Synchronization Strings: Codes for Insertions and Deletions
Approaching the Singleton Bound

BERNHARD HAEUPLER and AMIRBEHSHAD SHAHRASBI, Carnegie Mellon University, USA

We introduce synchronization strings, which provide a novel way to efficiently deal with synchronization
errors, i.e., insertions and deletions. Synchronization errors are strictly more general and much harder to cope
with than more commonly considered Hamming-type errors, i.e., symbol substitutions and erasures. For every
€ > 0, synchronization strings allow us to index a sequence with an 7O size alphabet, such that one can
efficiently transform k synchronization errors into (1 + £¢)k Hamming-type errors. This powerful
new technique has many applications. In this article, we focus on designing insdel codes, i.e., error correcting
block codes (ECCs) for insertion-deletion channels.

While ECCs for both Hamming-type errors and synchronization errors have been intensely studied, the
latter has largely resisted progress. As Mitzenmacher puts it in his 2009 survey [30]: “Channels with synchro-
nization errors...are simply not adequately understood by current theory. Given the near-complete knowledge,
we have for channels with erasures and errors...our lack of understanding about channels with synchronization
errors is truly remarkable.” Indeed, it took until 1999 for the first insdel codes with constant rate, constant
distance, and constant alphabet size to be constructed and only since 2016 are there constructions of con-
stant rate insdel codes for asymptotically large noise rates. Even in the asymptotically large or small noise
regimes, these codes are polynomially far from the optimal rate-distance tradeoff. This makes the understand-
ing of insdel codes up to this work equivalent to what was known for regular ECCs after Forney introduced
concatenated codes in his doctoral thesis 50 years ago.

A straightforward application of our synchronization strings-based indexing method gives a simple black-
box construction that transforms any ECC into an equally efficient insdel code with only a small in-
crease in the alphabet size. This instantly transfers much of the highly developed understanding for regular
ECCs into the realm of insdel codes. Most notably, for the complete noise spectrum, we obtain efficient “near-
MDS” insdel codes, which get arbitrarily close to the optimal rate-distance tradeoff given by the Singleton
bound. In particular, for any § € (0,1) and ¢ > 0, we give a family of insdel codes achieving a rate of 1 -6 — ¢
over a constant-size alphabet that efficiently corrects a § fraction of insertions or deletions.

CCS Concepts: « Mathematics of computing — Coding theory;
Additional Key Words and Phrases: Coding for insertions and deletions, synchronization

ACM Reference format:

Bernhard Haeupler and Amirbehshad Shahrasbi. 2021. Synchronization Strings: Codes for Insertions and
Deletions Approaching the Singleton Bound. 7. ACM 68, 5, Article 36 (September 2021), 39 pages.
https://doi.org/10.1145/3468265

This work is supported in part by NSF Grants No. CCF-1527110, No. CCF-1618280, No. CCF-1814603, No. CCF-1910588,
NSF CAREER Award No. CCF-1750808, a Sloan Research Fellowship, and funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Grant Agreement No. 949272).
Authors’ addresses: B. Haeupler and A. Shahrasbi, Carnegie Mellon University, Computer Science Department, Pittsburgh,
PA, 15203, USA; emails: {haeupler, shahrasbi}@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2021/09-ART36 $15.00

https://doi.org/10.1145/3468265

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

https://doi.org/10.1145/3468265
mailto:permissions@acm.org
https://doi.org/10.1145/3468265

36:2 B. Haeupler and A. Shahrasbi

1 INTRODUCTION

Since the fundamental works of Shannon, Hamming, and others, the field of coding theory has
advanced our understanding of how to efficiently correct symbol substitutions and erasures. The
practical and theoretical impact of error correcting codes on technology and engineering as well
as mathematics, theoretical computer science, and other fields is hard to overestimate. While also
studied intensely since the 1960s, the problem of coding for timing errors such as closely related
insertion and deletion errors, has largely resisted such progress and impact so far. An expert
panel [10] in 1963 concluded: “There has been one glaring hole in [Shannon’s] theory; viz., uncer-
tainties in timing, which I will propose to call time noise, have not been encompassed Our thesis
here today is that the synchronization problem is not a mere engineering detail, but a fundamen-
tal communication problem as basic as detection itself!” However, as noted in a comprehensive
survey [29] in 2010: “Unfortunately, although it has early and often been conjectured that error-
correcting codes capable of correcting timing errors could improve the overall performance of com-
munication systems, they are quite challenging to design, which partly explains why a large collec-
tion of synchronization techniques not based on coding were developed and implemented over the
years.” or as Mitzenmacher puts in his survey [30]: “Channels with synchronization errors, includ-
ing both insertions and deletions as well as more general timing errors, are simply not adequately
understood by current theory. Given the near-complete knowledge we have for channels with era-
sures and errors ...our lack of understanding about channels with synchronization errors is truly
remarkable.” We, too, believe that the current lack of good codes and general understanding of
how to handle synchronization errors is the reason why systems today still spend significant re-
sources and efforts on keeping very tight controls on synchronization while other noise is handled
more efficiently using coding techniques. We are convinced that a better theoretical understand-
ing together with practical code constructions will eventually lead to systems that naturally and
more efficiently use coding techniques to address synchronization and noise issues jointly. In ad-
dition, we feel that better understanding the combinatorial structure underlying (codes for) in-
sertions and deletions will have impact on other parts of mathematics and theoretical computer
science.

This article introduces synchronization strings, a new combinatorial structure that allows ef-
ficient synchronization and indexing of streams under insertions and deletions. Synchronization
strings and our indexing abstraction provide a powerful and novel way to deal with synchroniza-
tion issues. They make progress on the issues raised above and have applications in a large variety
of settings and problems. We already found applications to channel simulations, synchronization
sequences [29], interactive coding schemes [6-9, 18, 25], edit distance tree codes [2], and error
correcting codes for insertion and deletions and suspect there will be many more. This article fo-
cuses on the last application, namely, designing efficient error correcting block codes over large
alphabets for worst-case insertion-deletion channels.

The knowledge on efficient error correcting block codes for insertions and deletions, also
called insdel codes, severely lags behind what is known for codes for Hamming errors. While
Levenshtein [26] introduced and pushed the study of such codes already in the 1960s it took until
1999 for Schulman and Zuckerman [34] to construct the first insdel codes with constant rate, con-
stant distance, and constant alphabet size. Recent works of Guruswami et al. [13, 16] in 2015 and
2016 gave the first constant rate insdel codes for asymptotically large noise rates via list decoding.
These codes are, however, still polynomially far from optimal in their rate or decodable distance,
respectively. In particular, they achieve a rate of Q(e’) for a relative distance of 1 — € or a relative
distance of O(e?) for a rate of 1 — ¢, for asymptotically small € > 0 (see Section 1.5 for a more
detailed discussion of related work).

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:3

This article essentially closes this line of work by designing efficient “near-MDS” insdel codes,
which approach the optimal rate-distance trade-off given by the Singleton bound. We prove that
for any 0 < § < 1 and any constant ¢ > 0, there is an efficient family of insdel codes over a
constant-size alphabet with rate 1 —§ — ¢, which can be uniquely and efficiently decoded from any
¢ fraction of insertions and deletions. The code construction takes polynomial time; and encoding
and decoding can be done in linear and quadratic time, respectively. More formally, let us define
the edit distance of two given strings as the minimum number of insertions and deletions required
to convert one of them to the other one.

THEOREM 1.1. For any ¢ > 0 and § € (0,1) there exists an encoding map Enc : ¥ — =" and
a decoding map Dec : X* — ¥, such that for any m € ¥, if EditDistance(Enc(m), x) < on then
Dec(x) = m. Further, % >1-08—¢, |2| = f(¢), and Enc and Dec are explicit and can be computed
in linear and quadratic time in n.

This code is obtained via a black-box construction that transforms any ECC into an equally
efficient insdel code with only a small increase in the alphabet size. This transformation, which
is a straightforward application of our new synchronization strings-based indexing method, is so
simple that it can be summarized in one sentence:

log ¢!

For any efficient ECC with alphabet bit size =—, attaching to every codeword, symbol
by symbol, a random or suitable pseudo-random string over an alphabet of bit size
log ¢! results in an efficient insdel code with a rate and decodable distance that are

changed by at most ¢.

Far beyond just implying Theorem 1.1, this enables us to instantly transfer much of the highly
developed understanding for regular ECCs into the realm of insdel codes.

Theorem 1.1 is obtained by using the “near-MDS” expander codes of Guruswami and Indyk [12]
as a base ECC. These codes generalize the linear time codes of Spielman [36] and can be encoded
and decoded in linear time. Our simple encoding strategy, as outlined above, introduces essentially
no additional computational complexity during encoding. Our quadratic time decoding algorithm,
however, is slower than the linear time decoding of the base codes from Reference [12] but still
pretty fast. In particular, a quadratic time decoding for an insdel code is generally very good given
that, in contrast to Hamming codes, even computing the distance between the received and the
sent/decoded string is an edit distance computation. Edit distance computations in general do
not run in sub-quadratic time, which is not surprising given the recent SETH-conditional lower
bounds [1]. For the settings of insertion-only and deletion-only errors, we furthermore achieve
analogs of Theorem 1.1 with linear decoding time complexities.

1.1 High-level Overview, Intuition, and Overall Organization

While extremely powerful, the concept and idea behind synchronization strings is easily demon-
strated. In this section, we explain the high-level approach taken and provide intuition for the
formal definitions and proofs to follow. This section also explains the overall organization of the
rest of the article.

1.1.1 Synchronization Errors and Half-errors. Consider a stream of symbols over a large but
constant-size alphabet ¥ in which some constant fraction & of symbols is corrupted. There are
two basic types of corruptions we will consider, Hamming-type errors and synchronization errors.

1Oftentimes in the literature, the edit distance is defined as the minimum number of insertions, deletions, or substitutions
required to convert one string to another. With our definition, however, a single substitution is counted as two operations—a
deletion followed by an insertion at the same position.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:4 B. Haeupler and A. Shahrasbi

Hamming-type errors consist of erasures, that is, a symbol being replaced with a special “?” symbol
indicating the erasure, and symbol substitutions in which a symbol is replaced with any other
symbol in X. In this article, we measure Hamming-type errors in terms of half-errors. The wording
half-error comes from the realization that, when it comes to code distances, erasures are half as bad
as symbol substitution. An erasure is thus counted as one half-error while a symbol substitution
counts as two half-errors (see Section 2 for more details). Synchronization errors consist of deletions,
that is, a symbol being removed without replacement, and insertions, where a new symbol from %
is added anywhere.

It is clear that synchronization errors are strictly more general and harsher than half-
errors. In particular, any symbol substitution, worth two half-errors, can also be achieved via
a deletion followed by an insertion. Any erasure can furthermore be interpreted as a deletion
together with the often very helpful extra information where this deletion took place. This makes
synchronization errors at least as hard as half-errors. The real problem that synchronization errors
bring with them, however, is that they cause sending and receiving parties to become “out of
sync.” This easily changes how received symbols are interpreted and makes designing codes or
other systems tolerant to synchronization errors an inherently difficult and significantly less well
understood problem.

1.1.2 Indexing and Synchronization Strings: Reducing Synchronization Errors to Half-errors.
There is a simple folklore strategy, which we call indexing, that avoids these synchronization prob-
lems: Simply enhance any element with a time stamp or element count. More precisely, consecu-
tively number the elements and attach this position count or index to each element of the stream.
Now, if we only deal with deletions, then it is clear that the position of any deletion is easily iden-
tified via a missing index, thus transforming it into an erasure. Insertions can be handled similarly
by treating any stream index that is received more than once as erased. If both insertions and dele-
tions are allowed, then one might still have elements with a spoofed or substituted value caused
by a deletion of the indexed symbol, which is then replaced by a different symbol with the same
index inserted. This, however, requires two insdel errors. Generally, this trivial indexing strategy
can be seen to successfully transform any k synchronization errors into at most k half-errors.

In many applications, however, this trivial indexing cannot be used, because having to attach
a logn bit? long index description to each element of an n-long stream is prohibitively costly.
Consider, for example, an error correcting code of constant rate R over some potentially large
but nonetheless constant-size alphabet X, which encodes nRlog || bits into n symbols from X.
Increasing X by a factor of n to allow each symbol to carry its logn bit index would destroy
the desirable property of having an alphabet that is independent from the block length n and
would furthermore reduce the rate of the code from R to @)(%), which approaches zero for large
block lengths. For streams of unknown or infinite length such problems become even more pro-
nounced.

This is where synchronization strings come to the rescue. Essentially, synchronization strings
allow one to index every element in an infinite stream using only a constant-size alpha-
bet while achieving an arbitrarily good approximate reduction from synchronization errors to
half-errors. In particular, using synchronization strings k synchronization errors can be trans-
formed into at most (1 + ¢)k half-errors using an alphabet of size independent of the
stream length and, in fact, only polynomial in % Moreover, these synchronization strings have
simple constructions and fast and easy repositioning procedures—i.e., algorithms that guess the
original position of symbols using the indexed synchronization string.

2Throughout this article all logarithms are binary.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:5

Attaching our synchronization strings to the codewords of any efficient error correcting code
that efficiently tolerates the usual symbol substitutions and erasures, transforms any such code
into an efficiently decodable insdel code while only requiring a negligible increase in the alphabet
size. This allows the decades of intense research in coding theory for Hamming-type errors to be
transferred into the much harder and less well-understood insertion-deletion setting.

1.2 Synchronization Strings: Definition, Construction, and Decoding

Next, we briefly motivate and explain how one arrives at the natural definition of these index
sequences over a finite alphabet and what intuition lies behind their efficient constructions and
decoding procedures.

Suppose that a sender has attached the symbols of an index sequence S to elements of a commu-
nication stream and consider the time at which the receiver has received a corrupted sequence of
the first t index descriptors, i.e., a corrupted version of t-long prefix of S. As the receiver tries to
guess or decode the true position of the last received symbol at this time, it should naturally con-
sider all index symbols received so far and find the “most plausible” prefix of S. This suggests that
the prefix of length I of a synchronization string S acts as a codeword for the position ! and one
should think of the set of prefixes of S as a code associated with the synchronization string S. Nat-
urally, one would want such a code to have good distance properties between any two codewords
under some distance measure. While edit distance, i.e., the number of insertions and deletions
needed to transform one string into another seems like the right notion of distance for insdel er-
rors in general, the prefix nature of the codes under consideration will guarantee that codewords
for indices [and I’ > [will have edit distance exactly I’ — [. This implies that even two very
long codewords only have a tiny edit distance. On the one hand, this precludes synchronization
codes with a large relative edit distance between its codewords. On the other hand, one should
see this phenomenon as simply capturing the fact that at any time a simple insertion of an incor-
rect symbol carrying the correct next index symbol will lead to an unavoidable decoding error.
Given this natural and unavoidable sensitivity of synchronization codes to recent errors, it makes
sense to, instead, use a distance measure that captures the recent density of errors. In this spirit,
we suggest the definition of a new (to our knowledge) string distance measure, which we call rel-
ative suffix distance, which intuitively measures the worst fraction of insdel errors to transform
suffixes, i.e., recently sent parts of two strings, into each other. This natural measure, in contrast
to a similar measure defined in Reference [2], turns out to induce a metric space on any set of
strings.

