
FAID Diversity via Neural Networks
Xin Xiao∗, Nithin Raveendran∗, Bane Vasić∗, Shu Lin†, and Ravi Tandon∗

∗ The University of Arizona, Tucson, AZ, 85721. Email: {7xinxiao7, nithin, vasic, tandonr}@email.arizona.edu

†University of California, Davis, CA, 95616. Email: shulin@ucdavis.edu

Abstract—Decoder diversity is a powerful error correction
framework in which a collection of decoders collaboratively
correct a set of error patterns otherwise uncorrectable by any
individual decoder. In this paper, we propose a new approach to
design the decoder diversity of finite alphabet iterative decoders
(FAIDs) for Low-Density Parity Check (LDPC) codes over the
binary symmetric channel (BSC), for the purpose of lowering
the error floor while guaranteeing the waterfall performance. The
proposed decoder diversity is achieved by training a recurrent
quantized neural network (RQNN) to learn/design FAIDs. We
demonstrated for the first time that a machine-learned decoder
can surpass in performance a man-made decoder of the same
complexity. As RQNNs can model a broad class of FAIDs, they
are capable of learning an arbitrary FAID. To provide sufficient
knowledge of the error floor to the RQNN, the training sets are
constructed by sampling from the set of most problematic error
patterns - trapping sets. In contrast to the existing methods that
use the cross-entropy function as the loss function, we introduce
a frame-error-rate (FER) based loss function to train the RQNN
with the objective of correcting specific error patterns rather than
reducing the bit error rate (BER). The examples and simulation
results show that the RQNN-aided decoder diversity increases
the error correction capability of LDPC codes and lowers the
error floor.

Index Terms—Decoder diversity, Error floor, LDPC codes,
Quantized neural network

I. INTRODUCTION

Deep neural networks (DNNs) have gained intensive pop-
ularity in communication, signal processing, and data storage
communities in the past five years due to their great potential
of solving problems relevant to optimization, function approx-
imation, and others. One popular idea, known as model-driven
neural networks (NNs), is to combine the model knowledge
(or the prototype algorithms) and the NN in conjunction with
optimization techniques of NNs to improve the model. In
the context of iterative decoding of error correction codes,
the deep unfolding framework [1] is particularly attractive as
it naturally unfolds the decoding iterations over the Tanner
graph into a deep neural network. The activation functions
are defined by the prototype decoding rules that mimic the
message-passing process [2]. One merit of this framework is
that the weight matrices and activation functions over hidden
layers are constrained to preserve the message update function
symmetry conditions, thus making it possible to train the NN

The work is funded in part by the NSF under grants CIF-1855879, CCF
2106189, CCSS-2027844 and CCSS-2052751. Bane Vasić has disclosed an
outside interest in Codelucida to the University of Arizona. Conflicts of
interest resulting from this interest are being managed by The University
of Arizona in accordance with its policies.

on a single codeword and its noisy realizations, rather than on
the entire code space.

It has been shown that deep unfolding efficiently optimizes
various iterative decoding algorithms such as Belief Propa-
gation (BP) and improves the decoding convergence [3]–[6].
One common feature of most existing model-driven NNs is
that the training sets are constructed by randomly sampling
channel output sequences at low signal-to-noise-ratios (SNRs),
when applied on the additive white Gaussian noise (AWGN)
channel [3]–[5], or at high crossover probabilities in the case of
the binary symmetric channel (BSC) [6]. Consequently, when
considering the Low-Density Parity Check (LDPC) codes, this
means that the model-driven NNs are optimized for the wa-
terfall region in the curve of decoding performance, where the
probability of error starts to drop drastically. However, at low
crossover probabilities, low-weight error patterns occur more
frequently, and are more likely to cause decoding failure. This
requires very long training time to get sufficient statistics on
the error floor (EF), making the NN framework impractical for
applications that require very small frame error rate (FERs).

The model-driven NNs are agnostic to these problematic
uncorrectable error patterns that dominate the error floor, and
to make learning efficient, it is thereby crucial to sample from
a much smaller set of the most “harmful” error patterns. In
addition, to optimize the error floor, our NN must use a new
loss function based on FER.

