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ABSTRACT
Older citizens experience a large number of falls and hospitaliza-
tions per year throughout the world. These intervening health
events (IHEs) such as falls/injuries, illnesses, hospitalizations, are
strong precipitants of disability in older adults. They are episodic
in nature, extremely difficult to study, and require continuous and
long-term monitoring.

Wearable technologies with remote capabilities are an ideal so-
lution for capturing information before and after such events. This
work presents the ROAMM campaign platform for harnessing sen-
sor and interface capabilities on smart wearables to provide cus-
tomizable, affordable, and versatile health monitoring that leads
to practical remote-based interventions. The platform is flexible,
efficient, and scalable for concurrently running multiple studies,
each of which consists of patient-reported outcomes, ecological mo-
mentary assessments and mental health-related patient responses.
Additionally, the system is able to capture and derive ecological,
momentary assessments of pain with concurrent mobility tracking
that allows life-space mobility ascertainment. The platform sup-
ports multiple watches, and we show implementations on both the
Samsung Galaxy and Apple series of smartwatches.
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1 INTRODUCTION
Smartwatch devices are now commonplace among the public with
a quickly rising use in clinical care and research settings [13]. The
International Data Corporation (IDC) Worldwide Quarterly Wear-
able Device Tracker published that smartwatches accounted for
44.2% of the wearable market in 2018 and is expected to rise to 47.1%
by 2023 [5]. Even health care providers and groups traditionally
thought to be less likely to adopt smartwatches, e.g., older adults,
show an overall positive view [9]. Smartwatches are quickly gain-
ing the ability to capture more health-related sensor data while
enabling direct interaction through the screen. The smartwatch is
expected to become a powerful tool to augment traditional clinical
care and remote data collection approaches [12].

Despite its potential, there is little evidence in the literature of
building smartwatch apps and customizing them for specific clinical
and research efforts. There is a good reason for this because there
are several barriers to customizing the smartwatch user interface
for collecting patient-reported outcomes, harnessing raw sensor
data, and sending data to the cloud in a secure manner, with all
components being done simultaneously. A smartwatch-based plat-
form to enable practitioners and researchers to customize remotely
collected data could improve understanding about intraday vari-
ability of symptomatology, environmental exposures, and health
behaviors.

Intervening health events (IHEs) such as episodic falls, injuries,
severe illnesses, hospitalizations, infections like COVID-19 are
emerging scientific area of interest in health care. The available lit-
erature suggests that IHEs are strong precipitants of acute losses in
physical function and contribute to the onset of new health concerns
and chronic losses in physical and cognitive function [4, 17, 18].
However, because of their episodic nature, the predictors of IHEs
and factors associated with subsequent recovery are challenging
to decipher without long-term data that precedes and follows the
IHE. Additionally, surveillance of symptoms and function at a high
resolution offers a new look into the usual range of intra-individual
variability. Disturbances in this variability can signal a breakdown
in homeostatic self-regulation and individual trajectories— e.g. de-
tection of gradual downward trends in cognition. Wearable devices
like smartwatches are an innovative solution to meeting these
problems because they are both popular and desirable while also
containing the necessary elements for tracking meaningful clinical
markers of health in a continuous fashion.

Remote health-related data collected with smart devices falls
under the global umbrella of patient-generated health data (PGHD),
which is divided into two main categories: active and passive data.
The essential difference between these two types is the involve-
ment of patients or participants in reporting data. Active data are
described as brief questions about symptoms and states of health
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Figure 1: Conceptual diagram of the ROAMM platform. Using accelerometer and GPS sensors, the new generation of mobile
devices provides an affordable and more versatile hardware platform upon which monitoring software can be implemented.

or surveys through which people self-report when prompted at
specific times. Such an approach capitalizes on the “experience
sample method” of data collection, which is commonly described as
ecological momentary assessments [8]. This ecological method was
originally developed for psychological assessment of the activities
people engage in, how they feel, and what they are thinking during
their daily lives. Responses about current thoughts and feelings
in an individual’s environment are recommended because people
are poor at reconstructing psychological experiences after they
have occurred. For example, in traditional questionnaires, people
are asked to recall their pain, physical function, fatigue, or men-
tal health as stable traits. Unfortunately, this approach completely
misses the daily variability in complex states and is not considered
valid outside of the context in which they occur [2, 14]. Additionally,
it is particularly difficult for individuals to assess or recall complex
experiences like pain, mood or fatigue after they have occurred.
When frequently and randomly sampled, EMAs are often regarded
as the “truth” because they estimate an unbiased average that has
no tendency to either overestimate or underestimate the state.

