
Learning to Defend by Learning to Attack

Haoming Jiang∗ Zhehui Chen∗ Yuyang Shi Bo Dai Tuo Zhao
Georgia Tech Georgia Tech Georgia Tech Google Brain Georgia Tech

Abstract

Adversarial training provides a principled ap-
proach for training robust neural networks.
From an optimization perspective, adversar-
ial training is essentially solving a bilevel op-
timization problem. The leader problem is
trying to learn a robust classifier, while the
follower maximization is trying to generate
adversarial samples. Unfortunately, such a
bilevel problem is difficult to solve due to
its highly complicated structure. This work
proposes a new adversarial training method
based on a generic learning-to-learn (L2L)
framework. Specifically, instead of applying
existing hand-designed algorithms for the in-
ner problem, we learn an optimizer, which is
parametrized as a convolutional neural net-
work. At the same time, a robust classi-
fier is learned to defense the adversarial at-
tack generated by the learned optimizer. Ex-
periments over CIFAR-10 and CIFAR-100
datasets demonstrate that L2L outperforms
existing adversarial training methods in both
classification accuracy and computational ef-
ficiency. Moreover, our L2L framework can
be extended to generative adversarial imita-
tion learning and stabilize the training.

1 Introduction

This decade has witnessed great breakthroughs in deep
learning in a variety of applications, such as computer
vision (Taigman et al., 2014; Girshick et al., 2014; He
et al., 2016; Liu et al., 2017). Recent studies (Szegedy
et al., 2013), however, show that most of these deep
learning models are very vulnerable to adversarial at-
tacks. Specifically, by injecting a small perturbation to

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

a normal sample, one can obtain an adversarial sam-
ple. Although the adversarial sample is semantically
indistinguishable from the normal one, it can fool deep
learning models and undermine the security of deep
learning, causing reliability problems in autonomous
driving, biometric authentication, etc.

Researchers have devoted many efforts to study effi-
cient adversarial attack and defense (Szegedy et al.,
2013; Goodfellow et al., 2014b; Nguyen et al., 2015;
Zheng et al., 2016; Madry et al., 2017; Carlini and
Wagner, 2017). There is a growing body of work
on generating adversarial samples, e.g., fast gradient
sign method (FGSM, Goodfellow et al. (2014b)), pro-
jected gradient method (PGM, Kurakin et al. (2016)),
Carlini-Wagner (CW, Paszke et al. (2017)), etc. As for
defense, existing methods can be unified as a bilevel
optimization problem as follows:

(Leader) minθ EP∗
[
`(fθ(x̃), ỹ)

]
, (1)

(Follower) s.t. P ∗ ∈ argmax
P̃∈P

EP̃
[
qfθ
(
(x,y), (x̃, ỹ)

)]
,

where ` denotes the loss function, fθ denotes the neu-
ral network classifier with parameter θ, (x,y) denotes
the clean sample from distribution D, qfθ (·, ·) denotes
a measure depending on network fθ, and P denotes
a set of joint distributions of perturbed sample (x̃, ỹ)

and clean sample (x,y). Here P̃ ∈ P satisfies that in
each sample (x̃, ỹ) is close to (x,y) and the marginal

distribution of P̃ over (x,y) is D. By solving the fol-
lower problem in (1), P ∗ essentially represents an ef-
fective adversarial distribution. Existing adversarial
training methods use different approaches to find P ∗

under different qfθ and P. For example, Goodfellow
et al. (2014b) consider a special case of this problem,
distributionally robust optimization (DRO, Gao and
Kleywegt (2016); Rahimian and Mehrotra (2019)). In

DRO, qfθ in (1) is the same as ` in (1) and P̃ ∈ P
satisfies that in each sample ỹ = y, i.e., train the net-
work fθ over adversarial samples and still require fθ
to yield the correct labels. Another example is ad-
versarial interpolation training (AIT, Haichao Zhang
(2019)), where qfθ is the cosine similarity between the
features of adversarial sample and clean sample, and

Learning to Defend by Learning to Attack

P is a set of adversarial distribution yielded by mixup
Zhang et al. (2017). More details are in Section 2.

(1) contains two optimization problems, referred to as
leader and follower problems, respectively in the opti-
mization literature. Such a bilevel formulation natu-
rally provides us a unified perspective on prior works
of robustifying the neural network: The leader aims
to find a robust network so that the loss given by
the training distribution from the follower problem is
minimized; The follower targets on finding an optimal
distribution that maximizes a certain measure, which
yields a distribution of adversarial samples.

Though the bilevel problem is straightforward and well
formulated, it is hard to solve. Even the simplest ver-
sion of bilevel problem, linear-linear bilevel optimiza-
tion, is shown to be NP-hard (Colson et al., 2007). In
our case, the problem becomes more challenging, since
loss function ` in the leader is highly nonconvex in θ
and the follower targets on finding an optimal distri-
bution under a nonconcave measure qfθ . Besides, the
feasible domain of the follower problem is a space of
continuous distributions; while, in practice, we have
finite samples to approximate the original problem.
Such a gap makes the problem more challenging.

There are several approaches to solve the original prob-
lem (1). Under the DRO setting, Goodfellow et al.
(2014b) propose to use FGSM to solve the DRO. How-
ever, Kurakin et al. (2016) then find that FGSM with
true label suffers from a “label leaking” issue, which
ruins adversarial training. Madry et al. (2017) further
suggest to find adversarial samples by PGM and out-
performs FGSM, since FGSM essentially is one itera-
tion PGM; Alternatively, Haichao Zhang (2019) pro-
pose to combine FGSM and mixup to yield an adver-
sarial samples for both feature and label. All these
methods need to find an adversarial (x̃i, ỹi) for each
clean sample (xi,yi), thus the dimension of the overall
search space for all samples is substantial, which makes
the computation expensive. More recently, Li et al.
(2019) propose to use the natural evolution strategy
to learn an adversarial distribution under the black-
box setting, which is beyond the scope of this paper.

To address the above challenges, we propose a new
learning-to-learn (L2L) framework that provides a
more principled and efficient way for solving adver-
sarial training. Specifically, we parameterize the op-
timizer of the follower problem by a neural network
denoted by gφ(Afθ (x,y)), where Afθ (x,y) denotes
the input of the optimizer gφ with parameter φ. We
also call the optimizer as the attacker. Since the neu-
ral network is very powerful in function approxima-
tion, our parameterization ensures that gφ is able to
yield strong adversarial samples. Under our frame-

work, instead of directly solving the follower problem
in (1), we update the parameter φ of the optimizer gφ.
Our training procedure becomes updating the param-
eters of two neural networks, which is quite similar
to generative adversarial network (GAN, Goodfellow
et al. (2014a)). The proposed L2L is a generic frame-
work and can be extended to other bilevel optimization
problems, e.g., generative adversarial imitation learn-
ing, which is studied in Section D.