With these natural definitions for an induced set of codewords and a natural distance metric
associated with any such set, the next task is to design a string S for which the set of code-
words has as large of a minimum pairwise distance as possible. When looking for (infinite) se-
quences that induce such a set of codewords, and thus can be successfully used as index strings,
it becomes apparent that one is looking for highly irregular and non-self-similar strings over a
fixed alphabet ¥. It turns out that the correct definition to capture these desired properties, which
we call the e-synchronization property, states that any two neighboring intervals of S with to-
tal length [should require at least (1 — ¢)! insertions and deletions to transform to one another,
where ¢ > 0. A simple calculation shows that this clean property also implies a large minimum
relative suffix distance between any two codewords. Not surprisingly, random strings essentially
satisfy this e-synchronization property, except for local imperfections of self-similarity, such as,
symbols repeated twice in a row, which would naturally occur in random sequences about every
|2| positions. This allows us to use the probabilistic method and the general Lovasz local lemma
to prove the existence of e-synchronization strings. This also leads to an efficient randomized
construction.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:6 B. Haeupler and A. Shahrasbi

Finally, decoding any string to the closest codeword, i.e., the prefix of the synchronization string
S with the smallest relative suffix distance, can be easily done in polynomial time, because the size
of the set of codewords associated with the synchronization string S is linear and not exponential
in n and suffix distance computations (to each codeword individually) can be done in polynomial
time as they essentially consist of edit distance computations between suffixes of the two input
strings.

1.3 More Sophisticated Decoding Procedures

All this provides an indexing solution that transforms any k synchronization errors into at most
(5 + &)k half-errors. This already leads to insdel codes that achieve a rate approaching 1 — 56

for any ¢ fraction of insdel errors with § < é While this is already a drastic improvement over

the previously best 1 — O(V§) rate codes from Reference [13], which worked only for sufficiently
small &, it is a far less strong result than the near-MDS codes we promised in Theorem 1.1 for every
d€(0,1).

We were able to slightly improve upon the above strategy by considering an alternative to the
relative suffix distance measure, which we call relative suffix pseudo-distance (RSPD). RSPD
was introduced in Reference [2] and, while neither being symmetric nor satisfying the triangle
inequality, can act as a pseudo-distance in the minimum-distance decoder. For any set of k = k;+ky
insdel errors consisting of k; insertions and k; deletions, this improved indexing solution leads to
no more than (1 + €)(3k; + kg) half-errors. This already implies near-MDS codes for deletion-
only setting but still falls short for general insdel errors. We leave open the question whether an
improved pseudo-distance definition can achieve an indexing solution with (1 + ¢)k half-errors.

To achieve our main theorem, we developed a different strategy. Fortunately, it turned out that
achieving a better indexing solution and the desired insdel codes does not require any changes to
the definition of synchronization strings, the indexing approach itself, or the encoding scheme but
solely required a very different decoding strategy. In particular, instead of guessing the position
of symbols in a streaming manner, we consider more global, offline repositioning algorithms. We
provide several such repositioning algorithms in Section 6. In particular, we give a simple global
repositioning algorithm, for which the number of misdecodings goes to zero as the parameter ¢
of the utilized e-synchronization string goes to zero, irrespective of how many insdel errors are
applied.

Our global repositioning algorithms crucially build on another key-property that we prove holds
for any e-synchronization string S, namely, that there is no monotone matching between S and
itself, which mismatches more than an e-fraction of indices. Besides being used in our proofs,
considering this e-self-matching property has another advantage. We show that this property is
achieved easier than the full e-synchronization property and that indeed a random string satisfies
it with good probability. This means that, in the context of error correcting codes, one can even use
a simple uniformly random string as a “synchronization string.” Last, we show that even an n~0(\)-
approximate O(lolgo(%)-wise independent random string satisfies the desired e-self-matching prop-
erty that, using the celebrated small sample space constructions from Reference [32] also leads to
a deterministic polynomial time construction for the index string.

Last, we provide simpler and faster global repositioning algorithms for the setting of deletion-
only and insertion-only errors. These algorithms are essentially greedy algorithms that run in
linear time. They furthermore guarantee that their position guessing is error-free, i.e., they only
output “T don’t know” for some indices but never produce an incorrectly decoded index. Such
decoding schemes have the advantage that one can use them in conjunction with error correcting
codes that efficiently recover from erasures (and not necessarily from symbol substitutions).

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:7

1.4 Organization of the Article

The organization of this article closely follows the flow of the high-level description above. We
start by giving more details on related work in Section 1.5 and introduce notation used in the ar-
ticle in Section 2 together with a formal introduction of the two different error types as well as
(efficient) error correcting codes and insdel codes. In Section 3, we formalize the indexing prob-
lem and provide solutions to it. Section 4 shows how any solution to the indexing problem can be
used to transform any regular error correcting codes into an insdel code. Section 5 introduces the
relative suffix distance and e-synchronization strings, proves the existence of e-synchronization
strings and provides an efficient construction. Section 5.2 shows that the minimum suffix distance
decoder is efficient and leads to a good indexing solution. We elaborate on the connection between
e-synchronization strings and the e-self-matching property in Section 6.1, introduce an efficient
deterministic construction of e-self-matching strings in Section 6.2, and provide our improved
repositioning algorithms in the remainder of Section 6.

1.5 Related Work

Shannon was the first to systematically study reliable communication. He introduced random error
channels, defined information quantities, and gave probabilistic existence proofs of good codes.
Hamming was the first to look at worst-case errors and code distances as introduced above. Simple
counting arguments on the volume of balls around codewords given in the 1950s by Hamming and
Gilbert-Varshamov produce simple bounds on the rate of g-ary codes with relative distance §. In
particular, they show the existence of codes with relative distance § and rate at least 1-H,(5) where

Hq (X') _ XlOg(q _ 1) _ xlogx—(io—x)log(l—x)
d < 1and q = w(1/95) there exists codes with distance § and rate approaching 1 — §. Concatenated
codes and the generalized minimum distance decoding procedure introduced by Forney in 1966
led to the first codes that could recover from constant error fractions § € (0, 1), while having
polynomial time encoding and decoding procedures. The rate achieved by concatenated codes
for large alphabets with sufficiently small distance § comes out to be 1 — O(V§). However, for
§ sufficiently close to one, one can achieve a constant rate of O(52). Algebraic geometry codes
suggested by Goppa in 1975 later led to error correcting codes that, for every ¢ > 0, achieve the
optimal rate of 1—§ — ¢ with an alphabet-size polynomial in ¢ while being able to efficiently correct
from any § fraction of half-errors [38].

While this answered the most basic questions, research since then has developed a tremendously
powerful toolbox and selection of explicit codes. It attests to the importance of error correcting
codes that over the last several decades this research direction has developed into the incredibly
active field of coding theory with hundreds of researchers studying and developing better codes.
A small and highly incomplete subset of important innovations include rateless codes, such as,
LT codes [28], which do not require to fix a desired distance at the time of encoding, explicit
expander codes [12, 36] that allow linear time encoding and decoding, polar codes [15, 17] that
can approach Shannon’s capacity polynomially fast, network codes [27] that allow intermediate
nodes in a network to recombine codewords, and efficiently list decodable codes [14] that allow to
list-decode codes of relative distance § up to a fraction of about § symbol substitutions.

While error correcting codes for insertions and deletions have also been intensely studied, our
understanding of them is much less well developed. We refer to the 2002 survey by Sloan [35] on
single-deletion codes, the 2009 survey by Mitzenmacher [30] on codes for random deletions, and
the most general 2010 survey by Mercier et al. [29] for the extensive work done around codes for
synchronization errors and only mention the results most closely related to Theorem 1.1 here: Ins-
del codes were first considered by Levenshtein [26], and since then many bounds and constructions

is the g-ary entropy function. This means that for any

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:8 B. Haeupler and A. Shahrasbi

for such codes have been given. However, while essentially the same volume and sphere packing
arguments as for regular codes show that there exist families of insdel codes capable of correct-
ing a fraction & of insdel errors with rate approaching 1 — §, no efficient constructions anywhere
close to this rate-distance tradeoff are known. Even the construction of efficient insdel codes over
a constant alphabet with any (tiny) constant relative distance and any (tiny) constant rate had to
wait until Schulman and Zuckerman gave the first such code in 1999 [34]. Over the couple of years
preceding this work, Guruswami et al. provided new codes improving over this state-of-the-art in
the asymptotically small or large noise regimes by giving the first codes that achieve a constant
rate for noise rates going to one and codes that provide a rate going to one for an asymptotically
small noise rate. In particular, Reference [16] gave the first efficient codes over fixed alphabets to
correct a deletion fraction approaching 1, as well as efficient binary codes to correct a small con-
stant fraction of deletions with rate approaching 1. These codes could, however, only be efficiently
decoded for deletions and not insertions. A follow-up work gave new and improved codes with
similar rate-distance tradeoffs, which can be efficiently decoded from insertions and deletions [13].
In particular, these codes achieve a rate of Q((1—6)°) and 1— O(V5), while being able to efficiently
recover from a § fraction of insertions and deletions in high-noise and high-rate regimes, respec-
tively. These works put the current state of the art for error correcting codes for insertions and
deletions pretty much equal to what was known for regular error correcting codes 50 years ago,
after Forney’s 1965 doctoral thesis.

2 DEFINITIONS AND PRELIMINARIES

In this section, we provide the notation and definitions that we will use throughout the rest of the
article.

2.1 String Notation and Edit Distance

String Notation. Let S € " and S’ € 3" be two strings over alphabet 3. We define S-S’ € """
to be their concatenation. For any positive integer k, S* is defined as k copies of S concatenated
together and for integers 1 < i < j < n, we denote the substring of S starting from the ith index
through and including the jth one by S[i, j]. Such a substring is also called a factor of S. Further, for
i < 1, we define S[i, j] = L7""1-S[1, j] where L is a special symbol not included in ¥. We denote the
substring from the ith index through, but not including, the jth index by S[i, j). Substrings S(i, j]
and S(i, j) are similarly defined. Finally, S[i] denotes the ith symbol of string S and |S| denotes
the length of S. Occasionally, the alphabets we use are the cross-product of several alphabets, i.e.,
¥ =23 X X2, If T is a string over %, then we write T[i] = (ay,...,a,) where a; € ;. We
define the symbol-wise concatenation of two strings S; € X1 and S, € X as 51 X S, € (X1 X)"
where (S; X S3)[i] = (S1[i], Sz[i]) forall 1 < i < n.

Edit Distance. Throughout this work, we rely on the well-known edit distance metric defined as
follows.

Definition 2.1 (Edit Distance). The edit distance between two strings ¢, ¢’ € £* is the minimum
number of insertions and deletions required to transform c into ¢’ and is denoted by ED(c, ¢’).

It is easy to see that edit distance is a metric on any set of strings and in particular is symmetric
and satisfies the triangle inequality property. Furthermore, ED (c,¢’) = |c| + |¢/| =2 - LCS (c, ¢’),
where LCS (c, ¢’) is the size of the longest common subsequence of ¢ and ¢’.

We also use the string matching notation from Reference [2]:

Definition 2.2 (String Matching). Suppose that ¢ and ¢’ are two strings in £* and * is a symbol
not included in 3. Further, assume that there exist two strings 7; and 7 in (3 U {x})" such that

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:9

|71] = |12l, del (z1) = ¢, del(r2) = ¢/, and 71 [i] ~ »[i] for all i € {1,...,|r;]}. Here, del is a function
that deletes every = in the input string and a ~ b if a = b or one of a or b is *. Then, we say that
7 = (11, 72) is a string matching between ¢ and ¢’ (denoted by 7 : ¢ — ¢’). We furthermore denote
with sc (z;) the number of *’s in 7;.

Note that the edit distance between strings ¢,c¢’ € X* is exactly equal to min;..,o{sc(r;) +
sc(2)}

2.2 Error Correcting Codes

Next, we give a quick summary of the standard definitions and formalism around error correcting
codes. This is mainly for completeness, and we remark that readers already familiar with basic
notions of error correcting codes might want to skip this part.

Codes, Distance, Rate, and Half-Errors. An error correcting code C is an injective function that
takes an input string s € (£’)" over alphabet 3’ of length n’ and generates a codeword C(s) € ="
of length n over alphabet X. The length n of a codeword is also called the block length. The two most
important parameters of a code are its distance A and its rate R. The rate R = "r; izg Ell
what fraction of bits in the codewords produced by C carries non-redundant information about the
input. The code distance A(C) = ming ¢ A(C(s),C(s")) is simply the minimum Hamming distance
between any two codewords. The relative distance §(C) = ¥ measures what fraction of output
symbols need to be substitutions to transform one codeword into another.

It is easy to see that if a sender sends out a codeword C(s) of code C with relative distance 9,
a receiver can uniquely recover s if she receives a codeword in which less than a § fraction of
symbols are affected by an erasure, i.e., replaced by a special “?” symbol. Similarly, the receiver can
uniquely recover the input s if less than §/2 symbol substitutions—in which a symbol is replaced by
any other symbol from X—occurred. More generally, it is easy to see that the receiver can recover
from any combination of k. erasures and ks substitutions as long as k. + 2ks; < dn. This motivates
defining half-errors to incorporate both erasures and symbol substitutions where an erasure is
counted as a single half-error and a symbol substitution is counted as two half-errors. In summary,
any code of distance can tolerate any error pattern of less than dn half-errors.

We remark that in addition to studying codes with decoding guarantees for worst-case error
pattern as above, one can also look at more benign error models that assume a distribution over
error patterns, such as errors occurring independently at random. In such a setting, one looks for
codes that allow unique recovery for typical error patterns, i.e., one wants to recover the input
with probability tending to 1 rapidly as the block length n grows. While synchronization strings
might have applications for such codes as well, this article focuses exclusively on codes with good
distance guarantees that tolerate an arbitrary (worst-case) error pattern.

measures

Synchronization Errors. In addition to half-errors, we study synchronization errors that consist
of deletions, that is, a symbol being removed without replacement, and insertions, where a new
symbol from ¥ is added anywhere. It is clear that synchronization errors are strictly harsher
and more general than half-errors (see Section 1.1.1). The above formalism of codes, rate, and
distance works equally well for synchronization errors if one replaces the Hamming distance with
edit distance. Instead of measuring the number of symbol substitutions required to transform one
string into another, edit distance measures the minimum number of insertions and deletions to do
so. An insertion-deletion error correcting code, or insdel code for short, of relative distance § is
a set of codewords for which at least 20n insertions and deletions are needed to transform any
codeword into another. Such a code can correct any combination of less than dn insertions and
deletions. We remark that it is possible for two codewords of length n to have edit distance up to 2n.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:10 B. Haeupler and A. Shahrasbi

Therefore, here we defined relative distance é as the minimum edit distance of the code divided
by 2n. Formally, an insdel code C is an injective function that takes an input string s € (')
over alphabet 3’ of length n” and generates a codeword C(s) € " of length n over alphabet 3. The

codeword length n is called the codes’ block length. The rate of the code R is defined as R = ",; igg E/II .
The code distance A(C) = min, ¢ ED(C(s), C(s”)) where ED indicates the edit distance function

and the relative distance §(C) = %S).

