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Abstract
Background: Research has shown the feasibility of human activity recognition using wearable accelerometer devices. Differentstudies have used varying numbers and placements for data collection using sensors.
Objective: This study aims to compare accuracy performance between multiple and variable placements of accelerometerdevices in categorizing the type of physical activity and corresponding energy expenditure in older adults.
Methods: In total, 93 participants (mean age 72.2 years, SD 7.1) completed a total of 32 activities of daily life in a laboratorysetting. Activities were classified as sedentary versus nonsedentary, locomotion versus nonlocomotion, and lifestyle versusnonlifestyle activities (eg, leisure walk vs computer work). A portable metabolic unit was worn during each activity to measuremetabolic equivalents (METs). Accelerometers were placed on 5 different body positions: wrist, hip, ankle, upper arm, and thigh.Accelerometer data from each body position and combinations of positions were used to develop random forest models to assessactivity category recognition accuracy and MET estimation.
Results: Model performance for both MET estimation and activity category recognition were strengthened with the use ofadditional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03-0.09MET increase in prediction error compared with wearing all 5 devices. Balanced accuracy showed similar trends with slightdecreases in balanced accuracy for the detection of locomotion (balanced accuracy decrease range 0-0.01), sedentary (balancedaccuracy decrease range 0.05-0.13), and lifestyle activities (balanced accuracy decrease range 0.04-0.08) compared with all 5placements. The accuracy of recognizing activity categories increased with additional placements (accuracy decrease range0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition.
Conclusions: Additional accelerometer devices slightly enhance activity recognition accuracy and MET estimation in olderadults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appearto be sufficient for estimating energy expenditure and activity category recognition in older adults.
(JMIR Mhealth Uhealth 2021;9(5):e23681) doi: 10.2196/23681
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Introduction
Background
Over the past 30 years, accelerometer devices have been widelyused for measuring movements, physical activity categories,and energy expenditure [1]. This work has also carried forwardinto characterizing the activity patterns of patients with chronicdiseases such as obesity, cardiovascular disease, schizophrenia,bipolar disorder, and cancer [2-6]. Despite its growing use inboth clinical and research settings, the optimal body positionfor sensor placement that would provide the most accurateactivity category recognition and the corresponding estimate ofenergy expenditure in older adults remains uncertain. Forexample, previous studies have used various sensor placementson the body, including the wrist [7-9], thigh [10,11], hip [12-14],arm [15,16] or ankle [17,18], or a combination of multipleplacements [19,20]. However, such studies have often beenconducted on relatively small samples of young and middle-agedadults. There continues to be a gap in knowledge regardingbody placement for older adults (>60 years). Such knowledgeis important for considering older age as a factor for estimatingactivity types and energy expenditure.
There is a lack of a comprehensive evaluation that directlycompares individual and combinations of accelerometers placedon different body positions. Historically, the hip position waschosen in both research and public settings for tracking steps(ie, steps per day). The hip position is close to the body’s centerof the mass and provides an acceleration change because of thefoot fall action-reaction when ambulating. As such, the hipposition offers a convenient and accurate approach for capturingambulatory activity [21]. The ankle position is also accurate inassessing step counts and other gait-related features [22-25].Recently, however, the wrist position has become popular forcollecting accelerometer data because of the increasedprevalence of smartwatches. This is due to their convenience,ability to capture sleep quality, determination of 24-hour activityrhythms, and enhanced compliance [26-30].
Objectives
A systemic evaluation of body placements will help optimizeenergy expenditure estimation and activity recognition. It wouldalso help resolve controversies related to the balance betweenthe accuracy and convenience of different body placements[31]. Given the paucity of information about the role ofaccelerometer placement on older adults, we aimed to compareand contrast energy expenditure estimation, individual activity,and activity category recognition with 5 sensor body positionsand their combinations during 32 activities that includedsedentary, locomotion, and lifestyle categories. We hypothesized