Passive data requires no input from people as the smart device
continuously collects data through built-in sensors. The type and
quality of this data depend on the availability of different sensors.
Some of the most common sensors include - GPS, Accelerometer,
Gyroscope, Heart rate monitor etc. Global positioning sensor (GPS)
that can be used to measure mobility patterns in the community
and life-space mobility, which is a measure of the spatial size and
frequency of interaction with the surrounding environment. Ac-
celerometer that can be used to track physical activity patterns and
energy expenditure whereas gyroscope can be used to measure arm
orientation. Sensors like magnetometer, altimeter can be used for
compass functions, to measure elevation. The inbuilt barometer
can be used to track real time weather patterns. Other sensors like
LED lights and light-sensitive photodiodes can be used to measure
heart rate, also to understand blood oxygenation levels. The GSM
and cellular capabilities of today’s smartwatches can be leveraged
to collect collect voice samples to be used to extract vocal markers
that can serve as a prognostic value for neurological disorders and
also extract information about the size and reciprocity of a person’s
social network. This can also serve as prognostic value for neuro-
logical and psychological disorders. Futures sensors may include
measurements of blood pressure, galvanic skin response for stress,
air pollution, glucose, and gait abnormalities.

We developed the Real-time Online Assessment and Mobility
Monitor (ROAMM) platform in 2019 to facilitate the movement to-
wards a connected system of mobile computing and wearable sens-
ing specifically designed for publicly available smartwatches [7]. In
this paper, we describe a significantly extended version of ROAMM
architecture that uses “campaigns” to customize the interface to
control text and on-board sensors of brands of smartwatches across
many studies in a secure environment. For the rest of this paper, a
campaign is defined as any study with predefined objectives. This
approach will aid in the more rapid adoption of smartwatches in
both clinical care and research settings to take advantage of the
large and growing consumer base for these devices. Our work has
the following innovations:

(1) Concurrent execution of multiple patient studies, each of
which consists of variable patient-reported outcomes and
mental health-related patient responses.

(2) Definition of multiple patient-reported outcomes for each
campaign and corresponding responses and the frequency
at which each of the outcomes needs to be collected.

(3) Collecting physical and sensor-monitored information on
the watch at variable frequencies to optimize battery life.

(4) Evaluation of mental health using standard cognitive tests.
These tests require determination of response accuracy as
well as response time on the smartwatch.

The system is built using a cloud architecture and provides user
interfaces for a study coordinator to build campaigns, manage smart-
watches that are part of the campaign, and securely collect and
analyze data collected from the campaign.

The ROAMMplatform facilitates movement towards a connected
system of computing and sensing components. While the use of
wearable technology is certainly not new, previous work has been
on simple “data loggers” that don’t offer connectivity or graphical in-
terfaces in a single package. Our approach is based on the “Internet
of Things” that can provide increasingly more detailed metadata on
mobility, patient-reported outcomes, cognition, and health events,
while also providing an expansive platform to connect other pe-
ripheral devices that are becoming smart and connected (e.g., blood
pressure devices, refrigerators). Flexible control of the different
interconnected and frequently communicating components can
provide a rich set of applications that can adapt to the environment
dynamically.
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Figure 2: Multiple building blocks that can be configured for a campaign. These building blocks correspond to sensor-based
parameters, definitions of patient-reported outcomes, and cognitive tests. Each of these defines and specify the objectives of
data collection from the smartwatches for a given campaign.

The rest of the paper is outlined as follows. The logical archi-
tecture of the ROAMM platform is presented in section 2, while
implementation details of the platform are detailed in section 3. A
real-world study demonstrating the effectiveness of the ROAMM
platform is presented in section 4. Conclusions are provided in
section 5.