Efficient Codes. In addition to codes with a good minimum distance, one furthermore wants effi-
cient algorithms for the encoding and error-correction tasks associated with the code. Throughout
this article, we say a code is efficient if it has encoding and decoding algorithms running in time
polynomial in terms of the block length. While it is often not hard to show that random codes
exhibit a good rate and distance, designing codes that can be decoded efficiently is much harder.
We remark that most codes that can efficiently correct for symbol substitutions are also efficient
for half-errors. For insdel codes the situation is slightly different. While it remains true that any
code that can uniquely be decoded from any §(C) fraction of deletions can also be decoded from
the same fraction of insertions and deletions [26] doing so efficiently is often much easier for the
deletion-only setting than the fully general insdel setting.

3 THE INDEXING PROBLEM

In this section, we formally define the indexing problem. In a nutshell, this problem is that of
sending a suitably chosen string S of length n over an insertion-deletion channel such that the
receiver will be able to figure out the original position of most of the symbols he receives cor-
rectly. This problem can be trivially solved by sending the string S = 1, 2,. .., n over the alphabet
Y = {1,...,n} of size n. This way, the original position of every received symbol is equal to its
value. We will provide an interesting solution to the indexing problem that does almost as well
while using a finite-size alphabet. While very intuitive and simple, the formalization of this prob-
lem and its solutions enables an easy use in many applications.

To set up an (n, §)-indexing problem, we fix n, i.e., the number of symbols that are being sent,
and the maximum fraction § of symbols that can be inserted or deleted. We further call the string
S the index string. Last, we describe the effect of the nd worst-case insertions and deletions that
transform S into the related string S; in terms of a string matching 7. In particular, r = (11, 1) is
the string matching from S to S; such that del(z;) = S, del(r;) = S;, and for every k,

(S[i], =) if S[i] is deleted,
(r1[k], 2[K]) = {(S[i], S:[j]) if S[i] is delivered as S, [j],
(%, S:[J]) if S;[j] is inserted,

where i = |del(7;[1,k])| and j = |del(z2[1, k])|.

Definition 3.1 ((n, §)-Indexing Solution). The pair (S, Ds) consisting of the index string S € X"
and the repositioning algorithm Dy is called a solution for (n, §)-indexing problem over alphabet
> if, for any set of nd insertions and deletions represented by 7, which alters S to a string S;,
the algorithm Ds(S;) outputs, for every symbol in S;, either L or an index between 1 and n, i.e.,
Ds : 351 5 (1,...,n}U J_)lsf‘.

The L symbol here represents an “I don’t know” response by the repositioning algorithm while
a numerical output j for the ith symbol of S; should be interpreted as the algorithm guessing
that S, [i] was at position j in string S prior to going through the insertion-deletion channel. We
frequently refer to this procedure of guessing the position of the ith index symbol as decoding index
i. One seeks algorithms that correctly decode as many indexes as possible. Naturally, one can only

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:11

correctly decode index symbols that were successfully transmitted. We give formal definitions of
both notions here.

Definition 3.2 (Correctly Decoded Index Symbol). An (n,§)-indexing solution (S, Ds) decodes
index j correctly under 7 if Dg(S;) outputs i for the jth received symbol and there exists a k such

that i = |del(r([1,k])|,j = |del(z2[1, k])|, 71 [k] = S[i], and r»[k] = S;[j].
We remark that this definition counts any L response as an incorrect decoding.

Definition 3.3 (Successfully Transmitted Symbol). For string S;, which was derived from an index
string S via 7 = (11, 72), we call the jth symbol S, [j] successfully transmitted if it stems from a
symbol coming from S, i.e., if there exists a k such that |del(z;[1, k])| = j and 71 [k] = r2[k].

We now propose a way to measure the quality of an (n, §)-indexing solution by counting the
maximum number of misdecoded symbols among those that were successfully transmitted. Note
that the trivial indexing strategy with S = 1,...,n, which outputs for each symbol the symbol
itself has no misdecodings. One can therefore also interpret our definition of quality as capturing
how far from this ideal solution a given indexing solution is (stemming likely from the smaller
alphabet, which is used for S).

Definition 3.4 (Misdecodings of an (n, §)-Indexing Solution). We say that an (n, §)-indexing solu-
tion has at most k misdecodings if for any 7 corresponding to at most nd insertions and deletions,
the number of successfully transmitted index symbols that are incorrectly decoded is at most k.

Now, we introduce two further useful properties that an (n, §)-indexing solution might have.

Definition 3.5 (Error-free Solution). We call (S, Ds) an error-free (n, §)-indexing solution if for
any error pattern 7, and for any element of S;, the repositioning algorithm Dg either outputs L
or correctly decodes that element. In other words, the repositioning algorithm never makes an
incorrect guess, even for symbols that are inserted by the channel—it may just output L for some
of the successfully transmitted symbols.

It is noteworthy that error-free solutions are essentially only obtainable when dealing with
insertion-only or deletion-only settings. In both cases, the trivial solution with S = 1,...,n is
error-free. We will introduce indexing solutions that provide this nice property, even over a smaller
alphabet, and show how being error-free can be useful in the context of error correcting codes.

Last, another very useful property of some (n, §)-indexing solutions is that their decoding pro-
cess operates in a streaming manner, i.e., the repositioning algorithm guesses the position of S; [;]
independently of S [j'] where j* > j. While this property is not particularly useful for the error cor-
recting block code application put forward in this article, it is an extremely important and strong
property that is crucial in several applications we know of, such as rateless error correcting codes,
channel simulations, interactive coding, edit distance tree codes, and other settings.

Definition 3.6 (Streaming Solutions). We call (S, Ds) a streaming solution if the output of Ds for
the ith element of the received string S; only depends on S;[1,i].

Again, the trivial solution for (n, §)-indexing problem over an alphabet of size n with zero mis-
decodings can be made streaming by outputting for every received symbols the received symbol
itself as the guessed position. This solution is also error-free for the deletion-only setting but not
error-free for the insertion-only setting. In fact, it is easy to show that an algorithm cannot be both
streaming and error-free in any setting which allows insertions.

Overall, the important characteristics of an (n, §)-indexing solution are (a) its alphabet size |2,
(b) the number of misdecodings it might bring about, (c) time complexity of the repositioning

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:12 B. Haeupler and A. Shahrasbi

Table 1. Properties and Quality of (n, §)-indexing Solutions with S Being
an e-synchronization String

H Algorithm | Type Misdecodings Error-free Streaming Dgs(-) Complexity H

Section 5.2 | ins/del (2+¢)-nd v O(n%)
Section 6.3 | ins/del 3ve-n 0 (nz/\/Z)
Section 6.4 | del e-nd v O(n)
Section 6.5 ins (14¢)-nd v O(n)
Section 6.5 del €-nd v O(n)
Section 6.7 | ins/del (1+¢)-nd v O(n%)

The alphabet size of string S is e~C(),

algorithm Dy, (d) time complexity of constructing the index string S (preprocessing), (e) whether
the algorithm works for the insertion-only, the deletion-only or the full insdel setting, and (f)
whether the algorithm satisfies the streaming or error-free properties. Table 1 gives a summary
over the different solutions for the (n, §)-indexing problem we give in this article. The repositioning
algorithm in all these solutions are deterministic and the index string is over an alphabet of size
£~ for parameter ¢ > 0 that can be chosen arbitrarily small.

4 INSDEL CODES VIA INDEXING SOLUTIONS

In this section, we will show how a good (n, §)-indexing solution (S, Ds) over alphabet 3¢ allows
one to transform any regular ECC C with block length n over alphabet % which can efficiently
correct half-errors, i.e., symbol substitutions and erasures, into a good insdel code over alphabet
Y =2%c X2Zs.

To this end, we simply attach S symbol-by-symbol to every codeword of C, i.e., obtain the code
Cour = {x X S|x € C}. On the decoding end, we first guess the original positions of the symbols
arrived using only the index portion of each received symbol and rearrange them accordingly.
Positions where zero or multiple symbols are mapped to are considered as “?,” i.e., ambiguous. We
will refer to this procedure as the rearrangement procedure. Finally, the decoding algorithm D for
C is used over this rearranged string to finish decoding. These two straightforward algorithms are
formally described as Algorithm 1 and Algorithm 2.

THEOREM 4.1. If (S, Ds) guarantees k misdecodings for the (n, §)-indexing problem, then the re-
arrangement procedure recovers the sent codeword up to nd +2k half-errors, i.e., the half-error distance
of the codeword sent and the one recovered by the rearrangement procedure is at most né+2k. If (S, Dg)
is error-free, then the rearrangement procedure recovers the sent codeword up to né + k half-errors.

Proor. Consider a set of insertions and deletions described by 7 consisting of D, deletions and
I; insertions. Note that among n index symbols, at most D, were deleted and no more than k are
decoded incorrectly. Therefore, at least n — D, — k index symbols are decoded correctly. Thus, if
the rearrangement procedure only included correctly decoded indices for successfully transmitted
symbols, then the output would have contained up to D, + k erasures and no symbol substitutions,
resulting into a total of D, + k half-errors. However, any symbol that is being incorrectly decoded
or inserted may cause a correctly decoded index to become an erasure by making it appear mul-
tiple times or change one of the initial D, + k erasures into a substitution error by making the
rearrangement procedure mistakenly identify an index at that position. Overall, this can increase
the number of half-errors by at most I; +k to a total of at most D, +k+I, +k = D, +1,+2k < né+2k
half-errors.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:13

ALGORITHM 1: Insertion-Deletion Encoder using C and (S, Ds)

Input: m
1 m= ac(m)
Output: m xS

ALGORITHM 2: Insertion-Deletion Decoder using C and (S, Ds)
Input: y=m’' xS’

1: Dec « Ds(s/)

2: fori =1tondo

3. if there is a unique j for which Dec[j] = i then

4: mli] = m’[j]
5. else
6: ﬁ’l[l] =7

Output: D¢ (m)

For error-free indexing solutions, misdecodings only consist of L symbols and therefore only
result in erasures (one half-error). Thus, the number of incorrect indices is I, instead of I, + k
leading to the reduced number of half-errors in this case. O

This makes it clear that applying an ECC C that is resilient to nd + 2k half-errors on top of an
(n, §)-indexing solution enables the receiver side to fully recover m.

Next, we formally state how a good (n, §)-indexing solution (S, Dg) over alphabet X allows
one to transform any regular ECC C with block length n over alphabet X¢ that can efficiently
correct half-errors, i.e., symbol substitutions and erasures, into a good insdel code over alphabet
> = 3¢ X Zs. The following Theorem is a corollary of Theorem 4.1 and the definition of the
rearrangement procedure.

THEOREM 4.2. Given an (efficient) (n, §)-indexing solution (S, Dg) over alphabet %5 with at most
k misdecodings, and repositioning time complexity Ty, and an (efficient) ECC C over alphabet 3¢
with rate Rc, encoding complexity Tg.., and decoding complexity Tp. that corrects up to né + 2k
half-errors, one can obtain an insdel code by indexing codewords of C with S that can (efficiently)
decode from up to né insertions and deletions. The rate of this code is at least
Re

log [Zs|
1+ ogTsel

The encoding complexity remains Tg, the decoding complexity is Tp. + Tp, and the preprocessing
complexity of constructing the code is the complexity of constructing C and S. Furthermore, if (S, Ds)
is error-free, then choosing a C that can recover only from nd + k erasures is sufficient to produce a
code with same qualities.

Proor. Theorem 4.1 directly implies the distance quality. The encoding time complexity follows
from the fact that concatenating the codeword with the index string takes linear time. The decoding
time complexity is simply the sum of the running time of the algorithm Dg and the decoding
complexity of code C. Finally, given that this transformation keeps the number of codewords as
that of C and only increases the alphabet size, the rate of the resulting code is

_ IC] _ IC] __ Re
nlog|2c><25| n(10g|2c|+log|25|) 1+ log [Ss]
log [2c|

]

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:14 B. Haeupler and A. Shahrasbi

Note that if one chooses X such that }gg EZ ‘I << 1, the rate loss due to the attached symbols will

be negligible. Using the observations outlined so far, one can obtain Theorem 1.1 as a consequence
of Theorem 4.2.

4.1 Proof of Theorem 1.1

To prove this, we make use of the indexing solution that we will present later in Section 6.3. As
outlined in Table 1, for any §,¢” € (0,1), Section 6.3 provides an indexing solution with 3nVe’
misdecodings and O(n?/Ve’) repositioning time complexity. The alphabet size of the string in this
solution is ¢~91), We also make use of the following near-MDS expander codes from Reference
[12].

THEOREM 4.3 (GURUSWAMI AND INDYK [12, THEOREM 3]). For everyr, 0 < r < 1, and all suf-
ficiently small ¢ > 0, there exists an explicitly specified family of GF(2)-linear (also called additive)
codes of rate r and relative distance at least (1 — r — €) over an alphabet of size 20 r M log(1/0) gy
that codes from the family can be encoded in linear time and can also be (uniquely) decoded in linear
time from a fraction e of errors and s of erasures provided 2e + s < (1 —r —¢).

Given the § and ¢ from the statement of Theorem 1.1, we choose ¢’ = % and consider the (n, §)-

indexing solution (S, Ds) as given in Section 6.3 (see line 2 of Table 1), which guarantees no more
than 3nVe' = % misdecodings. We then choose a near-MDS expander code C from Reference
[12] (Theorem 4.3), which can efficiently correct up to 5¢ = & + £ half-errors and has a rate of
Rc>1-6¢c-%5=1-6— 23—‘9 over an alphabet 3¢ of size exp (e~ that satisfies log |S¢| > %.

This ensures that the final rate is indeed at least —2%-— > Re—- loglisl _ 1_s —3% and the fraction

RTIN Tog I=c|

og[2¢

of insdel errors that can be efficiently corrected is 6c — 2¢ = J. The encoding and decoding
complexities follow Theorems 4.2 and 4.3 and the time complexity of the indexing solution as
indicated in line 2 of Table 1.]

Theorem 1.1 is clearly optimal in its tradeoff between rate and efficiently decodable distance.
As discussed in Section 1, its linear and quadratic encoding and decoding times are also optimal
or hard to improve upon. (See the follow-up work [20] for an improved near-linear time decoding
algorithm.) The only parameter that could be tightened is the dependence of the alphabet bit size
on the parameter ¢, which characterizes how close a code is to achieving an optimal rate/distance
pair summing to one. Our transformation seems to inherently produce an alphabet bit size that
is near-linear in % due to the rate loss stemming from alphabet expansion. For half-errors, ECCs
based on algebraic geometry [38] achieving alphabet bit-size logarithmic in % are known, but their
encoding and decoding complexities are higher. State of the art linear-time expander codes [33],
which improve over [12], have an alphabet bit size, which is polylogarithmic in % Interestingly, a
follow-up work by Haeupler et al. [23] shows that, as opposed to half-error ECCs, no such insdel
code exist over alphabets that have sub-linear bit size in terms of %

5 SYNCHRONIZATION STRINGS

In this section, we formally define and develop e-synchronization strings, which will be the base
index string S in our (n, §)-indexing solutions. As explained in Section 1.2, one can think of the
prefixes S[1, 1] of an index string S as codewords encoding their length [, since the prefix S[1,1], or
a corrupted version of it, will be exactly all the position-related information that has been received
by the time the /th symbol is communicated.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:15

Definition 5.1 (Codewords Associated with an Index String). Given any index string S in a solution
to an indexing problem, we define the set of codewords associated with S to be the set of prefixes
of S,ie, {S[1,1]|1<1<|SI}.