Different from the hand-designed methods that com-
pute adversarial perturbation δi = x̃i − xi for each
individual sample (xi,yi) using gradients from back-
propagation, our methods generate perturbations for
all samples through the shared optimizer gφ. This
enables optimizer gφ to learn potential common struc-
tures of the perturbations. Therefore, our method is
capable of yielding strong perturbations and accelerat-
ing the training process. Furthermore, the L2L frame-
work is very flexible: we can either choose different in-
put Afθ (x,y), or use different architecture. For exam-
ple, we can include gradient information in Afθ (x,y)
and use a recurrent neural network (RNN) to mimic
multi-step gradient-type methods. Instead of comput-
ing the high order information with finite difference
approximation or multiple gradients, by parameteriz-
ing the algorithm as a neural network, our proposed
method can capture this information in a much adap-
tive way (Finn et al., 2017). Our experiments demon-
strate that L2L not only outperforms existing adver-
sarial training methods, e.g., PGM training, but also
enjoys computational efficiency over CIFAR-10 and
CIFAR-100 datasets (Krizhevsky and Hinton, 2009).

The research on L2L has a long history (Schmidhu-
ber, 1987, 1992, 1993; Younger et al., 2001; Hochreiter
et al., 2001; Andrychowicz et al., 2016). The basic idea
is that the updating formula of complicated optimiza-
tion algorithms is first modeled in a parametric form,
and then parameters are learned by some simple algo-
rithms, e.g., stochastic gradient algorithm. Among ex-
isting works, Hochreiter et al. (2001) propose a system
allowing the output of backpropagation from one net-
work to feed into an additional learning network, with
both networks trained jointly; Andrychowicz et al.
(2016) then show that the design of an optimization
algorithm can be cast as a learning problem. Specifi-
cally, they use long short-term memory RNNs to model
the algorithm and allow the RNNs to exploit structure
in the problems of interest in an adaptive way, which
is one of the most popular methods for L2L.

However, there are two major drawbacks of the ex-
isting L2L methods: (1) It requires a large amount
of datasets (or a large number of tasks in multi-task
learning) to guarantee the learned optimizer to gen-
eralize, which limits their applicability (most of the

Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Bo Dai, Tuo Zhao

related works only consider the image encoding as
the motivating application); (2) The number of lay-
ers/iterations in RNNs for modeling algorithms cannot
be large to avoid computational burden.

Our contribution is that we fill the blank of L2L frame-
work in solving bilevel optimization problems, and our
proposed methods do not suffer from the aforemen-
tioned drawbacks: (1) Different fθ and (x,y) yield
different follower problems. Therefore, for adversarial
training, we have sufficiently many tasks for L2L; (2)
The follower problem does not need a large scale RNN,
and we use a convolutional neural network (CNN) or
a length-two RNN (sequence of length equals 2) as
our attacker network, which eases computation. Our
code is available at https://github.com/YuyangShi/
Learning-to-Defend-by-Learning-to-Attack.

Notations. Given a scalar a ∈ R, denote (a)+ as
max(a, 0). Given two vectors x,y ∈ Rd, denote xi as
the i-th element of x, ||x||∞ = maxi |xi| as the `∞-
norm of x, x ◦ y = [x1y1, · · · , xdyd]> as element-wise
product, and ei is the vector with i-th element as 1
and others as 0. Denote the simplex in Rd by ∆(d) :=
{x : ||x||1 = 1}, the `∞-ball centered at x with radius
ε by B(x, ε) = {y ∈ Rd : ||y − x||∞ ≤ ε} and the
projection to B(0, ε) as Πε(δ) = sign(δ) ◦ max(|δ|, ε),
where sign and max are element-wise operators.

2 Preliminary

We focus on the defense against `∞-norm attack. In
this section, we first introduce two popular cases of the
original problem: distributionally robust optimization
(DRO) and adversarial interpolation training (AIT).
Then we discuss the fundamental hardness of solving
these problems and the drawbacks of existing methods.

2.1 Adversarial Training

Instead of using population loss in (1), we use em-
pirical loss in the following context, since in prac-
tice we only have finite samples. Given n samples
{(xi,yi)}ni=1, where xi is the i-th image and yi is the
corresponding label, DRO aims to solve:

minθ
1
n

∑n
i=1

[
`(fθ(xi + δi),yi)

]
, (2)

s.t. δi ∈ argmaxδ∈B(0,ε) `(fθ(xi + δ),yi). (3)

The standard pipeline of DRO version is shown in Al-
gorithm 1. Since the step of generating adversarial
perturbation δi in Algorithm 1 is intractable, most
adversarial training methods adopt hand-designed al-
gorithms. For example, Kurakin et al. (2016) propose
to solve follower problem (3) approximately by first or-
der methods like PGM. Specifically, PGM iteratively
updates the adversarial perturbation by the projected

sign gradient ascent method for each sample: Given
sample (xi,yi), at the t-th iteration, PGM takes

δti ← Πε

(
δt−1
i + η · sign

(
∇x`(fθ(x̃ti),yi)

))
, (4)

where x̃ti = xi+δ
t−1
i , η is the perturbation step size, T

is a pre-defined total number of iterations, and δ0
i = 0,

t = 1, · · · , T . Finally PGM takes δi = δTi . Note
that FGSM essentially is one-iteration PGM. Besides,
some works adopt other optimization methods, e.g.,
momentum gradient method (Dong et al., 2018), and
L-BFGS (Tabacof and Valle, 2016).

Algorithm 1 Distributionally Robust Optimization.

Input: {(xi,yi)}ni=1: data, α: learning rate, N : num-
ber of iterations, ε: perturbation magnitude.
for t ← 1 to N do

Sample a minibatch Mt

for i in Mt do
δi ← argmaxδ∈B(0,ε) `(fθ(xi + δ),yi)
// Generate adversarial data.

θ ← θ − α 1
|Mt|

∑
i∈Mt

∇θ`(fθ(xi + δi), ỹi)

//Update θ over adversarial data.

Alternatively, AIT adopts the mixup method to gen-
erate an adversarial distribution for a given sample
(xi,yi) and then randomly select a sample (x̃i, ỹi)
from this adversarial distribution. Specifically, AIT
solves the following problem:

minθ
1
n

∑n
i=1 E(x̃i,ỹi)∼Di

[
`(fθ(x̃i), ỹi)

]
, (5)

where Di = {(x̃ji , ỹji)}nj=1 is generated as follows:

x̃ji = argminx̃∈B(xi,ε)
fsθ(xj)·fsθ(x̃)

||fsθ(xj)||2||fsθ(x̃)||2 ,

ỹji = argminỹ∈∆(C)∩B(yi,εy) ||ỹ − 1−yj
C−1 ||22, (6)

where fsθ(·) denotes the output of the s-th layer of
network fθ, C denotes the number of classes, and 1
denotes the vector with all elements 1. The standard
pipeline is shown in Algorithm 2. To ease the com-
putation, Haichao Zhang (2019) use one-step gradient
update as the solution of (6).