It is well known that the error floors of LDPC codes are
caused by specific sub-graphs of the Tanner graph, known as
Trapping sets (TS) [7], which prevent an iterative decoder from
converging to a codeword. When an LDPC code is transmitted
over a BSC and is decoded with a specific decoder D, the
slope of its error floor is characterized by its guaranteed error
correction capability t [8], defined as the largest weight of all
error patterns correctable by the decoder D, i.e., D can correct
all error patterns with weight up to t. Generally speaking,
the guaranteed error correction capability of a single iterative
decoder is far lower than that of maximum likelihood decoder
(MLD). To increase the guaranteed error correction capability
of a given LDPC code, Declercq et al. [9] proposed an
ensemble of finite alphabet iterative decoders (FAIDs), known
as decoder diversity, where each FAID can correct different
error patterns. The FAIDs, if designed properly, are known
to be capable of surpassing the floating-point BP algorithms
[10]. In [9], these decoders are selected by going over all
error patterns in predefined trapping sets, such that their

2021 11th International Symposium on Topics in Coding

978-1-6654-0943-8/21/$31.00 ©2021 IEEE

20
21

 1
1t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

To
pi

cs
 in

 C
od

in
g

(I
ST

C
) |

 9
78

-1
-6

65
4-

09
43

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

TC
49

27
2.

20
21

.9
59

42
53

Authorized licensed use limited to: The University of Arizona. Downloaded on January 31,2022 at 20:50:18 UTC from IEEE Xplore. Restrictions apply.

combination can correct all the error patterns associated with
the predefined trapping sets. Note that this FAID selection is
essentially a brute force approach that checks all error patterns
for all FAID candidates, and it makes a-priori assumptions
on problematic trapping sets, which might not be “harmful”
trapping sets for specific Tanner graphs [11].

In this paper, we propose a model-driven NN scheme to
design the decoder diversity of FAIDs for regular LDPC
codes over BSC, with the objective of performing well in
both waterfall and error floor regions. Unlike the brute force
approach in [9], our framework is dynamically driven by error
patterns to design different FAIDs. The scheme begins with
the design of an initial FAID with a good decoding threshold
to guarantee waterfall performance. The rest of the FAIDs are
designed via a recurrent quantized neural network (RQNN)
in order to reduce the error floor. This RQNN models the
universal family of FAIDs, thus it is capable of learning any
arbitrary FAID. To collect sufficient knowledge of the trapping
sets, we need to construct a training set consisting of the
most problematic error patterns the initial FAID fails on. For
this, we rely on the sub-graph expansion-contraction [11]. The
advantage is that the sub-graph expansion-contraction method
obtains the training set of harmful error patterns for any FAID
without making any a-priori assumptions about which graph
topologies are harmful. In addition, the method is compu-
tationally efficient compared to Monte Carlo simulation and
accurate in comparison with other TS enumeration techniques
that do not take the decoder into account. Instead of selecting
the FAIDs by checking all error patterns in predefined trapping
sets as in [9], we train an RQNN on different error patterns
to design FAIDs in a sequential fashion. Since our goal is
to correct specific error patterns rather than reducing the bit
error rate (BER), we propose the frame error rate as the loss
function to train the RQNN. Consequently, the learned FAIDs
are optimized in the error floor region and are expected to
correct different error patterns. We consider the quasi-cyclic
(QC) Tanner code (155, 64) as an example and the numerical
results show that the RQNN-aided decoder diversity increases
the guaranteed error correction capability and has a lower error
floor bound.

II. PRELIMINARIES

A. Notation

We consider a binary LDPC code C, with a parity-check
matrix H of size M × N . The associated Tanner graph is
denoted by G = (V,C,E), with V (respectively, C) the set
of N variable (respectively, M check) nodes corresponding to
the N columns (respectively, M rows) in H, and E the set of
edges. Let the i-th variable node (VN) be vi and the j-th check
node (CN) be cj . The set of check (respectively, variable)
nodes adjacent to vi (respectively, cj) is denoted as N (vi)
(respectively, N (cj)). The degree of a node in G is defined as
the number of its neighbors. If all the variable nodes have the
same degree dv , C is said to have regular column weight dv ,
and if all the check nodes have the same degree dc, C is said
to have regular row weight dc. In the following, we mainly

consider the regular (dv, dc) LDPC codes. Assume that the
crossover probability of BSC is α, the codeword transmitted
over BSC is x = (x1, x2, · · · , xN) ∈ C, and the received
channel output vector is y = (y1, y2, · · · , yN) ∈ GF(2)

N .
Let e = (e1, e2, · · · , eN) be the error pattern introduced by
the BSC, then y = x ⊕ e, where ⊕ is the component-wise
XOR operator. The weight of an error pattern e denoted by
w(e) is defined as the total number of nonzero components.

