Z.

B. Attack Strategies
Attack strategies are described as, Vk € Z,

3)
“4)

where f, (resp., gx) is a time-varying function of input (resp.,
output) signal wuy, (resp., yx). Both fi and g are determined
by adversaries. Note uy, (resp., y) denotes attack-free input
(resp., output) signal while uj; (resp., y;) represents attacked
input (resp., output) signal. Attacks described by (3)-(4) are
referred as “‘data deception attacks” in the literature [28].

ug = fr(u),

Ui = 9x(Ur),

Assumption 1. For any time instant, at least one mode is
attack-free, i.e., there are 7 safe modes with i € N and 1 <
1< M, keZ. ]

Motivated by [29], the accumulated effects of actuator and
sensor attacks modeled by (3)-(4) on the output signals into
controllers are quantified as g, = yj+vg, where vy quantifies
the overall adversarial impacts of actuator and sensor attacks
on sensory output and is described as, Vk € Z,

S
(6)
where z¢ is the attacked state with z& = 0, p, € R and

O € R™*™ are determined by attack strategies (3)-(4). I,,
and I; are identity matrices with dimensions m and /.

Vg :Ca(k)‘rz + (5k - Im)ykv
Th1 =Ac) Tk + Bory (px — L) uk + Do(rydi,

Definition 1. Attacks that have no dynamics and thus no
impact on the system are called ineffective attacks, i.e., vy, =
0 Vk € Z. Ineffective attacks imply py = I; and 0y = I,,,, or
pr # I and (0 — L,)yx = —Cg(k).’Ez # 0. O

Definition 2. Attacks that have effect on the system are
called effective attacks, i.e., vy # 0 Vk € Z. OJ

C. Zero-Sum Game Structure

For each mode ¢ € Z, given the system (1)-(2),
we define the infinite horizon cost functional as J
Y0 (Y Qiyy + ujRiu; — ofl|d;|*), where Q; €
R™*™ > 0 and R; € R™*! > 0 are symmetric matrices,
a; € RT, 0 < v < 1is a discount factor. We aim to find
the feedback saddle point solution (uj,d}), Vk € Z for the
following value function Vxg,

V*(zk)

o0
= mjnng 34740 Qus + f Rty = o2 ). 1)
ji=k
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This can be considered as a two-player zero-sum game,
where uy, is the minimizing player aiming to improve the
performance while dj, is the maximizing player trying to ad-
versely affect the system. In the attack-free case, value func-
tions are quadratic in state given by V;(zx) = :E;fﬂ-mk YV €
R™, with symmetric and positive definite matrix P; € R"*"
satisfying the game algebraic Riccati equation (GARE) [30],

0=vA]PA; — P+ CQ;C; — v [ATP,B; AT PD;]
B 4 BTPB, Brpp;, 17
g D] ®

DIPB;  DIPD, - %l
The optimal control policy v, and the worst-case distur-
bance policy d;, for the two-player game (7) are given by
uy, = Kz, and d;, = G}z, with,
K} =~ [(B{ PiBi + Ri/v) + B{ P,Di(a}1,/~
—DIP,D)'DIP,B,)"'BF P,[I,, + D;(a?1,/y

B P,A;
DI PA;

— D} P:D;)"' D} P]A;, ©)
G: =[(a?1,/y — D} P,D;) + DI P,B;(B}' P, B;

+ Ri/y) " 'BYP,D;] ' D} P,[I,, — B;(B}' P,B;

+ Ri/v) "Bl Pi]A;. (10)

D. Data-Based Framework

The system dynamics might be known to adversaries
but are unknown to the defender. In order to design MTD
switching rules, it is necessary to learn some knowledge of
subsystems first. We utilize ADP technique to solve the two-
player zero-sum game (7) in a data-driven way. Following
the works of [30], [31], we briefly present the following
algorithm with the assumption that the system order n and
the upper bound N of the observability index are known.
For each mode ¢ € Z, the ADP learning phase is attack-free.