2.2 Hardness

Now we present the hardness for solving these prob-
lems. Ideally, we want to obtain the optima for the
follower problem, i.e.,

P ∗ := argmaxP̃∈P EP̃
[
qfθ
(
(x,y), (x̃, ỹ)

)]
.

However, the measure qfθ depends on network fθ,
which makes solving P ∗ intractable. Therefore, in re-
ality the sample (x̃i, ỹi) from the obtained solution P̃
is very unlikely to be the sample (x∗i ,y

∗
i) from P ∗.

https://github.com/YuyangShi/Learning-to-Defend-by-Learning-to-Attack
https://github.com/YuyangShi/Learning-to-Defend-by-Learning-to-Attack

Learning to Defend by Learning to Attack

This then often leads to a highly unreliable or even
completely wrong search direction, i.e.,

〈∇θ`(fθ(x̃i), ỹi),∇θ`(fθ(x∗i),y
∗
i)〉 < 0,

which may further result in a limiting cycle (See Ap-
pendix A). This becomes even worse when sample
noises exist. Moreover, among the methods mentioned
earlier, except FGSM, all require numerous queries for
gradients, which is computationally expensive.

Algorithm 2 Adversarial Interpolation Training.

Input: {(xi,yi)}ni=1: data, α: learning rate, N : num-
ber of iterations, ε, εy: perturbation magnitudes, s:
the output layer of network, C: number of classes.
for t ← 1 to N do

Sample a minibatch Mt

for i in Mt do
Sample another index j
ỹi ← (1− εy)yi + εy(1− yj)/(C − 1)

x̃i ← argmin
x̃∈B(xi,ε)

fsθ(xj) · fsθ(x̃)

||fsθ(xj)||2||fsθ(x̃)||2
// Generate adversarial data.

θ←θ−α 1
|Mt|

∑
i∈Mt

∇θ`(fθ(x̃i), ỹi)

// Update θ over adversarial data.

3 Learning-to-Learn (L2L) Framework

OptimizerClassifier

x
<latexit sha1_base64="Eck2mCMOK7W8G1nOQGWNKSvLS7g=">AAACnnicbVFNaxRBEO0dv+L6lejRS+MSEA/LTCLoSSKKeAlJMJssZJdQ01Oz22x/0V2jWYY5e/CqP85/Y8/uHpwkBU0/Xr2iXlXlTslAafq3l9y5e+/+g62H/UePnzx9tr3z/CzYygscCausH+cQUEmDI5KkcOw8gs4VnueLT23+/Dv6IK05paXDqYaZkaUUQJE6ubrcHqTDdBX8Jsg2YMA2cXy50/s5KayoNBoSCkK4yFJH0xo8SaGw6U+qgA7EAmZYr/w1fDdSBS+tj88QX7EdHegQljqPSg00D9dzLXlb7qKi8v20lsZVhEasG5WV4mR5OywvpEdBahkBCC+jQy7m4EFQXEl/9/82NHPxUwqaLr9wrefQnSuAaZnPGDfg8TD6+qjcHHKkerJyWTb10WnW1CIO1tS6qU2Uf0O6XZpbVXQK8qt1hUeDP4TVGkzxZkJUYAmVoqgiauLpsuuHugnO9obZ/nDv5O3g4MPmiFvsJXvFXrOMvWMH7Cs7ZiMmGLJf7Df7k/DkS3KYHK2lSW9T84J1Ihn/AwTC0+I=</latexit>

Unfold

Multi-StepOne-StepZero-Step

Optimizer OptimizerClassifier

x
<latexit sha1_base64="Eck2mCMOK7W8G1nOQGWNKSvLS7g=">AAACnnicbVFNaxRBEO0dv+L6lejRS+MSEA/LTCLoSSKKeAlJMJssZJdQ01Oz22x/0V2jWYY5e/CqP85/Y8/uHpwkBU0/Xr2iXlXlTslAafq3l9y5e+/+g62H/UePnzx9tr3z/CzYygscCausH+cQUEmDI5KkcOw8gs4VnueLT23+/Dv6IK05paXDqYaZkaUUQJE6ubrcHqTDdBX8Jsg2YMA2cXy50/s5KayoNBoSCkK4yFJH0xo8SaGw6U+qgA7EAmZYr/w1fDdSBS+tj88QX7EdHegQljqPSg00D9dzLXlb7qKi8v20lsZVhEasG5WV4mR5OywvpEdBahkBCC+jQy7m4EFQXEl/9/82NHPxUwqaLr9wrefQnSuAaZnPGDfg8TD6+qjcHHKkerJyWTb10WnW1CIO1tS6qU2Uf0O6XZpbVXQK8qt1hUeDP4TVGkzxZkJUYAmVoqgiauLpsuuHugnO9obZ/nDv5O3g4MPmiFvsJXvFXrOMvWMH7Cs7ZiMmGLJf7Df7k/DkS3KYHK2lSW9T84J1Ihn/AwTC0+I=</latexit>

Optimizer

rx̃q(x, x̃
(t); ✓)

<latexit sha1_base64="o4Jh1tT2y/5ZXV6ap4arY0Xd4sE=">AAAC2nicbVFLbxMxEHaWVwmPpnDksiKqlCIU7RYkkHopjwMXRBFNW6kbolnvbGLF613sWUhk+cIFIa78AX4NVzjyb3AeQmzbkSx//uYbfeOZtJLCUBT9aQWXLl+5em3jevvGzVu3Nztbd45MWWuOA17KUp+kYFAKhQMSJPGk0ghFKvE4nb5Y5I8/ojaiVIc0r3BYwFiJXHAgT406e4mCVMLIJiRkhnbmXPihN3v47/ne9mjH7dlk6WU1Zi6hCRK4nVGnG/WjZYTnQbwGXbaOg9FW60uSlbwuUBGXYMxpHFU0tKBJcImundQGK+BTGKNd+rlw21NZmJfaH0Xhkm3ooDBmXqReWQBNzNncgrwod1pT/nRohapqQsVXRnktQyrDxaDCTGjkJOceANfCdxjyCWjg5MfZ3v7fhsaVv6QE1+Sn1aJn0/yXAbVgXqKfgMbXvq9nsppAimSTZZe5s28OY2e5/5izhbPKy98hXSxNS5k1CtLZqkKjwk+8LApQ2YOEKMMcakleReT86uKzizoPjnb78aP+7tvH3f3n6yVusHvsPuuxmD1h++wVO2ADxtkP9pP9Yr+DJPgcfA2+raRBa11zlzUi+P4X1o7tRA==</latexit>