A trapping set (TS) T [7], [10] for an iterative decoder is a
non-empty set of variable nodes in G that are not correct at the
end of a given number of iterations. Note that T will depend
on the decoder input as well as decoder implementation.

B. FAID

We follow the definition of FAID introduced in [10]. A b-bit
FAID denoted by DFAID is defined by a 4-tuple: DFAID =
(M,Y,Φ,Ψ), whereM is the domain of the messages passed
in FAID defined as M = {0,±L1,±L2...,±Ls}, with Li ∈
R+, 1 ≤ i ≤ s, s ≤ 2b−1 − 1 and Li > Lj if i > j. For
a message m ∈ M associated with vi, its sign represents an
estimate of the bit value of vi, namely vi = 0 if m > 0,
vi = 1 if m < 0, and vi = yi if m = 0, and its magnitude
|m| measures the reliability of this estimate. Y is the domain
of channel outputs. For BSC, Y = {±C} with some C ∈
R+ as we use the bipolar mapping: 0 → C and 1 → −C.
Let z = (z1, z2, ...zN) be the input vector to a FAID, with
zi = (−1)

yiC, 1 ≤ i ≤ N . The functions Φ and Ψ describe
the message update rules of variable nodes and check nodes,
respectively. For a check node cj with degree dc, its updating
rule is given by

Ψ(mj) =
∏

m∈mj

sgn(m) · min
m∈mj

(|m|), (1)

where sgn(·) is the sign function and mj is the set of extrinsic
incoming messages to cj , with |mj | = dc − 1 and mj ∈
Mdc−1. For a variable node vi with degree dv , its updating
rule is given by

Φ(zi,ni) = Q

(∑

m∈ni

m+ ωizi

)
, (2)

where ni is the set of extrinsic incoming messages to vi,
with |ni| = dv − 1 and ni ∈ Mdv−1. The function Q(·)
is the quantizer defined by M and a threshold set T =
{T1, ..., Ts, Ts+1 =∞}, with Ti ∈ R+, 1 ≤ i ≤ s and Ti > Tj
for any i > j:

Q(x) =

{
sgn(x)Li if Ti ≤ |x| < Ti+1

0 if |x| < T1

. (3)

The coefficient ωi is a real number. If ωi is a constant for
all possible ni, Φ is the quantization of a linear function,
and its associated FAID is called linear FAID, otherwise, its
associated FAID is called nonlinear FAID. At the end of each
iteration, the estimate of bit associated with each variable node
vi is made by the sign of the sum of all incoming messages
and channel value zi, i.e., zero if the sum is positive, one if the
sum is negative, and yi if the sum is zero. This sum represents
the estimate of bit-likelihoods and we denote it by Υ.

2021 11th International Symposium on Topics in Coding

Authorized licensed use limited to: The University of Arizona. Downloaded on January 31,2022 at 20:50:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Block diagram of FAID diversity via a recurrent quantized neural
network. The design process consists of two steps, the Initialization step
shown on the left, and the Sequential design step shown on the right. In
the Initialization, the sub-graph expansion-contraction is applied for D1 to
find the set of the most problematic error patterns E(1), and E(1) is set to
be the first training set. In the i-th round of Sequential design, the RQNN is
trained with the training set E(i) to design the FAID Di+1. Once the training
is completed, EDi+1

, the subset of E(i) correctable by Di+1, is excluded
from E(i).

C. Decoder diversity

In this work, we follow the definition of decoder diversity
in [9]. The b-bit decoder diversity D is a set consisting of ND
b-bit FAIDs, which can be defined as

D = {Di|i = 1, · · · , ND} , (4)
where each b-bit FAID is given by Di = (M,Y,Φi,Ψ), with
Φi the VN updating rule of Di. Given an LDPC code C and
a set Et consisting of all error patterns with weight no greater
than t, the objective is to design D with the smallest cardinality
ND such that the ND FAIDs can collectively correct all the
error patterns in Et. The selected FAIDs can be used in either a
sequential or a parallel fashion, depending on the memory and
throughput constraints. In next section, we propose a greedy
framework to design D via an RQNN, which might not have
the smallest cardinality ND but still be capable of correcting
a great number of error patterns in Et.