2 ROAMM LOGICAL ARCHITECTURE
The novelty of the ROAMM platform is that it can flexibly sup-
port executing a study that is customized to needs of the study
coordinator (Figure 2). For example, a researcher working on pain-
related outcomes might be interested in collecting accelerometry
data along with pain-related patient-reported outcomes. Another
researcher might be interested in studying the life-space mobil-
ity of participants and in collecting GPS data along with activity-
related patient-reported outcomes. This platform allows multiple
campaigns to run concurrently, each under the auspices of a differ-
ent researcher. Each campaign is defined as configuration settings
of the study that is being executed and consists of three building
blocks: sensor-based parameters, definitions of PRO/EMAs, queries
about IHEs, and cognitive tests. Each of these define and specify
the objectives of data collection for all the smartwatches activated
for that campaign. The smartwatch application is programmed to
retrieve the campaign definition (configuration settings) from the
server and adjust its operation accordingly.

Sensor-Based Data Collection: The data from built-in sensors
can be collected at variable sampling rates. The platform enables
the choice of which sensors to activate, their sampling rates, raw
data aggregation interval, etc. A complete list of all the parameters
that can be configured along with their description is provided in
Table 1.

Patient-ReportedOutcomes andEcologicalMomentaryAs-
sessments: A patient-reported outcome (PRO) is used for collect-
ing responses from a patient after reflecting on their overall health,
quality of life, or functional status associated with health care or

Figure 3: Figure showing flow chart of backward span cogni-
tive test. The user is asked to repeat the digits in backward
order, and the test is done for a total of three iterations with
4, 5, and 8 digits, respectively. The voice recording of the user
is stored and sent to the server for voice recognition based
or human evaluation.

treatment [16] . PROs tend to be a reflection of a static trait, e.g. on
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Table 1: List of watch configuration parameters that can be
configured for collecting sensor data

Parameter Description Value

RECEIVE CONFIG
FROM SERVER

When true the watch
receives configura-
tion from server

True/False

SAVE LOCALLY When true stores data
locally in the watch

True/False

SEND TO SERVER When true exports
data to server

True/False

RAW MODE When true exports
raw data to server

True/False

VARIABLE CON-
STRUCTION RATE

The interval at which
raw data are aggre-
gated to construct fea-
tures

Numeric in seconds

DEFAULT AC-
CELEROMETER

When true collects ac-
celerometer data

True/False

DEFAULT STEP When true monitors
step count

True/False

DEFAULT HEART-
RATE

When true monitors
heart rate

True/False

DEFAULT GYRO When true collects gy-
roscope data

True/False

DEFAULT BATTERY When true collects
battery information

True/False

ACCELEROMETER
RATE

Sampling rate at
which accelerometer
data are collected

Numeric in Hz

GYRO RATE Sampling rate at
which gyroscope data
are collected

Numeric in Hz

GPS RATE Sampling rate at
which GPS data are
collected

Numeric in Hz

STEP RATE Sampling rate at
which step count is
monitored

Numeric in Hz

SEND DATA INTER-
VAL

The rate at which data
are exported to server
from 8:00 AM to 8:00
PM

Numeric in seconds

SEND DATA INTER-
VAL NIGHT

The rate at which data
are exported to server
after 8:00 PM

Numeric in seconds

REMINDER INTER-
VAL

The time interval af-
ter which participant
is notified if a prompt
is missed

Numeric in seconds

APP START TIME Time to start the app Time in 24-hr format
APP END TIME Time to stop the app Time in 24-hr format

average how much difficulty do you have climbing stairs. An eco-
logical momentary assessment (EMA) differs by asking questions
about current experiences or symptoms that represent transient
states, e.g. current pain level. We use the watch to elicit different
PROs and EMAs from the participant. The platform flexibly allows
the study manager to configure the PRO/EMA content remotely

Table 2: List of configurable parameters corresponding to
patient-reported outcomes or ecological momentary assess-
ments

Parameter Description Value Constraints
Question A short form

of question to
be displayed
on watch

String Length of
string should
be less than
17 characters

Long ques-
tion

Question to
be displayed

Long string None

MinValue Minimum
value for
the range
question
asked

Numeric Value should
be between -
999 to 999

MaxValue Maximum
value for
the range
question
asked

Numeric Value should
be between -
999 to 999

IncrementBy How much
to increment
with step

Numeric Less than or
equal to 13

DefaultValue Default value
to be selected
when the
question is
asked

Numeric Value should
be between -
999 to 999

Time of day
to display
prompt

List of times
in a day
(24-hr format)
when to
prompt the
question

Timestamp None

Values (for
discrete range
prompt)

