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We develop a semiclassical theory of sound absorption in Weyl semimetals in magnetic fields. We focus on
the contribution to the absorption that stems from the existence of Berry monopoles in the band structure of
such materials or, equivalently, due to the chiral anomaly and chiral magnetic effect. Sound absorption is shown
to come primarily from the motion of Weyl nodes in energy space, associated with the propagation of a sound
wave. We argue that acoustic magnetochiral dichroism, which occurs when absorption of sound is different for
opposite propagation directions and for opposite directions of the magnetic field, can be a definitive probe of
band topology. The part of the monopole-related sound magnetoabsorption that is even in the magnetic field is
negative in time-reversal Weyl materials. The difference in the sign of the effect as compared to the positive
anomaly-related transport magnetoconductance stems from the existence of valley electrochemical imbalances
without magnetic field in the sound propagation problem. In centrosymmetric Weyl semimetals with few Weyl
nodes, the magnetoabsorption is negative at low frequencies but can change signs with increasing frequency.
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I. INTRODUCTION

The classification of band structures of crystalline materi-
als according to their topological features relies heavily on the
concept of the Berry curvature [1,2]. The most robust aspects
of such a classification are related to the existence of topologi-
cal invariants [3–7], which are defined as the flux of the Berry
curvature through two-dimensional momentum space mani-
folds, and assume quantized values known as Chern numbers.
For instance, the Chern number defined as the Berry curva-
ture flux through the two-dimensional Brillouin zone defines
the integer Hall conductivity of two-dimensional insulators
[8] and the Chern number that corresponds to the quantized
Berry curvature flux through two-dimensional Fermi surfaces
embedded in a three-dimensional Brillouin zone distinguishes
topological (Weyl) and trivial metals [9–12]. The physically
observable manifestations of this quantized Berry flux in
three-dimensional topological metals are the main focus of
this paper. In particular, we study how the existence of the
Berry monopoles affects propagation of sound inWeyl metals.

The ongoing search for measurable quantities affected by
topological invariants aims at linking the topological prop-
erties of a system to its physical responses. Over the past
several decades, responses related to topology have been suc-
cessfully identified both experimentally and theoretically in
insulators. A nonexhaustive list of prominent examples of a
mostly electromagnetic nature includes the integer quantum
Hall effect in two-dimensional gases [3], quantum anomalous
Hall effect in topological insulators [13–18], quantum spin
Hall effect [18–23], and quantized Kerr and Faraday effects
on topological surfaces [24–29].

In the case of metals, the identification of low-frequency
responses related to topology is complicated by their very
metallicity, which usually means the part of the response
related in some way to the topology has to be discerned from
some mundane aspects of the physics of metals. This implies
that the search for effects related to topology should concen-
trate on either the magnitude or sign of an effect, setting it
apart from the same phenomenon in conventional metals or
its dependence on parameters like temperature or frequency.
The majority of proposals devoted to the identification of
Berry monopoles in Weyl metals have followed this route:
the existence of monopoles has been inferred from the tem-
perature and frequency dependence of conductivity [30] via
the magnitude and sign of the longitudinal magnetoresistance
[31,32] in optical activity [33,34], nonlocal transport [35], and
in nonlinear optical [36,37] and transport properties [38]. Of
these examples, only the circular photogalvanic effect [36] has
been associated with some notion of quantization due to the
existence of monopoles, which still can be masked by band
structure and disorder scattering effects.

In this paper, we address the magnetic-field dependence
of acoustic attenuation in multivalley metallic systems as
a diagnostic tool for the topology of their band structure.
Specifically, we focus on the possibility to infer the exis-
tence of Berry monopoles in the band structure, which appear
due to the presence of linear nondegenerate band crossings,
from sound attenuation measurements. We show that the
chiral anomaly [31] and the chiral magnetic effect [39,40],
which exist only in the presence of Berry monopoles, lead
to the acoustic magnetochiral dichroism. This phenomenon
is defined as nonreciprocal absorption of sound waves, being
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different for opposite orientations of the magnetic field or op-
posite propagation directions. Hence, acoustic magnetochiral
dichroism, being a quantum-mechanical effect with no classi-
cal counterpart in Drude-type transport, can be a smoking-gun
signature of Berry monopoles in the band structure. We also
show that there can be a significant magnetoabsorption re-
sponse, which is even with respect to the magnetic field or
sound propagation direction inversion, related to the existence
of Berry monopoles in Weyl semimetals. Because of the con-
duction electrons screening of (pseudo)electric fields arising
due to an acoustic perturbation, the mechanisms of acoustic
magnetoabsorption turn out to be essentially unrelated to that
of the negative longitudinal magnetoresistance and are dis-
cussed in detail below.

The importance of the chiral anomaly and chiral magnetic
effect for sound absorption in Weyl systems has been pre-
viously emphasized in Refs. [41,42]. Here, we develop the
theory of sound magnetoabsorption in Weyl metals based
on semiclassical transport equations [43], taking into ac-
count charge neutrality. We also note that, conceptually, the
present paper differs from previous ones related to the trans-
port and electromagnetic responses in that sound propagation
through a material couples to its electronic subsystem through
the modification of the band structure rather than exciting
electrons in a fixed band structure. This forces one to re-
consider the phenomena traditionally related to the Berry
monopoles—the chiral anomaly and chiral magnetic effect—
for monopoles that have dynamics in the momentum or energy
spaces.

The rest of the paper is organized as follows. Section II
contains qualitative considerations that outline the physics of
sound absorption in Weyl materials. Section III describes the
solution of the transport equations in Weyl semimetals in the
presence of an acoustic perturbation and a magnetic field and
includes a discussion of restrictions imposed on the obtained
results by crystalline symmetry. Section IV is devoted to a
discussion of the obtained results, as well as contracting our
results with those existing in the literature. Section V contains
concluding remarks.

II. QUALITATIVE CONSIDERATIONS

A. Parameter regimes

We start with a brief discussion of basic parameter regimes
one can encounter in the problem of sound absorption in
semimetals. The electronic response to a sound wave depends
on the relation between the frequency of the wave, ω, its wave
vector, q = ω/s, where s is the speed of sound, and the elec-
tronic transport mean-free time, τ , or mean-free path, � = vτ ,
where v is the Fermi velocity. In multivalley semiconductors,
another timescale of importance is the typical intervalley re-
laxation time, τv . For typical values of parameters, inequalities
ωτ � 1 and τ/τv � 1 hold. However, due to the low speed of
sound, the parameter q� = ωτv/s can be both small and large.

In this paper, we confine ourselves to the practically im-
portant diffusive regime, ωτ � 1, q� � 1, or ωτ � s/v, in
which electrons diffuse on the scale of the sound wavelength,
which makes the response of electrons local in space. Electron
diffusion introduces another timescale—the time to diffuse

FIG. 1. Frequency regimes (I–III) with respect to relative mag-
nitudes of ω, Dq2, and 1/τv . For definiteness, we assume the
typical values of τ/τv ∼ 10−2 (Ref. [44]), s/v ∼ 10−3, which implies√

τ/τv � s/v. The widths of the parameter windows are not to scale.

across the wavelength of the sound wave—given by 1/Dq2, D
being the electron diffusion coefficient. Within the diffusive
regime, one can identify three distinct frequency intervals by
comparing the relative magnitudes of ω, Dq2 ∼ ω2τv2/s2,
and 1/τv . These intervals are labeled I–III in Fig. 1. Within
intervals I and II, the sound absorption is dominated by
intervalley relaxation processes, while in interval III it is
dominated by electron diffusion. It is worth keeping this in-
formation in mind while going through the rest of the paper.
We defer the detailed discussion of sound absorption in each
frequency interval until Sec. II B.

An important characteristic of typical Weyl materials, rel-
evant for sound absorption, is their considerable doping level,
seen in most experimentally available samples. Therefore,
charge density perturbations are screened: a sample with Nv

Weyl points with a typical Fermi energy EF would have an
inverse screening length, κ , of order

κ2 ∼ Nve2

εh̄vF

E2
F

h̄2v2
, (1)

where ε is the background dielectric permittivity of the mate-
rial. Even at the edge of the diffusive regime, q� ∼ 1, one has
κ/q ∼ EF τ/h̄ � 1. Given the large number of Weyl points in
typical materials [45–48], as well as possible trivial partially
filled bands, it is clear that Weyl semimetals should be treated
as good metals with regard to absorption in the diffusive
regime: electroneutrality must be maintained in the presence
of a sound wave.

However, the Weyl semimetal is by definition a multi-
valley system. Unless all valleys are related by symmetry
and are identical with respect to their charge response, only
the total local charge density is pinned by electroneutrality,
while individual valley densities may develop nonequilibrium
components that spread diffusively. This distinguishes the
case of a Weyl semimetal, or any other multivalley doped
semimetal with nonequivalent valleys, from the single-valley
metal one, in which electroneutrality precludes any density
diffusion [49,50].

B. Mechanisms of sound (magneto)absorption in Weyl
semimetals

The electronic contribution to the sound attenuation in
any semimetal may be expressed in terms of the entropy
production generated by a sound wave interacting with the
electronic subsystem. What distinguishes Weyl semimetals
from the textbook case of sound absorption in metals [50]
is their multivalley character and the existence of the chiral
anomaly. As discussed in Sec. II A, the presence of multiple
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valleys enables a sound wave to produce density imbalances
between valleys even if the total density is fixed by strong
screening (electroneutrality). Such intervalley density imbal-
ances are relaxed by relatively slow intervalley scattering and
can make a substantial contribution to the entropy production,
and hence the sound absorption. This mechanism of sound
absorption is well known in multivalley semiconductors [51].
The truly unique aspect of Weyl semimetals is the existence
of the chiral anomaly and the chiral magnetic effect in the
presence of a magnetic field, which enables additional car-
rier redistribution among the nodes and thus contributes to
sound magnetoabsorption. The latter is the main focus of
the present paper. Below we discuss main qualitative fea-
tures of generation and relaxation of electronic disequilibrium
Weyl semimetals, starting with a discussion of relaxation pro-
cesses that are responsible for the electronic part of sound
absorption.

The entropy production in the presence of a sound wave
is related to dissipative processes: intra- and intervalley scat-
tering. In general, the dissipation is dominated by the fastest
relaxation process that is able to relax electron density in a
given valley. Therefore, it is clear from Fig. 1 that interval-
ley scattering dominates the entropy production in regimes
I and II, while it is not operational in regime III. In other
words, the intervalley relaxation dominates sound absorption
for

ωτ �
√

τ

τv

s

vF
, (2)

while diffusion is the leading dissipation mechanism in the
opposite limit.

We now turn our attention to the question of how a sound
wave generates deviations from equilibrium in the electronic
system. A weak strain associated with a sound wave does
not lead to the disappearance of Weyl nodes but rather dis-
places the nodes in energy and momentum spaces [52] as
well as deforms them. The nonequilibrium parts of the elec-
tronic distribution function associated with the deformation
of the Weyl cone, e.g., deformation of isoenergetic surfaces
or change in the density of states, are relaxed on intraval-
ley scattering timescales and are important for single-valley
semimetals [49]. In multivalley semimetals, such processes
can be neglected in the diffusive regime due to their high
relaxation rate. Therefore, below we focus on the first group
of perturbations, those that correspond to displacement of the
nodes in energy and momentum spaces.