III. DECODER DIVERSITY BY RQNNS

For simplicity, we call the decoder diversity of FAIDs as
FAID diversity.

A. A sequential framework

Basically, the proposed design of D consists of two main
steps, namely, the Initialization and Sequential design, as
shown in Fig. 1. In the Initialization step, we begin with
the first FAID D1 that has a good decoding threshold for the
purpose of good performance in waterfall region. D1 can be
designed by various methods, such as the Density Evolution
[12] and quantized neural networks [5], [6]. We then use the
sub-graph expansion-contraction [11] (as will be introduced in
Section III-B) to determine the most problematic error patterns
that cannot be corrected by D1. Denote the set consisting of
most problematic error patterns as E(1) and the guaranteed
correction capability of D1 as t, then for any error pattern
e ∈ E(1), w(e) = t+ 1. In particular, E(1) will be used as the
initial training set in the next step. In the sequential design,
we use a recurrent quantized neural network to construct the

rest of the FAIDs with the objective of correcting as many
error patterns in E(1) as possible. We train the RQNN in
multiple rounds, with one FAID per round. In each round,
the RQNN is trained over a training set consisting of all the
error patterns that cannot be corrected by any FAID in the
most recently updated set D. Once the offline training of the
RQNN is completed, the learned FAID corresponding to the
current RQNN is added to D, and the error patterns that can
be corrected by this FAID are excluded from the training set
in the current round.

To be more specific, consider the i-th round as shown in Fig.
1, where i ≥ 1. Let the training set used in the i-th round be
E(i), the FAID to be learned in the i-th round be Di+1, and
the subset of E(i) corrected by the learned FAID be EDi+1

.
Then, for any error pattern e ∈ E(i), it cannot be corrected
by any of D1,D2, · · · ,Di. The RQNN is trained with E(i)

to minimize the training set error so that the cardinality of
EDi+1 is maximum. Subsequently, Di+1 is added to D and
the training set E(i+1) used in the next round is derived by

E(i+1) = E(i) \ EDi+1
. (5)

This process continues until E(i) becomes an empty set or
a predefined maximum number of rounds ND − 1 has been
reached. If E(i) eventually becomes empty, the designed FAID
diversity can correct all error patterns with weight up to
t+ 1 in E(1). Otherwise, the process have completed ND − 1
rounds and the last training set E(ND) is a nonempty set.
As a result, the designed FAID diversity can correct most of
the error patterns with weight up to t + 1, and only

∣∣E(ND)
∣∣

uncorrectable error patterns with weight t+ 1.
Because of the sequential training strategy, the FAID diver-

sity D uses its decoders in the same order as how its decoders
are determined. Specifically, assume that the predefined max-
imum number of iterations of Di is Ii. To decode an input
vector z, D1 with I1 iterations is first applied. If D1 decodes
z successfully, the decoding process terminates, otherwise it is
re-initialized with z and switches to D2 with I2 iterations. The
decoding process continues decoding z with FAIDs in order
until a FAID Dj corrects z. Otherwise, all FAIDs in D fail on
z, in this case, the decoding process claims a decoding failure.

B. Subgraph expansion-contraction

The expansion-contraction method introduced in [11] esti-
mates the error floor of an arbitrary iterative decoder operating
on a given Tanner graph of an LDPC code in a computationally
efficient way by identifying the minimal-weight uncorrectable
error patterns and harmful TSs for the code and decoder. In
the expansion step of the method, a list of short cycles (of
length g and g + 2, where g is the girth of the Tanner graph)
present in the Tanner graph G of the code is expanded to each
of their sufficiently large neighborhood in G. The expansion
step for a given LDPC code only needs to be executed once
and its output: LEXP, the list of expanded sub-graphs can be
used for different decoders for the next step of contraction.

Each of the expanded sub-graphs in LEXP are now con-
tracted in order to identify failure inducing sets for a given

2021 11th International Symposium on Topics in Coding

Authorized licensed use limited to: The University of Arizona. Downloaded on January 31,2022 at 20:50:18 UTC from IEEE Xplore. Restrictions apply.

