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Abstract— Existing pain assessment methods in the intensive
care unit rely on patient self-report or visual observation by
nurses. Patient self-report is subjective and can suffer from poor
recall. In the case of non-verbal patients, behavioral pain
assessment methods provide limited granularity, are subjective,
and put additional burden on already overworked staff.
Previous studies have shown the feasibility of autonomous pain
expression assessment by detecting Facial Action Units (AUs).
However, previous approaches for detecting facial pain AUs are
historically limited to controlled environments. In this study, for
the first time, we collected and annotated a pain-related AU
dataset, Pain-ICU, containing 55,085 images from critically ill
adult patients. We evaluated the performance of OpenFace, an
open-source facial behavior analysis tool, and the trained AU R-
CNN model on our Pain-ICU dataset. Variables such as assisted
breathing devices, environmental lighting, and patient
orientation with respect to the camera make AU detection
harder than with controlled settings. Although OpenFace has
shown state-of-the-art results in general purpose AU detection
tasks, it could not accurately detect AUs in our Pain-ICU dataset
(F1-score 0.42). To address this problem, we trained the AU R-
CNN model on our Pain-ICU dataset, resulting in a satisfactory
average Fl-score 0.77. In this study, we show the feasibility of
detecting facial pain AUs in uncontrolled ICU settings.

Keywords— Pain; Facial Action Units; Facial Landmarks;
OpenFace; AU R-CNN

I. INTRODUCTION

A widely accepted definition of pain is “an unpleasant
sensory and emotional experience associated with actual or
potential tissue damage” [1]. Untreated pain can potentially
result in multiple deleterious complications, such as prolonged
mechanical ventilation, longer Intensive Care Unit (ICU)
stays, chronic pain after discharge, and increased mortality
risk [2]. A 2013 study reports that the incidence of significant
pain among patients in the ICU is 50% or higher [3]. About
17% of patients who were discharged from the ICU recollect
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the experience of severe pain they have undergone even after
6 months [4]. The primary barrier to adequate treatment is
under-assessment of pain in critically ill patients. Pain
assessment is necessary in the ICU in order to manage opioid
doses and for the overall recovery process. Characteristics of
painful experiences are specific to each individual, making it
a difficult variable to reliably quantify. ICU staff relies on self-
reported pain by individual patients, which is the gold
standard method for pain assessment. The Visual Analog
Scale [5, 6] and Numeric Rating Scale [7] are among
commonly used self-report pain scales, but nonetheless are
biased and subjective to the individual. Many critically ill
patients might not be able to self-report pain due to various
reasons, including the use of ventilators, the influence of
sedatives, or being in an altered mental state. Therefore, the
ICU staff have to rely on observational and behavioral pain
assessment tools for nonverbal patients, such as the Nonverbal
Pain Scale (NVPS) and Behavioral Pain Scale (BPS) [8]. Even
still, observer-based pain intensity measurement methods are
subjective, error prone, and lack granularity.

The human face plays a prominent role in nonverbal
communication [9, 10]. Patient facial expressions can help
identify the presence of pain in the case of individuals who
cannot self-report their pain status. NVPS and BPS include
facial behavior to evaluate the pain in non-verbal patients. The
Facial Action Coding System (FACS) is a facial anatomy-
based action coding system that can capture instant changes in
facial expression through processing of different facial AUs
[11]. Facial AUs are defined based on the relative contraction
or relaxation of individual or grouped facial muscles, therefore
any facial expression can be represented as a combination of
these facial AUs. Prkachin and Solomon identified certain
facial action units associated with pain and developed the
Prkachin Solomon Pain Index (PSPI) score based on the
FACS [12]. The PSPI score considers action units AU-4
(Brow Lowerer), AU-6 (Cheek Raiser), AU-7(Lid Tightener),
AU-9 (Nose Wrinkler), AU-10 (Upper Lip Raiser), and AU-
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43 (Eyes Closed), by accounting for both the presence of the
AUs as well as their intensity on a scale of (0-5). The
combination of AU presence and the corresponding intensity
yields a 16-point pain scale. A major caveat of this approach
is that the AUs must be coded manually by trained personnel,
requiring time-consuming and costly training practices and
making it a clinically unviable option.

