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1 Introduction

The GlueX experiment in Hall D at Je�erson Lab seeks to study the light meson spectrum utilizing
photoproduction on a proton target. In particular, GlueX intends to study excited hadrons, many
of which will produce photons in their decays, either directly or through the decays of ⌘ and ⇡0.
Typically, the analysis of particular photoproduction reactions benefit from exclusive reconstruc-
tion, where one seeks to detect all stable particles produced in the initial collision. In doing so,
backgrounds from other reactions can be rejected by requiring that energy and momentum is con-
served. Broadly speaking, the detectable decay products of a photoproduction reaction consist of
charged hadrons and photons. The former are analyzed using tracking chambers, while the latter are
measured, in the GlueX detector, with a pair of calorimeters: the barrel calorimeter (BCAL) [1] and
the forward calorimeter (FCAL). Photons undergo electromagnetic interactions with material in the
calorimeters and tend to deposit all of their energy in a localized “shower” within the calorimeter.
The cross section for hadron interactions is much smaller and this results in partial energy deposition
of hadrons and “split-o� showers” in the calorimeter that are displaced from the primary hadron
impact point due to propagation (and subsequent interaction) of neutral secondary particles. The
primary shower produced by a hadron interaction is often easy to identify as one can extrapolate
the measured charged particle trajectories to the calorimeter. However, the displaced split-o�s tend
to mimic low energy photons. Misidentifying split-o� hadronic showers as low energy photons is
problematic as it introduces a combinatoric background and upsets energy-conservation require-
ments of exclusive reconstruction. There is no strong discriminator between a true low energy
photon and a split-o�, and hence, we present a machine learning approach to separate these two
classes of showers. This is a long-standing problem in calorimeter reconstruction, and the idea
of using machine learning to address it goes back a couple of decades (see, for example, ref. [2]
and references therein). In what follows we build on this work by presenting new discriminating
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variables and discuss the application and performance of a machine learning algorithm for split-o�
rejection in a di�erent event environment.

The GlueX forward calorimeter is a 2-m diameter circular array of 2800 lead glass modules,
each 4 cm ⇥ 4 cm ⇥ 45 cm, that was constructed to detect photons produced in the decays of
hadrons [3]. The calorimeter is about 5 meters downstream of the target and is designed to detect
photons emitted from the primary interaction with a polar angle that is within 11� of the beam
axis. A photon shower occurs in the forward calorimeter when a photon collides with the lead glass
block, creating an electron-positron pair. As they travel through the lead glass, they emit Cherenkov
and Bremsstrahlung radiation. The Bremsstrahlung radiation then produces more electron-positron
pairs and so on, creating a shower of Cherenkov-radiation-emitting particles in the calorimeter. The
Cherenkov radiation is detected by a photomultiplier tube and is proportional to the deposited energy.
(A full description of individual calorimeter modules can be found in ref. [3].) Showers typically
span several blocks, and a reconstruction algorithm [4] is used to group blocks into clusters, each of
which is assumed to correspond to an individual photon. The desire for the algorithm to distinguish
between independent closely-spaced true photons competes with the desire to associate a split-o�
secondary shower from a hadron with the primary interaction point. Rather than attempt to modify
the shower reconstruction algorithm, we choose to examine properties of the reconstructed showers
in training a machine-learning algorithm to make the distinction between low energy photons and
and split-o�s.

The showers in the forward calorimeter can be classified as either true electromagnetic showers,
produced by photons, or background originating from charged particles or noise. Throughout this
work, we adopt the following definitions for these showers. Type 0 showers are true photon showers
from hadron decays (e.g. a ⇡0 decay). Type 1 showers originate from charged particles collidingwith
the calorimeter, as identified geometrically by tracks in the drift chambers leading to the collision
point on the calorimeter. Type 2 showers are all other types of showers, these are dominantly
split-o�s of a Type 1 shower, but can also be background noise, or other such interactions within
the detector. We focus our e�ort on the distinction between Type 0 and Type 2 showers.