Training sample Input layer

Variable node update layer

 Check node update layer

 Bit-likelihoods

 estimate layer

Q

...Ψ

Υ

z

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Variable node update layer

 Check node update layer

 Bit-likelihoods

 estimate layer

Q

Ψ

Υ

z z

Layer 7

Layer 8

Layer 9

Variable node update layer

 Check node update layer

Bit-likelihoods

estimate layer

Q

Ψ

Υ

z

z ...

Fig. 2. Block diagram of a RQNN. Each column corresponds to one iteration,
where variable nodes are first updated, followed by the quantization function
Q. The quantized messages are then used to update check nodes. The output
of Ψ and Input layer are fed into both Υ in current iteration and the variable
node update layer in next iteration.

decoder D. This is achieved by exhaustively decoding error
patterns running D on these sub-graphs (not on the entire
Tanner graph G) ensuring that the messages accurately rep-
resent the actual messages operating on G. This process lists
all minimum-weight failure inducing error patterns which will
then be used as the training set for the RQNN.
C. A model-driven structure for general FAID

In the Sequential design, we rely on a recurrent quantized
neural network to design Di, i ≥ 2. The proposed RQNN is
a model-driven recurrent deep neural network, which is con-
structed by unfolding the general FAID with a given number of
iterations, as shown in [6]. The connection between consecu-
tive layers is determined by the Tanner graph G, and activation
functions over hidden layers are defined based on Φ, Ψ, and
Υ. As it has recurrent structure, the trainable parameters are
shared among all the iterations. As shown in Fig. 2, three
consecutive hidden layers in one column correspond to one
iteration in FAID, with one layer for VN message update, one
layer for CN message update, and one layer for bit-likelihood
estimation. In particular, rather than introducing weights ma-
trices between layers as in most existing model-driven NN
frameworks, the RQNN has only the coefficients ω in (2) as
trainable parameters. Since Φ is a symmetric function mapping
from Y×Mdv−1 toM, to design a FAID for a given quantizer
Q(·), we only need to determine |M|dv−1 values of ω for the
case where the input value is −C. We use ω[i1, · · · , idv−1]
to indicate the coefficient ω to be learned for the case that
the extrinsic incoming message is (i1, · · · , idv−1), where
ik ∈ M, k = 1, · · · , dv − 1. Moreover, we are interested
in the Φ that is invariant to the ordering of the extrinsic
incoming messages. This means that Φ(zi,ni

′) = Φ(zi,ni),
where ni

′ is an arbitrary permutation of ni. This rotation
symmetry of Φ limits the RQNN to learn the coefficients with
non-decreasing arguments, namely, ω[i1, · · · , idv−1] where
ij ≤ ik, ∀j < k, and reduces the number of trainable
coefficients from |M|dv−1 to

(|M|+dv−2
dv−1

)
. We call the FAID

whose Φ has rotation symmetry property as symmetric FAID.
We denote the set of these trainable coefficients by Ω, i.e.,
Ω

∆
= {ω[i1, · · · , idv−1]|ik ∈M, i1 ≤ · · · ≤ idv−1}. In [6], we

proposed using RQNNs to design linear FAIDs. This approach,
however, has limitations when an optimal FAID is nonlinear

whose VN updating rule satisfies specific constraints. In [10],
Lemma 1 provided an example of possible constraints and
showed that any FAID whose Φ satisfying these constraints
cannot be expressed as a quantization of a linear function. This
means that the approach [6] cannot learn the optimal FAID if
the optimal FAID has Φ satisfying the constraints in Lemma 1
[10]. The main reason of these limitations lies in its prototype
VN updating rule, which assumes that the coefficient ω is
a constant. On the contrary, the prototype VN updating rule
in our proposed RQNN can express any arbitrary symmetric
FAID, as shown in the following proposition.
Proposition 1: Given an arbitrary symmetric FAID,

whose VN updating mapping is determined by
(|M|+dv−2

dv−1

)

values {µ[i1, · · · , idv−1]|ik ∈M, i1 ≤ · · · ≤ idv−1}, where
µ[i1, · · · , idv−1] ∈ M is the value for the case that the
received input is −C and the extrinsic incoming mes-
sage is (i1, · · · , idv−1). Then, there exist

(|M|+dv−2
dv−1

)
coef-

ficients such that for any ik ∈ M, i1 ≤ · · · ≤ idv−1,
Φ(−C, i1, · · · , idv−1) = µ[i1, · · · , idv−1].
Noticed that these