Algorithm 1 Model-Free Two-Player Zero-Sum Games

S1: For each mode ¢ € Z, pick 0 < v < 1. Let the iteration
number j = 0, and E(O) be the null matrix.

S2: Policy evaluation: Update P from V7t (x,)
vr Qiyr + (u)"Riuy, — o} (d))"d}, + AV (wp11), where
V7 () CHINTNRY & A S AN A C Ty

Ze_ Ni1.6P! Ze— N1,k measured data at time k € Z given

. 7T =T =T T .
by Ze-Nk-1 = [dh_np-1 Up-Nk—1 Tr-nNg—1] With
T N
dp—1]” e RN,
T IN
up—1] e R,

yro1] € R™V.

di-Nj-1 = [dk-n  dr—N+1
Uk—N,k—1 = [kaN Uk—N+1
Yk—N,k—1 = [yka Yk—N+1
S3: Policy improvement: Update policies by,
[(Ri/v + P + Plg (af /v = P ™!
X Pgi_l]il[ngle—Nﬁ-l,k—l + Pl N1k
+ Pi Gk Nk + Pl (07T, /y — P
X (Pjglczk—NH,k—l + Pgl—flﬂk—NH,k—l

J+l

U,
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Y

+ P k-],

j+1 j+1 j+1 i1y —
A = [(aFTy/y =PI + PUF (Rijy + PIEY ™
x Plzgl]il[ngldk—N-ﬁ-l,k—l + Pg;lﬂk_N+1,k_1
+ Pg;1Qk7N+1,k — PITY(R/y + PIFH)!
x (Piglc?k_lv-s-Lk_l + Pg;lﬂk_N+17k_1
+ PI e N 1)),
where Pig € RIN-Dax(N=-Da  p.
Paﬁ — P(;l:_j e R(N—l)qx(N—l)l, Pau _ Pl’llz_i e R(N—l)qxl’
Py = PyTa e RW-DaxNm Py e RIXY, Py = PL e
]RQX(N—l)l, Py, = PEi c qul’ de _ 13};[;l c ]quNm7
Pag € RV-Dx(N=-1l p. - — pT ¢ RV=Dixl p. —
PyTﬁ IS R(N—l)lme’ P, € Rlxl’ Puy _ P;l e RIXNm and

Pyy € RN™XN™ are obtained by partitioning P/ as,

(12)

= PL ¢ RW-Daxq

Pia Paa Paa FPau Fay
- Py Pia Paa Pau Py
P=|Pyg Paua Paw Pau Py
Pua Pud Puﬁ Puu Puy

S4: If ||P)™" — P/||r < <, stop, where ¢ is a small
user-defined threshold and || - ||p is the Frobenius norm.
Otherwise, let j = 7 + 1 and go to S2.

III. PROACTIVE AND REACTIVE DEFENSE FRAMEWORK
WITH INTRUSION DETECTION MECHANISM

After learning of P;,Vi € Z, the saddle-point policies and
the value functions for each mode at every time instant are
available. Then we develop a proactive and reactive MTD
framework that ensures the system operates optimally in the
absence of attacks, as well as detects and mitigates attacks
in the presence of adversaries with a quantified performance.

A. Intrusion Detection Mechanism

Theorem 1. Given the switched systems (1)-(2) operating
based on the switching signals o(k) =i € Z, k € Z, define

ex =Y QoY + Up Ro(ryuk — O‘i(lc)dgdk + YVo ) (Trr1)

- Va(k)(xk)7 (13)

with Vo) (Tx) = 2y g1 Po(eyZr—Nk—1 and Vo) (2a41)
= ngNJrl,kPU(k)Zk—N-H,k' The system is corrupted by
adversaries if and only if Bellman error |eglls > & with
a user-defined threshold £ € RT.