These nodal displacements are illustrated in Fig. 2. In
particular, it is clear that nodal motions in energy and mo-
mentum space act like effective scalar and vector potentials
of electromagnetism, respectively, from the point of view of
a low-energy theory of a single node—see Eq. (5) below,
and also Ref. [53] for a review. In what follows, we refer
to the associated perturbations as scalar and vector, respec-
tively. Both types of perturbations lead to the appearance of
effective electric fields acting on Weyl fermions, which stem
from spatial gradients of the nodal displacement in the energy
space (scalar mechanism) or from the time dependence of the
nodal displacement in the momentum space (vector mecha-
nism). These perturbations are treated in detail in the next
section.

FIG. 2. The two types of a Weyl node motion in a Weyl
semimetal subject to the strain of an acoustic perturbation considered
in this paper: (a) scalar perturbation: motion of aWeyl node in energy
space without change of the nodal point location in the momentum
space; (b) vector perturbation: motion of a Weyl node in momentum
space along an isoenergetic surface.

III. SOUND ABSORPTION IN WEYL SEMIMETALS

In this section, we present the technical part of this paper:
we describe the interaction of a Weyl semimetal with an
acoustic wave and calculate the corresponding rate of sound
absorption. We also discuss the restrictions that crystalline
symmetry imposes on the obtained results. The main results
of this section are further discussed and physically interpreted
in Sec. IV. To avoid cluttering up the notation, we assume that
the spectrum near each valley is isotropic. The generalization
to the anisotropic case is trivial, but leads to cumbersome
algebra. It does not affect the frequency or magnetic field
dependence of the leading dissipation mechanism described
below. In accordance with this, the Hamiltonian of a single
Weyl node is given by

Hw = Ew + vwσ · p. (3)

Here p is the quasimomentum counted from the position of
the node in momentum space, vw is the Fermi velocity, and
Ew is the position of the node in energy space.

Due to the pseudoscalar nature of the σ · p product, Hamil-
tonian Eq. (3) possesses chirality, which is given (for this
simple isotropic case) by ηw = sign(vw ). The chirality ηw of a
Weyl point is proportional to the Berry curvature flux through
an isoenergetic surface of either of the two bands touching at
the Weyl point [15]. Denoting dS to be the surface element
on an isoenergetic surface in either the conduction or valence
band near a particular Weyl point, with the convention that
dS is directed along the outward and inward normals for the
conduction and valence bands, respectively, the chirality of a
Weyl point is given by

ηw = − 1

2π

∮
dS · F , (4)

214309-3



ANTEBI, PESIN, ANDREEV, AND ILAN PHYSICAL REVIEW B 103, 214309 (2021)

whereF is the Berry curvature of the band. Defined this way,
the chirality is a property of a Weyl point and does not depend
on which band—conduction or valence—is used to calculate
the integral in Eq. (4). As is clear from Eq. (4), the chirality of
a Weyl point is equivalent to the Weyl point’s Berry monopole
charge.

We describe the interaction of a sound wave with the elec-
tronic subsystem through the deformation potential generated
by its strain, ui j = (∂iu j + ∂ jui )/2, where i is the Cartesian
index and ui is the displacement field associated with the
wave. We disregard possible piezoelectric coupling in noncen-
trosymmetric crystals. The main perturbation to the electronic
Hamiltonian associated with the wave has the following gen-
eral form:

Haw = (λw,i j + ξw,i j · σ )ui j, (5)

where λw,i j and ξw,i j are the scalar and vector parts of the
deformation potential in valley w: λw,i j as well as the three
components of vector ξw,i j are 3 × 3 matrices with respect to
the Cartesian indices i, j. Summation over repeated indices is
implied, and in what follows we will suppress explicit Carte-
sian indices, e.g., λw,i jui j → λwu. We note that the right-hand
side of Eq. (5) represents the matrix elements of the usual
deformation potential Hamiltonian [54] within the subspace
spanned by the Weyl bands near a particular Weyl point.
Furthermore, in Hamiltonian Eq. (5), we neglected the mo-
mentum dependence of the deformation potentials. While it
definitely exists in reality, only in single-valley metals it yields
the leading term in the absorption [49,50]. In the present
multivalley case, momentum dependence of the deformation
potential is usually of little importance.

The two perturbations described by the λ and ξ terms in
Eq. (5) describe motion of Weyl nodes in energy and mo-
mentum spaces, respectively, see Fig. 2. Omitted p-dependent
terms correspond to momentum-space deformations at a sin-
gle node. In what follows, we will refer to the λ term as
the scalar perturbation and to ξ as the vector perturbation.
These give rise to effective (pseudo)electric fields acting on
carriers belonging to a particular node, much like the usual
scalar and vector potentials in conventional electrodynamics.
The magnitudes of the pseudoelectric fields stemming from
the scalar, E s, and vector, Ev , perturbations are

eE s
w = −∇λwu(r) ∼ qλwu,

eEv
w = 1

vw

∂tξwu ∼ ηw

s

|vw|qξwu. (6)

In these expressions, e is the electron charge, q is the wave
vector of the acoustic wave, and we used the fact that for a
harmonic perturbation ∂t ∼ ω. Note that the chirality of the
node enters the field produced by the acoustic perturbation
via the sign of the Fermi velocity [55]. In typical crystals,
s/vw ∼ 10−3, and λw ∼ ξw [56], hence the vector perturbation
produces much smaller pseudoelectric fields.

A. Absorption of sound due to scalar perturbations

In this section, we consider absorption of sound in time-
reversal invariant Weyl semimetals due to the scalar part of
the deformation potential in the presence of a magnetic field.
We focus on the magnetic-field effects that arise due to the

chiral anomaly, which is the key property associated with
Weyl materials. We do not consider conventional mechanisms
related to the intravalley cyclotron motion [57], which are
identical to those of common multivalley semiconductors.

In the diffusive regime, q� � 1, the response of the elec-
tronic subsystem to an acoustic perturbation can be found
from a macroscopic transport equation. In the case of a Weyl
system, such an equation is represented by the diffusion equa-
tion augmented with additional terms related to the chiral
anomaly and the chiral magnetic effect.

The transport equation for the change in the charge density,
nw, in valley w can be most economically written in terms of
the nonequilibrium part of the electrochemical potential for
that valley, μw:

μw = λwu + eφ + nw/νw. (7)

In this expression, λwu plays the role of the valley-dependent
electric potential, eφ is the usual electric potential due to the
screening charges, and nw/νw is the change in the chemical
potential near a valley due to the acoustic wave.

For future convenience, we introduce the following no-
tation for the averages over Weyl nodes weighted with the
density of states:

O ≡
∑

w νwOw∑
w νw

. (8)

Using these notations, the transport equation for nw can be
written as follows:

∂t nw − νwDw∇2μw + e

4π2
ηwB · ∇μw = −νw

τv

(μw − μ).

(9)

In the absence of a deformation potential, this transport equa-
tion was obtained in Ref. [35]. For completeness, we derive it
in Appendix, taking account of the deformation potential.

In Eq. (9), the presence of the Berry monopoles manifests
itself in the third (linear in the B-field) term on its left hand
side. This term is a total spatial derivative, and combines
both the divergence of the chiral magnetic effect current, and
the expression for the chiral anomaly in the presence of a
potential electric field [35]. This term can be thought of as a
divergence of the generalized valley-specific chiral magnetic
effect (CME) current:

jcme
w ≡ e2

4π2
ηwμwB. (10)

We reiterate that μw in Eq. (10) represents the total elec-
trochemical potential in valley w, given by Eq. (7), and the
generalized CME current embodies both the usual CME cur-
rent driven by the chemical potential of a valley, as well as the
effect of the chiral anomaly driven by a potential electric field.

The intervalley collision integral on the right-hand side of
Eq. (9) is written in the relaxation-time approximation. It is
easy to show that this collision integral satisfies two basic
physical requirements: it conserves the total particle density
in all valleys and it vanishes when all valleys have coincident
electrochemical potentials.

To determine the potential of the screening electric field,
φ, Eq. (9) must be supplemented with the Poisson equation.
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However, as explained in Sec. II A, electroneutrality is main-
tained during propagation of a sound wave. Therefore, we
replace the Poisson equation with the electroneutrality con-
dition [49]: ∑

w

nw(r, t ) = 0. (11)

This substantially simplifies the solution.
Entropy production in the electronic subsystem determines

the energy loss of the acoustic wave. In the present case,
the entropy production comes from intravalley Joule heat as
well as from intervalley scattering. Taking the standard route
(see Appendix), we obtain the following expression for the
entropy, S, production:

T Ṡ =
∑
w

∫
r
νwDw(∇μw )

2 +
∑
w

∫
r
νw

1

τv

(μw − μ)2, (12)

where T is the sample temperature. The first term in the
entropy production equations corresponds to intravalley dif-
fusion and the second one comes from intervalley scattering.
Note that the electric potential eφ, which is independent of
the valley index, drops out from the entropy production term
associated with the intervalley scattering.

Equations (9), (11), and (12) constitute a full set of equa-
tions required to determine the electronic contribution to
sound absorption in the diffusive regime.

Everywhere below, we restrict ourselves to the linear re-
sponse to a plane-wave perturbation of the form ui(r, t ) =
ui exp(iqr − iωt ). In this case, the system of Eqs. (9), (11),
and (12) becomes algebraic and admits a straightforward so-
lution procedure. First, one determines the electrochemical
potentials in all valleys, μw, from Eq. (9),

μw = −iω(λwu + eφ) + 1
τv

μ

−iω + Dwq2 + i�wηw + 1
τv

, (13)

where

�w = e

4π2νw

qB. (14)

Using this equation, μ can be calculated self-consistently,
such that eφ is the only unknown in Eq. (13). The screening
electric potential is determined by imposing the electroneu-
trality condition Eq. (11) using

nw = νw

−(
Dwq2 + i�wηw + 1

τv

)
(λwu + eφ) + 1

τv
μ

−iω + Dwq2 + i�wηw + 1
τv

, (15)

which follows from Eqs. (9) and (13). Once μ and eφ have
been determined, one can calculate the entropy production
(and the absorption coefficient) from Eq. (12).

In practice, the procedure outlined above is quite cumber-
some for arbitrary frequencies, magnetic fields, and valley
characteristics (νw,Dw). Therefore, in what follows, we as-
sume that the variation of the deformation potential among
Weyl nodes is the leading cause of sound absorption, the
differences in the diffusion constants and densities of states
being relatively small. This is often the situation encountered
in practice [51]. Hence, we setDw → D, νw → ν, thus�w →
�, for all valleys, but keep valley-dependent deformation po-
tentials, λw, in Eqs. (9), (11), and (12).

As a result, we obtain the following expression for the
value of the screening potential:

eφ = −λu + e�, (16)

where

e� = − ω�

Dq2
( − iω + Dq2 + 1

τv
+ �2

Dq2
)ηλu. (17)

Physically, the screening potential is set to nullify the total
longitudinal electric current caused by effective electromag-
netic fields accompanying the sound wave propagation. This
prevents the total current from having a spatial divergence,
which would otherwise generate a net local charge accumula-
tion. The first term on the right-hand side of Eq. (16) nullifies
the usual diffusive current [42,49]. The second term—e�
from Eq. (17)—stems from the existence of the CME current.
This contribution to the screening potential is unique to Weyl
semimetals and is one of the results of the present paper. It will
be shown below that e� is the source of the leading anomaly-
induced magnetic field dependence of sound absorption.