x̃(t)
<latexit sha1_base64="kbsUrz+F00LxH5XPPEh5f8buEZk=">AAACrnicbVFLbxMxEHaWVwmPpnDksiKqVDhEuy0SHMvjwAVRRJNW6obI651NrPglexYaWT7zI7jCj+Lf4E1yYNuOZPnTN99ovpkpjeAOs+xvL7l1+87dezv3+w8ePnq8O9h7MnG6sQzGTAttz0vqQHAFY+Qo4NxYoLIUcFYu37f5s+9gHdfqFFcGppLOFa85oxip2WC3QC4q8Jfhmz/AF2E2GGajbB3pdZBvwZBs42S21/tZVJo1EhQyQZ27yDODU08tciYg9IvGgaFsSefg135Duh+pKq21jU9humY7OiqdW8kyKiXFhbuaa8mbchcN1m+mnivTICi2aVQ3IkWdtsOnFbfAUKwioMzy6DBlC2opw7ii/v7/bXBu4icEDV1+aVrPrjuXo6plPkDcgIVP0ddbYRa0BPTF2mUd/OfTPHgWBwteBq+i/CvgzdJSi6pTUF5uKiwo+MG0lFRVLwvECmraCIwqxPZ0+dVDXQeTw1F+NDr88mp4/G57xB3yjDwnByQnr8kx+UhOyJgw0pBf5Df5k2TJJJkms4006W1rnpJOJIt/EDzaJA==</latexit>

x̃
<latexit sha1_base64="2LPB+sO8tyfqlfGXkh2nxZN2zO0=">AAACpnicbVFNb9NAEN2YrzZ8tXDkYhFVqjhEdovUnlARHLgARTRNUR2V8XqcrLJf2h1DI8tnfgBX+GH9N6yTHHDbkVb79OaN5s1MbqXwlCRXvejO3Xv3H2xs9h8+evzk6db2s1NvKsdxxI007iwHj1JoHJEgiWfWIahc4jifv2vz4x/ovDD6hBYWJwqmWpSCAwXqW0ZCFlhfNhdbg2SYLCO+CdI1GLB1HF9s935lheGVQk1cgvfnaWJpUoMjwSU2/azyaIHPYYr10mcT7wSqiEvjwtMUL9mODpT3C5UHpQKa+eu5lrwtd15ReTiphbYVoearRmUlYzJxO3RcCIec5CIA4E4EhzGfgQNOYTX9nf/b0NSGT0pouvzctp59dy4PumXeY9iAw4/B11tpZ5Aj1dnSZdnUn0/SpuZhsKZWTa2D/CvS7dLcyKJTkF+uKhxq/MmNUqCLVxlRgSVUkoKKqD1dev1QN8Hp3jDdH+59eT04erM+4gZ7wV6yXZayA3bEPrBjNmKcKfab/WF/o93oUzSKxitp1FvXPGediL7/A9Ip15g=</latexit> x̃

<latexit sha1_base64="2LPB+sO8tyfqlfGXkh2nxZN2zO0=">AAACpnicbVFNb9NAEN2YrzZ8tXDkYhFVqjhEdovUnlARHLgARTRNUR2V8XqcrLJf2h1DI8tnfgBX+GH9N6yTHHDbkVb79OaN5s1MbqXwlCRXvejO3Xv3H2xs9h8+evzk6db2s1NvKsdxxI007iwHj1JoHJEgiWfWIahc4jifv2vz4x/ovDD6hBYWJwqmWpSCAwXqW0ZCFlhfNhdbg2SYLCO+CdI1GLB1HF9s935lheGVQk1cgvfnaWJpUoMjwSU2/azyaIHPYYr10mcT7wSqiEvjwtMUL9mODpT3C5UHpQKa+eu5lrwtd15ReTiphbYVoearRmUlYzJxO3RcCIec5CIA4E4EhzGfgQNOYTX9nf/b0NSGT0pouvzctp59dy4PumXeY9iAw4/B11tpZ5Aj1dnSZdnUn0/SpuZhsKZWTa2D/CvS7dLcyKJTkF+uKhxq/MmNUqCLVxlRgSVUkoKKqD1dev1QN8Hp3jDdH+59eT04erM+4gZ7wV6yXZayA3bEPrBjNmKcKfab/WF/o93oUzSKxitp1FvXPGediL7/A9Ip15g=</latexit>

Figure 1: An illustration of L2L: A neural network
models optimizer for generating attack network.

Since the hand-designed methods for bilevel prob-
lem (1) do not perform well, we propose to learn an
optimizer for the follower problem. Specifically, we pa-
rameterize δ = x̃ − x, the perturbation1, by a neural
network gφ(Afθ (x,y)) with input Afθ (x,y) summa-
rizing the information of data and classifier fθ(·). We
first show how our method works on the DRO: We
convert DRO problem (2) and (3) to

minθ
1
n

∑n
i=1 `(fθ(xi + gφ(Afθ (xi,yi))),yi), (7)

where φ∗ is defined as the solution to the problem:

φ∗ ∈ argmaxφ
1
n

∑n
i=1 `(fθ(xi + gφ(Afθ (xi,yi))),yi),

s.t. gφ(Afθ (xi,yi)) ∈ B(0, ε), i ∈ [1, ..., n].

The optimizer gφ targets on generating optimal per-
turbations under constraints gφ(Afθ (xi,yi)) ∈ B(0, ε).

1This helps to handle the constraints δ ∈ B(0, ε).

Original Input
Classifier !

Backpropagation

Perturbation Perturbed Input

Follower Obj

Leader Obj

+

Concatenate
Input and Gradient

Attacker " 1st pass
2ed pass
3rd pass

Figure 2: The architecture of adversarial training with
gradient attacker model.
These constraints can be handled by a tanh function
and an ε scaler in the last layer of gφ. L2L framework
is very flexible: We can choose different Afθ (x,y) as
the input and mimic multi-step algorithms shown in
Figure 1. We provide three examples for DRO:

Naive Attacker. This is the simplest example among
our methods, taking original image xi as input, i.e.,

Afθ (xi,yi) = xi and δi = gφ(xi).

With this, L2L training is similar to GAN training.
The major difference is that the generator in GAN
yields synthetic data from random noises, while the
naive attacker generates perturbations via samples.

Gradient Attacker. Motivated by FGSM, we design
an attacker which takes the gradient information into
consideration. Specifically, we concatenate image xi
and gradient ∆i = ∇x`(fθ(xi),yi) as the input of g:

Afθ (xi,yi) =
[
xi,∆i

]
and δi = gφ

(
[xi,∆i]

)
.