The possible
responses
that the
prompt can
have

List of
strings/ints

None

based on the study needs and also add, modify, or delete them as
necessary. Broadly, there are two kinds of PRO/EMAs that can be
defined in the campaign: numeric and discrete. The fundamental
difference is the numeric vs. categorical nature of the outcome
variable. For numeric prompts, participants are asked to provide
ratings on a Likert scale (such as 0-10 range). Whereas, for discrete
prompts, participants are asked to make a selection from categorical
choices — yes, maybe or no. A complete list of all the parameters
that can be configured for the PRO/EMAs is provided in Table 2.
Figure 4 shows examples of requests for Patient reported watches
for Samsung and Apple Smartwatches. In general, the placement of
the question and responses will vary based on the size and shape
of the watch interface.
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Figure 4: Examples of Patient Reported Outcomes in Sam-
sung andApplewatches. The samequestion and correspond-
ing responses may appear slightly differently based on the
watch interface, aspect ratio and other constraints

Mental Health & Cognitive Tests: Changes in cognitive pro-
cessing speed/reaction time and executive functioning are impli-
cated in many mental health and normal aging (non-demented)
failures of everyday functioning. Falls, motor vehicle crashes, im-
paired decision making have all been associated with slowing and
reduced inhibition. Test performance can be used to identify both
daily lability in cognitive functioning, and also when individuals
are on a decline trajectory that may be a sentinel for impending
IHEs. The ROAMM platform currently supports tests of executive
function and motor speed. These tests are established and well-
validated, but are traditionally done on paper or with a computer
screen. ROAMM miniaturizes the test for a smartwatch interface
and uses text and audio to aid self-administration and has the fol-
lowing features:

(1) No-Go for Executive Function: When participants see a par-
ticular symbol, e.g., a square or triangle, they must inhibit
their response to press a button or tap the screen. When they
see any other symbol, they should press a button as quickly
as possible. Scores include reaction time to critical letters
and accuracy reaction to inhibition trials.

(2) Digit Span for Working Memory: In forward span, partici-
pants see a series of digits (4, 3, 2, 7) and are asked to repeat
them. In the backward span, participants are asked to repeat
backward (i.e., 7, 2, 3, 4). In both tests, several trials are given
with increasing span lengths, either 4, 5, or 8 digits. Audio is
recorded and stored for manual grading or converted to text
with voice recognition. The maximum digit length correctly
remembered and the ratio of correct to incorrect responses
across all trials are also recorded.

(3) Reaction Time: After a warning (fixation cross), a symbol
appears on the screen. Participants are asked to press a side
button or screen as quickly as possible when they see the
symbol. Three blocks of 10 to 100 trials are completed. Each
trial has a different inter-stimulus interval, ranging from 250
to 2000 ms. The reaction time is calculated as the time of
screen press subtracted from the time of symbol presenta-
tion.

Implementation of such tests is based on developing a flow chart
(e.g, Figure 3) and then implementing this flowchart on the smart-
watch. The overall process interactively collects both responses
and response times.

3 PLATFORM IMPLEMENTATION
We have developed a robust and scalable system that is event driven
and leverages a cloud-based architecture. Figure 5 shows the overall
architecture of the ROAMM platform. The main components of the
platform are as follows:

• Smartwatch application: This is used for data collection and
transmission and is customized for Samsung and Apple de-
velopment platforms.

• Server: A cloud-based computing server manages and con-
figures watches, provides data storage and campaign man-
agement.

• Web-based user interface: This is used for managing the
watches and configuring them; supporting administrative
functions for the study coordinator, including registering
research participants, assigning watches to them, data col-
lection on/off, and visualizing data.

We provided details of each of these components in the following.

3.1 Watch Application
The application is designed to support continuous remote data
collection and transmission. The application is equipped to

(1) Collect different sensor data with different data structures
and resolutions (accelerometer, gyroscope, GPS, heart rate,
UV exposure, etc.) then aggregate them as necessary

(2) Interact with the user to elicit PRO/EMAs. These are ob-
tained by prompting the user with questions about prede-
fined outcomes by providing suitable interactivity, including
the potential for the user to make changes in their responses.

(3) Execute cognitive tests and collect information about re-
sponse time etc. and send it back to the server.