An autonomous, real-time pain detection system has the
potential to facilitate clinical workflow. The identification of
AUs is an essential step in the development of an autonomous
pain expression assessment system. A major factor hindering
the development of an autonomous pain detection system is
the lack of an annotated dataset in uncontrolled settings.
Previously, researchers at McMaster University and the
University of Northern British Columbia (UNBC) captured
videos of 25 participants’ face suffering from shoulder pain
with varied diagnoses [13]. Each video frame was coded by
certified FACS coders and the data was captured in a
controlled laboratory setting. More recent datasets like BP4D-
Spontaneous [14] and BP4D+ [15] are available with videos
recorded from healthy volunteers, where facial AUs were
manually annotated and pain was stimulated by the cold
pressor task. To date, all existing datasets on pain expressions
have been captured in controlled or semi-controlled settings.
To our knowledge, this is the first effort to identify pain related
AUs in a dynamic clinical setting.

In this study, we collected the Pain-ICU dataset, a facial
pain AU dataset compiled from critically ill adult patients.
Each image frame was annotated by three trained annotators.
We first evaluated the performance of OpenFace [16], a
leading open-source facial behavior analysis tool, to detect
related AUs. We also used the AU R-CNN [17] model which
showed state of the art performance on general purpose action
unit (GP-AU) detection for BP4D-Spontaneous and DISFA
[18] datasets. Although OpenFace has shown state of the art
results on AU detection in other settings, in our dynamic ICU
AU detection setting (ICU-AU), failed to generalize well. This
result shows the need for developing customized tools for such
settings. To address this issue, we trained the AU R-CNN
model on the Pain-ICU dataset and outperformed OpenFace’
s performance. In this study, we show the requirements of a
system trained on ICU data to detect facial action units for the
objective of pain assessment in a clinical setting.

II. MATERIALS AND METHODS

A. Data Collection

All the data used in this study were collected in two
surgical ICUs at the University of Florida Health Shands
Hospital, Gainesville, Florida. The study was reviewed and
approved by the University of Florida Institutional Review
Board (UFIRB). All methods were performed, data were
collected, and written informed consents were obtained by
following all guidelines and regulations of the UFIRB. We
complied with the guidelines to ensure correct application of
deep learning predictive models within clinical setting [19].
Table I shows the patient cohort characteristics of this study.
To collect video data from the ICU, we used a standalone
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system with a camera focused on the patient’s face. Fifteen-
minutes of video was extracted within the proximity of
patient-reported Defense and Veterans Pain Rating Scale
(DVPRS) pain scores obtained from electronic health records.
These videos were further processed to obtain individual
frames at 1 frame per second (fps).

TABLE I. PATIENT CHARACTERISTICS TABLE

Participants (n = 10, number of images = 151,947)
Age, median (IQR) 73.3 (54.7,74.5)
Female, number (%) 3(33)
Race, number (%) White, 9 (90)
African American, 1 (10)
BMI, median (IQR) 24.4(22.7262)
z—llgsli);tal stay in days, median 19(18.22)

Three annotators were trained on the FACS training
manual. Annotators were evaluated on a separate training
dataset before annotating ICU image frames. All of the
annotations were performed individually on the assigned
images. Only the images annotated by all three annotators
were considered for evaluation. Furthermore, ground truth
labels chosen where at least two out of three annotators agreed
about the presence of a particular AU were used in our
evaluations. In Table II, each AU is listed with its
corresponding description.

TABLE II: LIST OF ALL ACTION UNITS WHICH ARE EITHER
DETECTED BY OPENFACE TOOL OR AU R-CNN

AU Description OpenFace AU R-CNN
AU25 Lips Part V4 V4
AU26 Jaw Drop v v
AU43 Eyes Closed V4

B. Methodology

Data preparation involved extraction of individual image
frames from the videos, face detection in the image frames,
face cropping, and annotation. We used FFmpeg [20] an
opensource multimedia processing tool to extract individual
frames from the videos. Following image extraction, frames
were processed using the Facenet [21] tool to detect and crop
patient faces from the input frames. Then, the extracted
images were provided as input to the OpenFace and AU R-
CNN models. All authors stand blinded on the annotation task;
only annotators performed the AU annotation assignments.