We took a data-driven approach to train and test the algorithms by using exclusively recon-
structed events of the type �p ! !p, where ! ! ⇡+⇡�⇡0, a process that has a relatively high
cross section and is therefore easy to reconstruct with high purity. In this reaction the final detected
particles are p⇡+⇡���, where the two photons have an invariant mass consistent with the ⇡0. This
process produces all types of showers noted above, and allows study of di�erent attributes of particle
showers in the calorimeter to be used as distinguishing variables in the machine learning algorithms.
In selecting such events, we perform a five-constraint kinematic fit that enforces conservation of
four-momentum for both the primary interaction and the ⇡0 decay. We require the confidence level
of this fit to be greater than 5% and the beam energy E� to be 7.5GeV< E� < 9.0GeV. Figure 1
shows the ⇡+⇡�⇡0 invariant mass for events that pass these criteria. The dominance of!! ⇡+⇡�⇡0
decays indicates the purity of the sample. We select events that have a candidate ! invariant mass
in the region of 730–840MeV/c2. Within this sample of events, we then classify all showers in the
FCAL. Type 0 showers are those that are used to reconstruct the ⇡0 ! �� decay. Type 1 showers
are geometrically matched to the p, ⇡+, or ⇡� track. All other showers in the FCAL are classified
as Type 2 showers. The purity of the data sample supports the assumption that the other showers
are split-o� hadronic interactions or noise. These samples were then used to study and train eight
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Figure 1. The invariant mass of the ⇡+⇡�⇡0 candidates used to identify events of the type �p ! !p. The
peak at 782MeV/c2 corresponds to signal events. Very little background exists in the sample.

Figure 2. A typical FCAL event. Colored blocks show cells registering an energy deposition. Circles
indicate showers identified by the reconstruction algorithm, where the radius of the circle is proportional
to the energy of the shower. Blue circles indicate showers geometrically matched to charged tracks. Black
circles indicate photon candidate showers. The upper right black circle is likely a background shower (hadron
split-o�) while the bottom black circle is likely a signal shower (true photon).

di�erent types of machine learning algorithms to determine which would give the most e�ective
final classifications between Type 0 and Type 2 showers. Hereafter, we refer to Type 0 as “signal”
and Type 2 as “background”.

2 Discriminating Variables

Eight variables were selected to train the algorithms based on their ability to di�erentiate between
signal and background showers. The chosen variables were constructed in order to expose di�er-
ences in key elements of the two types of showers: the geometry, the energy distribution, and the
timing. An understanding of the importance of these features can be gained from figure 2, which
illustrates the di�erent spacial distributions of energy between signal and background showers.
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Figure 3. Multiple identified showers in the forward calorimeter originating from a single charged particle.
The blue circle indicates the track-matched shower while the black circles are presumably background
showers. The principal axes (as defined in the text) are sketched.

Two variables were selected to address the energy distribution of showers: E9/E25 and E1/E9,
where En is the total energy deposited in the square array of n modules centered on the module in
which the maximum energy was deposited. These variables tend to be higher for electromagnetic
showers than hadronic split-o�s because the scale for electromagnetic interactions, where most
energy is deposited within the Molière radius of 2.6 cm, is smaller than nuclear interactions.

Figure 3 shows another common type of hadronic split-o�. In this figure it appears that
the interaction of a single hadron with the calorimeter (indicated by the blue circle) produced
a charged track that propagated through the calorimeter material. This resulted in the shower
identification algorithm finding multiple low-energy photon candidates. To address such cases, we
attempt to construct variables that expose whether a shower has a shape that suggests it came from
a nearby track.

We first define the “principal axes” of a shower. If rtrack is the impact point on the FCAL face
of the nearest track to a shower and rshower is the location of the shower on the FCAL face, then we
define the unit vectors

û =
rshower � rtrack
|rshower � rtrack |

, (2.1)

v̂ = û ⇥ ẑ, (2.2)

where ẑ points in the beam direction, normal to the FCAL face. These principal axes are sketched
approximately for the three candidate showers in figure 3. (In reality they vary slightly for each
shower as rshower changes.)

With these axes defined, we can construct four variables that discriminate based on the geometry
of a shower: �2

u , �2
v , Auv and Nhits. Here �2

u and �2
v are the normalized second moments of the

energy distribution within a shower about the u or v axes. For example,

�2
u =

ÕNhits
i=1 Ehit

i

�
(rhiti � rshower) · û

�2
ÕNhits

i=1 Ehit
i

, (2.3)

where Ehit
i and rhiti are the energy deposition and module locations of the individual blocks (“hits”)

that are clustered together to form the shower, Nhits is the number of calorimeter blocks registering
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an energy deposition in a shower. Showers that are produced from hadronic interactions, tend to
be elongated along the u axis. For true photon showers, the choice of u and v axes is e�ectively
random as it depends on the random location of the nearest track and hence there is no di�erence
between �2

u and �2
v for true photons.