that combined data from 5 accelerometer positions on the bodywould provide optimal energy expenditure estimation, individualactivity recognition, and activity category recognition, but thisimprovement will be incremental compared with a single orcombination of body placements.
Methods
Study Design
This study was approved by the University of FloridaInstitutional Review Board, and written informed consent wasobtained from all participants. The inclusion criteria weredesigned to optimize safety while ensuring populationrepresentation. It included older adults, aged ≥60 years [32],with stratified enrollment for both high and low functionaccording to scores on the standardized Short PhysicalPerformance Battery [33]. The study pre-planned to enroll andcomplete testing in 90 participants with 30% (27/90) of theparticipants scoring in the lowest quartile of physical function.Recruitment focused on enrolling community-dwelling adultswithout significant health issues that could impact the safety ofparticipants. Additional inclusion criteria included willingnessto undergo all testing procedures, stable weight for at least 3months, and ability to understand and speak English. Participantswere excluded if they met any of the following criteria: failureto provide informed consent, use of a walker, lower extremityamputation, history of chest pain or severe shortness of breathduring physical stress, poststroke syndrome causing ambulatorydeficits, and requiring assistance with basic activities of dailyliving or living in a complete care nursing home. A completelist of the exclusion criteria can be found elsewhere [34].
Accelerometers and Energy Expenditure DuringActivities
Participants were asked to perform 32 scripted activities listedin Multimedia Appendix 1. These activities were chosen becausethey are common among most Americans and are consistentwith the average time spent in the 2010 American Time UseSurvey [35]. Activities were performed for 6 to 8 minutes with5 to 10 minutes of rest between each activity. Assessments werecompleted over 4 separate visits. The participants receivedinstructions from the research staff before each activity.Participants wore 5 ActiGraph GT3X triaxial accelerometers[36], one on their ankle, upper arm, hip, thigh, and wrist. Allmonitors were worn on the right side for the duration of datacollection, as shown in Figure 1. Of note, Buchan et al [37] andDieu et al [38] demonstrated strong agreement betweenaccelerometer data collected on the dominant and nondominantsides. Accelerometers were initialized simultaneously andprogrammed to collect data at 100 Hz.
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Figure 1. Sensor placement on the body.

Participants wore a COSMED K4b2 [39] portable gas analysissystem while performing the 32 scripted activities. Before datacollection, the oxygen (O2) and carbon dioxide (CO2) sensorswere calibrated using a gas mixture sample of 16.0% O2 and5.0% CO2 and room air calibration. The turbine flow meter wascalibrated using a 3.0-L syringe. A flexible facemask waspositioned over the participant’s mouth and nose and attachedto the flow meter. Oxygen consumption (VO2; measured in mL
min-1 kg-1) was measured breath-by-breath, and data weresubsequently smoothed with a 30-second running averagewindow. VO2 data were displayed and manually evaluated todetermine when steady-state VO2 was reached. A steady statewas defined as a plateau in VO2, which typically occurs 2minutes after the start of the activity. Data were expressed asmetabolic equivalents (METs) after dividing the VO2 values by
the traditional standard of 3.5 mL min-1 kg-1 [40]. A dedicatedstudy smartphone with a custom-built app was synchronized toserver time and used to record the start and stop times for eachactivity (shown in blue in Figure 1). This ensured that timewindows could be accurately identified from accelerometer datathat was also initialized to server time.
Analysis
Data were first processed to extract relevant summary featuresfrom each contiguous 16-second window. The features describedin Table 1 represent both the time and frequency domains[41,42]. These features were included in the analytic models,as illustrated in the analysis flow in Figure 2. There were a totalof 31 different wrist, hip, ankle, upper arm, and thigh bodyposition combinations. The analyses compared the performanceof single placement and combinations of device placements forestimating METs and for labeling activities as individual andwhen they were categorized as sedentary, locomotion, or