Assuming the amplitude of the sound wave to be constant
throughout the crystal, the total entropy production rate av-
eraged over an oscillation period is independent of spatial
coordinates and can be written as

〈T Ṡs(B)〉osc = νV

2

∑
w

[
1

τv

|iω(λw−λ)u+(Dq2+i�ηw )e�|2
(ω−�ηw )2+ 1

τ 2
q

+ Dq2
|iω(λw − λ)u + (iω − 1/τv )e�|2

(ω − �ηw )2 + 1
τ 2
q

]
,

(18)

where 〈. . .〉osc stands for averaging over an oscillation period,
V is the volume of the system, and

1

τq
= 1

τv

+ Dq2 (19)

is the total relaxation rate for individual valley densities,
which includes contributions from both intervalley scattering
and diffusion. We note that Eq. (18) is written for a general
strain applied at given frequency ω and wave vector q. In what
follows, we will use it to discuss attenuation of a propagating
mode—an acoustic wave—for which the frequency and the
wave vector are connected by the dispersion relation, ω = sq,
such that the attenuation rate can be thought to depend only
on ω.

The entropy production rate of Eq. (18) is one of the
main results of this paper. In noncentrosymmetric crystals,
it contains both even and odd in B-field parts. The even part
describes the usual magnetoabsorption and the odd one de-
scribes the magneto-chiral dichroism of acoustic waves: the
absorption rate is different for opposite directions of propaga-
tion. These parts are discussed below.

We emphasize that within the present treatment the
magnetic-field dependence of the entropy production in
Eq. (18) stems only from the existence of the Berry cur-
vature monopoles, which manifest themselves through the
chiral anomaly, and the chiral magnetic effect. This is not the
entire magnetic field dependence: there is a variety of con-
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FIG. 3. Log-log plot of the entropy production as a function
of frequency for the scalar mechanism without magnetic field.
We use velocities and timescales that reflect typical values: s =
103 m

s , v = 106 m
s , τ = 0.5 × 10−12s, τv = 0.5 × 10−10s. The maxi-

mal frequency corresponds to ωτ = s/v, which is the highest
frequency within the diffusive regime. The crossover between inter-
valley dominated (I and II) and diffusion dominated (III) regimes of
Fig. 1 is shown by a dashed line.

tributions to the magnetoabsorption, for instance, stemming
from the magnetic field dependence of the quantities entering
in Eq. (18) (e.g., the density of states [58], the diffusion
coefficient, the intervalley relaxation time [51], etc.). All such
corrections are governed by the usual ωcτ parameter, in which
ωc is the cyclotron frequency at the Fermi level and τ is the
intravalley scattering time.

Equation (18) allows one to study various regimes of sound
absorption. In the absence of the magnetic field, a Weyl metal
is completely analogous to a multivalley doped semiconductor
as far as the sound absorption goes, and we obtain the standard
expression for the dissipation rate [51]:

〈T Ṡs(0)〉osc = νNvV

2

ω2τq

ω2τ 2
q + 1

|(λ − λ)u|2. (20)

The dissipation rate scales quadratically with frequency in
intervals I and II, in which it is dominated by intervalley relax-
ation processes and reaches a plateau in interval III, where it is
determined by intravalley diffusion. It is plotted in Fig. 3. We
note that the factor ωτq satisfies ωτq � 1 in the entire range
of validity of the present theory (see Fig. 1), hence we will
neglect it as compared to unity in what follows.

A compact expression for the magnetoabsorption at small
B fields for small frequencies can also be obtained from
Eq. (18). For later convenience, it is useful to express it in
terms of the cyclotron frequency, ωc = eBv2/μ, where μ is
the doping of a Weyl point away from the energy of the Weyl
node, which is assumed to be the same for all Weyl points for
simplicity. Then � in Eq. (18) is given by � = v

s
ωc|ω|
2μ eB · eq,

where eB, eq are the unit vectors along the directions of B and
q, respectively, see Eq. (14).

We start with the odd in the B-field part of the entropy
production, which is linear in B at small magnetic fields.
We restrict ourselves to the experimentally relevant ωτq � 1
regime. Expanding Eq. (18) in� ∝ B, and keeping the leading
term, we obtain the following expression for the odd part of

entropy production rate:

〈T δṠs,odd(B)〉osc = νNvV

2
(ωτq)

3 v

s

ωc|ω|
μ

eB · eqη|(λ − λ)u|2.
(21)

Note that expression Eq. (21) is odd in the wave vector of
the sound wave, as dictated by the Onsager symmetry [59]:
T Ṡ(ω, q,B) = T Ṡ(−ω, q,−B) = T Ṡ(ω,−q,−B).

Turning to the even in the B-field part of the entropy pro-
duction in Eq. (18), we note that at small magnetic fields it is
quadratic in B. To the leading order, at small frequencies and
small fields it is given by

〈T δṠs,even(B)〉osc = −νNvV

8
ω2τv

v2τv

D

ω2
c

μ2
(eB · eq)2|ηλu|2.

(22)

The leading contribution to the even in B-field part of
the magnetoabsorption comes from the magnetic field depen-
dence of the screening potential [e� term in Eq. (16), see
also Eq. (17)], and appears at O(ω2) order. The origin of this
negative magnetoabsorption is elaborated upon in Sec. IVE.

The existence of contributions to entropy production given
by Eqs. (21) and (22) relies on the valley sums in their
right-hand sides being nonzero. This imposes symmetry con-
straints on crystals in which these contributions exist. These
symmetry constraints are discussed in Sec. III D. Here we
only mention that in crystals with symmetry groups such that

e� ∝ ηλu = 0, the leading anomaly-related contribution to
the magnetoabsorption appears at O(ω4) order and reads

〈T Ṡs(B)〉osc = −νNvV

8
ω4τ 3

v

v2

s2
ω2
c

μ2
(eB · eq)2|(λ − λ)u|2.

(23)

If the contributions to magnetoabsorption of Eqs. (22) and
(23) are both present in a crystal of given symmetry, the
latter is obviously suppressed at low frequencies. However,

it becomes comparable to the former for ωτ �
√

τ
τv

s
v
, which

is in the crossover region between frequency intervals IIand
III of Fig. 1.

B. Absorption of sound due to vector perturbations in
TR-invariant Weyl semimetals

We have defined vector perturbations as those that displace
the location of a Weyl node in momentum space without
changing its energy, see Eqs. (3) and (5), as well as Fig. 2.
According to Eq. (6), vector perturbations in general cre-
ate much smaller effective electric fields as compared to
the scalar case. However, as will become clear momentarily,
vector perturbations do not disturb the total charge density
in TR-invariant Weyl semimetals, hence are not susceptible
to screening. Therefore, there might be competition between
vector and scalar perturbations, which we explore in this sec-
tion. We will see below that, despite the lack of screening,
vector perturbations yield a small contribution to overall at-
tenuation rate. We keep the isotropic model adopted above,
νw → ν,Dw → D, since it is definitely sufficient to estimate
the relative importance of various absorption mechanisms.
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FIG. 4. Schematic Weyl node configuration of the simplest mod-
els of (a) TR-invariant and (b) centrosymmetric TR-breaking Weyl
semimetals. The circles represent the Fermi surfaces of the Weyl
nodes. The± signs inside each circle denote the chirality of the node.
The scalar (λ) and vector (ξ ) deformation potentials of each node
are shown. The nodal motion in momentum space induced by vector
perturbations is governed by ηwξw and is opposite for nodes related
by either TR or inversion symmetries in both models.

First, we argue that local density disturbances produced
by vector perturbations lead to very small contributions to
entropy production and can be neglected. To this end, we note
that Weyl nodes related by the TR symmetry are constrained
to stay at opposite quasimomenta. Their displacements [set
by ηwξwu, as Eqs. (3) and (5) show] are thus opposite, as
illustrated in Fig. 4(a). This implies that if nodes w and w

are related by the TR, then the effective electric fields in
Eqs. (6) are opposite, i.e., eEv

w = −eEv
w. It then follows that

these fields drive opposite Ohmic electric currents (with op-
posite divergences) in valleys w and w, which cannot produce
any net local density perturbation. This statement would be
invalid in the presence of tilt of electronic dispersion near a
Weyl node. In that case, a valley-specific conductivity tensor
has a Hall component due to free carriers [60]. These valley
Hall conductivities are of opposite signs for valleys related by
the TR symmetry and the corresponding Hall currents flow
in the same direction, since the pseudoelectric fields are also
opposite. However, it is straightforward to show that even a
finite tilt leads to very weak effects, which does not change our
conclusions [61], so we assume there is no tilt from here on.
Further, pseudoelectric fields do not change the total charge
density nw + nw in the two valleys in the presence of a mag-
netic field and the chiral anomaly. Indeed, since the chiralities
of the Weyl nodes related by the TR are the same, while the
corresponding pseudoelectric fields are opposite, the charge
density near the Fermi level does not change because of the
spectral flow between the valleys, because

∑
w ηwEv

w · B = 0.
Hence, we conclude that vector perturbations do not lead
to the total electronic density changes in TR-invariant Weyl
semimetals.

The fact that vector perturbations do not create density
disturbances in TR-invariant Weyl semimetals simplifies the
transport equation for this case. To write it, we need to dis-
card the screening electric potential in Eq. (9), and use the
expression for the effective electric field acting on an electron
in valley w, given by [see Eqs. (3), (5), and (6)]

eEv
w = ηw

1

v
ξw∂t u. (24)

The Dirac velocity v is assumed to be the same in all valleys
for simplicity.

The transport equation for the density in valley w then can
be written as follows:

∂t nw+νD∇ ·
(
eEv

w − 1

ν
∇nw

)
− e

4π2
ηwB ·

(
eEv

w−1

ν
∇nw

)

= − 1

τv

nw. (25)

As already mentioned, this equation is a direct analog of
the transport equation for the scalar case, Eq. (9), in which
−∇μw is replaced according to −∇μw → eEv

w − 1
ν
∇nw on

the left-hand side, while μw → 1
ν
nw, μ → 0 in the collision

integral on the right-hand side. Then, the second term on the
left-hand side is the divergence of the usual transport cur-
rent driven by the sum of a mechanical, eEv

w, and statistical,
− 1

ν
∇nw, forces. In turn, the third term on the left-hand side

of Eq. (25) consists of two parts: the already familiar one with
1
ν
B · ∇nw describes the divergence of the CME current, and

the term containing B · Ev
w describes the spectral flow—the

chiral anomaly—driven by the pseudoelectric fields due to the
vector perturbation. Finally, since vector perturbations do not
create any net local density perturbation (as explained above,
we neglect the possible effect of Weyl cone tilt) and do not
cause motion of Weyl nodes in the energy space, the inter-
valley collision integral in the relaxation time approximation
simply relaxes the nonequilibrium part of chemical potential
near a given Weyl point. In our approximation of an equal
density of states, the nonequilibrium part of a valley chemical
potential is equal to nw/ν, hence the form of the right-hand
side of Eq. (25).

The discussion of the preceding paragraph, combined with
the understanding of Eq. (12) developed in Appendix, also
makes it clear that the contribution of the vector perturbation
to the entropy production rate (also denoted by superscript v)
is given by

T Ṡv =
∑
w

∫
r
νD

(
eEv

w − 1

ν
∇nw

)2

+
∑
w

∫
r

n2w
ντv

. (26)

In the isotropic model we consider, vector perturbations
can be subdivided into two classes: longitudinal, Ew ∝ q,
and transverse, Ew · q = 0. In what follows, we discuss the
cases of transverse and longitudinal vector perturbations in
TR-invariant Weyl semimetals.