Next, we define a distance metric on any set of strings, which will be useful in quantifying how
good an index string S and its associated set of codewords are.

Definition 5.2 (Relative Suffix Distance). For any two strings S, S” € X, we define their relative
suffix distance (RSD) as follows:

k>0 2k

Note that this is the normalized edit distance between suffixes of length k in two strings, maximized
over k.

Next, we show that RSD is indeed a distance that satisfies all properties of a metric for any set of
strings. To our knowledge, this metric is new. It is, however, similar in spirit to the suffix distance
defined in Reference [2], which unfortunately is non-symmetric and does not satisfy the triangle
inequality but can otherwise be used in a similar manner as RSD in the specific context here (see
also Section 6.7).

LEmMMA 5.3. For any strings Sy, S, and Ss, we have

o Symmetry: RSD(Sy, S2) = RSD(S3, S1),

e Non-Negativity and Normalization: 0 < RSD(S1,S;) < 1,

o Identity of Indiscernibles: RSD(S1,S;) = 0 © S; = S,, and

o Triangle Inequality: RSD(Sy, S3) < RSD(S1,S2) + RSD(Sz, S3).

In particular, RSD defines a metric on any set of strings.

Proor. Symmetry and non-negativity follow directly from the symmetry and non-negativity
of edit distance. Normalization follows from the fact that the edit distance between two length k
strings can be at most 2k. To see the identity of indiscernibles note that RSD(S;, S2) = 0 if and only
if for all k the edit distance of the k-suffix of S; and S; is zero, i.e., if for every k, the k-suffix of S;
and S, are identical. This is equivalent to S; and S, being equal. Last, the triangle inequality also
essentially follows from the triangle inequality for edit distance. To see this let §; = RSD(Sy, S2)
and d; = RSD(S,, S3). By the definition of RSD this implies that for all k the k-suffixes of S; and
S, have edit distance at most 26,k and the k-suffixes of S, and S; have edit distance at most 25,k.
By the triangle inequality for edit distance, this implies that for every k the k-suffixes of S; and S;
have edit distance at most (§; + ;) - 2k, which implies that RSD(Sy, S3) < 81 + J». |

With these definitions in place, it remains to find index strings that induce a set of codewords, i.e.,
prefixes, with large relative suffix distance. It is easy to see that the relative suffix distance for any
two strings ending on a different symbol is one. This makes the trivial index string, which uses each
symbol in ¥ only once, induce an associated set of codewords of optimal minimum-RSD-distance
one. Such trivial index strings, however, are not interesting as they require an alphabet-size linear
in the length of the message. To find good index strings over constant-size alphabets, we give the
following important definition of an e-synchronization string. The parameter 0 < ¢ < 1 should be
thought of measuring how far a string is from the perfect index string, i.e., a string of n distinct
symbols.

Definition 5.4 (e-Synchronization String). String S € " is an e-synchronization string if for every
1<i<j<k<n+1,wehave that ED (S[i, j),S[j,k)) > (1 —¢)(k = i).

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:16 B. Haeupler and A. Shahrasbi

The next lemma shows that the e-synchronization string property is strong enough to imply a
good minimum relative suffix distance between any two codewords associated with it.

LEMMA 5.5. IfS is an e-synchronization string, then RSD(S[1,i],S[1,j]) > 1 — ¢ foranyi < j, i.e,
any two codewords associated with S have relative suffix distance of at least 1 — e.

Proor. Let k = j — i. The e-synchronization string property of S guarantees that
ED (S[i — k. i), S[i,])) > (1 — ¢)2k.
Note that this holds even if i — k < 1. To finish the proof, we point out that the maximiza-

tion in the definition of RSD includes the term w > 1 — ¢, which implies that
RSD(S[1,i],S[1,j]) > 1 —e. i

5.1 Existence and Construction

The next important step is to show that the e-synchronization strings we just defined exist, par-
ticularly, over alphabets whose size is independent of string length n. We show the existence of
e-synchronization strings of arbitrary length for any ¢ > 0 using an alphabet size that is only
polynomially large in 1/e. We remark that e-synchronization strings can be seen as a strong gener-
alization of square-free sequences in which any two neighboring substrings S[i, j) and S[j, k) only
have to be different and not also far from each other in edit distance. Thue [37] famously showed
the existence of arbitrarily large square-free strings over a ternary alphabet. Thue’s methods for
constructing such strings, however, turns out to be fundamentally too weak to prove the existence
of e-synchronization strings, for any constant ¢ < 1.

Our existence proof requires the general Lovasz local lemma, which we recall here first:

LEMMA 5.6 (GENERAL LovAsz LocAL LEMMA). Let {A;, ..., A,} be a set of “bad” events. The di-
rected graph G(V, E) is called a dependency graph for this set of events if V = {1, . .., n} and each event
A; is mutually independent of all the events {A; : (i,) ¢ E}. Now, if there exists x1,...,x, € [0,1)
such that for all i, we have

P[A;] < x; 1_[(1-x;),
(i.j)€E
then there exists a way to avoid all events A; simultaneously and the probability for this to happen is

bounded below by
NAi|=]]a-x)>o0.
i=1 i=1

THEOREM 5.7. For any ¢ € (0,1) and n > 1, there exists an e-synchronization string of length n
over an alphabet of size ©(1/e*).

P

Proor. Let S be a string of length n obtained by the symbol-wise concatenation of two strings
T and R, where T is simply the repetition of 0,...,¢t—1fort = @(;12), and R is a uniformly random
string of length n over alphabet X. In other words, S; = (i mod ¢, R;). We prove that S is an ¢-
synchronization string with positive probability by showing that there is a positive probability
that S contains no bad triple, where (x, y, z) is a bad triple if ED(S[x, y), S[y,2)) < (1 — ¢)(z — x).

First, note that a triple (x,y,z) for which z — x < t cannot be a bad triple as it consists of
completely distinct symbols by courtesy of T. Therefore, it suffices to show that there is no bad
triple (x,y,z) in R for x,y, z such that z — x > t. Let (x,y, z) be a bad triple and let aja; ... ax
be the longest common subsequence of R[x,y) and R[y,z). It is straightforward to see that
ED(R[x,y),R[y,2z)) = (y — x) + (z —y) — 2k = z — x — 2k. Since (x,y,z) is a bad triple, we
have that z — x — 2k < (1 - ¢)(z — x), which means that k > £(z — x). With this observation in

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:17

mind, we say that R[x, z) is a bad interval if it contains a subsequence aja; . .. axaa, . .. ax such
that k > £(z — x).

To prove the theorem, it suffices to show that a randomly generated string does not contain any
bad intervals with a non-zero probability. We first bound above the probability of an interval of
length [being bad:

r [I is bad]
I~3!

IA A
—_
oo 2=
—_— T

M

- i
™ s

|

ol

=)

where the first inequality holds, because, if an interval of length [is bad, then it must contain a
repeating subsequence of length 175 Any such sequence can be specified via ¢l positions in the
l long interval and the probability that a given fixed sequence is repeating for a random string
is |2|” 2. The second inequality comes from the fact that () < (%)k. The resulting inequality
shows that the probability of an interval of length I being bad is bounded above by C~¢!, where C
can be made arbitrarily large by taking a sufficiently large alphabet size |X|.

To show that there is a non-zero probability that the uniformly random string R contains no
bad interval I of size ¢ or larger, we use the general Lovasz local lemma stated in Lemma 5.6. Note
that the badness of interval I is mutually independent of the badness of all intervals that do not
intersect I. We need to find real numbers x,, ; € [0, 1) corresponding to intervals R[p, q) for which

Pr [Interval R[p, q) is bad] < x, 4 l_[(1= xp.q).
Rlp,q)"R[p’.q")#0

We have seen that the left-hand side can be upper bounded by c¢IRp.9)l = c¢(~9) Furthermore,
any interval of length I” intersects at most [+!” intervals of length . We propose x,, 4 = D™¢ IRlp.9)| =

D=9 for some constant D > 1. Therefore, it suffices to find a constant D that for all substrings
R[p, q) satisfies

n
cE-9) < pelp-9)]_[(1 _ D—fl)l+(q—P)’
1=t

or more clearly, for all I’ € {1, 2,...,n} satisfies

’ ll
2o [lo-o"

which means that

C > D . (1)

H;‘ [(1 _D £I)lJrl/l

For D > 1, the right-hand side of Equation (1) is maximized when n = co and [’ = 1, and since we
want Equation (1) to hold for all n and all I’ € {1, 2,...,n}, it suffices to find a D such that

D
M2, (1-D-eh) 5

C >

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:18 B. Haeupler and A. Shahrasbi

To this end, let

. D
L = min = (-
D>1 Hl:[(l _D*El)T
Then, it suffices to have |X| large enough so that

c=¢

> >L
e = t

e’L?

which means that |X| > y

allows us to use the Lovasz local lemma. We claim that L = ©(1),

log £
58)’

which will complete the proof. Since t = w(

V>t D‘”-H—l<<1.
£

Therefore, we can use the fact that (1 — x)¥ > 1 — xk to show the following:

D - D @)
[ee) —_ IL [se] —
1, (1 - D¢ty = Iy, (1- & peh)
D
) 1-y5, & pe ®
I=t ¢
D
- — 1y (D)} @)
1-2 X2, (0+1)- (D7)
D
< (5)
] _ 12D’
e (1-D—¢)?
D
" Lol ©
1_ £

S (1-D*)?
Equation (3) is derived using the fact that [];2,(1 —x;) > 1 -} }2, x; and Equation (5) is a result
of the following equality for x < 1:

S ;X' 4+t —tx) 2tx?
D+ x! = e T2

I=t

_1
One can see that for D = 7, maxg{é(l_DD—fF)z} < 0.9, and therefore step (3) is legal and step (6)
can be upper-bounded by a constant. Hence, L = ©(1) and the proof is complete.]

Remarks on the alphabet size: Theorem 5.7 shows that for any ¢ > 0 there exists an ¢-
synchronization string over alphabets of size O(¢™*). A polynomial dependence on ¢ is also neces-
sary. In particular, there do not exist any e-synchronization string over alphabets of size smaller
than £71. In fact, any %-long substring of an e-synchronization string has to contain completely
distinct elements. This can be easily proven as follows: For the sake of contradiction let S[i, i +&7!)
be a substring of an e-synchronization string where S[j] = S[j’] fori < j < j* < i + ¢, Then,
ED(S[jI,S+1,j/+1))) = -j—-1=(G"+1—-j)—2 < (j’+1—j)(1 - 2¢). We believe that using
the Lovasz local lemma together with a more sophisticated non-uniform probability space, which
avoids any repeated symbols within a small distance, allows avoiding the use of the string T in
our proof and improving the alphabet size to O(¢7%) (see Reference [4]). It seems much harder to
improve the alphabet size to o(¢72), and we are not convinced that it is possible. This work thus

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:19

leaves open the interesting question of closing the quadratic gap between O(¢7%) and Q(¢™!) from
either side.

Theorem 5.7 also implies an efficient randomized construction.

LEMMA 5.8. There exists a randomized algorithm that for any ¢ > 0 and n constructs an e-
synchronization string of length n over an alphabet of size O(¢™*) with expected running time O(n’).

Proor. Using the algorithmic framework for the Lovasz local lemma given by Moser and
Tardos [31] (or the extensions by Haeupler et al. [21]), one can get such a randomized algorithm
from the proof in Theorem 5.7. The algorithmic LLL method of Reference [31] works as follows:
It first generates a random string over an alphabet % (of size Ce™* for a sufficiently large C). It
then checks all O(n?) substrings for a bad event (i.e., a substring that violates the LLL condition).
If a violating interval is found, then all symbols within that interval are resampled. This process
repeats until no violations are remained.

To find a violation, one can compute the edit distance between all neighboring substrings. This
edit distance computation can be done in O(n?) time using the classic Wagner-Fischer dynamic
programming algorithm. Therefore, the total running time would be the number of times that
resampling is needed times O(n°). We bound the number of resampling rounds using the following
theorem from Reference [31].

THEOREM 5.9 (THEOREM 1.2 OF REFERENCE [31]). Let P be a finite set of mutually independent
random variables in a probability space. Let A be a finite set of events determined by these variables.
If there exists an assignment of reals x : A — (0, 1) such that

vAe A:Pr{Al <x(4) [] (1-x(B)),
BeTa(A)

then there exists an assignment of values to the variables P not violating any of the events in A.
Moreover the randomized algorithm described above resamples an event A € A at most an expected
x(A)/(1-x(A)) times before it finds such an evaluation. Thus, the expected total number of resampling
steps is at most Y, ac.# %.

In the proof of Theorem 5.7, we showed that the real value x(A) = D~¢/ for an interval of length
I would satisfy the condition of Theorem 5.9 for an adequately large constant D like D = 7. Thus,
the expected number of total resamplings is

x(Aj, ;) 7€) 1 2
z = = =0 s
Z 1-x(Ar) Z 1 7-cG-i) Z 7e0-1) — 1 e(n%)

i<j i<j i<j

where A; ; represents the event that the substring indicated by [i, j] is bad. This gives an expected
running time of O(n’) overall, as claimed. O

Last, since synchronization strings can be repositioned in a streaming fashion, they can be
used in many important applications where the length of the required synchronization string
is not known in advance (see References [22, 24]). In such a setting it is advantageous to have
an infinite synchronization string over a fixed alphabet. In particular, since every substring of
an e-synchronization string is also an e-synchronization string by definition, having an infinite e-
synchronization string also implies the existence for every length n, i.e., Theorem 5.7. Interestingly,
a simple argument shows that the converse is true as well, i.e., the existence of an e-synchronization
string for every length n implies the existence of an infinite e-synchronization string over the same
alphabet.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:20 B. Haeupler and A. Shahrasbi

LEMMA 5.10. For any ¢ € (0, 1) there exists an infinite e-synchronization string over an alphabet
of size ©(1/e*).

ProoF. Fix any € € (0,1). According to Theorem 5.7 there exist an alphabet 3 of size O(1/¢*)
such that there exists at least one e-synchronization strings over X for every length n € N. We
will define an infinite synchronization string S = s; - sz - s3... with's; € ¥ for any i € N for
which the e-synchronization property holds for any neighboring substrings. We define this string
inductively. In particular, we fix an ordering on ¥ and define s; € X to be the first symbol in this
ordering such that an infinite number of e-synchronization strings over ¥ starts with s;. Given
that there is an infinite number of e-synchronization over X such an s; exists. Furthermore, the
subset of e-synchronization strings over X that start with s; is infinite by definition, allowing us
to define s, € X to be the lexicographically first symbol in X such there exists an infinite number
of e-synchronization strings over ¥ starting with s; - s;. In the same manner, we inductively define
s; to be the lexicographically first symbol in ¥ for which there exists an infinite number of e-
synchronization strings over X starting with s; - s, - . .. - 5;. To see that the infinite string defined in
this manner does indeed satisfy the edit distance requirement of the e-synchronization property
defined in Definition 5.4, we note that for every i < j < k with i, j, k € N there exists, by definition,
an e-synchronization string and, in fact, an infinite number of them, which contains S[1, k] and
thus also S[i, k] as a substring implying that indeed ED (S[i, j), S[j, k)) > (1 — ¢)(k — i) as required.
Our definition thus produces the unique lexicographically first infinite e-synchronization string
over X. O

We remark that any string produced by the randomized construction of Lemma 5.8 is guaranteed
to be a correct e-synchronization string and the only randomized aspect of the algorithm is its
running time. This randomized synchronization string construction is furthermore only needed
once as a pre-processing step. The encoder or decoder of any resulting error correcting codes do not
require any randomization. Furthermore, in Section 6, we will provide a deterministic polynomial
time construction of a relaxed version of e-synchronization strings that can still be used as a basis
for good (n, §)-indexing algorithms thus leading to insdel codes with a deterministic polynomial
time code construction as well.