OpenFace is a toolkit available for facial behavior analysis
using computer vision algorithms [16]. The AU R-CNN
model is a convolutional neural network for recognition of
facial action units [17]. Although the objective of both models
is the same (facial AU detection), they each have a distinct
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approach to the problem. In the pipeline of AU identification,
the OpenFace tool detects facial landmarks which are further
used in facial alignment, feature fusion, and ultimately facial
AU detection. OpenFace uses linear Support Vector Machines
(SVM) kernel combined with Histograms of Gradients
(HOGsS) for action unit detection. Most approaches use facial
landmarks to align the images to further detect facial AUs.

I —
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Fig. 1. Pipeline of AU R-CNN architecture showing the feature
extraction module, ROI pooling layer and head module with sigmoid
activation to detect the action units in the input face image.

AU 43 AU 43
¥ y

AU 25,AU26

c

a b

Fig 2: (a) 68 landmark locations obtained by using OpenFace landmark
detection tool. (b) We obtain the AU masks i.e., regions where an AU
can be localized for AUs 25, 26, and 46 using the landmarks. AU 25
and 26 share the same region of Interest. AU-43 can occur in two
regions. (¢) Minimum enclosing rectangular region of interest (ROI)
box is obtained to provide as input to ROI pooling layer. Note:
Although the ROI box are shown on face image here, these regions are
obtained from the output feature map of Feature extraction module

Table IT shows the AUs detected by OpenFace and trained
AU R-CNN model. We evaluated the performance of these
models on AU-25, AU-26, and AU-43. OpenFace
implementation does not include detection of AU-43, so we
report the performance of OpenFace on AU-25 and AU-26.
Although OpenFace can detect other AUs, we were only
interested in the AUs that are associated with pain expression.
We considered AUs that are common between our Pain-ICU
dataset and AUs OpenFace can detect for performance
comparison of both models.

AU R-CNN proposed by Chen et al is an adaptive
regional learning approach to detect the presence of AUs in
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an image. The network architecture proposed shown in Fig. 1
consists of two modules, feature extraction module, and the
head module. The feature extraction module consists of res/,
res2, res3, res4 blocks of ResNet-101 architecture [22]. The
head module comprises of ROI pooling layer, res5, average
pool, and fully connected layers. Feature extraction module
takes an individual face image as input and output the feature
map shown in Fig. 1. Corresponding AU mask regions shown
in Fig. 2¢ are obtained from the output of feature extraction
module and unrelated regions of the image are discarded. The
ROI pooling layer introduced by Fast R-CNN [23] is used to
convert the given rectangular region of interest to a feature
map with a predefined fixed spatial extent (14X14). The last
fully connected layer in head module is modified to have a
size equal to the number of AUs being detected. The network
uses the sigmoid cross entropy loss, as multiple AUs can be
present in given region of interest (a multi-label problem).

Regions of Interest (ROIs) corresponding to AUs are
obtained based on their location of occurrence on the face. Fig.
2 shows how ROIs are extracted from an input face image. We
used OpenFace predicted landmark coordinates to obtain AU
masks and the corresponding minimum enclosing rectangles
shown in Fig 2a, Fig. 2b, and Fig. 2c, respectively. Two ROIs
each corresponding individual eye regions were extracted for
AU-43 (Eyes closed). Similarly, AU-25 (Lips part) and AU26
(Jaw drop) both occur around the mouth region, therefore ROI
around the mouth region is extracted. Although Fig. 2 shows
the ROIs on the face image, ROIs are extracted from output
feature map of feature extraction module. The minimum
bounding rectangle coordinates and the feature map are
usually 16x smaller than the input image resolution. Some of
the AUs share a common region of interest similar to AU-25
and AU-26. Our study is limited to three AUs, so we only used
three ROIs (2 ROIs for AU-43 and 1 ROI for both AU-25 and
AU-26) corresponding to the AUs.