1. Transverse vector perturbations

We start with the dissipation due to the transverse vector
perturbation in the B = 0 case. In this case, the transverse
nature of the electric field, Ew · q = 0, ensures that it drives
divergence-free electric currents, which do not perturb charge
densities in all of the individual valleys. This implies that for
B = 0, the dissipation due to the transverse vector mechanism
only comes from the standard Joule heating, given by the first
term on the right-hand side of Eq. (26). The entropy pro-
duction averaged over an oscillation is given by (v—vector,
t—transverse)

〈T Ṡv,t (0)〉 = νV

2

∑
w

Dω2

v2
(ξwu)

2. (27)
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To write this expression, we set nw = 0 in Eq. (26) and
used Eq. (24).

Turning to the chiral-anomaly-induced B-field dependence
of sound absorption due to the vector transverse mechanism,
we note that for our isotropic model with valley-independent
density of states, the corresponding contribution to the entropy
production is similar to the usual positive magnetocon-
ductance [31,32]. Transverse vector perturbations produce
density, and hence chemical potential, imbalances between
valleys in the presence of a magnetic field. As evident from
transport Eq. (25), the opposite effective electric fields in TR-
related valleys with the same chirality produce spectral flow
between such valleys, quite analogous to the usual case of the
spectral flow between valleys with the opposite chirality in the
presence of an external electric field and a transport electric
field. This spectral flow changes individual valley densities,
which leads to dissipation due to both Joule heat produced
by currents driven by density gradients, as well as due to
interavalley scattering:

〈T δṠv,t (B)〉osc = νNvV

8
ω2τq

ω2
c

μ2
(eB · ξu)2. (28)

The presence of τq of Eq. (19) in this expression signals that
individual valley densities relax both by intervalley scattering
and diffusion. We used the electric field from Eq. (24) to write
the above expression. It also should be noted that Eq. (28) is
valid to the lowest (quadratic) order in B.

2. Longitudinal vector perturbations

Longitudinal vector perturbations are defined by ξw =
eqξ

q
w. In this case, the forces acting on the electrons due to

the pseudoelectric fields, and statistical forces due to chemical
potential gradients are parallel to each other. Just like in the
case of a scalar perturbation, this leads to the existence of an
odd-in-magnetic field part in the entropy production, in ad-
dition to the usual magnetoabsorption that is quadratic in the
magnetic field at small fields. The dissipation rate is obtained
from Eqs. (25) and (26) by switching to the Fourier space. We
omit the tedious algebraic manipulations and provide the final
results for the dissipation rate in the absence of a magnetic
field,

〈T Ṡv,l (0)〉 = νNvV

2

Dω2

v2

τq

τv

|ξ qu|2, (29)

as well as the odd-in-magnetic-field part of the entropy pro-
duction,

〈T δṠv,l,odd(B)〉osc= νNvV

2

D

v2τv

(ωτq)
3 v

s

ωc|ω|
μ

eB · eqη|ξ qu|2,
(30)

and the odd-in-magnetic-field part of the entropy production:

〈T δṠv,l,even(B)〉osc = νNvV

8

τ 2
q

τ 2
v

ω2τq
ω2
c

μ2
(eB · eq)2|ξ qu|2. (31)

C. Absorption of sound in magnetic centrosymmetric Weyl
semimetals

To consider sound absorption in centrosymmetric Weyl
metals with broken time-reversal invariance, we consider the

minimal model of such a material. Such a model contains two
Weyl nodes of opposite chirality, which are located at the same
energy.

The inversion symmetry of the crystal places obvious re-
strictions on the scalar and vector parts of the deformation
potential, which are illustrated in Fig. 4(b). The scalar de-
formation potentials must coincide in the two valleys. As is
clear from the discussion of the scalar mechanism of sound
absorption in the noncentrosymmetric case, the average de-
formation potential gets screened out completely, hence the
scalar mechanism is simply nonoperational in the two-valley
case [62]. Further, for the case of a vector perturbation, the
inversion symmetry restricts the effective electric fields to be
opposite in the two valleys:

Ev
+ = −Ev

− ≡ E5. (32)

The transport equation for this case is quite analogous to
Eq. (25) but one has to make account for the possibility of a
finite screening potential, φ, as explained below. Therefore, it
is μw = eφ + 1

ν
nw that enters into the transport equation:

∂t nw + νD∇ · (
eEv

w − ∇μw

) − e

4π2
ηwB · (

eEv
w − ∇μw

)
= − ν

τv

(μw − μ). (33)

Unlike the case of TR-invariant crystals, in the present case
the chiral anomaly driven by Ev

w, which is described by the
term containing B · Ev

w on the left-hand side of Eq. (33),
requires special attention. Naively interpreted, this term yields
generation of net local charge density for

∑
w ηwEv

w �= 0,
which follows from Eq. (32). However, it has been shown
[41,63,64] that this apparent charge nonconservation is un-
physical and pertains to the states within a certain cutoff near
the Fermi level. It is compensated by the equal and opposite
charge density change in the Fermi sea due to the motion of
the band bottom. Therefore, in the present case, the charge
conservation for the total charge density, ntot, does not follow
from the transport equation itself but has to be imposed sepa-
rately:

∂t n
tot =

∑
w

∂t nw −
∑
w

e2

4π2
ηwB · Ev

w. (34)

This equation describes the fact that the Fermi sea charge does
change due to the anomaly but does not diffuse like the Fermi-
surface part of the change density.

At this point, it is worthwhile to summarize the situation
with local charge generation by the anomaly terms in each
of the cases of transport equations we have considered, see
Eqs. (9), (25), and (33). The latter of the three has just been
discussed. For vector perturbations in TR-invariant crystals,
the second term on the left-hand side of Eq. (34) vanishes,
see Sec. III B. Then it follows from Eq. (25) that the total
charge density changes only due to valley diffusion. Finally,
in the scalar case, Eq. (9), we did allow the anomaly term
to generate local charge density. However, in that case, the
corresponding charge accumulation rate comes from the di-
vergence of a physical current: the generalized CME current
of Eq. (10). This apparent inability of the low-energy trans-
port theory to capture the full physical picture behind various
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perturbations is a manifestation of the very topology of the
Weyl semimetal. The low-energy theory, describing the vicin-
ity of aWeyl point, and being by definition local in momentum
space, cannot capture the way the Weyl points are connected
through the parts of the band structure away from the low-
energy region [15].

Turning back to the calculation of the entropy production
in centrosymmetric Weyl semimetals, from this point we can
use the considerations of Sec. III A, and impose the charge
neutrality condition ntot = 0 at finite frequency as

∑
w

nw − i

ω

∑
w

e2

4π2
ηwB · Ev

w = 0. (35)

Equations (33) and (35) play the role of the transport and
charge neutrality equations [Eqs. (9) and (11), respectively]
already encountered in the case of scalar mechanism. The
expression for the entropy production in the case of a scalar
mechanism, Eq. (12), is minimally modified:

T Ṡ = νD
∑
w=±

∫
r

( − ∇μw + eEv
w

)2 +
∑
w=±

∫
r

ν

τv

(μw − μ)2.

(36)

To determine the entropy production in the present case,
we recall that the nonequilibrium part of the electrochemical
potential in a given valley is related to the density distur-
bance nw and the screening potential eφ: μw = eφ + nw/ν.
Further, it is convenient to introduceμ = (μ+ + μ−)/2, δμ =
(μ+ − μ−)/2, and use � and τq defined in Eqs. (14) and (19),
respectively. Then taking the valley-symmetric and valley-
antisymmetric parts of the transport Eq. (33), and taking into
account the charge neutrality condition Eq. (35), we arrive at
the following system of equations for the Fourier components
of μ, δμ, and eφ:

−iω(μ − eφ) + Dq2μ = e2

4π2ν
B · E5 − i�δμ, (37a)(

iω − 1

τv

− Dq2
)

δμ = ieDq · E5 + i�μ, (37b)

eφ = μ − ie2

4π2ων
B · E5 (37c)

Upon inspecting these equations, it becomes clear that if
the electroneutrality condition, Eq. (37c), is used to eliminate
eφ, the B · E5 anomaly term disappears from the equations.
That is, the motion of the band bottom that it describes gets
completely screened out. We can conclude that unless a Weyl
semimetal has very few Weyl nodes, and the energies of these
points are very close to the Fermi level, the pseudoelectric-
field driven anomaly-type physics can manifest itself only in
ultrathin films of Weyl semimetals, in which the screening
effects are reduced. The estimates presented in Sec. II A show
that the film thickness should not exceed tens of nanometers.
Such a small thickness indicates the importance of spatial
quantization effects, the investigation of which goes beyond
the scope of this paper.

The qualitative picture of the magnetoabsorption in the
present model can be inferred from the following consider-
ations. First, we note that a longitudinal E5 field drives an
imbalance between valley chemical potentials, since q · E5 �=

0 in Eq. (37b). The steady value of the chemical potential
imbalance is determined by the intervalley scattering and in-
travalley diffusion. The intravalley electric currents driven by
such induced chemical potential gradients are out of phase
with the currents driven by E5, hence reduce intravalley Joule
heat. This happens regardless of the presence or absence of a
magnetic field. The magnetoabsorption for the present model
comes from the CME, which couples the equations for μ and
δμ, via the terms containing � ∝ B in Eqs. (37a) and (37b),
respectively. The magnetic field affects the entropy production
by reducing the effective intervalley relaxation time:

1

τq
→ 1

τB
≡ 1

τq
+ �2

Dq2
, (38)

Hence a magnetic field suppresses the intervalley chemical
potential imbalances, and increases intravalley currents, lead-
ing to positive magnetoabsorption. Note that this is in contrast
with the usual negative magnetoresistance mechanism,[31,32]
in which reduction of the intervalley relaxation time would
suppress entropy production.

The expression for the entropy production averaged over a
period of oscillation can be easily derived from Eqs. (37). For
a longitudinal pseudoelectric field, E5 = eqE5, we obtain

〈T Ṡv〉osc = e2νDVE2
5

(
1 − Dq2τB

1 + ω2τ 2
B

)
, (39)

where τB is the effective intervalley relaxation time in the
presence of a magnetic field, defined in Eq. (38). Using Eq. (6)
to express E5 in terms of the vector part of the deformation po-
tential, and restricting ourselves to the limit of ω,Dq2 � τ−1

v ,
and B → 0, we can write the magnetoabsorption of Eq. (39)
as

〈T δṠv(B)〉osc ≈ νV

4

ω2Dτv

s2
ω2τv

ω2
c

μ2
(eB · eq)2|ξu|2. (40)

We emphasize again that the conclusion about the vector
mechanism providing the leading contribution to the elec-
tronic part of sound magnetoabsorption in the model of a
centrosymmetric Weyl semimetal with just two valleys relied
on the complete absence of the scalar contribution in this
model. This fact is ensured by strong electronic screening. In
general, even in a centrosymmetric Weyl semimetal there is
a scalar contribution given by Eq. (23), which is greater than
that of Eq. (40) by a factor τv/τ ∼ 102, and has the opposite
sign.