It nonetheless remains interesting to obtain fast deterministic constructions of finite and infi-
nite e-synchronization strings. In a subsequent work [22], we achieve such efficient deterministic
constructions for e-synchronization strings. Our constructions in Reference [22] even produce the
infinite e-synchronization string S proven to exist by Lemma 5.10, which is much less explicit:
While for any n and ¢ an e-synchronization string of length n can in principle be found using
an exponential time enumeration, there is no straightforward algorithm that follows the proof of
Lemma 5.10 and given an i € N produces the ith symbol of such an S in a finite amount of time
(bounded by some function in i). Our constructions in Reference [22] require significantly more
work but in the end lead to an explicit deterministic construction of an infinite e-synchronization
string for any ¢ > 0 for which the ith symbol can be computed in only O(log i) time—thus satisfy-
ing one of the strongest notions of constructiveness that can be achieved.

5.2 Repositioning Algorithm for e-Synchronization Strings

We now provide an algorithm for repositioning synchronization strings, i.e., an algorithm that can
form a solution to the indexing problem along with e-synchronization strings. In the beginning of
Section 5, we introduced the notion of relative suffix distance between two strings. Theorem 5.5
stated a lower bound of 1 — ¢ for relative suffix distance between any two distinct codewords

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:21

associated with an e-synchronization string, i.e., its prefixes. Hence, a natural repositioning scheme
for guessing the position of a received symbol would be finding the prefix of the index string
with the closest relative suffix distance to the string received thus far. We call this algorithm the
minimum relative suffix distance decoding algorithm.

We define the notion of relative suffix error density at index symbol i, which represents the maxi-
mized density of errors taken place over suffixes of S[1, i]. We will show that this decoding proce-
dure works correctly as long as the relative suffix error density is not larger than 1_7'9 Then, we will
show that if the adversary is allowed to perform c insertions or deletions, the relative suffix dis-
tance may exceed 3¢ upon arrival of at most 2% many successfully transmitted symbols. Finally,
we will deduce that this repositioning scheme correctly decodes all but i—cg many index symbols
that are successfully transmitted. Formally, we claim that:

THEOREM 5.11. Any e-synchronization string of length n along with the minimum relative suffix
distance decoding algorithm form a solution to (n, §)-indexing problem that guarantees %nﬁ or less
misdecodings. This repositioning algorithm is streaming and can be implemented in a way that works
in O(n*) time.

Before proceeding to the proof of the claim above, we first provide the following useful defini-
tions.

Definition 5.12 (Error Count Function). Let S be an index string sent over an insertion-deletion
channel. We denote the error count from index i to index j with &(i, j) and define it to be the number
of insdels applied to S from the moment S[i] is sent until the moment S[j] is sent. £(i, j) would
count the deletion of S[;], however, it would not count the deletion of S[i].

Definition 5.13 (Relative Suffix Error Density). Let string S be sent over an insertion-deletion
channel and let & denote the corresponding error count function. We define the relative suffix
error density of the communication as

& (ISI -, 1S)
max ————.
i>1 i
The following lemma relates the suffix distance of the string sent by the sender and the one

received by the receiver at any point of a communication over an insertion-deletion channel to
the relative suffix error density of the communication at that point.

LEMMA 5.14. Let string S be sent over an insertion-deletion channel and the corrupted version of it
S’ be received on the other end. The relative suffix distance between S and S’, RSD(S, S’), is at most
the relative suffix error density of the communication.

PRrROOF. Let T = (11, 72) be the string matching from S to S’ that characterizes insdels that have
turned S into S”. Then:
ED(S(IS| = k. ISI1, S"(IS"] = k., I5"1])
max

RSD(S, ") ma o (7)
3 ming.s(|s|k, |S|]-5' (IS’ |-k, |s7]]{5¢(71) + sc(72)}
= max (8)
k>0 2k
2(sc(%lk) + sc(i’zk))
< max " < Relative Suffix Error Density, 9)
>0

where 7¥ is 7 limited to its suffix corresponding to S(|S| -k, |S|]. More precisely, the suffix of 7 that
starts from the position following the one that corresponds to S[|S| — k]. (We remind the reader

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:22 B. Haeupler and A. Shahrasbi

that the notions of string matching and sc(-) are defined in Definition 2.2.) Note that steps (7) and
(8) follow from the definitions of edit distance and relative suffix distance. Moreover, to verify
step (9), one has to note that one single insertion or deletion on the k-element suffix of a string
may result in a string with k-element suffix of edit distance two of the original string’s k-element
suffix; one stemming from the inserted/deleted symbol and the other one stemming from a symbol
appearing/disappearing at the beginning of the suffix to keep the size of suffix k. O

A key consequence of Lemma 5.14 is that if an e-synchronization string is being sent over an
insertion-deletion channel and at some step the relative suffix error density corresponding to errors
is smaller than 1%5 the relative suffix distance of the sent string and the received one at that point is
smaller than 1%5 ; therefore, as RSD of all pairs of codewords associated with an e-synchronization
string are greater than 1 — ¢, the receiver can correctly decode the index of—or guess the position
of—the last received symbol of the communication by simply finding the codeword (i.e., prefix
of the synchronization string) with minimum relative suffix distance to the string received so
far.

The following lemma states that such a guarantee holds most of the time during the transmission
of a synchronization string.

LEMMA 5.15. Let e-synchronization string S be sent over an insertion-deletion channel and cor-
rupted string S’ be received on the other end. If there are ¢; symbols inserted and cq symbols deleted,

then, for any integert > 1, the relative suffix error density is smaller than l;tf upon arrival of all but
t(citeq)
1-¢

— cq many of the successfully transmitted symbols.
Proor. Let & denote the error count function of the communication. We define the potential
function ® over {0, 1, ..., n} as follows:

®(i) = max {0, max {M - s}} .
1<s<i 1-¢

Also, set ®(0) = 0. We prove the theorem by showing the correctness of the following claims:

(1) f &3 — 1,i) = 0, i.e., the adversary does not insert or delete any symbols in the interval
starting right after the moment S[i — 1] is sent and ending at when S[i] is sent, then the
value of ® changes as follows: ®(i) = max {0, P(i — 1) — 1}.

(2) If&(i - 1,i) = k, i.e, the adversary inserts or deletes k symbols in the interval starting right
after the moment S[i—1] is sent and ending at when S[i] is sent, then the value of ® increases
by ££ —1,ie, ®(i) = @(i-1)+ £ - 1.

(3) If (i) = 0, then the relative suffix error density of the string that is received when S[i]

arrives at the receiving side is not larger than 1_78
Given the correctness of claims made above, the lemma can be proved as follows. As the adver-
. t-(ci+cd) .
sary can apply at most ¢; + ¢, insertions or deletions, ® can gain a total increase of —=~* minus
the number of is for which ®(i) = 0 but ®(i + 1) # 0. Since ® always drops by one or to zero and

increases non-integrally, the value of ® can be non-zero for at most % many inputs. As the

value of ®(i) is non-zero for all i’s where S[i] has been removed by the adversary, there are at most

t-(ci+cg)
1-¢ .

% — ¢4 many of correctly transmitted symbols can possibly be decoded incorrectly.

We now proceed to the proof of each of the above-mentioned claims to finish the proof:

— ¢4 elements i where ®(i) is non-zero and i is successfully transmitted. Hence, at most

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:23
(1) In this case, E(i —s,i) = E(i —s,i — 1). So,
fElisi
®(i) = max {0, max {M - s}}
1<s<i 1-¢
{ {t~8(i—s,i—1) }}
= max4{0, max { ———— — s
1<s<i 1-¢
{ {t~8(i—s,i—1) }}
= max<{0, max { — = —
2<s<i 1-¢
{ {t-S(l—l—s,i—l) }}
= max<{0, max -s—1
1<s<i-1 1-¢
= max{0,P(i—1)—1}.
(2) In this case, E(i —s,i) = E(i —s,i — 1) + k. So,
P E(i—s.i
®(i) = max {0, max {M —s}}
1<s<i 1-¢
{ t {t-S(i—s,i—l)+tk }}
= max — 1, max -
1-¢ 2<s<i 1-¢
{ tk tk {t~8(i—1—s,i—1) }}
= max -1, + max —-s—1
1-¢ 1—¢ 1ss<i-1 1-¢
tk { {t-S(i—l—s,i—l) }}
= — 1+ max<0, max —-s
1-¢ 1<s<i-1 1-¢
tk
= -1+ max{0,®(i—1)}
1-¢
tk
= oli-1)+——1.
1-¢
(3) And finally,
t-E(i—s,i
®(i) = max {O, max {(I—Sl) - s}} =0
1<s<i 1-¢
t-E(i—s,i
= Vi<s<i: M—sso
1—-¢
= Vi<s<i:t-&E(@i-s,i)<s(1-¢)
S vics<g SUTsD 1-¢
S t
E(i—s,i 1-
= Relative Suffix Error Density = max { (i=s 1)} < £
1<s<i S t
These finish the proof of the lemma. O

Now, we have all necessary tools to analyze the performance of the minimum relative suffix
distance decoding algorithm:

ProoFr oF THEOREM 5.11. As the adversary is allowed to insert or delete up nd symbols, by

Lemma 5.15, there are at most %

successfully transmitted symbols during the arrival of which

at the receiving side, the relative suffix error density is greater than 15%; Hence, by Lemma 5.14,

there are at most

1-¢

2nd

misdecoded successfully transmitted symbols.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:24 B. Haeupler and A. Shahrasbi

Further, we remark that this algorithm can be implemented in O(n*) time. Using dynamic pro-
gramming, we keep track of the edit distance of any substring of S, like S[i, j] to any substring of
S’, like S’[i’, j'] as symbols arrive. Of course, at any point in time, this can only be computed for
all i, j,i’,j’, where j’ is no larger than the current length of the communication. Given that each
distance can be computed using a constant number of sub-problems, this would take a total of
O(n*) time.

Then, to decode each index symbol like S’[I’] (i.e., guess its original position), we can find the
codeword with minimum relative suffix distance to S’[1,1’] by calculating the relative suffix dis-

tance of S’[1,1’] to all n codewords using the edit distance data described above. Finding the suffix
ED(S(I-k.1.S'(I'=k.I'])
k

distance of S’[1,1’] and a codeword like S[1,[] is simply done by minimizing
over all k. This can be done in O(n) time. With an O(n*) total time needed to keep track of of the
edit distance between substrings and an O(n®) suffix distance computation as mentioned above,
we have shown that the decoding process can be implemented in a total of O(n?*) time. Finally,
this algorithm clearly satisfies streaming property as it decodes indices of arrived symbols merely
using the symbols that have arrived earlier.]

We remark that by taking ¢ = o(1), one can obtain a solution to the (n, §)-indexing problem with
a misdecoding guarantee of 2nd(1 + o(1)), which, using Theorem 4.1, results into a translation of
nd insertions and deletions into nd(5 + o(1)) half-errors.

In Section 6.7 , we show that this guarantee of the min-distance-decoder can be slightly improved
to nd(3 + o(1)) half-errors, at the cost of some simplicity. In particular, one can go beyond an RSD
distance of 1—75 by considering the RSPD, which was introduced in Reference [2], as an alternative
distance measure. RSPD can act as a stand-in metric for the minimum-distance decoder and lead to
the above-mentioned slightly improved decoding guarantees, despite neither being symmetric nor
satisfying the triangle inequality. More precisely, for any set of k = k; + k4 insdel errors consisting
of k; insertions and k, deletions, the RSPD-based indexing solution leads to at most (1+¢)(3k; +ky)
half-errors, which does imply “near-MDS” codes for deletion-only channels but still falls short for
general insdel errors.

This leaves open the intriguing question whether a further improved (pseudo) distance defini-
tion can achieve an indexing solution with negligible number of misdecodings for the minimum-
distance decoder.

6 MORE ADVANCED REPOSITIONING ALGORITHMSAND
e-SELF-MATCHING PROPERTY

Thus far, we have introduced e-synchronization strings as fitting solutions to the indexing problem.
In Section 5.2, we provided an algorithm to solve the indexing problem along with synchronization
strings with a guarantee of % misdecodings, which, by taking ¢ adequately small, tends to 2nd.
As explained in Section 1.3, such a guarantee falls short of giving Theorem 1.1. In this section, we
thus provide a variety of more advanced repositioning algorithms that provide better decoding
guarantees, in particular, achieve a misdecoding fraction that goes to zero as ¢ tends to zero.

We start by pointing out a very useful property of e-synchronization strings in Section 6.1. We
define a monotone matching between two strings as a common subsequence of them. We will next
show that, in a monotone matching between an e-synchronization string and itself, the number
of non-trivial pairs (i.e., those that do not correspond to the same element of the string) is limited.
We will refer to this property as e-self-matching property. We show that one can very formally
think of this e-self-matching property as a robust global guarantee in contrast to the factor-closed
strong local requirements of the e-synchronization property. One advantage of this relaxed notion

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:25

of e-self-matching is that one can show that a random string over alphabets polynomially large in
£~! satisfies this property (Section 6.2). This leads to a particularly simple generation process for S.
Finally, showing that this property even holds for approximately log n-wise independent strings
directly leads to a deterministic polynomial time algorithm generating such strings as well.

In Section 6.3, we propose a repositioning algorithm for insdel errors that basically works by
finding monotone matchings between the received string and the synchronization string. Using
the e-self-matching property, we show that this algorithm guarantees O(n+/e) misdecodings. This
algorithm works in O(n?/+/¢) time and is exactly what we need to prove our main theorem.

In Sections 6.4 and 6.5, we provide two simpler linear-time repositioning algorithms that solve
the indexing problem under the assumptions that the adversary can only delete symbols or only
insert symbols. These algorithms not only guarantee asymptotically optimal ;= nd misdecodings
but are also error-free. In Section 6.6, we present linear-time near-MDS insertion-only and deletion-
only codes that can be derived by these repositioning algorithms.

Finally, in Section 6.7, we present an improved version of the minimum RSD decoding algorithm
that achieves a better misdecoding guarantee by replacing RSD with a similar pseudo-distance.

See Table 1 for a break down of the repositioning schemes presented in this article, the type
of error under which they work, the number of misdecodings they guarantee, whether they are
error-free or streaming, and their repositioning time complexities.

6.1 ¢-Self-matching Property

Before proceeding to the main results of this section, we define monotone matchings as follows.

Definition 6.1 (Monotone Matchings). A monotone matching between S and S’ is a set of pairs
of indexes like
M ={(a1,b1),...,(am:bm)}
where a; < -+ < am, by <--+ < by, and S[a;] = S’[b;].