III. RESULTS

A. Experimental Setting

The Pain-ICU dataset contains 151,947 image
frames from 10 ICU patients. We considered 55,085 images
which are marked as clear by all three annotators. Most
discarded images were discarded as no patient was visible in
the image frame, or due to lack of lighting, patient face
occluded by a blanket, or poor resolution. All remaining
55,085 images were evaluated for AU detection. We evaluated
both OpenFace and AU R-CNN on the Pain-ICU dataset. We
ran the OpenFace model on the entire dataset to evaluate its
performance on AU detection and obtain the facial landmarks.
Although OpenFace can detect multiple AUSs, in this study we
reported its performance on AU-25, and AU-26. OpenFace
performance on the entire dataset is shown in Table III. AU
R-CNN has achieved state of the art results on general purpose
AU detection, but AU-25, AU-26 and AU-43 were not
included in their published work. We trained the AU R-CNN
model on our Pain-ICU dataset which consists of AU-25, AU-
26, and AU-43. Data from 10 patients was randomly split into
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three subsets containing 3, 3, and 4 patients, strictly ensuring
same patient’s data is exclusive to one of the subsets. The
performance of trained AU R-CNN is reported in Table TV.
The reported performance is the mean of three runs where
every subset is considered as a test set and trained on the rest
of the patients’ data. AU R-CNN model was trained on two
NVIDIA 2080 TI GPUs for 20 epochs with a mini-batch size
of 12 images. We used RMSprop optimizer [20] as a gradient
descent optimization algorithm with an initial learning rate
0.001 and sigmoid cross entropy as a loss function.

B. Evaluation Metrics

We used precision, recall, accuracy, and Fl-score to
evaluate the performance of both OpenFace and AU R-CNN
models. Every AU is individually evaluated and reported.
True Positive (TP) for an AU denotes if the AU is present in
the image and is correctly identified as present by the model.
True Negative (TN) denotes the AU is absent in the image
frame and is correctly identified as not present in the image.
False Positive (FP) denotes AU is incorrectly identified as
present in the image when it is absent. False Negative (FN)
denotes AU present in the image but identified as absent. In
the results we reported the number of image frames in which
a given AU is present in the support column of tables III —
VII. AU R-CNN generates ROI level predictions, to obtain
image level prediction from ROI level predictions we used
“bit-wise OR” to merge the predictions. Once the image level
prediction is obtained, we evaluate the model prediction
against the ground truth labels.

TABLE IlII. OPENFACE PERFORMANCE ON ENTIRE ICU DATA
REPORTED FOR EACH ACTION UNIT. PERFORMANCE IS
EVALUATED AGAINST GROUND TRUTH ANNOTATION.

Action | fl-score | precision | recall | accuracy | support
Unit
AU25 0.49 0.69 0.38 051 32583
AU26 0.34 0.61 0.24 0.58 23827
Average 0.42 0.65 0.31 0.55

TABLE IV. TRAINED AU R-CNN PERFORMANCE REPORTED
FOR EACH ACTION UNIT. AU R-CNN PERFORMANCE IS
EVALUATED AGAINST GROUND TRUTH ANNOTATION.
REPORTED METRICS ARE MEAN PERFORMANCE ON ALL
THREE BATCHES.

Action | fl-score precision recall accuracy
Unit

AU 25 0.75 0.75 0.75 0.74
AU 26 0.71 0.87 0.62 0.80
AU 43 0.85 0.76 0.96 0.77
Mean 0.77 0.79 0.78 0.77
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TABLE V. TRAINED AU R-CNN PERFORMANCE ON DATA
FROM WHITE MALE PATIENTS FOR EACH ACTION UNIT.

Action | fl-score | precision | recall | accuracy | support
Unit

AU 25 0.87 0.88 0.86 0.81 | 27074

AU 26 0.74 0.9 0.63 0.74 | 21331

AU 43 0.89 0.82 0.97 0.83 | 27594

Mean 0.83 0.87 0.82 0.79

TABLE VI. TRAINED AU R-CNN PERFORMANCE ON DATA
FROM WHITE FEMALE PATIENTS FOR EACH ACTION UNIT.