Proof. 1t follows from (7) that the Bellman equation is
Vot (@) = Yp Qoryyr + w Rogyur — o gy didi +
YVo(k)(Try1), Yk € Z. Consequently, define the Hamiltonian
function as Hy (x) (zk, uk, di) = Yp Qo (kyYk + Up R () uk —
ai(k)d;fdk + YWVoiry (@rs1) — Vo (zr). According to the
stationarity conditions for optimality, the optimal control
policy (9) and the worst-case disturbance policy (10) should
satisfy the discrete-time Hamilton-Jacobi-Isaacs (HJI) equa-
tion, i.e., Hy (i) (2, uy, di) = 0. Actuator and sensor attacks
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following strategies (3)-(4) lead to Ha(k)(-, -,+) # 0, which
indicates the presence of attacks. Note that HJI equation is
both necessary and sufficient conditions for optimality. But
in practice, there are disturbances, noise, inaccurate modeled
dynamics in the system. We take such inconsistencies into
account by introducing a security threshold £ € R™. [

B. Switching Law

As shown in Figure 1, k; denotes the starting time instant
of some active mode while k;,; denotes the ending time
instant, VI € N. The mode o(k;) remains active for k €
[ki, ki+1). At the switching moment, the mode at k; is the
same to that during the time interval [k;_1,k;) while the
mode at k;" is the same to that during the time interval
[k1, k1+1). We assume that states have no jumps at switching
moments k; € Z, VYl e N, i.e., Tjm = Tpt = Tpy

=]

g

E

=

=

g Vot (@) Y

g: "”lkwl“r-‘-.‘n): é

a \

l-'() ’-'1 I\‘{ 1 .’-'1 *'141
a(kg) a(ki_q) alky) (ki)

Fig. 1.  Illustration of switching conditions in terms of Lyapunov-like
functions.

Theorem 2. Given the system (1)-(2) free of data deception
attacks with optimal policy gain K and worst-case distur-
bance gain G, the switched system is stabilized with the
following switching condition,

Vo) (@riy) < Vo) (Tr,), (14)

with k; denoting switching moment, VI € N.

Proof. The following analysis is valid for each mode ¢ €
TZ={1,2,...,M}, Yz € R, Vk € Z. Select the positive
and radially unbounded Lyapunov-like functions V;(zy) :
z} Pz with P; > 0 given by (8). Let Amin(-) (resp.,
Amax (+)) denotes the minimum (resp., maximum) eigenvalue.
It follows from Rayleigh-Ritz inequality for symmetric and
positive definite matrices that Apin (P;) |75 [3 < 2f Py <
Amax (P:)|x1||3. Then we have,
Vi(zk)
Amax(Pi)
Applying K7 and G}, we get the closed-loop dynamics
Tpy1 = (A1 + BlKl* + DlG:)Ik = Acl,ixk. Note that with
the optimal control policy K and the worst-case disturbance
policy G, Aq; is Hurwitz. From (15) we have,

AV(zp) = Vi(zpsr) — Vilar) = zp oy Pivgyr — o P

< ||lzkl3- (15)
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= mrlg(Ach,z'PiAcl,i — Pay < _)\min(Pi - Ag,iPiACI,i)“xk||%
)\min(Pi - Acrl;JPiAClai)

)\max (Pz)

We want the inequality to be valid for all the modes and

X —

(k)

. Atnix)(Pi_Ac’I]‘.iPiAcl,i)
thus we have AV;(zy) < —min 3o (P) Vi(zg).
. Amin(Pi—AY  PiAa .
Denote 4 = min min by 211';_)’ d L). Rewrite the above
i Z max k2

S
inequality as AV;(zx) < —0V;(xy) with 0 < ¢ < 1. Then,

‘/vi(xk;Jr]) < (1 — 5)‘/;(1‘]@) (16)

Since V;(zy) > 0, i € Z, equation (16) implies the value
function strictly decreases. The condition (14) is expressed
as Vo (k) (@hyyy) = plo(ke), o (ki—1))Vo i, o) (z,) with 0 <
(o), (k1)) < 1. Let u = (o (), o(ki1)), then,

Votk) (@hyy) = Vo) (T,)- (17)