Overall, the application requests the server to receive configura-
tion parameters (campaign) and adjusts its utilization accordingly.
The configuration received from the server is used to adjust different
parameters of the data collection. These parameters include which
sensor data to turn on/off, adjusting data collection frequencies, raw
data aggregation intervals, selecting data features to summarize
from raw data (mean vector magnitude), defining patient reported
outcomes of interest and selecting cognitive tests.

3.2 Server
The server acts as the backbone for the whole platform. It supports
many functionalities, including interacting with multiple watches
concurrently in the field, configuring and receiving data and storing
them a centralized database, managing authentication mechanisms,
maintaining data privacy between different campaigns, and also
supporting the functionality of the Web-user interface.

We now describe different software packages that are used for
developing the above functionality using a cloud-based architecture.
The main advantages of using a cloud-based architecture are that it
provides flexibility, adaptation to changing resource requirements,
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Figure 5: Figure showing the high level architecture of ROAMM platform. The campaign manager can define the campaign
by provide campaign configuration information and list of watches that are part of the campaign. Users directly interact with
the watches. The server acts as the backbone for the whole platform. Requests from both the user interface and smartwatch
are routed to corresponding microservices via API gateway.

and high availability and security. We use Amazon Web Services
(AWS) for our implementation (although this can be easily ported
to other cloud systems):

• ROAMM ServerWe use the AWS Lambda, serverless compute
and event-driven programming platform for this purpose.
It can be used to directly run code snippets in the program-
ming language of our choice: Node.js, Python, Java, etc. The
main advantages of using Lambda are that it scales with
usage, has built-in fault tolerance, and there is no need to
manage or provision any servers. Lambda is used for creat-
ing new campaigns and managing configuration for each
watch with the web-user interface and managing and re-
ceiving data from multiple watches simultaneously. Lambda
also notifies the watches when a change of configuration is
requested by the end user, manages participants and their
assigned watches, data visualization, downloading data, and
maintaining privacy between different campaigns.

• Watch Communication: The AWS API gateway acts as a
bridge between the external world and Amazon resources.
It acts as a unified API front end for multiple microservices
and for all communications to and from the watches. It is
used for creating, deploying, and managing a REST applica-
tion programming interface (API) to expose back end HTTP
endpoints. We use this layer instead of directly communi-
cating with the corresponding service because it provides a
smartwatch agnostic endpoint, i.e., different watches (Sam-
sung, Apple, etc.) can be easily integrated into the ROAMM
platform.

• Storage:We use a relational database RDS for this purpose.
RDS is Amazon’s fully managed fault-tolerant, scalable rela-
tional database service. Unstructured infromation is stored
in DynamoDB. The data is stored after suitable encryption.

Figure 6: The data storage pipeline used by our system.
The collected data from smart watches are stored in Ama-
zon RDS relational tables and routed through API gateway.
Other information, such as participant details and start and
end dates of the study, is also stored in relational tables. Un-
structured data such as campaign information is stored in
Dynamo DB.

3.3 Web-Based User Interface
A web-based user interface is designed to provide interaction with
watches, supporting administrative functions for the study co-
ordinator (including registering research participants), assigning
watches to them, toggling on/off data collection, and visualizing
data. The user interface allows study coordinators to design a cam-
paign of their choice. Different configuration options corresponding
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Figure 7: Figure showing a screenshot of the user interface
for creating numeric prompts. Different parameters like the
question to display onwatch, numeric range of the response,
and list of times when to prompt the question can be config-
ured.

to the campaign (PROs, cognitive tests, sensor data) can be defined
in the campaign creation interface.

Figures 7 and 8 show snapshots of this user interface. It is built
using Angular, a component-based architecture, which enables the
reuse of components and elements across the application. Also,
the use of services in Angular assists in sharing the data across
components with similar functionality. Themaps that are embedded
in the application are built using leaflet.js, a JavaScript library that
provides interactive maps.

4 EXAMPLE CAMPAIGN
In this section, we demonstrate the effectiveness of the ROAMM
platform in examining the temporal association between ecological
momentary assessments (EMAs) of pain with continuous mobility
tracking via the Global Positioning System (GPS) for life-space mo-
bility ascertainment in older adults suffering from knee osteoarthri-
tis. Mobility within the perspective of life-space can be described
as the habitual movement of individuals [1, 11, 15]. Pain can ad-
versely affect older adults’ life-space mobility. However, capturing
pain is an intricate endeavor due to its variability, which makes
the traditional pain surveys that are based on memory recollection
unsuitable.