With more information, the attacker is more effective
to learn and yields more powerful perturbations.

Multi-Step Gradient Attacker. Motivated by
PGM, we adapt the RNN to mimic a multi-step gra-
dient update. Specifically, we use the gradient opti-
mizer network as the cell of RNN sharing the same
parameter φ. As we mentioned earlier, the number of
layers/iterations in the RNN for modeling algorithms
cannot be very large so as to avoid significant compu-
tational burden in backpropagation. In this paper, we
focus on a length-two RNN to mimic a two-step gradi-
ent update. The corresponding perturbation becomes:

x̃i = xi + Πε

(
δ

(0)
i + gφ

(
[x̃

(0)
i ,∇x`(fθ(x̃

(0)
i),yi)]

)
.

Here δ
(0)
i = gφ

(
[xi,∇x`(fθ(xi),yi)]

)
, x̃

(0)
i = xi+δ

(0)
i .

Taking gradient attackers as an example, Figure 2 il-
lustrates how L2L works and jointly trains two net-
works: The first forward pass is used to obtain gradi-
ent of the classification loss over the clean data; The
second forward pass is used to generate perturbation δi
by the attacker g; The third forward pass is used to cal-
culate the adversarial loss ` in (7). Since our gradient

Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Bo Dai, Tuo Zhao

Algorithm 3 L2L-based DRO with gradient attacker.

Input: {(xi, yi)}ni=1: clean data, α1, α2: learning
rates, N : number of epochs.
for t ← 1 to N do

Sample a minibatch Mt

for i in Mt do
ui ← ∇x`(fθ(xi), yi), δi ← gφ([xi,ui])
//Generate perturbation by gφ.

θ ← θ − α1

|Mt|
∑
i∈Mt

∇θ`(fθ(xi + δi),yi)

// Update θ over adversarial data.
φ← φ+ α2

|Mt|
∑
i∈Mt

∇φ`(fθ(xi + δi),yi)

// Update φ over adversarial data.

attacker only needs one backpropagation, it amortizes
the adversarial training cost, which leads to better
computational efficiency. Moreover, L2L may adapt to
the underlying optimization problem and yield better
solution for the follower problem. The corresponding
procedure of L2L is shown in Algorithm 3.

Algorithm 4 L2L-based AIT with gradient attacker.

Input: {(xi,yi)}ni=1: data, α1, α2: learning rates, N :
number of iterations, εy: perturbation magnitudes.
for t ← 1 to N do

Sample a minibatch Mt

for i in Mt do
Sample another index j
ỹi ← (1− εy)yi + εy(1− yj)/(C − 1)
ui = ∇xiqfθ (xi,xj), δi ← gφ(xi,ui)
//Generate perturbation by gφ.

φ← φ− α2

|Mt|
∑
i∈Mt

∇φqfθ (xi + δi,xj)

//Update φ over adversarial data.
θ ← θ − α1

|Mt|
∑
i∈Mt

∇θ`(fθ(xi + δi), ỹi)

//Update θ over adversarial data.

It is straightforward to extend L2L to AIT as shown
in Algorithm 4. We simply replace the gradient of
`, ∇x`(fθ(xi),yi), by the gradient of qfθ (xi,xj) =

fsθ(xi)·fsθ(xj)
||fsθ(xi)||2||fsθ(xj)||2 , ∇xiqfθ (xi,xj) in the attacker in-

put. Taking gradient network as an example, given
a sample (xi,yi), we randomly select another sample
(xj ,yj), and yield the adversarial sample as follows:

x̃i = xi + gφ

(
[xi,∇xiqfθ (xi,xj)]

)
, (8)

and adopt the corresponding label vector ỹi from (6).

4 Experiments

To demonstrate the effectiveness and computational
efficiency of L2L, we conduct experiments over both
CIFAR-10 and CIFAR-100 datasets. We compare our

methods with original PGM training and adversarial
interpolation training. All implementations are done
in PyTorch with one single NVIDIA 2080 Ti GPU.
Here we discuss the white-box setting, which is the
most direct way to evaluate the robustness.

Classifier Network. All experiments adopt a 34-
layer wide residual network (WRN-34-10, Zagoruyko
and Komodakis (2016)) implemented by Zhang et al.
(2019) as the classifier network. For each method, we
train the classifier network from scratch.

Table 1: Attacker Architecture: k, c, s, p Denote the
Kernel Size, Output Channels, Stride and Padding Pa-
rameters of Convolutional Layers, Respectively.

Conv: [k = 3× 3, c = 64, s = 1, p = 1], BN+ReLU
ResBlock: [k = 3× 3, c = 128, s = 1, p = 1]
ResBlock: [k = 3× 3, c = 256, s = 1, p = 1]
ResBlock: [k = 3× 3, c = 128, s = 1, p = 1]
Conv: [k = 3× 3, c = 3, s = 1, p = 1], tanh

Figure 3: Robust accuracy against perturbation mag-
nitude and number of iteration of PGM over CIFAR-
100;. (Top) Accuracy; (Bottom) Performance gain
over PGM Net. See more results in Appendix E.

Attacker. Table 1 presents the architecture of our
attacker network2. We adopt the ResBlock proposed
in Miyato et al. (2018). The detailed structure of Res-
Block is provided in Appendix B. Batch normalization
(BN) and activations, e.g., ReLU and tanh, are applied
when specified. The tanh function can easily make the
output of attacker satisfy the constraints.

White-box and Black-box3. We compare different
methods under both white-box and black-box settings.
Under the white-box setting, attackers can access all
parameters of target models and generate adversar-
ial examples based on the models; whereas under the
black-box setting, we adopt the standard transfer at-

2We provide another attacker architecture with down-
sampling modules in the Section B. With such an attacker,
L2L adversarial training is less stable, but faster.

3Due to space limit, the full results under the black-box
setting are provided in Appendix C.

Learning to Defend by Learning to Attack

Table 2: Results of Different Defense Methods under the White-box Setting.

Defense Method Attack Data Set
Accuracy

Clean Robust

Stability Train Zheng et al. (2016) PGM-20
CIFAR-10

94.64% 0.15%
PGM Net Madry et al. (2017) PGM-20 87.30% 47.04%

Naive L2L PGM-20

CIFAR-10

94.53% 0.01%
Grad-only L2L PGM-20 86.28% 49.94%

2-Step Grad-only L2L PGM-20 85.8% 53.85%
Grad L2L PGM-20 85.84% 51.17%
2-Step L2L PGM-20 85.35% 54.32%
Grad L2L PGM-100 85.84% 47.72%
2-Step L2L PGM-100 85.35% 52.12%
Grad L2L CW 85.84% 53.5%
2-Step L2L CW 85.35% 57.07%
Grad L2L Random 85.84% 82.67%
2-Step L2L Random 85.35% 83.10%
Grad L2L Grad L2L 85.84% 49.68%
2-Step L2L 2-Step L2L 85.35% 52.71%

PGM Net PGM-20

CIFAR-100

62.68% 23.75%
Grad-only L2L PGM-20 62.4% 27.64%

2-Step Grad-only L2L PGM-20 60.25% 31.24%
Grad L2L PGM-20 62.18% 28.67%
2-Step L2L PGM-20 60.95% 31.03%
PGM Net PGM-100 62.68% 22.06%
Grad L2L PGM-100 62.18% 26.69%
2-Step L2L PGM-100 60.95% 29.75%
PGM Net CW 62.68% 25.95%
Grad L2L CW 62.18% 29.65%
2-Step L2L CW 60.95% 32.28%

tack method from Liu et al. (2016) as accessing pa-
rameters is prohibited.