lifestyle (Multimedia Appendix 1). We used random forest asour primary analysis approach, which is a frequently usedmachine learning algorithm, to recognize human activity fromaccelerometer data [41-45]. Random forest is an ensemblelearning algorithm that builds a large number of decision treesfrom random sub–data sets of the training data set. The predictedclass is determined by aggregating the predicted classes (votes)from the individual decision trees and selecting the majorityclass in case of classification or by averaging the predictedvalues in case of regression [46]. This procedure was firstperformed to evaluate the accuracy of detecting activitycategories based on sedentary versus nonsedentary, locomotionversus nonlocomotion, and lifestyle versus nonlifestyle activitiesas well as to evaluate the accuracy of classifying each of the 32individual activities against a 3.1% random chance of matchingcorrectly. We used a regression random forest for continuousMET estimation and classification of random forest for activityrecognition. To reduce bias, the data were split randomly intodevelopment and testing data sets using participant identificationnumbers. Participants were included in either the developmentor testing data sets but not both. The development data set wasfurther randomly split into training and validating data sets totune the model parameters. Nested cross-validation was used;in each outer fold, we kept five-sixths of the participants formodel development and one-sixth of the participants for testing.In each inner fold, four-fifths of the participants in thedevelopment data set were assigned to the training data set, andone-fifth of the participants were assigned to the validating dataset. All model estimates were reported for the testing data sets.In supplementary analyses, a confusion matrix of actual versuspredicted activities (32×32 matrix) from the hip and wristpositions, respectively, was generated to help interpret theaccuracy and F1 score results. We chose to examine thesepositions because they are the most used in the literature.
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Table 1. Description of features extracted from the raw data.
DescriptionFeature

Time
Sample mean of the VMa in the windowMean of vector magnitude
SD of VM in the windowSD of vector magnitude
Sample mean of the angle between x-axis and VM in the windowMean angle of acceleration relative to vertical on the deice
Sample SD of the angles in the windowSD of the angle of acceleration relative to vertical on thedevice
Covariance of the VM in the windowCovariance
Skewness of the VM in the windowSkewness
Kurtosis of the VM in the windowKurtosis
Entropy of the VM in the windowEntropy
SD of VM in the window divided by the mean, multiplied by 100Coefficient of variation
Correlation between x-axis and y-axisCorr(x,y)
Correlation between y-axis and z-axisCorr(y,z)
Correlation between x-axis and z-axisCorr(x,z)

Frequency
Sum of moduli corresponding to frequency in this range divided by sum of moduliof all frequenciesPercentage of the power of the VM that is in 0.6-2.5 Hz
Frequency corresponding to the largest modulusDominant frequency of VM
Modulus of the dominant frequency or sum of moduli at each frequencyFraction of power in VM at dominant frequency

aVM: vector magnitude.
Figure 2. Analysis flow steps. After accelerometer data were downloaded using the ActiLife (ActiGraph) toolbox, preprocessing steps and featureextraction steps were completed to prepare the data set to be used in prediction models for each task. MET: metabolic equivalent.

Model Evaluation
We calculated the performance metrics of the models bycomparing the model-based predicted values with the measuredvalues. For the performance of the individual activity recognitionmodel, we calculated the total accuracy of the model. Foractivity category recognition, we used the balanced accuracymetric to report model performance because of the classimbalance (ratio of the majority class to minority class beingmuch smaller than 1) across activities. Balanced accuracy isdefined as the mean of sensitivity and specificity metrics [47,48].For MET estimation, we used the predicted and measured valuesto calculate the root mean square error (RMSE). The results

were summarized into 3 major categories: the most accuratecombination, the most accurate placement performance, andthe most efficient combination. The latter was defined as thefewest number of sensors that provide a similar performance tothe most accurate combination, with less than a 10% decreasein performance compared with the most accurate combination.For visualization purposes, the difference in the balancedaccuracy of body placement/s compared with the accuracyderived from all 5 sensors was plotted. They were grouped bythe number of body placements and ranked to simplify the visualcomparisons. To compare across figures, the absolute value ofthe individual balanced accuracy was also added to theillustration.
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Results
The study enrolled 93 older adults (mean age 72.2, SD 7.1years). The sample was balanced across gender, was mostlynon-Hispanic White, and had comorbidities similar to those ofthe general population. Table 2 presents the descriptivecharacteristics of the participants. The participants completed

2013 tasks. The median number of tasks completed was 26 outof 32 tasks (Multimedia Appendix 1). Stair ascent had the lowestamount of complete data (n=43) and leisure walk had the mostcomplete data (n=82). The reasons for missing informationincluded not reaching a steady-state metabolic rate, invalid datafrom one or more monitors, unable to complete the task for atleast 4 minutes, missed visits, or provided only partial databecause the participant withdrew from the study.
Table 2. Participant characteristics (n=93).