We now point out a key property of synchronization strings that will be broadly used in our
repositioning algorithms in Theorem 6.2, which, basically, states that two large similar subse-
quences of an e-synchronization string cannot disagree on many positions. More formally, let
M = {(a1,b1), ..., (am,bm)} be amonotone matching between S and itself. We call the pair (a;, b;)
a good pair or a good match if a; = b; and a bad pair or a bad match otherwise. Then:

THEOREM 6.2. Let S be an e-synchronization string of sizen and M = {(ay, by), . .., (am,bm)} be
a monotone matching of size m from S to itself containing g good pairs and b bad pairs. Then,

b<en-g).

Proor. Let (af, b)), ..., (a;, b;) indicate the set of bad pairs in M indexed as a] < -+ < a;
and b] < --- < b;. Without loss of generality, assume that a; < b{. Let k; be the largest integer
such that a;ﬁ < by. Then, the pairs (aj,b;), ..., (a,’cl, b,’cl) form a common subsequence of size k;
between Ty = S[aj, b]) and T] = S[b], b,’cl]. Now, the synchronization string guarantee implies that

1°71
ki < LCS(T..T))
|T1|+|T1’|—ED(T1,T1’)

2
e(ITil + IT71)
—
Note that the monotonicity of the matching guarantees that there are no good matches occur-
ring on indices covered by Ty and T}, i.e, aj, ..., bl’cl. One can repeat the very same argument for

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:26 B. Haeupler and A. Shahrasbi

! ! ! ! I ! ! !
a; A, Ap41 Agi+k, a; Qg A g +1A kg +k,
S (1 | | T | eee G I\ n I\ T, | eee
~ \\\ .
\ \\\ N \ \\\
. .
s S - ~
S | | oo G [| I = 1 ooe
! i 14 ’ ! ! ! !
by by, b, 41 bk 4k, by b, D' +1 bk, 4k,
(a) alk1+1 < b;q+l (b) ak +1 > bk1+1

Fig. 1. Pictorial representation of T, and T.

the remaining bad matches to rule out bad matches (ak e b,’(o) (@ . b,’< Tk,) for some k;
having the following inequality guaranteed:
e(ITz| + T3]
ky < M, (10)
2
where
’ ’ ’ ’
{ T, = [a] A v10 k ko) and Ty = [bk +1’bk +k2] k +1 bk 410
’ ’ _ ’ ’
= B @) ad T =g L pap o1 ag > by
For a pictorial representation see Figure 1.
Continuing the same procedure, one can find ki, ..., k;, Ty,..., T, and Tl’, e, Tl’ for some [.

Summing up all inequalities of form of Equation (10), we will have

1 1 !
Zki<§.(Z|Ti|+Z|T{|). (11)
i=1 i=1

i=1
Note that 25:1 ki = b and T;s are mutually exclusive and do not contain any good pairs. The

same holds for T/s. Hence, Zﬁ:l |T;] < n—gand Zle |T/| < n—g. All these along with Equation (11)
give that

b<§-2(n—g):e(n—g).
O
We define the e-self-matching property as follows:
Definition 6.3 (e-Self-matching Property). String S satisfies e-self-matching property if any mono-
tone matching between S and itself contains less than ¢|S| bad pairs.

Note that e-synchronization property concerns all substrings of a string while the e-
self-matching property only concerns the string itself. Granted that, we now show that -
synchronization property and satisfying e-self-matching property on all substrings are equivalent
up to a factor of two:

THEOREM 6.4. e-synchronization and e-self-matching properties are related in the following way:

(a) If S is an e-synchronization string, then all substrings of S satisfy e-self-matching property.
(b) If all substrings of string S satisfy the 5 -self-matching property, then S is an e-synchronization
string.

Proor oF THEOREM 6.4 (a). This part is a straightforward consequence of Theorem 6.2.]

PrRoOOF OF THEOREM 6.4 (B). Assume by contradiction that there are i < j < k such that
DN ors ; S ors k—i—(1—e)(k—i) _ ¢ .

ED(S[i, j), S[j. k)) < (1—¢)(k —i). Then, LCS(S[i, j), S[j, k)) > =—=—=*— = £(k —i). The corre-

sponding pairs of such longest common subsequence form a monotone matching of size 5 (k — i),
which contradicts £-self-matching property of S. |

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:27

The repositioning algorithms we will propose for e-synchronization strings in Sections 6.3, 6.4,
and 6.5 only make use of the e-self-matching property of e-synchronization strings. We now define
e-bad elements.

Definition 6.5 (¢-bad Element). We call element k of string S an ¢-bad element if there exists a
factor S[i, j] of S with i < k < j where S[i, j] does not satisfy the e-self-matching property. In this
case, we also say that element k blames interval [i, j].

In the following lemma, we will show that within a given e-self-matching string, there can only
be a limited number of ¢’-bad elements for sufficiently large ¢’ > e.
. . ’ 3
LEMMA 6.6. Let S be an e-self-matching string of length n. Then, for any 3¢ < ¢’ < 1, at most >3~
many elements of S can be ¢’-bad.

PrROOF. Let 51,52, ...,k be ¢’-bad elements of S and ¢’-bad element s; blame substring S[a;, b;).
As intervals S[a;, b;) are supposed to be bad, there has to be an ¢’-self-matching M; within each
S[a;, b;) for which |M;| > ¢" - |[a;, b;)|. We claim that one can choose a subset I of [1, k] for which

e Intervals that correspond to the indices in I are mutually exclusive. In other words, for any
i’j € I’ where i i]» [ai, bl) N [Cl],b]) =0.
o Yierllai, bi)| > %

If such I exists, then one can take | J;c; M; as a self-matching in S whose size is larger than kT‘g
As S is an ¢-self-matching string,

! 3ne

e
— <ne=> k< —,
3 e’

which finishes the proof. The only remaining piece is proving the claim. Note that any element in
Uilai, b;) is ¢’-bad as they, by definition, belong to an interval with an ¢’-self-matching. Therefore,
|U;lai, bi)| = k. To find the set I, we greedily choose the largest substring [a;, b;), put its corre-
sponding index into I and then remove any interval intersecting [a;, b;). We continue repeating
this procedure until all substrings are removed. The set I obtained by this procedure clearly satis-
fies the first claimed property. Moreover, note that if [; = |[a;, b;)|, any interval intersecting [a;, b;)
falls into [a; — [;, b; + I;), which is an interval of length 3/;. This certifies the second property and
finishes the proof. O

As the final remark on the e-self-matching property and its relation with the more strict ¢-
synchronization property, we show that using the minimum RSD decoder together with an e-self-
matching string leads to indexing solutions with a guarantee on the misdecoding count, which is
only slightly weaker than the guarantee obtained by e-synchronization strings. To do so, we first
show that the (1 — ¢) RSD distance property of prefixes holds for any non-¢-bad element in any
arbitrary string in Lemma 6.7. Then, using Lemma 6.7 and Lemma 6.6, we bound above the number
of misdecodings that may occur using a minimum RSD decoder along with an ¢e-self-matching
string in Theorem 6.8.

LEMMA 6.7. Let S be an arbitrary string of length n and 1 < i < n be such that ith element of S is
not e-bad. Then, for any j # i, RSD(S[1,1],S[1,j]) > 1 —e.

Proor. Without loss of generality assume that j < i. Consider the interval S[2j —i+1,i]. Asiis
not e-bad, there is no self-matching with 2¢(i — j) bad pairs within S[2j — i, i]. In particular, the edit
distance of S[2j — i + 1, j] and S[j + 1, i] has to be larger than (1 — ¢) - 2(i — j), which equivalently
means RSD(S[1,i],S[1,j]) > 1 —e.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:28 B. Haeupler and A. Shahrasbi

We remind the reader from Section 2.1 that, in the case where 2j — i + 1 < 1, S[2j — i + 1, /]
is defined as L7"% - S[1,]. In this case, since i is not e-bad, ED(S[1,],S[j + 1,i]) > (1 —¢) - i.
Since L is a special symbol that does not belong to the alphabet, ED(S[2j — i + 1,j],S[j + 1,i]) =
ED(S[1,j1,S + L,i]) + (i — 2j) > (1 —¢&)i + (i —2j) > (1 —¢) - 2(i — j), which implies that
RSD(S[1,i],S[1,j]) > 1 —e.]

THEOREM 6.8. Using any e-self-matching string along with minimum RSD algorithm, one can solve
the (n, 8)-indexing problem with no more than n(48 + 6¢) misdecodings.

Proor. Note that applying Lemma 6.6 for ¢’ gives that there are at most 3;15 indices in S that
are ¢’-bad. Lemma 6.7 implies that for all indices i that are not ¢’-bad, the desired RSD guarantee
for minimum- RSD decoding holds ie., RSD(S[I i],8[1,j]) > 1 - ¢’ for alli * j. Therefore such

2n5

which, as shown in Lemma 5.15, can happen for no more tha

solution for the (n, §)- 1ndex1ng problem can contain at most n(3> 3 4 2‘5

indices. Setting ¢’ =

1=%) many 1ncorrectly decoded
gives an upper bound of n(46 + 6¢) on the number of misdecodings. O

3£+25

6.2 Efficient Polynomial Time Construction of ¢-Self-matching Strings

In this section, we will show that there is a polynomial deterministic construction of a string of
length n with the e-self-matching property, which leads to a deterministic efficient code construc-
tion. We start by showing that even random strings satisfy the e-self-matching property if the
alphabet size is an adequately large polynomial in terms of £~

THEOREM 6.9. For any a > 0 and any sufficiently small ¢ > 0, a random string over an alphabet
of size e~ **%) satisfies the e-self-matching property with high probability.

PROOF. Let S be a random string on alphabet X of size [%| = e~ ?*®)_For S to not satisfy the e-self-
matching property, there has to be a self-matching between S and itself with ne bad pairs. Note
that there are no more than (")2 possible such self-matchings. Further, for any such potential
self-matching, the probability of it actually constituting a self-matching is 2|"f' Therefore, using
the union bound, the probability of S not satisfying the e-self-matching property is bounded above

by
2 2 2ne
n) 1 < (E) ne) 1 < e _ (eg%)ZHS _ (ezga)ng'
ne) |Z["¢ \ne 12"~ \eV[Z]

Note that for a sufficiently small e, e?e* < 1 and thus, (e?e%)¢ < 1. Therefore, the probability of S
not satisfying the e-self-matching property approaches zero exponentially as n grows. O

As the next step, we prove a similar claim for strings of length n whose symbols are chosen
from an n Om-approxrmate @)(log(l /e)) -wise independent [32] distribution over a larger, yet still

£~9W _size, alphabet. This is the key step in allowing for a derandomization using the small sample
spaces of Naor and Naor [32]. The proof of Theorem 6.10 follows a similar strategy as was used
in Reference [3] to derandomize the constructive Lovasz local lemma. In particular, the crucial
idea, that is stated in Lemma 6.11, is to show that for any large obstruction there has to exist a
smaller yet not too small obstruction. This allows one to prove that in the absence of any small
obstructions, no large obstructions would exist.

THEOREM 6.10. For sufficiently small ¢ amd sufficiently large constants ¢ and ¢y, a n~-
approximate lggl?—lg/z)—wise independent random string of size n on an alphabet of size O(¢~%%1) satisfies
the e-matching property with high probability.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:29

clogn
log(1/¢)
pendent symbols. We use the following to show that S would violate the ¢-self-matching property

only if there is a dense matching between two small substrings of S.

Proor. Let S be a pseudo-random string of length n with n™“-approximate -wise inde-

LEMMA 6.11. Consider string I of length | > 100m and a self-matching over it of size ne consisting
only of bad pairs. There exist (not necessarily disjoint) substrings I and I, of I, both of size m where
0.997% of the pairs of the matching lie between I; and I—i.e., have one endpoint inI; and one endpoint
in Iz.

If S does not satisfy the e-self-matching property, then there exists a matching with ne bad
clogn
elog(1/¢)
some c that we fix later, we have that there are two (not necessarily distinct) substrings of S of size
- 1co lg°(g17) % pairs of S’s self-matching lie between them. Therefore, to bound above the
probability of S not satisfying the e-self-matching property, we simply bound above the probability
0.99clogn
2log(1/¢€)

and their second endpoints lie in another (not necessarily

pair between S and itself. By applying Lemma 6.11 over this matching with m = for

where

of the existence of a self-matching over S with bad pairs where first endpoints of all pairs

clogn
2log(1/¢)

clogn
2log(1/¢)"
To do so, similar to Theorem 6.9, we take advantage of the union bound. Note that there are no

clogn
elog(1/¢)

lie in a substring of length

disjoint) substring of length

more than n? choices of pairs of intervals of length
to

in S. Therefore, there can only be up

-1 2 2 0.99clogn 99¢logn
o[€ 'clogn/log(1/e) <. (2e) X 2logl1/#) . (2'0468_1)012;1/5)
0.99clogn/2log(1/¢) 0.99¢

0.99clogn 0.99clog(2.04e)
= n?.(2.04e) e/ p%%¢ = Tog(1/2)

2+0.99¢c+
n

potential sets of bad pairs that meet the above mentioned criteria.

We now bound above the probability of the realization of a bad matching over a specific set
0.99c log n
2log(1/¢)
S denoted by p; < p; < -+ < prand q; < q2 < +-+ < q. If the randomness is drawn out of
a 2k-wise independent distribution, then the probability of a bad matching being realized at this
1

of endpoints as described above. More precisely, we have two sets of k = locations in

locations is Note that our distribution here is n~“-approximate k;:gl?—f/r;)—wise independent and

DI
1 -1s . . .
2k < kt)jg?—lg/r;). Therefore, the probability of a bad matching forming at {(p;, ¢;)}_; is no more than
L - 1 0 = n—2.01-—°~92"“ % < 2n—2.01-—°-"29"_
|Z|k 9 OI'O.QQClogn -
e 2log(1/€)

For the last step to hold, we set ¢, in a way that ¢y > c.
All in all, the probability of S not satisfying the e-self-matching probability is at most

0.99clog(2.04e) . log(2.04e)
p2r0-99c+ STy —2.01.09e 2n2+0.99c(Teire) 0.005)'
. log(2.04 o .
For a sufficiently small ¢, % —0.005 < 0. Therefore, if ¢ is a sufficiently large constant, then

the exponent of n in the above expression is negative. Therefore, the probability of S not satisfying
the e-self-matching probability is polynomially small in terms of n and vanishes as n grows. O

PROOF OF LEMMA 6.11. Let M be a monotone matching of size l¢ or more between S and itself
containing only bad edges. We chop S into # intervals of size m. On the one hand, the size of M
is greater than le and, on the other hand, we know that the size of M is exactly };; j |E; j|, where

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:30 B. Haeupler and A. Shahrasbi

E; ; denotes the number of edges between interval i and j. Thus,

£ Zi,j |Ei,j|/m
IESIZ]:|E,'J|$E < W

Note that % represents the density of edges between interval i and interval j. Further, Since M

% # 0. Hence,
on the right-hand side, we have the average of up to %l non-zero terms, which is greater than ¢/2.
So, there have to be some i’ and j’ for which

is monotone, there are at most %l intervals for which |E; ;| # 0 and subsequently

e _|Evyl _ me

- < —— = — < |Evyl
2 m 2 ’

To analyze more accurately, if] is not divisible by m, then we simply throw out up to m last elements

of the string. This may decrease ¢ by 7 < 155.]

Note that using the polynomial sample spaces of Reference [32] Theorem 6.10 directly leads to
a deterministic algorithm for finding a string of size n that satisfies the e-self-matching property.