(|M|+dv−2
dv−1

)
coefficients are defined in-

dependently, the proof is straightforward as we can deter-
mine each coefficient individually by replacing each µ and
(i1, · · · , idv−1) in (2). Proposition 1 indicates that our RQNN
framework, if properly initialized, can learn arbitrary FAID.
D. Training RQNN

The coefficients Ω in the RQNN can be initialized by
conventional iterative decoders or the decoders constructed by
specific techniques such as Density Evolution and the selection
approach in [10]. Specifically, we first derive the LUT of some
well-known decoder like quantized Offset MS decoder, and
take its coefficients as the initialization of the RQNN. Since
the RQNN preserves the symmetry conditions, we can simply
use the all-zero codeword and its noisy realizations to construct
a training set. In particular, to design Di+1 in the i-th round,
the RQNN is trained with E(i). Let u be the values in the
output layer. Since the objective of the RQNN is to correct
the error patterns in E(i) as many as possible, and we assume
x = 0, we propose the following FER as the loss function

Γ(u) =
1

2

[
1− sgn

(
min

1≤i≤N
ui

)]
. (6)

Note that ui represents the estimate likelihood of the i-th
bit. Since x = 0, each component in u is expected to be
positive. Therefore, a frame is decoded in error if and only
if the minimum component is negative. The quantizer Q(·)
and the sign function in (6) cause a critical issue that their
gradients vanish almost everywhere, making it difficult to use
classical backward propagation. Similar to [6], we leverage
straight-through estimators (STEs) as surrogate gradients to
tackle this issue. In particular, we use the same STEs as [6].
Motivated by the fact that applying different learning rates to
Ω can help training convergence, we employ ADAM [13] with
mini-batches with gradients accumulated in full precision.

IV. A CASE STUDY AND NUMERICAL RESULTS

In this section, we consider the Tanner code (155, 64) as
an example to demonstrate how to use an RQNN to design a

2021 11th International Symposium on Topics in Coding

Authorized licensed use limited to: The University of Arizona. Downloaded on January 31,2022 at 20:50:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STATISTICS ON THE ERROR CORRECTION OF FAID DIVERSITIES

Error patterns FAID Diversity [9] RQNN-aided FAID Diversity
E(1) 930 0
E ′ 507966 480655

3-bit FAID diversity. The Tanner code has column weight of
3 and row weight of 5, with a minimum distance of 20. The
M and T are predefined to be M = {0,±1,±2,±3} and
T = {±0.5,±1.5,±2.5}, respectively. We first select the 3-bit
nonlinear FAID D0 in [10][TABLE II] as our D1. As shown
in [10], D1 is guaranteed to correct all error patterns with
weight up to 5. We apply the sub-graph expansion-contraction
method for D1 with 100 iterations, and obtain E(1) consisting
of 29294 error patterns with weight of 6. We construct an
RQNN with 50 iterations. The size of each mini-batch is set
to 20, and the learning rate is set to 0.001. We sequentially
train the RQNN in 6 rounds, with the initialization shown in
the longer version of this paper [14][Table I]. The training of
RQNN in 6 rounds converged within 10, 10, 20, 60, 60, 30
epochs, respectively. The trained coefficients are provided in
[14][Table II], from which we derive 6 RQNN-aided FAIDs.
Consequently, our RQNN Diversity consists of 7 3-bit FAIDs.
Set the maximum number of iterations of these 7 FAIDs
to 100, 90, 50, 40, 50, 30, 30 accordingly. For comparison, we
consider the FAID Diversity in [9] consisting of 9 3-bit FAIDs,
with each FAID performing 50 iterations. Note that the FAID
Diversity in [9] starts from D1 as well. Table I summarizes the
statistics on the error correction of the FAID Diversity derived
by RQNN and the FAID Diversity in [9]. The set E ′ consists of
all 1147496 error patterns with weight of 7 uncorrectable by
D1, which is obtained by applying the sub-graph expansion-
contraction method for D1 with 100 iterations. The numbers
in Table I indicate how many error patterns uncorrectable by
the corresponding FAID diversity. As shown in Table I, the
FAID Diversity derived via RQNNs has less uncorrectable
error patterns than the FAID Diversity in [9]. In particular,
the error correction capability of the FAID Diversity in [9] is
6, while the error correction capability of the FAID Diversity
via RQNNs is 7. Fig. 3 shows the error floor estimation of
the FER performance of single FAID D1, FAID Diversity in
[9], and the FAID Diversity via RQNNs. The bounds of error
floor is estimated by the statistics in Table I. As shown in Fig.
3, the FAID Diversity via RQNNs has the lowest error floor
bound compared to the others.