ValuesCharacteristics
72.17 (7.02)Age (years), mean (SD)
47 (51)Female, n (%)
28.18 (4.92)BMI (kg/m2), mean (SD)

Race or ethnicity, n (%)
83 (89)Non-Hispanic White
8 (9)Non-Hispanic Black
1 (1)Non-Hispanic Asian
2 (2)Hispanic
15 (16)Education (≥16 years), n (%)
52 (56)Married or in a relationship, n (%)
30 (32)Live alone, n (%)
66 (71)Household income (≥US $15,000), n (%)
87 (94)Self-rated health (≥good), n (%)

Self-reported conditions, n (%)
37 (40)Former or current smoker
45 (48)Hypertension
39 (42)Hypercholesterolemia
19 (20)Diabetes
10 (11)Chronic pulmonary disease
8 (9)Heart attack, myocardial infarction
27 (29)Cancer
10 (11)Depression
4 (4)Stroke
11 (12)Osteoarthritis
93.50Total moderate physical activity (min/week)a

Walking speed (min per second), mean (SD)
1.29 (0.26)Leisure paceb
1.41 (0.25)Rapid pacec

aData included for 77 participants.bData included for 91 participants.cData included for 85 participants.
Models were also tested for categorizing sedentary, locomotion,and lifestyle activities (Figures 3-5). For sedentary behaviorrecognition, the combination of all accelerometers resulted inthe best performance (balanced accuracy 0.78). Hip-worn

placement provided the best performance among thesingle-placement models (balanced accuracy 0.73). Theankle-worn placement resulted in the worst performance(balanced accuracy 0.65). Multimedia Appendices 2 and 3
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illustrate confusion matrices of the hip and wrist positionsrevealing that strength exercise and yoga, both partially done in a sitting position, were mislabeled as being sedentaryactivities, which caused significant overall misclassification.
Figure 3. Balanced accuracy performance of sedentary activity classification models based on the device placement combinations. Models were groupedby the number of devices used and, in each group, were sorted by decreasing balanced accuracy (rounded). Y-axis shows the difference between thebalanced accuracies of the different combinations and the five-placement combination. Numbers in the plot show the balanced accuracies of eachplacement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist.

For locomotion activity recognition, the combination of allplacements resulted in the best performance (balanced accuracy0.98). Hip-worn placement provided the best performanceamong the single-placement models (balanced accuracy 0.98).

Classifiers trained separately on data from ankle-worn,wrist-worn, arm-worn, and thigh-worn placement also resultedin high performance (balanced accuracy 0.97-0.98; Figure 4).
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Figure 4. Balanced accuracy performance of locomotion activity classification models based on the device placement combinations. Models weregrouped by the number of devices used and, in each group, were sorted in decreasing balanced accuracy (rounded). Y-axis shows the difference betweenthe balanced accuracies of the different combinations and the five-placement combination. Numbers in the plot show the balanced accuracies of eachplacement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist.

For lifestyle activity recognition, the combination of data fromankle-worn, arm-worn, hip-worn, and wrist-worn placementsresulted in the best performance (balanced accuracy 0.92). Thecombination of data from all placements resulted in highperformance (balanced accuracy 0.91). Classifiers trained on

data from arm-worn placements, similar to hip-worn andwrist-worn placements, provided the best performance amongthe single-placement models (balanced accuracy 0.87), whereasankle-worn placement resulted in the lowest performance(balanced accuracy 0.83; Figure 5).
Figure 5. Balanced accuracy performance of lifestyle activity classification models based on the device placement combinations. Models were groupedby the number of devices used and, in each group, were sorted in decreasing balanced accuracy (rounded). Y-axis shows the difference between thebalanced accuracies of the different combinations and the five-placement combination. Numbers in the plot show the balanced accuracies of eachplacement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist.
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The individual activity recognition models with all placementsresulted in a relatively low accuracy of 0.57 (Figure 6).Wrist-worn placement provided the best performance amongthe single-placement models (accuracy 0.42). Classifiers trained

separately on data from the ankle-worn placement, similar tothigh-worn placement, resulted in the worst performance(accuracy 0.28; Figure 6).
Figure 6. Accuracy performance of individual activity classification models based on the device placement combinations. Models were grouped bythe number of devices used and, in each group, were sorted in decreasing accuracy (rounded). Y-axis shows the difference between the accuracies ofthe different combinations and the five-placement combination. Numbers in the plot show the accuracy of each placement combination. A: ankle; B:upper arm; C: hip; D: thigh; E: wrist.