Action | fl-score | precision | recall accuracy | support
Unit

AU 25 024 0.2 0.34 0.57 1603

AU 26 028 0.8 0.19 0.95 545

AU 43 0.81 0.71 0.93 0.69 5463

Mean 0.44 0.57 0.49 0.74

TABLE VII. TRAINED AU R-CNN PERFORMANCE ON DATA
FROM AFRICAN AMERICAN PATIENTS FOR EACH ACTION
UNIT.

Action | fl-score | precision | recall | accuracy | support
Unit

AU 25 0.47 0.59 0.4 0.67 1869

AU 26 0.43 0.58 0.35 0.84 881

AU 43 0.67 0.5 1 0.51 2423

Mean 0.52 0.56 0.58 0.67

IV. DISCUSSION

OpenFace can detect facial landmarks, head pose, eye-
gaze, and facial action unit recognition. In this study, we were
only interested in pain-related facial action unit detection, as
these units play a key role in pain expression recognition. We
reported the performance of OpenFace on ICU data in Table
IIT with respect to AUs on all images we used in this study.
Table IIT does not include AU43 as it is not present in AUs
that can be detected by OpenFace. OpenFace struggled to
capture AU-25 (Lips Part) and AU-26 (Jaw Drop) based on
the Fl-score. In the pipeline of OpenFace, detecting facial
landmarks is one of the initial steps. Accurate detection of
these facial landmarks plays a crucial role in the performance
of the tool to detect AUs. OpenFace uses a combination of
predicted landmarks and Histograms of the gradients to
predict the AUs. Inaccurate prediction of these landmarks
could result in poor performance of the model in prediction
of action unit occurrence. The presence of medical devices
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and inconsistent face orientation affected the prediction of
landmarks. As both AU-25 (lips part) and AU-26 (Jaw drop)
both depend on mouth region. Inaccurate prediction of
landmarks near the mouth region where medical devices most
likely present resulted in poor performance of OpenFace on
our Pain-ICU dataset. Openface is trained on the datasets in
which data is collected from the controlled lab environment.
Controlled environment images have proper light intensity,
close camera location with respect to face, and no occlusion
of the face. Real world ICU environment cannot ensure the
ideal conditions of a controlled environment. All the above
factors effected the performance of OpenFace on the ICU
data.

Table IV shows the performance of trained AU R-CNN
model on the ICU data test set. Reported metrics are mean
values of AU R-CNN performance on all the three batches.
The model performed well in the case of all AUs AU-25, AU-
26, and AU-43. This trained model showed better
performance compared to OpenFace on AU-25 and AU-26.
One reason for better detection of these AUs is due to their
strong presence in the Pain-ICU dataset in terms of number
of supporting images, which aided the network during
training. The Fl-score of AU-25, AU-26 and AU-43
exceeded the accuracy, which shows that model
overestimated the presence of these AUs. This trained model
showed how training the models can improve detection of
AUs on ICU images. Although facial landmarks are used by
both OpenFace and AU R-CNN , in the case of AU R-CNN
landmarks are only used identify the region that should be
provided as input to the head module, therefore highly
accurate landmark detection was not essential for successful
identification of AUs. AU R-CNN is not vulnerable to slight
errors in the landmarks at least for the AUs we reported in
this study. The bounding box extracted from Feature
extraction module shown in Fig. 1 will likely contain the
region of AU occurrence even in the case of mildly inaccurate
prediction of landmarks.

Racial and gender bias in Artificial Intelligence (Al) is an
important topic many researchers trying to address and
eliminate. Buolamwini et al, have shown gender and racial
bias in commercial Al facial analysis software in their work
[24]. Although a small sample, we reported the trained AU
R-CNN performance stratified by race and gender. Table V,
table VI, and table VII shows performance of AU R-CNN on
white male patients, white female patients, and African
American male patients, respectively. Our Pain-ICU dataset
has lower representation of female patients (3) and African
American (1) patients. Our trained model is not successful in
detecting AUs in females and African American patients
especially in the case of AUs 25 and 26. Although we have
strong presence of AUs in our Pain-ICU dataset, this presence
is mainly based on data from white male patients, therefore
trained AU R-CNN could not capture the AUs accurately on
female and African American patients. To obtain an unbiased
result, the dataset should have adequate sample size with
sufficient representation of minority and underrepresented
groups.
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Fig 3: AU presence vs patient reported pain score. Image frames
recorded within 1 hour from the collected pain timestamp are only
considered.