THEOREM 6.12. There is a deterministic algorithm running in n®® time that finds a string of length
n satisfying e-self-matching property over an alphabet of size O(¢~%-%1).

Proor. To do so, one simply has to do a brute force search over all possible points in the sample
space of some n~?(-approximate lggl?—lg/z)—wise independent string of length n and find one that
satisfies the e-self-matching property. Reference [32] gives constructions of n random variables

that are §-approximate k-wise independent with sample spaces of size exp(k + log % + loglogn).
(See Lemma 4.2 of Reference [32] for more information.) Therefore, doing so would take
1
P ISg(()—f/rEl) + O(logn) + loglog n) =n

time. m|

O.(1)

6.3 Global Repositioning Algorithm for Insdel Errors

Now, we provide an alternative repositioning algorithm to be used along with e-self-matching
strings (and therefore e-synchronization strings) to form indexing solutions. Throughout the fol-
lowing sections, we let e-synchronization string S be sent as the synchronization string in an in-
stance of (n, §)-indexing problem and string S’ be received at the receiving end after going under
up to nd insertions or deletions.

The algorithm works as follows. On the first round, the algorithm finds the longest common
subsequence between S and S’. Note that this common subsequence corresponds to a monotone
matching M; between S and S’. On the next round, the algorithm finds the longest common sub-
sequence between S and the subsequence of unmatched elements of S’ (i.e., those that have not
appeared in M;). This common subsequence corresponds to a monotone matching between S and
the elements of S’ that do not appear in M;. The algorithm repeats this procedure % times to ob-
tain My, ..., My, 5 where f8 is a parameter that we will fix later. In the output of this repositioning
algorithm, the position of S’[j] is guessed as S[i] if S’[j] and S[i] correspond to each other under
one of the 1/ common subsequences that the algorithm finds. Otherwise, the algorithm declares
“1” (i.e., an “I don’t know”). A formal description of the algorithm can be found in Algorithm 3.

Note that the longest common subsequence of two strings of length O(n) can be found in O(n?)
time using dynamic programming. Therefore, the whole algorithm runs in O(n?/). Now, we pro-
ceed to analyzing the performance of the algorithm by bounding the number of misdecodings.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:31

ALGORITHM 3: Global Repositioning Algorithm for Insertions and Deletions
Input: S, S’

1: fork =1to|S’| do

2. Position[k] « L

3: fork:lto%do

4 Compute LCS(S, S")

5

6

7

for all Corresponding S[i] and S’[j] in LCS(S, S”) do
Position[j] « i
Remove all elements of LCS(S, S") from S’
Output: Position

THEOREM 6.13. Letd; and d, denote the number of symbols inserted into and deleted from the com-
munication, respectively. The global repositioning algorithm formalized in Algorithm 3 guarantees a
maximum misdecoding count of (n + d; — d,)f + %n. More specifically, for f = +fe, the number of

misdecodings is no larger than 3nve and running time will be O(n?/+/e).

Proor. First, we claim that at most (n + d; — d,)f of the symbols that have been successfully

transmitted are not matched in any of My, ..., M;,s. Assume by contradiction that more than
(n+d; —d,)p of the symbols that pass through the channel successfully are not matched in any of
My, ..., My, p. Then, there exists a monotone matching of size greater than (n +d; —d,) between

the unmatched elements of S” and S after + rounds of finding and removing the longest common
subsequence. This implies that each M; has a size of (n+d;—d,) f or more. Therefore, the summation
of their sizes exceeds (n +d; — d,)f X % =n+d; —d, = |S’|, which is impossible.

Furthermore, we show that among all of successfully transmitted symbols, only %n can be de-
coded incorrectly. Take any matching M; and consider all of the elements in M; that correspond
to a successfully transmitted but incorrectly decoded symbol. Let us indicate the elements of this
set with M} = {(p;,q;)};. By definition, S[p;] = S’[q;]. Also, note that by the fact that S’[q;] is
a successfully transmitted symbol, there is another symbol in S like S[r;] to which S’[g;] actu-
ally corresponds under the adversary’s insertions and deletions. Therefore, for all j, we have that
S[r;j] = S’[q;] = S[p;] and p; # r;. This, along with the fact that both M; and {(r;, g;)}; are mono-
tone matchings, gives that M!" = {(p;, r;)}; is a self-matching over S consisting only of bad matches.
Thus, |M]’| < ne. This means that there are no more than ne misdecoded successfully transmitted
symbols in M; and, thus, no more than % such misdecodings overall.

Adding up the two upper-bounds described above, one can bound the total number of misde-
codings by (n+d; —d,)p + %n. O

6.4 Global Repositioning Algorithm for Deletion Errors

We now introduce a very simple linear time streaming repositioning algorithm that guarantees no
£

more than £ - nd misdecodings.
Let d, denote the number of symbols removed by the adversary. As the adversary is restricted
to symbol deletions, each symbol received at the receiver corresponds to a symbol sent by the
sender. Hence, there exists a monotone matching of size |S’| = n’ = n —d, like M = {(t1,1),
(t2,2),...,(ty—g,.,n —d;)} between S and S’, which matches each of the received symbols to their
actual positions.
Our simple streaming algorithm greedily matches S’ to its left-most appearance in S as a subse-

quence. More precisely, the algorithm matches $’[1] to S[t{] where ¢ is the smallest number where

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:32 B. Haeupler and A. Shahrasbi

S[t;] = S’[1]. Then, the algorithm matches S’[2] to the smallest t;, > t; where S[t,] = S’[2] and
construct the whole matching M’ by repeating this procedure. Note that as there is a matching of
size |S’| between S and S’, the size of the resulting matching M” will be |S’| as well. We claim that
the following holds for this algorithm:

THEOREM 6.14. Any e-synchronization string along with the algorithm described in Section 6.4
form a linear-time streaming solution for deletion-only (n, §)-indexing problem guaranteeing = -nd
misdecodings.

Proor. This algorithm clearly works in a streaming manner and runs in linear time. To analyze
the performance, we make use of the fact that M and M’ are both monotone matchings of size
|S’| between S and S’. Therefore, M = {(t1,t]), (t2,1;), - - ., (tn-q, trlz—dr)} is a monotone matching
between S and itself. Note that if ¢; # t;, then the algorithm has incorrectly decoded the index
symbol i. Let p be the number of all such symbols. Then matching M consists of n — d, — p good
pairs and p bad pairs. Therefore, using Theorem 6.2, we have the following:

pSE(n—(n—d,—p)):>p§g(d,+p):>p<%.dr_
—¢

6.5 Global Repositioning Algorithm for Insertion Errors

We now consider another simplified case where the adversary is restricted to only inserting sym-
bols. We propose a decoding algorithm whose output is guaranteed to be error-free and to contain
less than % misdecodings.

Assume that d; symbols are inserted into the string S to turn it in into S’ of size n + d; on the
receiving side. Again, it is clear that there exists a monotone matching M of size n like M = {(1, t;),
(2,t2),...,(n,t,)} between S and S’ that matches each symbol in S’ to its actual position in S.

The repositioning algorithm we present, matches S[i] to S’[¢/] in its output, M, if and only if
in all possible monotone matchings between S and S’ that saturate S (i.e., are of size |S| = n), S[i]
is matched to S’[t/]. Note that any symbol S[i] that is matched to S’[¢/] in M’ has to be matched
to the same element in M; therefore, the output of this algorithm does not contain any incorrectly
decoded indices; therefore, the algorithm is error-free.

Now, we are going to first provide a linear time approach to implement this algorithm and then
prove an upper-bound of % on the number of misdecodings. To this end, we make use of the
following lemma:

LEMMA 6.15. Let My = {(1,1;),(2,13),...,(n,1,)} be the monotone matching between S and S’,
which yields the smallest lexicographical value for Iy, ..., 1,. We call My the left-most matching
between S and S’. Similarly, let Mg = {(1,r1),...,(n,r,)} be the monotone matching for which
Tn,...,r Yieldsthe largest possible lexicographical value. Then S[i] is matched to S’[t!] in all possible
monotone matchings of size n between S and S’ if and only if (i,t]) € Mg N M.

This lemma can be proved by a simple contradiction argument. Our algorithm starts by com-
puting left-most and right-most monotone matchings between S and S’ using the straightforward
greedy algorithm introduced in Section 6.4 on (S, S’) and their reversed versions. It then outputs
the intersection of these two matchings as the answer.

This algorithm runs in linear time, since the task of finding the left-most and right-most match-
ings are done in linear time. To analyze this algorithm, we bound above the number of successfully
transmitted symbols that the algorithm refuses to decode, denoted by p. To do so, we make use of
the fact that n — p elements of S” are matched to the same element of S in both M} and Mg. As
there are p elements in S that are matched to different elements in S” and there is a total of n + d;

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:33

elements in S’, there has to be at least 2p — [(n + d;) — (n — p)] = p — d; elements in S’ that are
matched to different elements of S under M; and Mp.
Consider the following monotone matching from S to itself.

M = {(i,i) : If S[i] is matched to the same position of S in both M and M’}
U {(i,j) : i # j, Ik s.t. (i,k) € Mg, (j, k) € Mg}.
Note that monotonicity follows the fact that both My and Mg are both monotone matchings be-
tween S and S’. We have shown that the size of the second set is at least p — d; and the size of the
first set is by definition n — p. Also, all pairs in the first set are good pairs and all in the second one
are bad pairs. Therefore, Theorem 6.2 implies that
d:

(p—di) seln—(n-p))=p< 1_—15
which proves the efficiency claim and gives the following theorem.

THEOREM 6.16. Any e-synchronization string along with the algorithm described in Section 6.5
form a linear-time error-free solution for insertion-only (n, §)-indexing problem guaranteeing ﬁ -nd
misdecodings.

Finally, we remark that a similar non-streaming algorithm can be applied to the case of deletion-
only errors. Namely, one can compute the left-most and right-most matchings between the re-
ceived string and string that is supposed to be received and output the common edges. By a similar
argument as above, one can prove the following:

THEOREM 6.17. Any e-synchronization string along with the algorithm described in Section 6.5
form a linear-time error-free solution for deletion-only (n, §)-indexing problem guaranteeing = - nd
misdecodings.

6.6 Linear-time Near-MDS Codes for Insertion-only and Deletion-only Settings

In the same manner as in Theorem 1.1, we can use error-free indexing solutions presented in
Theorems 6.16 and 6.17 along with near-MDS (erasure) correcting codes to derive the following
linear-time insertion-only or deletion-only errors.

THEOREM 6.18. Foranye > 0 and§ € (0,1):

e There exists an encoding map E : % — X" and a decoding map D : ¥* — ¥ such that if x is
a subsequence of E(m) where |x| > n — nd then D(x) = m. Further% >1-8-¢ 2] = f(e),
and E and D are explicit and have linear running times in n.

o There exists an encoding map E : % — %" and a decoding map D : * — % such that ifE(m)
is a subsequence of x where |x| < n + nd then D(x) = m. Further% >1-6—-¢ 12| = f(e),
and E and D are explicit and have linear running times in n.

6.7 Repositioning Using the Relative Suffix Pseudo-distance (RSPD)

In this section, we show how one can slightly improve the misdecoding guarantees in the results
obtained in Section 5.2 by replacing RSD with a related notion of “distance” between two strings
introduced in Reference [2]. We call this notion the relative suffix pseudo-distance or RSPD both
to distinguish it from our RSD relative suffix distance and also because RSPD is not a metric—it is
neither symmetric nor satisfies the triangle inequality.

Definition 6.19 (Relative Suffix Pseudo-distance (RSPD)). Given any two strings ¢,¢ € X%, the
relative suffix pseudo-distance between ¢ and ¢ is

{] {sc (1 [i, |111]) + sc (z2 [i, |T2|])}}
max .

RSPD (¢,¢) = min - ;
() i=1 |T1| —i+1-sc (Tl [l,|T1|])

Tic—C

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:34 B. Haeupler and A. Shahrasbi

S
S [I]
r
Tq | |]
Q
Ty | I)
f"fr /’/
/"J‘/ ”/’r
/ ,/'/
T [I)

Fig. 2. Pictorial representation of the notation used in Lemma 6.21.

We remark that there is a loose resemblance between the RSPD and RSD notions. In the defini-
tion of the RSPD, the numerator of the maximization term counts the number of insertions and
deletions that occur within a suffix of the communication given a fixed string matching between
the two. The denominator holds the length of the part of the first string that lies within that suffix
of the string matching. In other words, RSPD (c, ¢) refers to the largest density of insertions and
deletions over all suffixes of the communication (described by a string matching), minimized over
the choice of the string matching.

We derive our repositioning algorithm by proving the following useful property of e-
synchronization strings.

LEMMA 6.20. LetS € 2" be an e-synchronization string and ¢ € ™. Then, there exists at most one
c € UL {S[1, 1]} such that RSPD(c,¢) < 1 —e.

Before proceeding to the proof of Lemma 6.20, we prove the following lemma.

LEMMA 6.21. Let RSPD(S,T) < 1 — ¢, then:

(1) For every1 <s < |S|, there exists t such that ED (S[s, |S|], T [¢,|T1])

<(1-e(S|—-s+1).
(2) Forevery1 <t < |T|, there exists s such that ED (S[s, |S|], T [t,|T]]) < (1 -

e)(IS| —s+1).
Proor. Each part will be proved separately.

Part 1. Let 7 be the string matching that attains the minimization in the definition of RSPD(S, T).
There exist some r such that del(z; [r, |1]]) = S[s, |S|]. Note that del(z;[r, |r2]]) is a suffix of T.
Therefore, there exists some ¢ such that T[t,|T|] = del(z[r, |72]]). See Figure 2 for a pictorial
representation. Now,

ED(S[s, [SIL.T[t,ITI]) < sc(del(zy [r,|71]])) + sc(del(z [, |71]]))
_ sc(del(ry [r,m]]) + sc(del(z, [, [ml])) B
= ol =7+ 1—semlmnl) (Il =r+1=sc(ri[r,|71l]))
< RSPD(S,T) - (IS| —s +1)
< (1-g)-(IS|-s+1). (12)

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:35

ALGORITHM 4: Minimum RSPD Decoding Algorithm (Guessing the position of the last symbol
of the received string)

Input: A received message ¢ € X and an e-synchronization string S € %"
1: ans < 0

2: for Any prefix c of S do

s . k, 2 [k, |
s dlD mingeqy-ag) max) SRR

sc(ry)=1
4 RSPD(c,é) « minl d[i][|¢]][I']
5. if RSPD(c,¢) < 1 — ¢ then
6: ans « ¢
Output: ans

Part 2. Similarly, let 7 be the string matching yielding RSPD(S, T). There exists some r such that
del(zy [r, |12]]) = T[t,|T|]. Now, del(z[r, |71|]) is a suffix of S. Therefore, there exists some s such
that S[s, |S|] = del(zy[r, |71]]). Now, all the steps we took to prove Equation (12) hold and the proof
is complete. O

Proor oF LEMMA 6.20. For a contradiction, suppose that there exist ¢, [and I’ such that [< I’,
RSPD(S[1,1],¢) < 1—¢and RSPD(S[1,1’],¢) < 1—¢. Now, using part 1 of Lemma 6.21, there exists
k such that ED (S[I + 1,1’], ¢[k, |¢]]) < (1—¢)(I" —1). Further, part 2 of Lemma 6.21 gives that there
exist I’ such that ED (S[l"" + 1,1],¢[k, |¢]]) < (1 —¢)(I —1"). Hence,

ED(S[I” + 1,11, S[I + 1,I']) < ED(S[I” + 1,1],¢[k, |€]]) + ED(S[L + 1,1'], é[k, |¢]]) < (1 —¢&)(I' = 1"),
which contradicts the fact that S is an e-synchronization string. O

In the same spirit as Section 5.2, one can develop a repositioning algorithm based on Lemma 6.20
that works as follows: upon arrival of each symbol, find a prefix of synchronization index string
S that has the smallest RSPD to the string that is received so far (denoted by ¢). We call this algo-
rithm the minimum RSPD decoding algorithm. Theorems 6.22 and 6.23 describe the computational
complexity and misdecoding count of such repositioning algorithm.