In order to expose the asymmetric nature of hadronic split-o�s, we define an asymmetry
variable:

Auv =

�����
2
u � �2

v

�2
u + �2

v

���� , (2.4)

which tends toward one for hadronic split-o�s but toward zero for true photons. It is anticipated that
the precision of these variables will depend on the number of blocks in the shower being considered;
therefore, we include Nhits as an input to the machine learning algorithm also.

Lastly, two variables discriminate based on the timing of the showers: ce� and �t. We define
ce� as an e�ective velocity given by the distance from the interaction point to the shower divided
by the di�erence in time at the interaction point and the shower. The variable �t is the di�erence
between the time of shower and the time of impact closest track to the shower. Details about the
timing resolution of the calorimeter can be found in ref. [3]. The distributions of ce� and �t are
slightly di�erent for signal and background showers; however, the behavior of these variables is
not intuitive. For example, the distribution of ce� for background showers tends towards values
greater than the speed of light. These e�ects are attributed to di�erences in the propagation time of
Cherenkov photons through the lead glass bar for these two types of showers, which depends on the
point of origin of these photons within the block. Cherenkov photons from signal showers tends to
be emitted furthest from the photomultiplier tube at an angle such that they bounce numerous times
before reaching the downstream end of the block.

The complete set of input variables, derived from events of the type �p ! !p, for signal and
background showers is shown in figure 4.

An important consideration in the selection of these variables, apart from their ability to
discriminate between shower types, was their process independence. Variables like the distance
to the nearest track-matched shower and the total energy of the shower, while likely useful, were
excluded due to concern that the algorithm may perform in a significantly di�erent way for di�erent
event topologies. For example, in high track-density areas of the calorimeter, distance to nearest
track-matched shower could be misleading. Also, one would expect the energy of the shower to
depend on the process that produced the particles.

The eight selected variables were used to train and test eight di�erent machine learning
algorithms in the Toolkit for Multivariate Analysis (TMVA) [5]. Figure 5 shows the background
rejection vs. signal e�ciency curves for these eight algorithms. The top performing algorithms tested
were the multi-layer perceptron (MLP) and the boosted decision tree (BDT), with nearly identical
performance. Ultimately, the MLP was selected due to ease of implementation within the GlueX
software framework. The MLP can be simply coded as a standalone function of the input variables,
whereas the BDT requires storing and reading the trees that are used in the boosted decision tree
algorithm. More information on each of the tested algorithms can be found in ref. [5] and additional
TMVA documentation. The classification output of the MLP algorithm for the training samples is
shown in figure 5. It is evident that placing a requirement on this quantity provides much better
discrimination between signal and background showers than any of the variables in figure 4.
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Figure 4. Input variables to the machine learning algorithms. Red histograms represent the distribution for
background showers, while the blue histograms represent the distributions for signal showers. The plots were
generated using data from exclusively reconstructed events, as discussed in the text.
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Figure 5. (Left) performance of the eight di�erent types of multi-variate analysis algorithms that were tested.
(Right) classifier output distribution for the MLP when run on the background (red) and signal (blue) training
samples.

3 Algorithm performance

A number of tests were executed on the chosen MLP algorithm to quantify the performance on
generic photoproduction events. For these performance tests, we inclusively selected events that
contained two photons whose invariant mass were within 50MeV/c2 of the ⇡0 mass. This sample,
which is representative of a general event environment, was then used to study the purity of ⇡0

reconstruction. The neural network algorithm functions by assigning a single quality score between
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Figure 6. Invariant mass of two photons in the ⇡0 sample with fitted signal Gaussian and polynomial
background distributions. Vertical lines indicate the signal region.

zero and one to each photon candidate, with one being extremely photon-like and zero very unlike
a photon. Photon candidates that are geometrically matched to the track trajectories extrapolated to
the calorimeter are assigned a quality score of zero. In addition, we find that stable fits to the ⇡0

peak can only be reliably obtained in all interesting regimes to study if we exclude photon candidates
with a quality score less than 0.05. Doing so results in a negligible e�ciency loss and provides
a stable “denominator” for probing the performance of the algorithm with this ⇡0 sample. In the
studies that follow we only consider the e�ects of enforcing minimum quality requirements greater
than 0.05.

