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Observational studies of ecological systems have shown that different species compositions can arise from
distinct species arrival orders during community assembly—also known as colonization history. The presence
of multiple interior equilibria in the positive orthant of the state space of the population dynamics will naturally
lead to history dependency of the final state. However, it is still unclear whether and under which conditions
colonization history will dominate community composition in the absence of multiple interior equilibria. Here,
by considering that only one species can invade at a time and there are no recurrent invasions, we show clear
evidence that the colonization history can have a big impact on the composition of ecological systems even in
the absence of multiple interior equilibria. In particular, we first derive two simple rules to determine whether
the composition of a community will depend on its colonization history in the absence of multiple interior
equilibria and recurrent invasions. Then we apply them to communities governed by generalized Lotka-Volterra
(gLV) dynamics and propose a numerical scheme to measure the probability of colonization history dependence.
Finally, we show, via numerical simulations, that for gLV dynamics with a single interior equilibrium, the
probability that community composition is dominated by colonization history increases monotonically with
community size, network connectivity, and the variation of intrinsic growth rates across species. These results
reveal that in the absence of multiple interior equilibria and recurrent invasions, community composition is a
probabilistic process mediated by ecological dynamics via the interspecific variation and the size of regional

pools.
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I. INTRODUCTION

Ecological communities are formed by co-occurring and
interacting species in a given place and time [1-3]. It has
been shown that within these communities, the specific
composition of species is a function of several ecological,
evolutionary, and stochastic processes [3—6]. Importantly, one
of the main factors affecting community composition is the
order of species arrival—also known as colonization history
[7-11]. That is, colonization history can introduce priority
effects, where the persistence of species depends on the order
at which they join a given community.

Many mathematical or physical tools have been used to
investigate the impact of colonization history on community
composition. For example, Ref. [12] introduced a toy model
of ecosystem assembly to map out all assembly pathways
generated by external invasions. The colonization process was
characterized as a finite Markov chain, and proved to exhibit
a unique set of recurrent states (the end state of the process)
that are resistant to invasions. This also shows that the end
state is independent of the assembly history. For replicator
systems and the generalized Lotka-Volterra (gLV) model, a
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phase transition was found from a phase where a unique
globally attractive fixed point exists to a phase where multiple
dynamical attractors exist [13—20]. The latter phase naturally
leads to history-dependent community properties.

Although many other studies have also shown history-
dependent or independent communities in different theoretical
models [21-27], these studies do not allow us to find gen-
eral conditions under which colonization history can have the
highest (or lowest) chance to affect community composition.
In fact, it is still unclear whether and under which conditions
colonization history will dominate community composition
in the absence of multiple interior equilibria and recurrent
invasions. Note that in the presence of a single interior equi-
librium, if we allow for recurrent invasion, then sooner or later
this interior equilibrium will be reached, and the assembly
process (in the long run) will be trivially history independent.
Therefore, in this paper we are interested in the history de-
pendency by considering that only one species can invade at a
time and there are no recurrent invasions.

The complexity of factors affecting community assembly
has undercut our ability to anticipate whether a given regional
pool of species can be more susceptible to colonization history
than another. Yet, knowing this can advance our understanding
about the probabilistic nature and predictability of ecological
communities. In this paper, we try to address the following
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FIG. 1. Ecological communities can display different dependencies on colonization history. For illustration purposes, we show the
assembly of a three-species community {1, 2, 3} by the invasion or colonization of one species at a time, following the gL.V dynamics. There
are in total 3! = 6 different colonization trajectories. (a) The ecological network depicts the pairwise interactions among the three species
(which are also encoded in the interaction matrix A). The feasible intrinsic growth rate vector r is set to be (%, %, %)T. (b) Starting from an
empty ecological community & (top node), the three species are added successively into the community via different orders. Since species 2
and 3 cannot coexist (gray node), the community composition will be dependent on colonization history. That is, the final state of the three
species together cannot be assembled if we follow the trajectory @ — 3 — 2 — 1 or @ — 2 — 3 — 1, while the other four trajectories will
lead to the desired final state. (c) As an example, we show two different trajectories and their final community compositions. Panels (d)—(f)
show a similar case as the previous example but with different interaction matrix A. In this case, the community composition is independent

on colonization history.

key questions: In the absence of multiple interior equilib-
ria and recurrent invasions, are there any conditions under
which colonization history will completely dominate commu-
nity composition? Does the type of interspecific interactions
affect the probability that community composition depends
on colonization history? How do the intrinsic properties of
species affect the impact of colonization history on commu-
nity composition? In the face of an accelerating rate of species
turnover, answering these questions is important to understand
and anticipate key biodiversity changes in ecological commu-
nities.