THEOREM 6.22. Let S € X" be an e-synchronization string, and ¢ € ™. Then Algorithm 4, given
input S and ¢, either returns the unique prefix ¢ of S such that RSPD(c,¢) < 1 — ¢ or returns L if no
such prefix exists. Moreover, Algorithm 4 runs in O(n*) time. Therefore, using it over each received
symbol to guess the position of all symbols of a communication, one derives a repositioning algorithm
that runs in O(n°) time.

Proor. To find ¢, we calculate the RSPD of ¢ and all prefixes of S one by one. We only need to
show that the RSPD of two strings of length at most n can be found in O(n®). We do this using
dynamic programming. Let us try to find RSPD(s, t). Further, let s(i) represent the suffix of s of
length i and t(j) represent the suffix of ¢ of length j. Now, let d[i][j][/] be the minimum string
matching (73, 72) from s(i) to t(j) such that sc(r;) = [. In other words,

I . ln| sc(ty [k, |1]) + sc (z2 [k, |72]])
AUl = min ek = Tk)

sc(ry)=1

where 7 is a string matching for s(i) and ¢(j). Note that for any 7 : s(i) — t(j), one of the following
three scenarios might happen:

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:36 B. Haeupler and A. Shahrasbi

(1) ©1(1) = 72(1) = s (Is] = (i — 1)) = t(|t] — (j — 1)): In this case, removing the first elements of
71 and 7, gives a valid string matching from s(i — 1) to ¢(j — 1).

(2) 71(1) = *and (1) = t(|t] — (j — 1)): In this case, removing the first element of 7; and z,
gives a valid string matching from s(i) to t(j — 1).

(3) 72(1) = *and 7;(1) = s(|s| — (i = 1)): In this case, removing the first element of 7; and =,
gives a valid string matching from s(i — 1) to #(j).

This implies that

d[i][j1[1] = min {d[i —1][j = 1][1] (Only if s(i) = t(j)),

- I+(G-(@(-1)
max {d[l][] - 1][1— 1], W} .

. B Vil Ull))
max {d[l - 1][]][[], (IT)”} }

Hence, one can find RSPD(s,t) by minimizing d[|s|][|¢|][/] over all possible values of I, as
Algorithm 4 does in Step 4 for all prefixes of S. Finally, Algorithm 4 returns the prefix ¢ such
that RSPD(c, ¢) < 1 — ¢ if one exists, and otherwise it returns L. O

We conclude by showing that if an e-synchronization string of length n is used along with the
minimum RSPD algorithm, the number of misdecodings will be at most %.

THEOREM 6.23. Suppose that S is an e-synchronization string of length n over alphabet 3 that
is sent over an insertion-deletion channel with c; insertions and cq deletions. Repositioning via us-
ing Algorithm 4 to guess the position of each received symbol results into no more than = + %
misdecodings.

Proor. The proof of this theorem is similar to the proof of Theorem 5.11. Let prefix S[1, i] be
sent through the channel and S;[1, j] be received on the other end as the result of the adversary’s
set of actions 7 = (71, 72). Further, assume that S, [j] is successfully transmitted and is actually S[i]
sent by the other end. We first show that RSPD(S[1, i], S’[1, j]) is less than the relative suffix error
density:

RSPD(S[L,i],S’[1,j]) = min

T:ic—>¢

{ |7 {SC (71 [k, 171]]) + sc (7 [k, %I])}}
max

k=t | Tl —k+1—sc (7 [k, |T:]])

< Jml [se(m Ik |nl]) +sc(z [k, n]])
< max
k=1 | Inl—k+1-sc(r [k |nl])
S0
= max 0 l) = Relative Suffix Error Density.
it i—j

Now, using Lemma 5.15, we know that the relative suffix error density is smaller than 1—¢ upon
arrival of all but at most C’;Ti" — ¢q4 of successfully transmitted symbols. Along with Lemma 6.20,
this results into the conclusion that the minimum RSPD decoding algorithm guarantees no more

than 7= + ¢;(7% — 1) misdecodings. |

7 CONCLUSION AND FOLLOW-UP WORK

This article introduced synchronization strings as simple yet very powerful mathematical objects
that are very helpful when dealing with synchronization errors in communications. In particu-
lar, one can use them to efficiently transform insertion and deletion errors into much simpler

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:37

Hamming-type errors in the context of error correcting errors. The article mainly focused on de-
veloping the theory of synchronization strings and its application in designing families of insdel
codes with essentially optimal rate-distance trade-off in the finite-alphabet-size regime.

Ever since the preliminary publication of this article, several follow-up works have demon-
strated further applications of synchronization strings in communication settings where coding
against insertions and deletions are concerned.

A follow-up work by Haeupler et al. in 2017 [24] showed that the code construction methods
presented in this article can be ported to the setting of binary codes to derive binary codes that
tolerate a ¢ fraction of synchronization errors while achieving a rate of 1-O(+/6 log(1/6)). This im-
proved upon the state-of-the-art insdel codes [13] with respect to the rate/distance trade-off. Two
recent simultaneous works by Cheng et al. [5] and Haeupler [19] have further improved upon that
by introducing efficient binary codes with rate 1 — O(5log® §) via providing deterministic docu-
ment exchange protocols. Both of these works utilize mathematical structures that are inspired by
structures introduced in this article such as e-synchronization and e-self-matching properties.

Further, Reference [24] shows that our synchronization string-based indexing method can be
extended to fully simulate an ordinary substitution channel over a given insertion-deletion channel
(i.e., without any delay for repositioning). This is much stronger than constructing insdel codes and
allows to completely hide the existence of synchronization errors in many applications that go way
beyond codes, such as, settings with feedback, real-time control, or interactive communications.
This directly leads to new interactive coding schemes for the setting with synchronization errors
introduced by Reference [2], including the first efficient scheme and the first scheme with good
(and, in fact, likely near optimal) communication rate for small error fractions.

In this article, we provided a randomized polynomial time construction for e-synchronization
strings and a polynomial time deterministic construction for e-self-matching strings. In Reference
[22], several highly parallel, deterministic linear time constructions for e-synchronization strings
are given. In fact, these constructions provide highly explicit infinite e-synchronization strings in
which the ith symbol can be computed deterministically in O(log i) time. Reference [22] also gives
strengthened versions of the e-synchronization string property, which comes with very fast local
decoding procedures and discuss several further applications.

Another follow-up work in 2019 [20] employs a similar indexing scheme with a specific pseudo-
random string that enhances the global repositioning algorithm presented in Section 6.3 by de-
creasing its time complexity to near-linear time. This improves the decoding complexity of codes
put forward in Theorem 1.1 to near-linear time.

Synchronization strings and our indexing methods also have shown to be useful to achieve fam-
ilies of list-decodable insdel codes with near-optimal rate-distance trade-off over large constant
alphabets [23]. These synchronization string-based list-decodable insdel codes are used in a con-
catenation scheme in Reference [11] to provide optimally resilient list-decodable insertion-deletion
codes.

Finally, in addition to applications, structural and combinatorial properties of synchronization
strings were studied in a work by Cheng et al. [4].

We strongly believe that synchronization strings, our indexing method, and channel simulations
will lead to many further applications in the future. We also believe that e-synchronization strings,
in their own right, are a worthwhile and interesting combinatorial structure to study.

ACKNOWLEDGMENTS

The authors thank Ellen Vitercik and Allison Bishop for valuable discussions in the early stages
of this work.

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

36:38 B. Haeupler and A. Shahrasbi

REFERENCES

[1] Arturs Backurs and Piotr Indyk. 2018. Edit Distance cannot be computed in strongly subquadratic time (unless SETH
is false). SIAM . Comput. 47, 3 (2018), 1087-1097.

[2] Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. 2017. Coding for interactive communication cor-

recting insertions and deletions. IEEE Trans. Info. Theory 63, 10 (2017), 6256-6270.

Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. 2013. Deterministic algorithms for the Lovész

local lemma. SIAM J. Comput. 42, 6 (2013), 2132-2155.

Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. 2019. Synchronization strings: Highly

efficient deterministic constructions over small alphabets. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA’19). 2185-2204.

Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. 2018. Deterministic document exchange protocols, and almost opti-

mal binary codes for edit errors. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’18).

Ran Gelles. 2017. Coding for interactive communication: A survey. Found. Trends Theor. Comput. Sci. 13, 1-2 (2017),

1-157.

Ran Gelles and Bernhard Haeupler. 2017. Capacity of interactive communication over erasure channels and channels

with feedback. SIAM J. Comput. 46, 4 (2017), 1449-1472.

Mohsen Ghaffari and Bernhard Haeupler. 2014. Optimal Error Rates for Interactive Coding II: Efficiency and List

Decoding. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’14). 394-403.

Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. 2014. Optimal Error Rates for Interactive Coding I: Adaptiv-

ity and other Settings. In Proceedings of the ACM Symposium on Theory of Computing (STOC’14). 794-803.

[10] S. W. Golomb, J. Davey, I. Reed, H. Van Trees, and J. Stiffler. 1963. Synchronization. IEEE Trans. Commun. Syst. 11, 4
(1963), 481-491.

[11] Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. 2020. Optimally resilient codes for list-
decoding from insertions and deletions. In Proceedings of the ACM Symposium on Theory of Computing (STOC’20).

[12] Venkatesan Guruswami and Piotr Indyk. 2005. Linear-time encodable/decodable codes with near-optimal rate. IEEE
Trans. Info. Theory 51, 10 (2005), 3393-3400.

[13] Venkatesan Guruswami and Ray Li. 2016. Efficiently decodable insertion/deletion codes for high-noise and high-rate
regimes. In Proceedings of IEEE International Symposium on Information Theory (ISIT’16). 620-624.

[14] Venkatesan Guruswami and Atri Rudra. 2008. Explicit codes achieving list decoding capacity: Error-correction with
optimal redundancy. IEEE Trans. Info. Theory 54, 1 (2008), 135-150.

[15] Venkatesan Guruswamiand Ameya Velingker. 2015. An entropy sumset inequality and polynomially fast convergence
to shannon capacity over all alphabets. In Proceedings of the 30th Conference on Computational Complexity. 42-57.

[16] Venkatesan Guruswami and Carol Wang. 2017. Deletion codes in the high-noise and high-rate regimes. IEEE Trans.
Info. Theory 63, 4 (2017), 1961-1970.

[17] Venkatesan Guruswami and Patrick Xia. 2015. Polar codes: Speed of polarization and polynomial gap to capacity. IEEE
Trans. Info. Theory 61, 1 (2015), 3-16.

[18] Bernhard Haeupler. 2014. Interactive channel capacity revisited. In Proceeding of the IEEE Symposium on Foundations
of Computer Science (FOCS’14). 226-235.

[19] Bernhard Haeupler. 2019. Optimal document exchange and new codes for insertions and deletions. In Proceedings of
the IEEE Symposium on Foundations of Computer Science (FOCS’19). 334-347.

[20] Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. 2019. Near-linear time insertion-deletion codes
and (1+ ¢)-approximating edit distance via indexing. In Proceedings of the ACM Symposium on Theory of Computing
(STOC’19). 697-708.

[21] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. 2011. New constructive aspects of the lovasz local lemma. 7.
ACM 58, 6 (2011), 28.

[22] Bernhard Haeupler and Amirbehshad Shahrasbi. 2018. Synchronization strings: Explicit constructions, local decoding,
and applications. In Proceedings of the ACM Symposium on Theory of Computing (STOC’18). 841-854.

[23] Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. 2018. Synchronization strings: List decoding for
insertions and deletions. In Proceedings of the International Conference on Automata, Languages, and Programming
(ICALP’18).

[24] Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. 2018. Synchronization Strings: Channel simulations
and interactive coding for insertions and deletions. In Proceedings of the International Conference on Automata, Lan-
guages, and Programming (ICALP’18).

[25] Gillat Kol and Ran Raz. 2013. Interactive channel capacity. In Proceedings of the ACM Symposium on Theory of Com-
puting (STOC’13). 715-724.

[26] Vladimir I. Levenshtein. 1965. Binary codes capable of correcting deletions, insertions, and reversals. Doklady
Akademii Nauk SSSR 163 4 (1965), 845—8438.

3

—_

[4

[laa)

(5

—_

G

—

[7

—

[8

—

[9

—

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

Synchronization Strings: Codes for Insertions and Deletions Approaching 36:39

[27] S--Y. R. Li, Raymond W. Yeung, and Ning Cai. 2003. Linear network coding. IEEE Trans. Info. Theory 49, 2 (2003),
371-381.

[28] Michael Luby. 2002. LT codes. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’02).
271-282.

[29] Hugues Mercier, Vijay K. Bhargava, and Vahid Tarokh. 2010. A survey of error-correcting codes for channels with
symbol synchronization errors. IEEE Commun. Surveys Tutor. 1, 12 (2010), 87-96.

[30] Michael Mitzenmacher. 2009. A survey of results for deletion channels and related synchronization channels. Probabil.
Surveys 6 (2009), 1-33.

[31] Robin A. Moser and Gabor Tardos. 2010. A constructive proof of the general Lovasz Local Lemma. . ACM 57, 2 (2010),
11.

[32] Joseph Naor and Moni Naor. 1993. Small-bias probability spaces: Efficient constructions and applications. SIAM 7.
Comput. 22, 4 (1993), 838-856.

[33] Eran Rom and Amnon Ta-Shma. 2006. Improving the alphabet size in expander-based code constructions. IEEE Trans.
Info. Theory 52, 8 (2006), 3695-3700.

[34] Leonard J. Schulman and David Zuckerman. 1999. Asymptotically good codes correcting insertions, deletions, and

transpositions. IEEE Trans. Info. Theory 45, 7 (1999), 2552-2557.

Neil J. A. Sloane. 2002. On single-deletion-correcting codes. In Codes and Designs, de Gruyter, Berlin, 273-291.

Daniel A. Spielman. 1996. Linear-time encodable and decodable error-correcting codes. IEEE Transactions on Informa-

tion Theory (TransInf) 42, 6 (1996), 1723-1731.

[37] A. Thue. 1977. Uber die gegenseitige lage gleicher teile gewisser zeichenreihen (1912). Selected mathematical papers
of Axel Thue, Universitetsforlaget (1977).

[38] Michael Tsfasman and Serge G. Vladut. 2013. Algebraic-geometric codes. Vol. 58. Springer Science & Business Media.

(35
(36

—

Received March 2020; revised May 2021; accepted May 2021

Journal of the ACM, Vol. 68, No. 5, Article 36. Publication date: September 2021.