3.1 Quantifying performance
In order study the performance of the algorithm, it is useful to define several quantities that quantify
the features of the ⇡0 invariant mass distribution. Figure 6 shows a typical two-photon invariant
mass distribution. We fit a signal Gaussian and polynomial background function to the spectrum.
The quantities S and B are the integrals of these functions within the signal region, defined as ±3�
of the mean. While the background may contain some true photons that did not come from ⇡0

decays, the ⇡0 signal is only composed of true photons. Therefore, any reduction of ⇡0 signal by
placing a requirement on the minimum quality score of the photon is an indication of an ine�ciency
in the algorithm. Because the background is only partially from split-o� showers, the background
rejection e�ectiveness of the algorithm is likely dependent on the specific topology one tries to
reconstruct.

With these definitions of S and B, we can then construct several useful quantities. One
commonly used quantity is a figure of merit proportional to the statistical significance of the
⇡0 signal

FOM =
Sp

S + B
. (3.1)

where S denotes the signal yield and B denotes the background yield. We may also construct the
signal to background ratio S/B. Finally, we can construct relative e�ciency as a function of the
minimum quality constraint qmin

RE(qmin) =
Squality>qmin

Squality>0.05
, (3.2)
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Figure 7. The figure of merit studies broken up by number of tracks in an event (left) and by constraining
the quality of only the higher energy photon, only the lower energy photon, and both simultaneously (right).

where, in the denominator we have applied, as discussed above, a minimum quality requirement of
0.05 to facilitate stable fitting of signal function to the spectra.

3.2 Performance in di�erent event environments

The simplest method for exploring how the algorithm performs in di�erent environments is to sort
events based on the number of reconstructed tracks. Increasing the track multiplicity increases the
number of split-o� showers in the calorimeter, and hence sorting events on this quantity is likely to
expose various trends in performance.

Figure 7 shows the FOM vs. minimum quality requirement for di�erent numbers of tracks in
the event. There are a few key features to note in this plot. At first glance, it may appear that
there is little gain in the FOM when constraining the quality score. One must recall, that ensuring
fit stability requires the first point corresponds to a constraint of quality greater than 0.05. The
greatest increase in the FOM occurs when placing a constraint to be any higher than zero, which
is not shown in this plot. Events with larger numbers of tracks tend to have a higher FOM, but
this simply due to variations in the overall number of ⇡0’s in the event samples and not a feature
of the algorithm. That is, the total number of ⇡0’s in a given sample appears to be correlated with
the number of tracks in these events, so the magnitude of the FOM will depend on the number of
tracks in the sample. The key feature of this plot is the relative change in the FOM as a function of
quality score and not the absolute scale of the FOM. More importantly, figure 7 indicates that all
types of events have a broad maximum between quality constraints of 0.3 and 0.7, which suggests
that a common requirement in this range is suitable for maximizing signal significance.

The utility of placing separate minimum quality requirements on the photons from the ⇡0

decay is studied separately. Figure 7 shows the FOM vs. quality constraint when applied to the
high-energy photon, low-energy photon, or both. We show this for extreme cases in number of
tracks: events with only one track and events with more than four tracks. The largest gains in
FOM are obtained when quality requirements are applied to the low-energy photon in events with a
high track multiplicity. Placing additional requirements on the high-energy photon provides some
incremental improvement that is only noticeable in events with large numbers of tracks. In all other
studies in this note, the quality constraint is applied to both the low-energy and high-energy photons.
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Figure 8. Signal to background ratio (top) and relative e�ciency (bottom) for di�erent track numbers by
quality requirement.

Finally in figure 8, we plot the signal-to-background ratio S/B as well as the relative e�ciency
RE (defined in eq. 3.2) for varying numbers of tracks in the event. One can see that the greatest
improvements in S/B are obtained in events with large numbers of tracks. In addition, the quality
requirements are typically more ine�cient for events with low numbers of tracks, which may be due
to the fact that the event vertex, and hence timing variables related it, is poorly defined in one-track
events. Although any quality requirement increases S/B even for events with one track.