D. Symmetry restrictions

The magnitude of the even in B-field part of the magne-
toabsorption due to scalar perturbations in TR-invariant Weyl
materials crucially depends on whether the chiral anomaly
driven by the pseudoelectric fields affects the value of the
screening electric potential. The effect of the chiral anomaly
on the screening potential is described by Eq. (17). In crystals
whose symmetry allows e� �= 0, the magnetoabsorption is
described by Eq. (22) and is relatively large, while in those
with e� = 0 magnetoabsorption is given by Eq. (23) and is
clearly suppressed at low frequencies as compared to that of
Eq. (22).
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It is clear from Eqs. (17) that e� ∝ (eq · eB)χi jui j , where
χi j is a certain symmetric material tensor, and ui j is the
symmetric deformation tensor, as before. Since eq · eB is
a pseudoscalar, χi j must be a pseudotensor. Therefore,
e� �= 0 only in crystals with point groups that allow a
symmetric pseudotensor. This symmetry requirement is the
same as for nonzero rotatory power in crystals exhibiting
the natural optical activity [65,66]. That is, a crystal is
required to be noncentrosymmetric, and of the 21 noncen-
trosymmetric point groups, only 15, with the exception of
C3h,D3h,Td ,C3v,C4v,C6v , will have e� �= 0. (Below, we will
refer to these 15 point groups as strongly gyrotropic.) The
leading contribution of the scalar mechanism into magne-
toabsorption in the six noncentrosymmetric groups that are
not strongly gyrotropic is given by Eq. (23), which ex-
ists in any noncentrosymmetric Weyl metal. Furthermore,
the contributions of transverse and longitudinal vector per-
turbations to magnetoabsorption exist in Weyl materials in
general, as long as the topological band structure is allowed by
symmetry.

We now turn to the acoustic magneto-chiral dichroism.
The results for the scalar and longitudinal vector perturba-
tions are given by Eqs. (21) and (30), respectively. Acoustic
magneto-chiral dichroism is described by the entropy pro-
duction rate that is odd in the external magnetic field, and
the wave vector of the sound wave: 〈T δṠodd(B)〉osc ∝ (eq ·
eB)χi jklui jukl , where χi jkl is a fourth-rank pseudotensor, sym-
metric with respect to the first two indices, the last two indices,
and the interchange of the first and last pair of indices. In
addition to groups that permit a symmetric second rank pseu-
dotensor, groups C3v and C4v allow a nonzero fourth rank
pseudotensor with the above additional symmetries related
to permutation of indices. In particular, the case of C4v is
special in that this is the point group of the transition metal
monopnictide family of Weyl semimetals (see Ref. [67] for a
review). For C4v , χi jkl has a single independent component
χxxxy = −χyyyx, all other nonzero components can be ob-
tained by appropriate index permutations. Hence in a material
with point group C4v , the acoustic magnetochiral dichroism
is given by 〈T δṠodd(B)〉osc ∝ (eq · eB)uxy(uxx − uyy) ∝ (eq ·
eB) sin(4θ ), where θ is the angle between the propagation
direction and the a-axis in the basal plane. It is easy to see
that the combination uxy(uxx − uyy) is odd with respect to all
four mirror operations ofC4v , as required by the presence of a
pseudoscalar eq · eB.

To conclude this section, we point out that the limit of
strong electronic screening (electroneutrality limit) employed
in this work can impose restrictions beyond those related to
a particular point group. For instance, the toy example of a
TR-invariant band structure with four Weyl nodes presented at
the end of Sec. IV below hasC2 point group and should exhibit
the acoustic magneto-chiral dichroism. However, this model
effectively reduces to a two-node band structure with nodes of
opposite chirality that are not related by the TR and two-fold
rotation symmetries in the original band structure. For just
two independent Weyl points, electroneutrality forbids the
acoustic magneto-chiral dichroism by setting the deformation
potential averaged over valleys to zero, and nullifying the
sum over the valleys on the right-hand side of Eqs. (21).
However, in Weyl semimetals with a large number of Weyl

nodes, like TaAs, the point group symmetry restrictions listed
above should be generic.

IV. DISCUSSION OF MAIN RESULTS

In this section, we compare the magnitudes of various
absorption mechanisms discussed in Sec. III. In experiments
on sound absorption, one measures the sound attenuation co-
efficient, �(B). It is defined as the fraction of acoustic energy
dissipated into heat per unit distance traveled by the wave. The
attenuation coefficient allows us to discuss the results of this
paper with most economically written expressions. Assuming
losses are small, the attenuation coefficient for various per-
turbation types can be defined taking the entropy production
rates of Sec. III, assuming the sound amplitude to be constant
throughout the crystal and dividing them by the energy of the
wave and the speed of sound:

�(B) = 〈T δṠ(B)〉osc
sUV

, (41)

where UA = 1
2ρs

2(ui j )2 is the energy density of the acoustic
wave averaged over a period of oscillation, in which ρ is the
mass density of the crystal, andV is the volume of the system.

For a particular crystal, its point group determines the
dependence of the magnitude of the magnetoabsorption on
the propagation direction and polarization of the wave. Below
we would like to avoid listing all such details for all relevant
point groups, but rather focus on the broad-brush features of
the obtained results: the overall magnitude and sign of sound
magnetoabsorption for various mechanisms, and its depen-
dence on frequency. To this end, we present our results as
dimensionless ratios of the acoustic attenuation coefficients
with and without a magnetic field.

First, we summarize our results for TR-invariant Weyl
semimetals. We restrict ourselves to the regime in which the
dissipation is determined by intervalley scattering. In typical
Weyl semimetals, this corresponds to frequencies around a
gigahertz, or lower, i.e., to frequency intervals I and II of
Fig. 1.

A. Scalar perturbations in TR-invariant Weyl semimetals

We start with the case of scalar perturbations. These pro-
duce the largest dissipation rates, unless their contribution is
ruled out by symmetry (see Sec. III D), and hence can be used
as reference to evaluate the magnitude of absorption due to
vector perturbations. We list the expressions for the part of
the attenuation coefficient that is odd in the magnetic field and
describes the acoustic magnetochiral dichroism, and the part
quadratic in magnetic field, which describes magnetoabsorp-
tion.

Since TR-invariant Weyl semimetals are necessarily non-
centrosymmetric crystals, the sound attenuation rate, �(B), in
general contains a part odd in the B-field, which is also odd
in frequency and in the wave vector of the acoustic wave to
satisfy the Onsager symmetry. This odd part of the attenuation
rate describes the acoustic magneto-chiral dichroism: sound
absorption is different for the opposite propagation directions.
This effect exists only in noncentrosymmetric crystals, and is
of quantum-mechanical origin. Indeed, the band structure of
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a TR-invariant crystal still contains a center of inversion. This
implies that a treatment based on the semiclassical Boltzmann
equation, which accounts solely for the dispersion of band
elections but not their wave functions, and hence disregards
band geometry, will not produce a nonzero magnetochiral
dichroism. It is also important to note that the so-called extrin-
sic effects, related to disorder scattering, cannot compete with
the Berry curvature ones in this case, unlike in the familiar
one of the anomalous Hall effect [17]. The reason for this is
the fact that disorder scattering does not lead to spectral flow
between valleys, hence associated perturbations are relaxed on
short intravalley time scales. Therefore, the contribution that
we obtained from the Berry-curvature related corrections to
the semiclassical transport is the leading contribution to the
acoustic magnetochiral dichroism in Weyl semimetals.

Using Eqs. (20) and (21), we obtain the following odd part
of the absorption rate for scalar perturbations (superscript s),
associated with the nodal motion in the energy space:

�s(B) − �s(−B)
�s(0)

∼ sgn(ω)(ωτv )
2 v

s

h̄ωc

EF
(eB · eq). (42)

Here we introduced EF as the typical doping level counted
from the energy of a typical Weyl point in the crystal.

We can estimate the relative magnitude of the acoustic
magneto-chiral dichroism from Eq. (21). As a function of
frequency, it reaches its maximum at the boundary between

the intervals II and III, ωτv ∼ s
v

√
τv

τ
∼ 10−2, for higher fre-

quencies, intravalley density imbalances are relaxed by very
fast diffusion and the effect diminishes. Furthermore, the
applicability of the present theory is limited to classically
weak magnetic fields, ωcτ � 1. Hence for clean semimetals,
EF τ/h̄ ∼ 102, ωcτ ∼ 1, and, v/s ∼ 103, and ωτv ∼ 10−2, one
obtains that the acoustic magnetochiral dichroism is a 0.1%
effect. The relative magnitude of the acoustic magnetochiral
dichroism goes up by an order of magnitude in moderately
disordered Weyl semimetals with EFτ/h̄ ∼ 10, if one can
keep a large ratio of τv/τ , which quite typical for existing
Weyl semimetals with EF ∼ 10meV, and τ ∼ 1ps. This is a
measurable effect. It follows from the discussion in Sec. III D
that it can be observed in existing Weyl materials from the
transition metal monopnictide family.

Turning to the even part of the absorption rate, which
describes the usual magnetoabsorption, we obtain

�s(B) + �s(−B)
2�s(0)

− 1 ∼ −τv

τ

(h̄ωc)2

E2
F

(eB · eq)2. (43)

The estimate of Eq. (43) was obtained by comparing Eq. (22)
to Eq. (20). The most notable feature of the small-frequency
magnetoabsorption of Eq. (22) or Eq. (43) is its negative sign.
Physically, it originates from the magnetic-field dependence
of the screening potential in Weyl semimetals with strongly
gyrotropic groups, see Eq. (17), and the discussion of symme-
try restrictions in Sec. III D above. As mentioned in Sec. III,
the negative sign of the magnetoabsorption stems from the
fact that the currents driven by the magnetic-field-dependent
part of the screening potential act to reduce the intervalley im-
balances driven by the deformation potential itself and hence
reduce dissipation.

We note that the relative magnetoabsoprtion in Eq. (43)
is independent of frequency for ω → 0, unlike the odd part
of magnetoabsorption, Eq. (42), or the even part of magne-
toabsorption inWeyl semimetals with weakly gyrotropic point
groups, see Eq. (44) below.

In crystals with point groups C3h, D3h, Td , C3v , C4v , C6v ,
a magnetic-field-dependent part of the screening potential is
absent (Sec. III D). In this case, one obtains from Eqs. (20)
and (23) that

�s(B) + �s(−B)
2�s(0)

− 1 ∼ −v2

s2
(ωτv )

2 (h̄ωc)2

E2
F

(eB · eq)2.

(44)

As compared with sound absorption in strongly gyrotropic
groups, Eq. (43), the result of Eq. (44) is obviously suppressed
at low frequencies but the two become comparable for ωτ ∼
s
v

√
τ
τv
, which is the crossover region between intervals II and

III of Fig. 1.
We can also compare Eq. (43) to the classical magnetoab-

sorption that stems from the cyclotron motion of carriers.
Typically, such magnetoabsorption is negative and its relative
magnitude is set by (ωcτ )2. It then follows from Eq. (43) that
the relative magnitude of the classical and anomaly-related
mechanisms of the sound magnetoabsorption in strongly gy-
rotropic crystals is controlled by τv

τ
h̄2

(EF τ )2 . For τv/τ ∼ 102,

EF τ/h̄ ∼ 102, this parameter is of the order of 10−2. Hence
the anomaly-related contribution to magnetoabsorption of
sound is small in clean Weyl semimetals. However, the
aforementioned parameter can become of order of unity in
moderately disordered materials. Indeed, for EF ∼ 10meV
and τ ∼ 1 ps, we obtain EF τ/h̄ ∼ 10, and τv

τ
h̄2

(EF τ )2 ∼ 1.While
the overall magnitudes and signs of the two contributions
are the same in this case, the anomaly-related one can still
be detected using its angular dependence: there should be a
substantial decrease in magnetoabsorption for sound prop-
agating along the magnetic field. In the case of crystals
with weakly noncentrosymmetric groups, the anomaly-related
sound magnetoabsorption is negative and is suppressed at low
frequencies by an additional factor of (ωτv )2, see Eq. (44).
However, it can also be of magnitude comparable to the
classical contribution as finite frequencies. For a moderately
disordered Weyl semimetal, this should happen for ωτv �
EF τ
h̄

s
v

∼ 10−2 or ω � 108 s−1.