Energy expenditure accuracy was evaluated using the METRMSE of the predicted versus measured values (Figure 7). Ingeneral, models trained using the combination of data from all5 placements resulted in an RMSE of 0.88 METs. Hip-worn

and thigh-worn placements provided the lowest RMSE of 0.91METs among the single body placements. Overall, there was aslight reduction in RMSE when additional accelerometerplacement was added to the model.
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Figure 7. Root mean square error (RMSE) score performance of met value estimation models based on the device placement combinations. Modelswere grouped by the number of devices used and, in each group, were sorted in increasing RMSE (rounded). Y-axis shows the difference between theRMSE values of the different combinations and the five-placement combination. A: ankle; B: upper arm; C: hip; D: thigh; E: wrist; MET: metabolicequivalent; RMSE: root mean square error.

Table 3 summarizes the results according to the positionsdeemed most accurate, best single placement, and most efficientcombination. In general, the most accurate combinationcontained data from all 5 body positions, but the most accurate

placement was often very similar and sometimes better thancombinations. The hip and wrist positions appeared to be themost efficient combinations, but models were able to recognizeindividual activities only with chance probability.
Table 3. Guideline table to determine the needed number and placement of the wearable accelerometer for each task.

Most efficient combinationaMost accurate single placementMost accurate combinationTask
Hip (0.73)Hip (0.73)All 5 placements (0.78)Sedentary activity detection (bal-anced accuracy)
Hip (0.98)Hip (0.98); ankle (0.98)All 5 placements (0.98)Locomotion activity detection (bal-anced accuracy)
Wrist (0.87)Upper arm (0.87); wrist (0.87);hip (0.87)Ankle+upper arm+hip+wrist (0.92)Lifestyle activity detection (bal-anced accuracy)
Hip+wrist (0.51)Wrist (0.42)All 5 placements (0.57)Individual activity recognition (ac-curacy)
Hip+wrist (0.89)Hip (0.91); thigh (0.91)Ankle+upper arm+hip+thighb (0.87)MET value estimation (root meansquare error)

aThe most efficient combination was defined as the fewest number of sensors that provide a similar performance to the most accurate combination whileconsidering usability. Similar performance was defined as a difference ≤10% of the most accurate combination. We considered the most-to-least usableplacements to be wrist>hip>ankle>arm>thigh. Thus, if the performance difference was less than 10%, then the most usable placement was chosen asthe most efficient. Best and worst performance refer to best and worst performance according to their balanced accuracy (best: highest balanced accuracy;worst: lowest balanced accuracy).bThe performance of the combination with the best performance (0.87) was very close to that of the combination with all 5 placements (0.88).
Discussion
Principal Findings
We compared the performance of activity recognition modelsbased on different combinations of 5 accelerometer placements

on 32 activities of daily life. We considered single-sensor andmultisensor placement on the wrist, hip, ankle, upper arm, andthigh. Our results show that the models achieved the bestperformance in the classification of locomotion activities andlifestyle activities (balanced accuracies 0.98 and 0.91 for theall five-sensor combination, respectively), followed by the
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classification of sedentary activity (balanced accuracy 0.78).The correct labeling of individual activities was low (accuracy0.57). Interestingly, increasing the number of accelerometerplacements had very limited improvement in the classificationaccuracy of locomotion and lifestyle activities as well asestimating MET values.
There are also noteworthy results from locomotion and sedentarytasks. The accuracy of locomotion activity recognition wassimilar across all the placements, and only minor differenceswere found between the combinations (approximately 1%). Itis worth mentioning that the wrist-worn accelerometer hadrelatively lower performance, which is potentially due to thelocomotor-like hand movements observed in other nonlocomotortasks (eg, washing windows and yard work). Nonetheless, evena single body placement would likely suffice for locomotionactivities. Detecting sedentary tasks had low accuracies,although the five-sensor combination provided a 7%-20%increase in balanced accuracy compared with several singleplacements. Additional analyses demonstrated that themisclassification rate was higher for sedentary activities thanfor nonsedentary activities. This may be caused by an imbalancein the data collected; sedentary tasks comprise only 4 out of 32activities and result in only 6% of the total epochs. Anotherpotential reason might be the similarity of some of thenonsedentary and sedentary activities. Confusion matrices ofindividual activity recognition models show that strengthexercise and some stretching and some yoga, which wereperformed in a sitting position for a significant amount of time,contained most of the error (approximately 25%-76% for thehip and 40%-50% for the wrist). These activities are nottraditionally considered to be sedentary behavior but are oftenperformed in a sitting position (confusion matrices presentedin Multimedia Appendices 2 and 3).
Historically, the hip position has been the most common andwell-validated accelerometer placement. Some studies haveinvestigated the performance of classifiers using data from othersensor placements, such as the ankle and wrist [22,25,49].However, few studies have systematically examined theaccuracy differences between individuals and combinations ofdifferent body placements [50,51]. The results published byArif and Kattan [50] demonstrated in a cohort of 9 young adultsthat body placement differences between the wrist, chest, andankle were relatively small in terms of overall accuracy whenclassifying 12 activities (best overall F-measure for wristplacement: 93.9%, for ankle placement: 92.2%, and for chestplacement: 93.9% vs for combined placements: 98.2%). Similarfindings have been reported by Gao et al [51], where thefollowing 4 placement positions were compared: chest,underarm, waist, and thigh to identify 5 different activitiesperformed by 8 older adults. They reported accuracies rangingfrom 81.9% to 92.8% for single-placement classifiers and83.2%-96.4% for multisensor classifiers. These 2 studies wereconsistent with the finding that additional accelerometersimprove performance in detecting the physical activity type.This study increases this initial knowledge with a much largersample size of older adults who performed an ample number ofactivities with and without overlapping movement patterns.Although more generalizable, the large sample size likely