Robust Evaluation4. We evaluate the robustness
of the networks by PGM and CW attacks with the
maximum perturbation magnitude ε = 0.031 (after
rescaling the pixels to [0, 1]) over CIFAR 10 and 100.
For PGM attack, we use 20 and 100-iteration PGM
with a perturbation step size η = 0.003, and for
each sample we initialize the perturbation randomly in
B(0, 10−4). For CW attack, we adopt the implemen-
tation in Paszke et al. (2017), and set the maximum
number of iterations as 100. For each method, we re-
peat 5 runs with different random initial seed and re-
port the worst result. For CIFAR-10, we also evaluate
the robustness of Grad L2L and 2-Step L2L networks
using random attacks, for which we uniformly sample
105 perturbations in B(0, 0.031) adding to each test
sample. We also evaluate the robustness of Grad L2L
and 2-Step L2L networks under their own attackers.

4More detailed robustness checklist is in Appendix E.

4.1 PGM Training

For simplicity, we denote PGM Net as the classifier
with PGM training, and Naive L2L, Grad L2L, and
2-Step L2L as the classifiers using L2L training with
corresponding attackers. For reference, we also include
some results of Grad-only L2L and 2-Step Grad-only
L2L, whose attackers take the gradient information
only without the raw images.

Original PGM. For CIFAR-10, we directly report
the result from Madry et al. (2017) as the baseline;
For CIFAR-100, we train a PGM Net as the base-
line: For optimizer, we use stochastic gradient descent
(SGD) algorithm with Polyak’s momentum (parame-
ter 0.9, Liu et al. (2018)) and weight decay (parameter
2 × 10−4, Krogh and Hertz (1992)). In addition, we
adapt the setting from Madry et al. (2017) but train
the network for 100 epochs with initial learning rate
0.1, decay schedule [30,60,90], and decay rate 0.1. For
adversarial samples, we use a 10-iteration PGM with
the perturbation step size 0.007 in (4).

Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Bo Dai, Tuo Zhao

Table 3: One epoch running time. (Unit: s)

Dataset Plain Net PGM Net Naive L2L Grad L2L 2-Step L2L
CIFAR-10 106.5± 1.5 1310.8± 14.2 293.7± 3.1 617.5± 6.1 805.1± 8.1
CIFAR-100 106.9± 1.4 1354.8± 14.1 310.0± 2.9 623.1± 6.3 824.7± 8.4

PGM+L2L. We train two networks for 100 epochs.
For classifier’s optimizer, we use the same configura-
tion as original PGM training; For attacker’s opti-
mizer, we use Adam optimizer (parameter [0.9, 0.999],
Kingma and Ba (2014)) with initial learning rate 10−3

(no learning rate decay) and weight decay (parameter
2 × 10−4) so that it adaptively balances the updates
in both leader and follower optimization problems.

Experiment Results. Table 2 shows the results of
all PGM training methods over CIFAR-10 and 100 un-
der the white-box setting. As can be seen, without
gradient information, Naive L2L is vulnerable to the
PGM attack. However, when the attacker utilizes the
gradient information, Grad L2L and 2-Step L2L signif-
icantly outperform the PGM Net over CIFAR-10 and
100, with a slight loss for the clean accuracy. From the
experiments on CIFAR-10, our Grad L2L and 2-Step
L2L are robust to random attacks, where the accuracy
is only slightly lower than the clean accuracy. Further-
more, the accuracy of our Grad/2-Step L2L model un-
der the Grad/2-Step L2L attacker is comparable to the
accuracy under PGM attacks, which shows that L2L
attackers are able to generate strong attacks. As can
be seen, PGM-100 is stronger than Grad L2L attacker
(47.72% vs. 49.68%), but similar to the 2-Step L2L at-
tacker (52.07% vs. 52.71%), which means 2-Step L2L
attacker is much stronger than Grad L2L attacker and
explains why 2-Step L2L is stronger than Grad L2L
and PGM net. In addition, comparing Grad-only L2L
with Grad L2L, we see that without the raw images
fed into the attackers, Grad-only L2L is less robust to
the PGM attack, though 2-Step Grad-only L2L and
2-Step L2L achieves comparable performance.

In addition, Table 3 shows one epoch running time of
all methods over CIFAR-10 and 100. As can be seen,
Grad L2L and 2-Step L2L is much faster than PGM
Net. By further comparing the accuracy of Grad/2-
Step L2L and PGM Net in Table 2, we find that L2L
methods enjoy computational efficiency. In addition,
Figure 3 presents the robust accuracy against number
of iterations with ε = 0.031 and perturbation magni-
tude (number of iterations T = 10). As can be seen,
2-Step L2L is much more robust than PGM Net.

4.2 Adversarial Interpolation Training

We conduct the experiments of AIT over CIFAR-10
using the code from Haichao Zhang (2019). 5

5https://github.com/Adv-Interp/adv_interp

Original AIT. We follow the experimental setting in
Haichao Zhang (2019), but use a WRN-34-10. For
classifier’s optimizer, we use the same configuration in
original PGM training. We choose the perturbation
magnitude over label εy as 0.5. In addition, we train
the whole network for 200 epochs with initial learning
rate 0.1, decay schedule [60,90], and decay rate 0.1.
Moreover, in each epoch, we first use FGSM to yield
training samples via (6), and then train the AIT Net
over these adversarial samples.

AIT+L2L. We train for 200 epochs. For classifier’s
optimizer, we adopt the configuration of SGD from the
original AIT; For attacker’s optimizer, we use Adam
(parameter [0.9, 0.999]) with initial step size as 10−3

(no decay) and weight decay (parameter 2 × 10−4).

Table 4: Results of AIT based defense methods under
the white-box setting (CIFAR-10).