B. Vector perturbations in TR-invariant Weyl semimetals

We now discuss sound absorption due to transverse
and longitudinal vector perturbations in TR-invariant Weyl
semimetals. These correspond to Weyl nodes motion in the
Brillouin zone, see Fig. 2. To enable easy comparison with
the scalar case, we will normalize the attenuation rates for the
vector perturbations by the corresponding ones for the scalar
case.

The sound absorption due to vector perturbations is, in
general, subdominant as compared to the scalar ones, with
some inconsequential exceptions that will be discussed below.
To illustrate this point, we first compare the attenuation rate
due to the transverse vector perturbations in the absence of a

214309-11



ANTEBI, PESIN, ANDREEV, AND ILAN PHYSICAL REVIEW B 103, 214309 (2021)

magnetic field to the one coming from the scalar mechanism.
From Eqs. (20) and (27), we can estimate the ratio of the two
attenuation coefficients as

�v(0)

�s(0)
∼

{
τ
τv

, intervals I, II
s2

v2

(Dq2

ω

)2
, interval III,

(45)

where the frequency intervals I–III are those pertaining to
Fig. 1, and we assumed similar magnitudes of scalar and
vector parts of the deformation potential [56]. The diffusive
regime is bounded by the condition Dq2 � 1/τ , or ωτ � s/v.
Hence, in the absence of a magnetic field, the entropy pro-
duction due to the transverse vector mechanism is small as
compared to the scalar mechanism but the two can become
comparable at the edge of validity of the present approach.
The same conclusion holds for the longitudinal vector pertur-
bations, see Eq. (29).

Turning to sound absorption in magnetic field for vector
perturbations, we note that only longitudinal vector pertur-
bations lead to the acoustic magnetochiral dichroism. We
obtain from Eqs. (30) and (21) that the relative magnitude
of the acoustic magnetochiral dichroism for vector and scalar
cases is

�v,l (B) − �v,l (−B)
�s(B) − �s(−B)

∼ τ

τv

� 1. (46)

Given that the symmetry restrictions for the acoustic magne-
tochiral dichroism are the same for both types of perturba-
tions, we see that the acoustic magnetochiral dichroism due to
the vector perturbations is always subdominant as compared
to the one for scalar perturbations.

In TR-invariant Weyl semimetals, the sound magnetoab-
sorption due to vector perturbations is positive, its sign being
of the same origin as the positive transport magnetoconduc-
tance in Weyl semimetals. The two problems are similar,
since vector perturbations are not subject to screening in TR-
invariant Weyl semimetals. However, in crystals with strongly
gyrotropic groups, such that Eq. (43) holds, the magnetoab-
sorption due to both longitudinal and transverse perturbations
is always small as compared to the scalar case. This can be
seen from Eqs. (22), (28), and (31), which yield

|�v(B) + �v(−B)|
�s(0)

∼ (h̄ωc)2

E2
F

(eB · eq)2. (47)

It is then clear that the magnetoabsorption for vector pertur-
bations, regardless of their longitudinal or transverse nature,
satisfies ∣∣∣∣�v(B) + �v(−B) − 2�v(0)

�s(B) + �s(−B) − 2�s(0)

∣∣∣∣ ∼ τ

τv

� 1. (48)

The weakness of magnetoabsorption due to vector per-
turbations in TR-invariant Weyl semimetals with strongly
gyrotropic groups makes its sign not relevant experimentally.

In crystals with point groups that forbid the leading term in
the entropy production due to scalar perturbation, Eq. (43),
the vector perturbations do provide the leading anomaly-
related contribution to the sound magnetoabsorption at low
frequency. This follows from the leading nonzero scalar

mechanism’s contribution in such crystals, now given by
Eq. (44), being suppressed by an additional factor of ω2 as
compared to the vector contribution, Eq. (47). However, one
can easily show that the positive magnetoabsorption due to
vector contributions is always small as compared to the nega-
tive classical magnetoabsorption by a factor of 1/E2

F τ 2 � 1.
We thus conclude that vector perturbations are not important
for sound absorption in TR-invariant Weyl semimetals: scalar
perturbations always dominate sound absorption in zero field;
the acoustic magnetochiral dichroism due to longitudinal vec-
tor perturbations is always small as compared to the one due
to scalar perturbations; magnetoabsorption due to vector per-
turbations is small compared to that of scalar one in crystals
with strongly gyrotropic groups, and is small compared to
the classical magnetoabsorption in other noncentrosymmetric
crystals.

C. Vector perturbations in centrosymmetric Weyl semimetals

We now turn to the case of centrosymmetricWeyl semimet-
als with broken TR symmetry, focusing on a toy two-valley
model. In such a model, the scalar mechanism contribution is
fully suppressed. The reason for that is the fact that the inver-
sion symmetry dictates the deformation potentials in the two
valleys be the same. This means that they act as a conventional
electric potential, and are fully screened out.

For centrosymmetric Weyl semimetals with broken TR
symmetry, the magnetoabsorption is positive [see the discus-
sion around Eq. (38)] and is an even function of the magnetic
field. Using Eqs. (39) and (40), we obtain for the relative
magnetoabsorption:

�v(B) − �(0)

�(0)
∼ (ωτv )

2 v2

s2
(h̄ωc)2

E2
F

(eB · eq)2. (49)

Since the usual magnetoabsorption due to the suppres-
sion of Joule heating by cyclotron motion is negative and is
not suppressed at low frequencies, the net magnetoabsorp-
tion is always negative for ω → 0 in centrosymmetric Weyl
semimetals. However, one can expect a sign reversal of the
effect at finite h̄ω ∼ s

v
τ
τv
EF ∼ 10−5EF due to the anomaly re-

lated contribution growing with frequency. For EF ∼ 10meV,
the crossover is expected at ω ∼ 108s−1.

To finish the discussion of the centrosymmetric case, we
observe that in Weyl semimetals with more than two nodes,
in which the restrictions imposed by charge neutrality are
not as severe, the scalar perturbation magnetoabsorption of
Eq. (43) is still absent due to assumed inversion symmetry of
the crystal. However, even the subleading contribution to mag-
netoabsorption, Eq. (44), dominates over the one related to
vector perturbation by a factor of τv/τ � 1, which is evident
from Eqs. (44) and (49) given below. Therefore, we expect
the change in the sign of the magnetoabsorption only in a
material with very few, ideally two, nodes. This is the situation
expected in EuCd2As2 [68,69].

D. Sound absorption in a minimal model of a Weyl semimetal

Finally, to illustrate the general frequency and magnetic
field dependence of sound absorption given by Eq. (18) in the
least cumbersome way, we apply it to a minimal model of a
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FIG. 5. Relative magnitude of the acoustic magnetochiral dichroism as defined in Eq. (42), for a TR-invariant Weyl semimetal. Scalar
deformations for each nodal pair are chosen to be {λ, 2λ, 3λ, 4λ} with respective chiralities {+1,−1, −1, +1}, which provide a strongly
gyrotropic model. Parameters are the same as in Fig. 3 along with μ = 10meV. For the magnetic field plot, (a), the horizontal axis is B · eq ∝
B cos θ and terminates at ωcτ = 1, as in Fig. 6. The frequency plot (b) corresponds to the peak of the magnetic field response. The horizontal
axis terminates at ωτ = 1, with the dashed line highlighting the crossover between regimes I–II and III of Fig. 1, identically to the dashed line
in Fig. 3. This crossover frequency can be seen to maximize the magnetochiral dichroism at optimal field strength. Note the magnitude of the
effect is bounded by 0.5%.

TR-invariant Weyl metal, depicted in Fig. 4(a). This model
consists of two pairs of Weyl nodes, the nodes within each
pair being connected by the time-reversal symmetry and thus
having the same chirality, opposite for each pair. Given the
simplifying assumptions under which Eq. (18) was obtained,
it is appropriate to assume that the deformation potential
within each nodes is proportional to a unit matrix, λw,ab =
λwδab, such that for nodes with positive chirality (ηw = +1),
one has λw ≡ λ+, and for the nodes with the negative chiral-
ity (ηw = −1), one has λw ≡ λ−. Such configuration of the
deformation potentials supplies the model with a notion of
chirality and is appropriate for a Weyl semimetal with point
group C2, which is a strongly gyrotropic group.

For this simple TR-invariant model, the magnetochiral
dichroism vanishes. This is an artifact of the Nv = 4 model, in
which the deformation potentials of the different TR-related
pairs of nodes are equally spaced from the average potential
but have opposite chiralities, forcing them to cancel each
other’s contributions. This can be seen by substituting the
deformations potentials of the minimal model into Eq. (21).

For a general TR-invariant material withNv > 4, we expect
Eq. (21) to produce a odd-in-B magnetoabsorption. Using
expressions obtained in this paper, in particular, Eq. (18),
we can still outline the frequency and magnetic-field de-
pendence of acoustic magnetochiral dichroism in a generic
noncentrosymmetric crystal with a point group that allows
this effect. Restricting ourselves only to illustrate the general
features of B-field and frequency dependencies of the magne-
tochiral effect, we choose a hypothetical model that consists
of Nv = 8 nodes and set the deformation potentials of the
four TR-related pairs to be {λ, 2λ, 3λ, 4λ}, corresponding to
chiralities of {+1,−1,−1,+1}, respectively. The resulting
frequency and magnetic field dependencies of the acoustic
magnetochiral dichroism are illustrated in Fig. 5.

The minimal Nv = 4 model does produce a change in even-
in-magnetic field part of sound magnetoabsorption, which is

quadratic for small fields. The result is presented in Eq. (43).
Aside from its surprising negative sign, discussed in the fol-
lowing section, the relative absorption is frequency indepen-
dent, as opposed to Eq. (42), which is negligible at low enough
frequencies. Higher orders in magnetic field can be obtained
from the full solution of Eq. (18), which yields a Lorentzian-
type function of �/ω that remains frequency independent
within the intervalley dominated regime. The relative magne-
toabsorption for this minimal model is depicted in Fig. 6.

E. Relation to previous works and physical interpretation of
magnetoabsorption due to scalar perturbations

To conclude this section, we would like to summarize
the relationship between the results for scalar perturbations

FIG. 6. Relative magnetoabsorption for a minimal model of a
TR invariant Weyl semimetal in the intervalley dominated regime.
The horizontal axis combines both the field magnitude and orienta-
tion, as the magnetoabsorption is a function of � ∝ B · eq ∝ B cos θ .
Parameters are the same as in Fig. 3 along with μ = 10meV. The
magnitude of the magnetic field is limited by it being classically
weak, ωcτ � 1.
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obtained in this paper and previous works, as well as provide
a physical interpretation of our main results.

The existence of an odd-in-B part of the entropy production
was noticed in Ref. [70]. However, the expression obtained in
our work, Eq. (21), contains an additional factor of ω2τ 2

v as
compared to its counterpart from Ref. [70], and has a different
structure with respect to how the valley-specific deforma-
tion potentials enter it. In particular, the expressions obtained
in our work are insensitive to a valley-independent shift in
the deformation potentials, λw → λw + δλ. It is not the case
for Ref. [70], despite the fact that it does take into account
strong screening. The two sets of results on the magnetochiral
dichroism can be brought in correspondence [71] by correct-
ing the computational procedure employed in Ref. [70].