The ultimate objective of our AU detection task is to
determine patient’s facial pain expression and pain score
based on detected AUs. While previous studies have shown
correlation between AUs and pain scores, no study has
examined the association between AUs and pain score in
uncontrolled ICU settings. ICU staff collected patient self-
reported pain score (DVPRS) on a scale of 0 to 10, which can
be further classified into mild (0-4), moderate (5-6), and high
(7-10) categories. We ran mixed effects models to find
association between AU presence and the pain score. None of
the AUs we reported in this had shown statistically significant
association with the patient reported pain score. In Fig. 3 we
show the presence of AUs in our dataset against the patient
reported pain score. Each cell shows normalized score
number of frames in which AU is present to number of frames
available for a given pain score category. It can be seen AUs
we considered in study were sensitive to pain but not specific
to pain. PSPI is a defined metric to obtain pain score from the
facial AU presence. PSPI score is calculate based on action
units AU-4, AU-6, AU-7, AU-9, AU-10, and AU-43. It
should also be noted that the non-zero PSPI score does not
necessarily mean the person is in pain. As an example, it can
be seen patient reported pain score 0 has substantial presence
of AU-43. several action units share presence in different
facial expressions like pain and happiness (AU-6), fear (AU-
4), disgust (AU-10/AU-9). As PSPI is not fool proof we also
intend to use other ground truth label, patient reported pain
score.

There are few limitations of our dataset. To avoid
disrupting routine care, cameras are placed at a specific,
unobtrusive location and at a distance in the ICU room,
therefore some images might have lower resolution. Another
limitation is that our dataset only has a strong presence of
AUs 25, 26, and 43 while other AUs are limited or none.
Also, patients in the ICU are more likely to be administered
medication(s) which may affect the intensity of an
individual’s facial expression, resulting in low or no presence
of other AUs. In the future, we intend to collect additional
data on several other AUs associated with pain expression. A
model which can incorporate multiple modalities such as
activity, physiological signals, and electromyography data
can make autonomous nonverbal pain assessment more
feasible.
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We acknowledge the growing concerns of facial
recognition due to privacy issues. Our goal is to create a
model which can improve patient outcomes and reduce
workload on overburdened ICU staff, while preventing any
potential abuse of privacy or misuse. We consciously chose
not to include any patient-identifying information such as
sample images in this work. All patient data are safely
secured on a private server, limiting data access to specific
study staff members, and following all local, state, and
federal patient privacy rules and regulations. All analyses
were performed locally on the server, and only the de-
identified, end numerical results were retrieved from the
server. In the future, we intend to perform all analyses in an
online learning mode, to avoid storing any data for training,
further enhancing the privacy and security features of such a
system.

V. CONCLUSION

Autonomous pain assessment can be helpful in the ICU in
terms of both cost and efficiency. Pain assessment through
facial expression requires the detection of facial action units
(AU). In this paper, we evaluated the performance of
OpenFace and AU R-CNN models on actual ICU data in
detecting facial action units. ICU data are distinctly different
from controlled environment data, resulting in poor
performance by the OpenFace model. The model struggled to
identify the AUs, although they achieved good performance
on the controlled environment datasets. Factors including the
presence of medical assist devices on patient's faces, lighting
in the ICU, image quality, and patient face orientation
resulted in poor performance of these models. AU R-CNN
model trained on the Pain-ICU dataset was able to achieve
better performance compared to OpenFace. Although our
trained model showed overall better performance, the
performance was lower for detecting AUs in female and
African American patients. The performance of trained
model clearly states, model trained predominantly on white
male patients is not adequate to perform accurate AU
detection on general patient population. We conclude that to
achieve accurate results in uncontrolled ICU settings, models
need to be trained on ICU-specific data with strong presence
of action units, and adequate presence of data from
underrepresented groups to achieve the end goal of pain
assessment.
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