introduced more variability in movement patterns, making itmore challenging to find a single common classifier appropriatefor all people. As such, the lower performance for activityrecognition observed in this study might test the limits of thepredictive capacity for machine learning models, such as randomforest, when applied across a diverse population.
A MET RMSE of 0.88 was achieved across all activities.Previous studies using data from accelerometer devices wornon the hip and wrist have shown similar results for the predictionof METs, with RMSE values of 1.00-1.22 [45,52,53]. For asingle placement, the hip and thigh positions provided the lowestRMSE values. Increasing the number of placements only slightlyenhanced the RMSE (from 3% to 9%). Our results also showthat adding 2 or more accelerometers provides a smallenhancement in prediction. Previous studies with a smallernumber of activities had similar performance in METestimation—1.0 METs and 1.2 METs using data collected fromwrist and hip placements [42,45]. Our slightly betterperformance might be because of a large range of activities thatenhanced MET distribution.
We believe that our work constitutes one of the largestaccelerometer-based validation studies in older adults. Datawere collected at a high resolution, and there were a largenumber of activities included and 5 body placements. Thisresulted in a large number of pairwise (location and sensor)combinations. A limitation of this study is that data werecollected in controlled laboratory settings, which is anappropriate initial step in a validation framework [54]. The nextstep is to collect data in free-living settings with more fluidtransitions between tasks, which is more reflective of actualmovement. Another limitation of the study was that not allactivities were performed by all participants (MultimediaAppendix 1). However, the final number of participants withcomplete data for each activity was sufficient to assess theaccuracy of individual body positions and their combinations.Another limitation of the study was that the performance rankingand conclusions were based on random forest models and mightchange when using other machine learning models. We usedthe random forest model because it was found to be the bestperforming in our previous study [41]. A subsequent analysisis required to validate whether the choice of machine learningmodel will affect the classification performance. Finally, ourpopulation included community-dwelling older volunteers togeneralize to this population. Although this sample had commoncomorbidities such as diabetes, hypertension, and cancer history,we did not actively recruit people who had specific ambulatorydeficits that would likely impact the results. Existing work inthese specialized populations shows that knowledge fromnonambulatory, impaired (eg, healthier) adults transfers withpoor accuracy [55]. Thus, this study is limited tocommunity-dwelling older adults without overt ambulatorydeficits.
Conclusions
The results from this work suggest that additional accelerometerdevices only slightly enhance activity recognition accuracy andMET estimation in older adults. However, no single orcombination of accelerometer placement appeared to be
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significantly better than the others. Therefore, using a singleaccelerometer placement appears to provide sufficientperformance for labeling general activity categories andestimating energy expenditure. Researchers and practitioners

should consider performance accuracy in the context ofparticipant burden and the potential extra benefits gained inparticular positions.
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