Anomaly-related contribution to sound absorption in the
semiclassical regime was considered in Ref. [42]. In that
work, magnetochiral dichroism was not considered. It was
also implicitly assumed that the screening potential was inde-
pendent of the magnetic field, which is equivalent to setting
e� = 0 in the context of our paper. Therefore, the present
paper’s results for the acoustic magnetochiral dichroism,
Eq. (42), and the even-in-B part of magnetoabsorption in
strongly gyrotropic crystals, Eq. (43), could not be obtained
within the framework of Ref. [42]. However, even the results
of Eqs. (23), or (44), obtained for the situation in which
e� = 0, are of opposite sign as compared to their counterpart
from Ref. [42], and also contain an additional factor of ω2τ 2

v .
The observation of the sign of the even-in-B part of the

magnetoabsorption being negative, made here, is somewhat
counterintuitive. At least in the ω → 0 limit, which corre-
sponds to interval I of Fig. 1, and in which diffusive currents
are small, one naively expects the usual DC transport theory
[32] to determine the electronic response, which typically
gives positive magnetoconductance due to the chiral anomaly
[31,32] in Weyl metals. Given this breakdown of the naive
relationship between the magnetotransport and sound magne-
toabsorption problems, as well as the discrepancies we listed
above, it appears worthwhile to develop a simple physical pic-
ture of sound magnetoabsorption in Weyl semimetals, which
is presented below.

In Weyl semimetals, the key difference between the mag-
netotransport and sound magnetoabsorption problems is the
fact that sound wave propagation in general leads to valley
electrochemical potential imbalances even without an external
magnetic field. Being quadratic in the sound wave amplitude,
sound magnetoabsorption then comes from an interplay of
electrochemical imbalances created with and without a B
field. Below we elaborate on this interplay for frequencies
at which the sound absorption is dominated by intervalley
scattering, and weak magnetic fields. In what follows, we
focus on the frequency interval I , see Fig. 1, in which 1/τv �
ω � Dq2, and sound absorption is dominated by intervalley
scattering.

In the absence of a magnetic field, and in the electroneu-
trality limit associated with strong electronic screening, see
Eq. (11), it follows from Eq. (16) that the screening poten-

tial is given by eφ(B = 0) = −λu. This result has a simple
interpretation: the screening potential makes sure there is
no average force acting on the conducting electrons, which

means there is no net longitudinal current in the system. This
implies that no charge accumulation is generated, as required
by charge neutrality. In turn, summing Eq. (7) over the val-

ley index, and using eφ(B = 0) = −λu, one can readily see
that for B = 0 the electrochemical potential averaged over all
valleys satisfies μ = 0. It then follows from Eq. (13) that in
the limit 1/τv � ω � Dq2, the nonequilibrium part of the
electrochemical potential in valley w is given by

μ(0)
w = −iωτω(λw − λ)u, τω ≡ τv

1 − iωτv

. (50)

The appearance of the factor −iωτω in the above expres-
sion comes from the fact that at ω → 0 intervalley scattering
quickly equalizes electrochemical potentials of all valleys. To

zeroth order in ωτv , this results in μw = 0 even if (λw − λ) �=
0 and Eq. (50) follows. It is the electrochemical potential
imbalances of Eq. (50) that leads to entropy production in the
absence of a B field, see Eq. (20).

Having understood the mechanism behind entropy produc-
tion at zero field, we move on to B �= 0, and treat the magnetic
field perturbatively. In the presence of a B field, valley elec-
trochemical potential imbalances given by Eq. (50) can lead
to a nonzero CME current, see Eq. (10) which flows in the
direction of the B field. If the sound propagation direction is
also along the B field, the electrochemical potential imbalance
has a space dependence that leads to the a divergence of the
CME current and, as a result, to a B-dependent correction to
valley electrochemical potentials. By iterating this argument,
one can calculate the sound magnetoabsorption to any order
in the B field.

To illustrate the preceding argument, let us calculate the
correction to the screening potential induced by the magnetic
field, which is denoted with � in Eqs. (16) and (17). If the
CME current has a nonzero divergence, there must be a cor-
rection to the screening potential that drives the usual Ohmic
current with the opposite sign of divergence to preserve charge
neutrality. This correction is thus obtained from equating the
divergence of the Ohmic current it drives, e2νDNvq2�, to the
negative of the divergence of the generalized CME current
of Eq. (10), − e2

4π2 (iq · B)∑w ηwμw, where μw’s are given by
Eq. (50). As a result, we obtain

e� = − ω�

Dq2
ηλu, (51)

which is the small-ω, small-B limit of Eq. (17). As before,

� = e2

4π2ν
q · B, and we used ∑

w ηwλu = 0 to write this equa-
tion. Note that if q and ω are related by the sound dispersion
relation, ω = sq, e� in Eq. (51) is independent of frequency.
The corresponding electric field, however, does vanish in the
ω → 0 limit.

The appearance of a screening potential linear in the mag-
netic field, Eq. (51), is already enough to understand the
negative sign of the small-B magnetoabsorption given by
Eq. (43). The electric field that is generated by the gradient
of e� drives the chiral anomaly, if it has a nonzero pro-
jection onto the B-field, i.e., when q · B �= 0. This generates
a quadratic in the B-field correction to valley electrochem-
ical potentials, the sign of which is such as to reduce the
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electrochemical potential differences that existed without the
magnetic field, and gave rise to e�. This reduces the dissipa-
tion due to the intervalley scattering, hence the negative sign
in the right hand side of Eq. (43).

To see what happens in more detail and to be able to un-
derstand the magnetoabsorption regardless of e� being zero
or not, as well as the exact origin of the difference between
the transport and sound propagation problems, we need to
outline the calculation of valley electrochemical potentials,
μw − μ, to quadratic order in the B field. As before, we
restrict ourselves to the 1/τv � ω � Dq2 limit. The steps
of this procedure are as follows: We first calculate the gen-
eralized CME current in Eq. (10) using the B = 0 values
of μw’s from Eq. (50); then we calculate corrections to the
electrochemical potentials due to the valley charge accumula-
tion to the divergence of these currents, balancing it against
intervalley scattering at finite frequency (keeping the time
derivative terms in the transport equation); after that, we re-
peat this procedure once again, this time using the linear-in-B
corrections to the electrochemical potentials, obtaining the
quadratic corrections. We will not present the details of this
simple calculation. We only note that that μ = e� in the elec-
troneutrality limit, which follows from Eqs. (7), (11), and (16)
and put down the answer for the electrochemical potentials to
second order in the magnetic field,

μw − μ = μ(0)
w + δμ(1)

w + δμ(2)
w , (52)

where μ(0)
w is given by Eq. (50), while δμ(1,2)

w are of order
O(B1,2), respectively, and are given by

μ(1)
w = −iηw�τωμ(0)

w ,

μ(2)
w = −�2τ 2

wμ(0)
w − iηw�τωe�. (53)

Equations (52) and (53) allow us to understand the origin
of the acoustic magnetochiral dichroism and the negative sign
of the sound magnetoabsorption. Both are related to μ(0)

w �= 0
in the sound absorption problem.

First, let us discuss the opposite signs of the even-in-B part
of the anomaly-induced sound magnetoabsorption and mag-
netoconductance. Of the three terms on the right-hand side of
Eq. (52),μ(1)

w is the electrochemical potential correction that is
analogous to the one associated with the positive magnetocon-
ductance in the transport problem [32]. The correspondence
is that iqμ(0)

w is replaced according to iqμ(0)
w → −eEtr , where

Etr is the transport electric field. Crucially, in the ω → 0 limit,
when τω → τv , this transport correction as a complex number
is shifted by a phase of π/2 with respect to the other two terms
on the right-hand side of Eq. (52). Physically, this phase shift
is due μ(1)

w being linear in the gradient of the electrochemical
potential unperturbed by the magnetic field. At the same time,
in the transport problem valley electrochemical imbalances
appear only due to the magnetic field, hence the O(B0) term,
μ(0)

w , is absent in Eq. (52) in the transport problem. Since mag-
netoresistance is determined by |μw − μ|2, in the transport
problem δμ(2)

w can be neglected at small B-fields, as it leads
to O(B4) corrections.

Contrary to the transport problem, in the sound absorption
problem δμ(2)

w cannot be neglected, since μ(0)
w δμ(2)

w ∼ O(B2).
In fact, this term completely cancels the positive transport part
of the even-in-B magnetoabsorption and leads to the negative

magnetoabsorption of Eq. (43) when e� �= 0, or Eq. (44)
when e� = 0.

Turning to the magnetochiral dichroism, we note that it
stems from the fact that at finite frequencies, τω is not a real
number, τω ≈ τv + iωτ 2

v , and thus the phase shift between
μ(0)

w and δμ(1)
w is no longer π/2. Because of this, there is an

O(B) term appearing in |μw − μ|2, which is the origin of the
acoustic magnetochiral dichroism. It can be easily shown that
this term leads to Eq. (21).

V. CONCLUSIONS

In this paper, we studied the electronic contribution to
sound magnetoabsorption in semimetallic multivalley sys-
tems. Our aim was to highlight the role of nontrivial
momentum space topology, namely, that of band crossings re-
sulting in isolated Weyl points, functioning as Berry curvature
monopoles.

The key outcome of this paper is that the existence of
Berry monopoles in the band structure of a semimetal is best
inferred from the acoustic magnetochiral effect. It is a rather
small effect, the relative strength of which we estimate to be
at the 0.1 − 1% level at optimal frequencies. In practice, these
correspond to ω ∼ 108 s−1. However, it is a measurable effect
using modern experimental techniques. Symmetrywise, the
acoustic magnetochiral effect can be observed in crystals with
15 strongly gyrotropic groups (which also allow natural opti-
cal activity) and crystals with groups C3v , and C4v . That is, it
should be possible to measure it in available Weyl semimetals
from the transition metal monopnictide family, e.g., TaAs.

Unlike the positive magnetoconductance in transport mea-
surements, the part of the sound magnetoabsorption that is
even in the magnetic field is typically negative in TR-invariant
Weyl semimetals. Being negative in sign, it can be detected
experimentally via its angular dependence, since it is sensitive
to the angle between the propagation direction and the mag-
netic field. In crystals with strongly gyrotropic groups, this
additional anomaly-related magnetoabsorption is present at all
frequencies. Otherwise, it is significant only at high enough
frequencies, ω � 108s−1. A special case is represented by
centrosymmetric Weyl semimetals with broken TR symmetry
and very few Weyl points. In such materials, sound mag-
netoabsorption is classical and negative at low frequencies
but can change signs as sound frequency is increased due
to an anomaly-related contribution. This situation should be
relevant for EuCd2As2.

Note added. A recent eprint, Ref. [72], also treats the
problem of sound mangetoabsorption inWeyl materials due to
scalar perturbations. The results of Ref. [72] are in agreement
with the ones of this work that pertain to the case of the scalar
deformation potential.
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APPENDIX: DERIVATION OF THE ENTROPY
PRODUCTION AND MACROSCOPIC TRANSPORT

EQUATIONS

Considerations of Sec. III A show that in most frequency
regimes the scalar mechanism associated with nodal point
motion in the energy space due to the momentum-independent
part of the deformation potential is the leading source of sound
absorption in Weyl metals. Therefore, in this Appendix we
present a derivation of transport equation, Eq. (9), and the
equation for the entropy production, Eq. (12), from which the
results of Sec. III A were obtained. We work in the system of
units with h̄ = kB = 1.