3.3 Simulation of e�ciency

In order for the algorithm to be practically applicable in data analysis, it is important that the
G����4-based [6] Monte Carlo (MC) simulation of the detector produces a detector response such
that the e�ciency of the selection algorithm inMCmatches that of data. Any deviation will result in
a systematic error in photon reconstruction e�ciency in MC. With the relative e�ciency as defined
in eq. 3.2, we compare inclusive data and MC simulated samples of ⇡0 events as well as data and
MC simulated samples of exclusive ! production.

In the first part of this study, we aim to study howwell theMCmodels the e�ciency dependence
on energy in a common event environment. We examine exclusive �p ! !p,!! ⇡+⇡�⇡0 samples
using the low-energy photon of the ⇡0 decay as our probe. The high-energy photon is required to
have a minimum quality score of 0.5 and we vary the quality constraint of the low energy photon.
The energy of the low-energy photon is also used to sort the sample into three regions. Figure 9
shows the e�ciency ratios as a function of quality constraint on the low-energy photon for the
three energy regions. One sees agreement at the few percent level over the entire phase space
except for the most stringent quality constraints at low energy, where there are a large number of
split-o� showers.

In the second part of this study, we look at the inclusive ⇡0 samples in data and MC to examine
how well the MC reproduces the e�ciency dependence on event environment for photons in some
range of energy. The ⇡0 events were taken from an inclusive data sample and an MC that models
inclusive photoproduction of hadrons. We require that the low-energy photon in the ⇡0 pair is
between 500MeV and 800MeV and that the high-energy photon is above 1.0GeV. We impose
the same quality constraint on both photons and sort the sample by the number of tracks in the
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Figure 9. Monte Carlo and Data e�ciency ratio for various energy ranges and event environments. Dashed
lines indicate ±2% (left) from exclusive �p ! !p events in both MC and data. The higher energy photon
of the ⇡0 pair fixed with a quality constraint of 0.5, while the lower energy photon has a varying quality
constraint (right) from inclusive ⇡0 events in MC and data. The low-energy photon is between 500MeV and
800MeV and high-energy photon above 1.0GeV with varying quality constraint imposed on both.

event. Figure 9 shows the e�ciency ratios as a function of quality constraint on both photons for
the various numbers of tracks in the event. Based on these results, and the previous studies, we
conclude that a minimum quality requirement of 0.5 maximizes FOM, and the e�ciency of this
requirement is simulated by MC at the few percent level.

3.4 Typical application
Based on the studies above, we apply a quality requirement of 0.5 to both photons from a ⇡0 decay
and examine the performance. Figure 10 shows spectra before and after application of our algorithm
and requirement. In this figure, we show as a starting point the spectra obtained by only discarding
showers that are geometrically matched to tracks; therefore, the background reduction that is visible
reflects the full gain obtained by the algorithm. For all events, a minimum quality requirement
of 0.5 yields a background reduction of roughly 60%, and retains roughly 85% of the signal. For
events with greater than four tracks, this requirement provides a background reduction of 64%while
retaining 96% of the signal.

Imposing stricter quality requirements leads to a significant reduction in background, but at
the cost of some of the signal peak and increased systematic uncertainty due to MC modeling of
the e�ciency. Requiring photon quality to be higher than 0.7 on all events, for instance, yields a
background reduction of roughly 77% and retains about 75% of the signal. The strictest constraint
tested was requiring quality greater than 0.9. On events where the number of tracks exceeded four,
this constraint yielded a 87% background reduction but retained only 60% of the signal.

4 Summary

The use of machine learning techniques to reduce background in the GlueX forward calorimeter
is a powerful tool. Using defining characteristics of the energy depositions in the calorimeter
blocks, such as the shape, size, and distribution, we were able to train a good discriminating neural
network. The optimal quality requirement for the figure of merit yields a background reduction of
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Figure 10. Reduction of combinatoric background resulting from a quality requirement of 0.5. Data with
no quality requirement is in striped blue, and data with the quality requirement is in solid green. All number
of tracks (left), data with four or more tracks (right).

60% and a signal retention of 85% on inclusive ⇡0 data. The Monte Carlo and data e�ciency for
this requirement, when studied with ! events, agree within the available statistical precision.
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