V. CONCLUSION

In this paper, we proposed a new approach to automati-
cally design FAID diversity for LDPC codes over BSC via
RQNNs. The RQNN framework models the universal family
of FAIDs, thus it can learn arbitrary FAID. We applied sub-
graph expansion-contraction to sample the most problematic
error patterns for constructing the training set, and provided
a FER loss function to train the RQNN. We designed the
FAID diversity of the Tanner code (155, 64) via the proposed
framework. The numerical results showed that RQNN-aided

10
-4

10
-3

10
-24

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

Fig. 3. Error floor estimation of D1, FAID Diversity [9], and RQNN-aided
FAID Diversity. FAID Diversity [9] has 9 FAIDs with 450 iterations, while
the RQNN-aided FAID Diversity has only 7 FAIDs with 390 iterations.

FAID diversity increases the error correction capability and
has a low error floor bound.

REFERENCES

[1] J. R. Hershey, R. L. Roux, and F. Weninger, “Deep unfolding:
Model-based inspiration of novel deep architectures,” arXiv preprint
arXiv:1409.2574, 2014.

[2] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” in 2019 IEEE
International Workshop on Signal Processing Systems (SiPS), 2019, pp.
266–271.

[3] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in 54th Annual Allerton Conference on
Communication, Control, and Computing, Monticello, IL, Oct. 2016,
pp. 341–346.

[4] B. Vasić, X. Xiao, and S. Lin, “Learning to decode LDPC codes with
finite-alphabet message passing,” in Information Theory and Applica-
tions Workshop (ITA 2018), San Diego, CA, Feb. 2018, pp. 1–10.

[5] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Finite alphabet iterative
decoding of LDPC codes with coarsely quantized neural networks,” in
2019 IEEE Global Communications Conference (GLOBECOM), 2019,
pp. 1–6.

[6] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet iter-
ative decoders of LDPC codes via recurrent quantized neural networks,”
IEEE Trans. Commun.,, vol. 68, no. 7, pp. 3963–3974, 2020.

[7] T. Richardson, “Error floors of LDPC codes,” in Proceedings of the
annual Allerton conference on communication control and computing,
vol. 41, no. 3. The University; 1998, 2003, pp. 1426–1435.

[8] M. Ivkovic, S. K. Chilappagari, and B. Vasić, “Eliminating trapping sets
in low-density parity-check codes by using tanner graph covers,” IEEE
Trans. Inf. Theory, vol. 54, no. 8, pp. 3763–3768, 2008.

[9] D. Declercq, B. Vasić, S. K. Planjery, and E. Li, “Finite alphabet iterative
decoders—part II: Towards guaranteed error correction of LDPC codes
via iterative decoder diversity,” IEEE Trans. Commun.,, vol. 61, no. 10,
pp. 4046–4057, 2013.

[10] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasić, “Finite alphabet
iterative decoders—part I: Decoding beyond belief propagation on the
binary symmetric channel,” IEEE Trans. Commun.,, vol. 61, no. 10, pp.
4033–4045, 2013.

[11] N. Raveendran, D. Declercq, and B. Vasić, “A sub-graph expansion-
contraction method for error floor computation,” IEEE Trans. Commun.,,
vol. 68, no. 7, pp. 3984–3995, 2020.

[12] T. T. Nguyen-Ly, V. Savin, K. Le, D. Declercq, F. Ghaffari, and
O. Boncalo, “Analysis and design of cost-effective, high-throughput
LDPC decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst,
vol. 26, no. 3, pp. 508–521, Mar. 2018.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[14] X. Xiao, N. Raveendran, B. Vasić, S. Lin, and R. Tandon, “FAID
diversity via neural networks,” arXiv preprint arXiv:2105.04118, 2021.
[Online]. Available: https://arxiv.org/abs/2105.04118

2021 11th International Symposium on Topics in Coding

Authorized licensed use limited to: The University of Arizona. Downloaded on January 31,2022 at 20:50:18 UTC from IEEE Xplore. Restrictions apply.