Defense Method Attack
Accuracy

Clean Robust
AIT PGM-20 90.43% 75.33%

Grad L2L PGM-20 91.65% 80.87%
AIT PGM-100 90.43% 67.84%

Grad L2L PGM-100 91.65% 79.20%
AIT CW-20 90.43% 64.79%

Grad L2L CW-20 91.65% 74.88%
AIT CW-100 90.43% 61.69%

Grad L2L CW-100 91.65% 73.46%

Experiment Results. Table 4 shows the results of
AIT methods over CIFAR-10 under the white-box set-
ting. As can be seen, Grad L2L significantly improves
upon the AIT Net over CIFAR-10 on both clean accu-
racy and robust accuracy.

4.3 Visualization of Adversarial Examples

Figure 4 provides an illustrative example of adversar-
ial perturbations generated by FGSM, PGM-20 and
2-Step L2L attacker for a cat in CIFAR-10. As can
be seen, attacks for these two networks are differ-
ent. Moreover, the perturbation generated by the 2-
Step L2L attacker is much smoother than FGSM and
PGM. In this example, 2-Step L2L labels all adversar-
ial samples correctly; whereas the PGM Net is fooled
by PGM-20 attack and misclassifies it as a dog.

Figure 5 provides an illustrative example of adversarial
perturbations generated by PGM, AIT and Grad L2L

https://github.com/Adv-Interp/adv_interp

Learning to Defend by Learning to Attack

for a dog in CIFAR-10. As can be seen, attacks for
these two networks are very different: the attacks for
the Grad L2L is more abundant in three channels. In
this example, Grad L2L labels all adversarial samples
correctly; whereas the AIT is fooled by all attacks and
misclassifies it as a horse.

Adversarial Sample 5 times Magnitude 30 times Magnitude

(a) PGM Net adv. samples

Adversarial Sample 5 times Magnitude 30 times Magnitude

(b) 2-Step L2L adv samples

Figure 4: Adv. examples of FGSM (Top), PGM-20
(Mid), 2-Step L2L (Bottom) perturbations for a cat
under PGM Net and 2-Step L2L with ε = 0.031.

Adversarial Sample 5 times Magnitude 30 times Magnitude

(a) AIT adv. samples

Adversarial Sample 5 times Magnitude 30 times Magnitude

(b) Grad L2L adv. samples

Figure 5: Illustrative adv. examples of PGM-20 (Top),
AIT (Mid), and Grad L2L (Bottom) perturbations for
a dog under AIT Net and Grad L2L with ε = 0.031.

5 Discussions

We discuss several closely related works:

• By leveraging the Fenchel duality and feature em-
bedding technique, Dai et al. (2016) convert a learning
conditional distribution problem to a minimax prob-
lem, which is similar to our naive attacker. Both ap-
proaches, however, lack the primal information. In
contrast, gradient attacker network considers the gra-
dient information of primal variables, and achieves
good results with this key information.

• Goodfellow et al. (2014a) propose the GAN, which
is very similar to our L2L framework. Both GAN and
L2L contain one generator network and one classifier
network, and jointly train these two networks. There
are two major difference between GAN and our frame-
work: (1) GAN aims to transform the random noises to
the synthetic data which is similar to the training ex-
amples, while ours targets on transforming the training

examples to the adversarial examples for robustifying
the classifier; (2) Our attacker does not only take the
training examples (analogous to the random noise in
GAN) as the input, but also exploits the gradient in-
formation of the objective function, since it essentially
represents an optimization algorithm. The training
procedure of these two, however, are quite similar. We
adopt some tricks from GAN training to our frame-
work to stabilize training process, e.g., in Grad L2L,
we use the two-time scale trick (Heusel et al., 2017).

• There are some other works simply combining the
GAN framework and adversarial training together.
For example, Baluja and Fischer (2017) and Xiao et al.
(2018) propose some ad hoc GAN-based methods to
robustify neural networks. Specifically, for generating
adversarial examples, they only take training examples
as the input of the generator, which lacks the informa-
tion of the outer mimnimization problem. Instead, our
proposed L2L methods (e.g., Grad L2L, 2-step L2L)
connect outer and inner problems by delivering the
gradient information of the objective function to the
generator. This is a very important reason for our
performance gain on the benchmark datasets. As a
result, the aforementioned GAN-based methods are
only robust to simple attacks, e.g., FGSM, on sim-
ple data sets, e.g., MNIST, but fail for strong attacks,
e.g., PGM and CW, on complicated data sets, e.g.
CIFAR, where our L2L methods achieve significantly
better performance.

Training Stability: For improving the training sta-
bility, we use both clean image and the correspond-
ing gradient as the input of the attacker. Without
such gradient information, the attacker severely suf-
fers from training instability, e.g., the Naive Attacker
Network. Furthermore, we try another architecture
with the widely used downsampling modules, called
“slim attacker” in Section B. We observed that the
slim attacker also suffers from training instability. We
suspect that the downsampling causes the loss of infor-
mation. Thus, we tried to enhance the slim attacker
by skip layer connections. In this way, the training
is stabilized. However, the robust performance is still
worse than the proposed architecture.

Benefits of our L2L in adversarial training:
(1) Since neural networks have been known to be
powerful in function approximation, our attacker g
can yield strong adversarial perturbations. Since they
are generated by the same attacker, attacker g learns
some common structures across all samples;
(2) Overparametrization is conjectured to ease the
training of deep neural networks. We believe that
similar phenomena happen to our attacker network,
and ease the adversarial training.

Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Bo Dai, Tuo Zhao

References

Andrychowicz, M., Denil, M., Gomez, S., Hoff-
man, M. W., Pfau, D., Schaul, T., Shilling-
ford, B. and De Freitas, N. (2016). Learning to
learn by gradient descent by gradient descent. In Ad-
vances in Neural Information Processing Systems.

Athalye, A., Carlini, N. and Wagner, D. (2018).
Obfuscated gradients give a false sense of secu-
rity: Circumventing defenses to adversarial exam-
ples. arXiv preprint arXiv:1802.00420 .

Baluja, S. and Fischer, I. (2017). Ad-
versarial transformation networks: Learning to
generate adversarial examples. arXiv preprint
arXiv:1703.09387 .

Brockman, G., Cheung, V., Pettersson, L.,
Schneider, J., Schulman, J., Tang, J. and
Zaremba, W. (2016). Openai gym. arXiv preprint
arXiv:1606.01540 .

Carlini, N., Athalye, A., Papernot, N., Bren-
del, W., Rauber, J., Tsipras, D., Good-
fellow, I. and Madry, A. (2019). On eval-
uating adversarial robustness. arXiv preprint
arXiv:1902.06705 .

Carlini, N. and Wagner, D. (2017). Towards eval-
uating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP).
IEEE.

Colson, B., Marcotte, P. and Savard, G. (2007).
An overview of bilevel optimization. Annals of op-
erations research 153 235–256.