Note that the same ¢ is on both sides of inequality (16)
and thus it is valid within the same mode. Oppositely, the
equality (17) is valid when switching happens, i.e., for two
connected modes o(k;) and o(k;—1). We start from the
mode at time k; and work backwards to the initial time k.
From (16)-(17), we get V) (z111) < Vo, (7)) <
=1V (ko) (T1—1) < -0 < pn e -1 Vo (ko) (Thy ) <
(1 — 5)k1_k0u1 ...m_lmVU(ko)(xko). As kjp1 — oo,
Vo (k) (T141) — 0. This completes the proof. ]

Remark 1. Each Lyapunov function is monotonically de-
creasing within the active mode. With the proposed switching
condition (14), the value sequence formed by each Lyapunov
function at time instants when the corresponding mode
becomes active is monotonically decreasing [32]. O

Switching increases unpredictability and thus enhances the

proactive defense capability. The optimal control policy and
the worst-case disturbance policy are penalized in the cost
functional. Hence, there is a trade-off between optimality
represented by cost (7) and unpredictability quantified by
information entropy H(p) = —p' log(p). We use prob-
ability simplex p = {p1,p2,...,pp} satisfying [|p|1 =
2?11 |p;| = 1 to represent probabilities of all the available
mode to be selected at switching moments.
Lemma 1. Consider the switched system (1)-(2) with op-
timal control gain K, worst-case disturbance gain G and
associated value functional (7). The probability simplex for
M is computed by,

min(V*'p — eH(p))
P
st.|pli=1and p; 20,5 ={1,2,...,M}.

with solution

v 1M vi
[~ —1—elogle™ Xz, e < )]

pbi=¢€ . (18)

Proof. We follow the spirit of Theorem 1 in [33] to prove
the Lemma. |

Switching rules for the MTD framework are as follows.
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¢ When the detection mechanism indicates no attacks,
select a suitable dwell time 7 until meeting the switch
condition (14). At the switching instant, select next
active mode according to probability simplex p.

« When the detection mechanism indicates attacks, the
corrupted mode is taken offline for nonavailability and
switch to next active mode according to p.

o Once the system reaches an equilibrium, arbitrary
switching is enforced.

Corollary 1. The extra cost for switched systems is ex-
pressed as AJ = E[J] — min;ez V* = V*Tp — min;er v,
with Vi* = ZF \ Piz1 v V7 v € RlaHHmN,

Proof. Without switching, the overall optimal mode with the
least cost-to-go is utilized during the operating period. Thus,
the cost performance is min;ez V;*. When MTD framework
is implemented, due to mode switching the system operator
utilizes the overall optimal mode less often and other modes
are used as well. Thus additional cost is generated. Based
on probability theory, the expectation of cost performance
under the probability simplex p is V*'p. m

Remark 2. Lemma 1 shows that entropy levels denoted by
€ play a role in the probability simplex p. Larger entropy
weight adds more unpredictability to the switched system.
Thus frequent mode switching with less usage of the overall
optimal mode leads to higher additional cost. O

C. Data-Based MTD

Algorithm 2 Data-Based MTD Framework

01: Procedure

02:  Given initial state xo and time window V.

03: fori={1,2,...,M}

04: Given the same x(, run Algorithm 1 to learn P,
05: Compute the optimal cost with the same given x

and time window NN.

06: end for

07:  Solve for the probability simplex p using (18).

08: Atk =0, choose the best mode o/(0) = arg max(p;).
09:  Propagate the system by using (1)-(2).

10:  Compute optimal control input uj by (11) and worst-

case disturbance input d by (12).

11:  Compute detection signals using (13).

12:  If |lex| > &, where ¢ is a prescribed threshold,
13: Start mode switching based on p. Go to 9.
14:  End if

15:  If there exists 7 such that () = o(k;") and

Va(.,-) (TT) < Va(kl’)(‘rk'l)'

16: Start mode switching based on p. Go to 9.

17:  End if

18: If there exists 7, such that V(,(T)(:ET) <, where 7 is
a small threshold,

19: Start mode switching based on p. Go to 9.