For readability, we briefly repeat various definitions from
the main text. We will assume that the temperature is low
enough such that near each Weyl point only one of the cor-
responding conduction or valence bands has a Fermi surface.
(It does not matter which band it is.) In what follows, we will
enumerate both theWeyl points and the Fermi surfaces around
them with index w. The scalar perturbation is defined as the
motion of a Weyl node in energy space due to an acoustic
perturbation, such that the unperturbed energy of the band
with a Fermi surface, εw(p), is transformed into

Ew(p) = εw(p) + λwu + eφ. (A1)

In this expression, λwu ≡ λw,i jui j is the Weyl point’s en-
ergy shift associated with the deformation potential λw,i j ,
ui j is the deformation tensor, and φ is the screening electric
potential.

Kinetics of the electrons near a Weyl point/Fermi surface
with index w is described by the Boltzmann kinetic equation
for their distribution function, fw(p). The kinetic equation
with the semiclassical corrections associated with the Berry
curvature is given by [32,33]

∂t fw(p) + 1

DB
[vw − eB(vw · Fw )] · ∇r fw

+ 1

DB
[eEw + evw × B − e2(Ew · B)Fw] · ∇p fw

= I intraw + I interw , (A2)

where vp = ∇pεw(p), DB = 1 − eB · Fw, and eEw =
−∇r(λwu + eφ) in the effective electric field acting on
the electrons in valley w. Collision integrals I intraw , I interw , which
describe the intra- and intervalley scattering, respectively,
will be specified below. In Eq. (A2), we neglected the
existence of the orbital magnetic moments of electrons in
bands with nontrivial geometry. The inclusion of these orbital
moments affects intravalley perturbations only, which does
not change the total number of particles nor the total energy of
a Weyl node. Therefore, they are relaxed on short timescales
associated with the intravalley impurity or electron-electron
scattering, and lead to small effects as compared to those
associated with the chiral anomaly and the chiral magnetic
effects, despite the claims of the comparable effects in
Refs. [70,73]. Further, we have neglected the anomalous

velocity associated with the effective electric field acting
on the electrons, which plays no role in sound absorption.
Finally, in what follows, we will also disregard the usual
magnetic part of the Lorentz force, evw × B, which is behind
the usual magnetoabsorption phenomena, not treated in this
paper.

In what follows, we will neglect the density of state cor-
rection factor DB both in Eq. (A2) and in all observables. The
reason for it is that it can only provide very small corrections
to various observables. We can estimate the order of these
corrections from the following argument. In the semiclassical
regime (small B fields), magnetic field corrections to various
observables must be analytic and even functions of the mag-
netic field, which implies that DB-related corrections are of
order of (DB − 1)2 ∼ (ωc/EF )2, where ωc = eBv2/EF is the
effective cyclotron frequency. At the same time, it is evident
from Eqs. (20) and (22) that the anomaly-related contribution
to magnetoabsorption is governed by a much larger parameter
(ωc/EF )2τv/τ . Hence our decision to drop DB everywhere.

To facilitate converting the kinetic Eq. (A2) into a
macroscopic transport equation, we represent the distribution
function near a particular Weyl point as

fw = feq[Ew(p) − (μ0 + μw )] + δ fw, (A3)

where μ0 is the equilibrium chemical potential, μw = λwu +
eφ + nw/νw [see Eq. (7) of the main text] and δ fw has
zero average over the Fermi surface in the wth valley.
Note that λwu and eφ cancel out from the argument of
feq[Ew(p) − (μ0 + μw )] = feq[εw(p) − (μ0 + nw/νw )]. That
is, feq[Ew(p) − (μ0 + μw )] describes a Weyl point lifted in
energy by λwu + eφ, such that the occupation numbers in the
momentum space change only due to a change in the doping
level of a Weyl point (counted from the Weyl point energy) by
nw/νw.

The two parts of the distribution function Eq. (A3) are
relaxed on very different timescales: δ fw is relaxed by
fast intravalley scattering, while feq[Ep − (μ0 + μw )], with
nonequilibrium valley-dependent μw, can only be relaxed by
intervalley scattering. This hierarchy of relaxation rates allows
us to neglect δ fw in the intervalley collision integral. For our
purposes, it is sufficient to write phenomenological but phys-
ically motivated expressions for the two collision integrals in
the kinetic Eq. (A2). The intravalley one we will just write in
the usual constant relaxation time approximation,

I intraw = −δ fw
τw

, (A4)

where τw is the intravalley transport relaxation time. It is
worth looking more carefully at the intervalley collision in-
tegral, which gives rise to the right-hand side of Eq. (9)
of the main text. The microscopic expression for this colli-
sion integral, which essentially follows from Fermi’s golden
rule, involves the scattering probability between valleys w

and w′, averaged over the Fermi surfaces in the two valleys,
Www′ (Ew(p),Ew′ (p′))δ(Ew(p) − Ew′ (p′)). The energies in the
energy-conserving δ function are given by Eq. (A1), which
includes both the intravalley kinetic energy and the potential
energy due to the acoustic perturbation. The collision integral
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can be written as

I interw = −
∑
w′

∫
p′
Www′δ(Ew(p) − Ew′ (p′))

× ( feq[Ew(p) − (μ0 + μw )]

− feq[Ew′ (p′) − (μ0 + μw′ )]). (A5)

We suppressed the energy dependence of Www′ since it ef-
fectively has to be evaluated at the respective Fermi surfaces.
We also assume thatWww′ = Ww′w, that is, we neglect valley
skew scattering. Now we expand the difference of the dis-
tribution functions in small μw − μw′ ∼ O(ui j ), after which
all quantities pertaining to scattering can be calculated for the
crystal without the acoustic perturbation. We also assume the
low-temperature limit, in which −∂Ew

feq[Ew − μ0 − μw] =
δ(Ew − μ0 − μw ). After these manipulations, the intervalley
collision integral becomes

I interw = −
∑
w′

νw′Www′δ(Ew(p) − μ0 − μw )(μw − μw′ ).

(A6)

For the purpose of the derivation of the transport Eq. (9), we
will need the momentum space integral of I interw over momenta
near the wth valley:∫

p
I interw = −

∑
w′

νwνw′Www′ (μw − μw′ ). (A7)

The constant relaxation time approximation for the intervalley
collision integral used in this paper is obtained from Eq. (A7),
if one setsWww′ → W . In this case, we obtain∫

p
I interw = −νw

τv

(μw − μ),
1

τv

≡
∑
w

νwW . (A8)

The weighted valley average of the nonequilibrium part of the
electrochemical potential, μ, is defined in Eq. (8) of the main
text.

Turning to the derivation of the macroscopic transport
equation, we first integrate the kinetic Eq. (A2) over the mo-
mentum near the wth valley and restrict ourselves to the linear
response to the acoustic wave to obtain

∂t nw + ∇r ·
∫
p
vwδ fw + e

4π2
ηwB · ∇r

nw

νw

+ e

4π2
ηwB · ∇r(λwu + eφ) = −νw

τv

(μw − μ). (A9)

In the transport Eq. (A9), the second term on the left-hand
side is the divergence of the standard intravalley Drude (num-
ber, rather than electric) current, jw/e, driven by the gradient
of the electrochemical potential. The expression for this cur-
rent is easily obtained from the odd in momentum part of
the kinetic equation, combined with the expression for the
intravalley collision integral, Eq. (A4). In the diffusive regime,
neglecting ω and qvw as compared to 1/τw, this yields

δ fw = −τwvw

(
eEw − ∇r

nw

νw

)
∂ε feq(εw − μ0) (A10)

and leads to jw/e = −νwDw∇rμw if we neglect the tensorial
nature of the diffusion constant for simplicity. Then ∇r · jw/e
corresponds to the second term on the left-hand side of Eq. (9).
The third and fourth terms on the left-hand side of Eq. (A9)
are specific to Weyl materials and represent the divergence
of the CME current due to a chemical potential change of
nw/νw in valley w and the rate of change of the particle
density in valley w due to the chiral anomaly. To obtain
these terms, we performed the appropriate momentum-space
integrals that involve the Berry curvature, which are standard
by now. Their detailed evaluation can be found in Ref. [33].
Taken together, the CME and chiral anomaly related terms in
Eq. (A9) combine to yield the third term in Eq. (9) of the
main text. It is noteworthy that this term involves only the
total electrochemical potential of the valley [35]. Finally, on
the right-hand side of Eq. (A9), we took into account that∫
p I

intra
w = 0, since intravalley scattering conserves the number

of particles near the corresponding valley, and used Eq. (A8)
for

∫
p I

inter
w , which coincides with the right-hand side of Eq. (9)

and is further discussed in the main text. This concludes our
presentation as far as the transport Eq. (9) of the main text is
concerned.

To derive the expression for the entropy production
[Eq. (12) of the main text], we start with the combinatorial
expression for the electronic part of the entropy of the system

S = −
∑
w

∫
r

∫
p
[ fw ln( fw ) + (1 − fw ) ln(1 − fw )], (A11)

where the space, time, and momentum dependence of
fw(r, p, t ) have been suppressed for brevity. Recall that we
have been systematically neglecting the density of states fac-
tor DB, so it does not appear in the expression for the entropy
either. Differentiating the expression for the entropy with re-
spect to time, we obtain

Ṡ = −
∑
w

∫
r

∫
p
∂t fw ln

fw
1 − fw

. (A12)

Further on, we substitute the expression for ∂t fw from the
kinetic equation, and note that the terms from its left hand
side only contribute to the entropy redistribution in real space,
which is accomplished in each valley by the heat current

jheatw =
∫
p
vw(p)

(
εw(p) − μc

w

)
δ fw + eηw

T 2

12
B, (A13)

μc
w is the chemical (rather than electrochemical) potential in

valley w, while εw(p) is defined in Eq. (A1). The first term in
the above equation has the obvious meaning of the usual heat
current of quasiparticles while the second one is a topological
contribution analogous to the chiral magnetic effect for the
charge current. These convective terms do not lead to net
entropy production in the sample.

The only nonzero contribution to the entropy production
comes from the collision integrals, both intra- and intervalley.
To obtain the expression for the entropy production due to
intravalley diffusion, we expand the log in Eq. (A12) to linear
order in δ fw, and use the expression for I intraw in place of ∂t fw,
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as well as Eq. (A10) for δ fw. This immediately leads to the
first—diffusive entropy production—term in the right-hand
side of Eq. (12). (Just like in the transport equation, we neglect
the tensorial nature of the diffusion coefficient.) Since the
result is just an expression for the intravalley Joule heating
driven by the gradient of the electrochemical potential, we
do not go into further details of its derivation. Instead, we
focus on intervalley scattering contribution to the entropy
production. To this end, we use Eq. (A5) for I interw in place
of ∂t fw in Eq. (A12), neglect δ fw under the logarithm, assume
the low-temperature limit, and neglect the energy dependence
of the scattering rates and the densities of states. This way, we

obtain

T Ṡinter =
∫
r

∑
ww′

νwνw′Www′

∫ μ0+μw′

μ0+μw

dEw(Ew(p) − μ0 − μw )

= 1

2

∫
r

∑
ww′

νwνw′Www′ (μw − μw′ )2. (A14)

If we now make the same assumptionWww′ → W as in deriv-
ing the transport equation and note that

∑
w νwμw = ∑

νwμ,
we will arrive at the second term on the right-hand side of
Eq. (12).
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