Dai, B., He, N., Pan, Y., Boots, B. and Song, L.
(2016). Learning from conditional distributions via
dual embeddings. arXiv preprint arXiv:1607.04579
.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J.,
Hu, X. and Li, J. (2018). Boosting adversarial at-
tacks with momentum. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Finn, C., Abbeel, P. and Levine, S. (2017). Model-
agnostic meta-learning for fast adaptation of deep
networks. arXiv preprint arXiv:1703.03400 .

Gao, R. and Kleywegt, A. J. (2016). Distribution-
ally robust stochastic optimization with wasserstein
distance. arXiv preprint arXiv:1604.02199 .

Girshick, R., Donahue, J., Darrell, T. and Ma-
lik, J. (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition.

Goodfellow, I., Pouget-Abadie, J., Mirza,
M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y. (2014a). Genera-
tive adversarial nets. In Advances in Neural Infor-
mation Procesing Systems.

Goodfellow, I. J., Shlens, J. and Szegedy, C.
(2014b). Explaining and harnessing adversarial ex-
amples. arXiv preprint arXiv:1412.6572 .

Haichao Zhang, W. X. (2019). Adversarial inter-
polation training: A simple approach for improving
model robustness.
URL https://openreview.net/pdf?id=

Syejj0NYvr

He, K., Zhang, X., Ren, S. and Sun, J. (2015).
Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceed-
ings of the IEEE international conference on com-
puter vision.

He, K., Zhang, X., Ren, S. and Sun, J. (2016).
Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Heusel, M., Ramsauer, H., Unterthiner, T.,
Nessler, B. and Hochreiter, S. (2017). GANs
trained by a two time-scale update ReLU converge
to a local nash equilibrium. In Advances in Neural
Information Processing Systems.

Ho, J. and Ermon, S. (2016). Generative adversarial
imitation learning. CoRR abs/1606.03476.
URL http://arxiv.org/abs/1606.03476

Hochreiter, S., Younger, A. S. and Conwell,
P. R. (2001). Learning to learn using gradient de-
scent. In International Conference on Artificial Neu-
ral Networks. Springer.

Kingma, D. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Krizhevsky, A. and Hinton, G. (2009). Learning
multiple layers of features from tiny images. Tech.
rep., Citeseer.

Krogh, A. and Hertz, J. A. (1992). A simple weight
decay can improve generalization. In Advances in
neural information processing systems.

Kurakin, A., Goodfellow, I. and Bengio, S.
(2016). Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236 .

Li, Y., Li, L., Wang, L., Zhang, T. and Gong,
B. (2019). Nattack: Learning the distributions
of adversarial examples for an improved black-box
attack on deep neural networks. arXiv preprint
arXiv:1905.00441 .

Liu, T., Chen, Z., Zhou, E. and Zhao, T. (2018).
Toward deeper understanding of nonconvex stochas-

https://openreview.net/pdf?id=Syejj0NYvr
https://openreview.net/pdf?id=Syejj0NYvr
http://arxiv.org/abs/1606.03476

Learning to Defend by Learning to Attack

tic optimization with momentum using diffusion ap-
proximations. arXiv preprint arXiv:1802.05155 .

Liu, W., Zhang, Y.-M., Li, X., Yu, Z., Dai, B.,
Zhao, T. and Song, L. (2017). Deep hyperspher-
ical learning. In Advances in Neural Information
Processing Systems.

Liu, Y., Chen, X., Liu, C. and Song, D. (2016).
Delving into transferable adversarial examples and
black-box attacks. arXiv preprint arXiv:1611.02770
.

Madry, A., Makelov, A., Schmidt, L., Tsipras,
D. and Vladu, A. (2017). Towards deep learn-
ing models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083 .

Miyato, T., Kataoka, T., Koyama, M. and
Yoshida, Y. (2018). Spectral normalization for
generative adversarial networks. In International
Conference on Learning Representations.
URL https://openreview.net/forum?id=

B1QRgziT-

Nguyen, A., Yosinski, J. and Clune, J. (2015).
Deep neural networks are easily fooled: High con-
fidence predictions for unrecognizable images. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Paszke, A., Gross, S., Chintala, S., Chanan, G.,
Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L. and Lerer, A. (2017). Automatic dif-
ferentiation in pytorch .

Rahimian, H. and Mehrotra, S. (2019). Distri-
butionally robust optimization: A review. arXiv
preprint arXiv:1908.05659 .

Samangouei, P., Kabkab, M. and Chellappa, R.
(2018). Defense-gan: Protecting classifiers against
adversarial attacks using generative models. arXiv
preprint arXiv:1805.06605 .

Schmidhuber, J. (1987). Evolutionary principles in
self-referential learning, or on learning how to learn:
the meta-meta-... hook. Ph.D. thesis, Technische
Universität München.

Schmidhuber, J. (1992). Learning to control fast-
weight memories: An alternative to dynamic recur-
rent networks. Neural Computation 4 131–139.

Schmidhuber, J. (1993). A neural network that em-
beds its own meta-levels. In Neural Networks, 1993.,
IEEE International Conference on. IEEE.

Schulman, J., Levine, S., Abbeel, P., Jordan,
M. and Moritz, P. (2015). Trust region policy op-
timization. In International conference on machine
learning.

Szegedy, C., Zaremba, W., Sutskever, I.,
Bruna, J., Erhan, D., Goodfellow, I. and

Fergus, R. (2013). Intriguing properties of neu-
ral networks. arXiv preprint arXiv:1312.6199 .

Tabacof, P. and Valle, E. (2016). Exploring the
space of adversarial images. In 2016 International
Joint Conference on Neural Networks (IJCNN).
IEEE.

Taigman, Y., Yang, M., Ranzato, M. and Wolf,
L. (2014). Deepface: Closing the gap to human-
level performance in face verification. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition.

Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M.
and Song, D. (2018). Generating adversarial ex-
amples with adversarial networks. arXiv preprint
arXiv:1801.02610 .

Younger, A. S., Hochreiter, S. and Conwell,
P. R. (2001). Meta-learning with backpropagation.
In Neural Networks, 2001. Proceedings. IJCNN’01.
International Joint Conference on, vol. 3. IEEE.

Zagoruyko, S. and Komodakis, N. (2016). Wide
residual networks. arXiv preprint arXiv:1605.07146
.

Zhang, H., Cisse, M., Dauphin, Y. N. and Lopez-
Paz, D. (2017). mixup: Beyond empirical risk min-
imization. arXiv preprint arXiv:1710.09412 .

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui,
L. E. and Jordan, M. I. (2019). Theoretically
principled trade-off between robustness and accu-
racy. arXiv preprint arXiv:1901.08573 .

Zheng, S., Song, Y., Leung, T. and Goodfellow,
I. (2016). Improving the robustness of deep neural
networks via stability training. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition.

https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-