20: End if

21: End procedure
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IV. SIMULATION

We consider a second-order discrete-time linear system

with Q = I and R = 1. Select « = 3. Five modes
are considered: A; = A3 = Ay = 111 _8'3 , Ay =

1 05 11 02 o -
[0.7 o "4 =1 o | B B0
B, [0.9 0.1]T, By = [1.1°0]", Bs = [1 0.1]T,
Dy = [0 1%, Dy = [0.1 1.2]%, Dy = [0.1 0.9]7,
Dy = [-03 06]T, D5 = [02 1.1]Y, ¢ = C3 =

Cs = [1 —0.8], Cy = [1.1 —0.6], Cy = [0.9 —0.8].
Select v = 0.2. The operating time is 200 seconds. Assume
malicious attacks start from 50s and end 100s. Algorithm 1 is
implemented to learn P for each mode. The evolution of P,
states, input and output for mode 1 is shown in Figures 2 and
3. For the remaining modes, evolution plots are similar. Then
Algorithm 2 is implemented for a period of 200s. Assume
from 50s to 100s there exist both actuator and sensor attacks.

Parameters of P

0 10 20 30 40 50 60 70 80
Iteration Number

Fig. 2. Evolution of P by Algorithm 1 (mode 1). Converged P is learned.

State, Control Input, Disturbane Input and Output (Learning Phase)
4 T T T T T T

) 0 100 200 300 400 500 600 700
Operating Time

Fig. 3. Evolution of states, input, and output by Algorithm 1 (mode 1).
States and output signals converge to zero asymptotically.

The evolution of system states, control input, disturbance
input and sensor output is shown in Figure 4. As the com-
promised mode is taken offline with the proposed reactive
defense mechanism, attack effects are mitigated and system
remains normal. Figure 5 validates the effectiveness of the
detection mechanism. At the transient phase, Bellman error
is nonzero though there are no attacks in the system. This is
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State, Control Input, Disturbane Input and Output

—u

d
—y [
—

1 —xa|]

0.5

0 50 100 150 200
Operating Time

Fig. 4. System evolution under actuator and sensor attacks from 50s to
100s. Compromised modes are taken offline.

due to lack of enough data. Figure 6 depicts the evolution of
switching signals. The worst-case attack scenario is assumed
for simulation purpose, i.e., from 50s to 100s every active
mode is attacked. This means that mode switching happens at
every time instant. As shown in Figure 4, fast switching does
not cause system fluctuations because of reactive defense
mechanism which ensures that the active actuator and sensor
modes are safe. Figure 7 presents the relative cost increase
due to mode switching with respect to entropy levels. It
can be seen that increasing the entropy weight € leads to
higher cost increase. This quantifies the performance loss as
derived in Corollary 1. As the entropy weight € increases, the
unpredictability is also increased and thus mode switching
happens more frequently. Since the system picks the less
optimal mode more often, a higher cost increase is caused.

V. CONCLUSIONS AND FUTURE WORK

This article proposes a data-based MTD framework with
Bellman-based intrusion detection mechanism for switching
zero-sum games under attacks. The derived switching rules
guarantee the asymptotic stability of switched systems. Sim-
ulation results are presented to validate the effectiveness.
Future work is to investigate the framework under stochastic
exogenous disturbances and measurement noise, as well as
the selection of a proper detection threshold.

Detection Signals

50 100 150 200
Operating Time

Fig. 5. Evolution of Bellman error signals under attacks from 50s to 100s.
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Switching Signals

Mode Index
w

100 150
Operating Time

200 250

Fig. 6. Evolution of switching signals. The proactive defense mechanism
is applied for the attack-free case while the reactive defense mechanism is
applied for the attacked case.

Fig. 7.

Cost Increase Due to Mode Switching

A(J)/ minger Vi
~

5

0 01 02 03 04 05 06 07 08 09 1

€

Relative cost increases due to mode switching with respect to

entropy levels. Higher entropy weights lead to larger cost increase.
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