Utilizing EMAs allows recording pain experiences throughout
the day and in the individuals’ natural environments. We devel-
oped a campaign using ROAMM for this purpose. We enrolled
19 older adults (73.1 ± 4.8 years old) with symptomatic knee os-
teoarthritis [10]. EMA of pain was evaluated using a valid and
reliable numerical rating scale: an 11-point box scale (BS-11) of
pain intensity ranging from 0 (no pain) to 10 (worst possible pain)

Figure 8: A screenshot of the user interface for configuring
sensor-based settings. Different sensors can be configured to
be turned on and off based on study requirements. The fre-
quency of data collection can also be modified (not shown).

Figure 9: Figure showing a screenshot of theWeb-user inter-
face for visualizing numeric prompts data. The data from
different prompts as defined in the campaign can be graph-
ically visualized.

[3, 6]. Prompts were scheduled at random times within three prede-
fined periods (morning: 8 am – 12 pm), (afternoon: 12 – 4 pm), and
(evening: 4 – 8 pm). GPS coordinates were captured continuously
every 15 minutes. Then, ten life-space mobility relevant features
were decomposed into the following four categories:

• Excursion features include three sub features: size, span, and
total distance. The excursion size reflects the distance of the
furthest coordinate away from home, while the excursion
span reflects the maximum distance between any two coor-
dinates away from home. Lastly, the total distance reflects
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Figure 10: An ellipse encompassing all the GPS coordinates
for a single participant. The dashed line represents the mi-
nor axis and the solid line represents the major axis [10].

the accumulated distance between all GPS coordinated away
from home.

• Ellipsoid features include three sub features: minor axis, ma-
jor axis, and area of the ellipse. These features were extracted
after drawing the smallest ellipse that can encompass all the
GPS coordinates. Figure 10 shows an ellipse for one of the
consented participants.

• Clusters’ features include two sub features: number of clus-
ters and entropy. These features were extracted after clus-
tering nearby coordinates by using the adaptive k-means
algorithm.

• Excursion frequency features include two sub features: fre-
quency of trips and homestay percentage. The latter provides
the fraction of time spent at home.

In order to examine the relationship between pain and life-space
mobility, we fit a two-level random effects model accounting for
participant and day. This analysis was necessary to reveal the vari-
ability of pain within and between persons. We adjusted the model
for age, living alone, and gender as fixed effects.

The participants wore the smartwatch for almost 2 weeks (13.16
±2.94 days) and had an 82% compliance rate for responding to pain
prompts. Additionally, the results showed that there is a negative as-
sociation between pain and most of the life-space mobility features
except for the number of clusters, frequency of trips, and homes-
tay features. Interestingly, the intra-person variability explained
more variance than the inter-person variability. The excursion size
feature showed statistically significant and others excursion span,
total distance, and ellipse major axis trended toward significance
in this small sample. Overall, the level of increased pain intensity
was associated with a 1.9-mile lower excursion size, 1.8-mile lower

excursion span, 3.55-mile lower total distance travelled per day,
12.13-mile2 smaller ellipse area, 0.29-mile lower ellipse minor axis,
and 2.26-mile lower ellipse major axis. An example of life-space
mobility ellipse for one of the participants is shown in Figure 10.
These findings demonstrate ROAMM’s ability to capture clinically
meaningful symptoms that are matched to passively collected eco-
logical data for identify new consequences of symptoms that will
inform future healthcare.

5 CONCLUSIONS
In this paper, we described the ROAMM campaign system that
customizes the interface to control text and on-board sensors of
publicly available smartwatches across many studies in a secure
environment using campaigns. We currently support both Apple
and Samsung smart watches. The system is built using a cloud
architecture and provides user interfaces for a study coordinator
to build campaigns, manage smartwatches that are part of the
campaign, and collect and analyze data collected from the campaign.
We believe that our approach will aid in the more rapid adoption
of smartwatches in both clinical care and research settings to take
advantage of the large and growing consumer base for these devices.

In the future, we expect that there will be non-watch-based
wearable sensors that will communicate with smart-watches using
Bluetooth and related technologies to leverage their wireless and
computation infrastructure. These sensors, such as glucose and
blood pressure monitoring, will further enhance the quality and
quantity of health-related information using smartwatches.

Format text is required for all articles over one page in length,
and is optional for one-page articles (abstracts).
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