The rest of the paper is organized as follows: Section II
provides two motivating examples and then introduces two
simple rules to determine the relationship between com-
munity composition and colonization history. Section III
defines a community model with gLV dynamics and pro-
poses a numerical scheme to measure the probability of
colonization history dependence. Section IV discusses the
effects of both community and intrinsic properties on the
history dependence. Section V is devoted to a discussion
on the limitations of our current work and some potential
extensions.

II. MOTIVATING EXAMPLES

To illustrate the scope and assumptions behind our study,
we start our analysis by considering a small pool of three
species that can coexist at a unique interior equilibrium, as
shown in Fig. 1. It is worth mentioning that to increase the
tractability of the problem, here we assume that only one
species can invade at a time and the ecological dynamics
is fast enough to reach a boundary equilibrium (i.e., with
some of the S species having zero abundance) before the next
species invasion. Thus, in this example, there are six possible
colonization histories (or assembly paths), one unique interior
equilibrium, and six different boundary equilibria from which
an ecological community of three species can be assembled by
introducing one species at a time, i.e., via successive invasions
to an empty community & [see Figs. 1(b) and 1(e)].

As shown in Fig. 1(b), species 2 and 3 cannot coexist
on their own (i.e., the boundary equilibrium {2, 3} is infea-
sible), the assembly paths (of length 3), ¥ -3 — 2 — 1
and @ — 2 — 3 — 1, cannot achieve the final community
{1, 2, 3}, while other assembly paths (of length 3) can. Note
that if we allow for recurrent invasion, then the assembly path
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(of length 4), & — 2 — 3 — 1 — 2, can eventually achieve
{1, 2, 3}. Hence, the history dependence we are interested in is
equivalent to the existence of nonoptimal assembly paths (of
length > §) to assemble a community formed by S species,
that is, there is at least one infeasible boundary equilibrium.
And history independence means that, starting from the empty
community, all the S! assembly paths (of optimal length §)
can lead to the final state where S species stably coexist, that
is, all boundary equilibria are feasible. For example, for the
system shown in Fig. 1(e), any subset of the three species can
coexist at their equilibria. In this case, the final community
composition is independent of the colonization history, and
any optimal assembly paths (of length S) can assemble a
community formed by S species.

Based on the above observations, in the absence of multiple
interior equilibria and recurrent invasions, we have two simple
rules to determine the relationship of community composition
and colonization history.

First, if there exists a set of species {S} that can coex-
ist at a unique equilibrium but a smaller subset of species
{T}(C {S}) cannot, then the final community composition
formed by the S (= |{S}|) species depends on the colo-
nization history. This rule can be understood as follows.
For a given regional pool {S} = {1, ..., S}, without loss of
generality, let us assume there is only one subcommunity
{T}={1,...,T} (with T < S) that does not have a feasible
boundary equilibrium, then the following two assembly paths
(of the same length S), () 9 -1 —» --- > T —-1—>T —
T+l—- - -S8S5Q0QQ9—>1—-.-->T—-1->T+1—>
T — ---— §, will yield different states. The former leads
to{l,---, T—1,T+1,---,5} with § — 1 species present,
while the latter leads to {1,---,S} with all the S species
present. Similar arguments can be applied to the case of more
infeasible subcommunities. Basically, the assembly paths (of
length §) that avoid those roadblocks (infeasible subcom-
munities) will naturally lead to {1,---,S} with all the S
species present, while those assembly paths (of length §)
that encounter those roadblocks (infeasible subcommunities)
will lead to different final states, in the absence of recurrent
invasions.

Second, if any subcommunities of {S} can coexist at a
unique boundary equilibrium, then the final community com-
position formed by the S species does not depend on the
colonization history. This result can be explained via the fol-
lowing example: When a new species is added to a species
pool to build a new community {Z} = {1, 2, ..., I}, the com-
munity with / (< S) species can stably coexist in a unique
boundary equilibrium, which is stable and feasible. Following
these steps to add more and more species one at a time, we
will always reach the unique interior equilibrium with all the
S species present, regardless of the detailed assembly path.
Thus, the final state is independent of the colonization history.

We emphasize that the above two simple rules hold
for a wide class of population dynamics models where all
the S species can coexist at a unique interior equilibrium
and recurrent invasions are not allowed. However, we still
lack a numerical scheme to quantitatively study the impact
of colonization history on community assembly. Directly
constructing the assembly graph for large systems is com-
putationally intractable. Indeed, for a species pool of size S,

suppose the S species can coexist at a stable interior equi-
librium, then starting from the empty community, where one
species can invade at a time, there are S! potential assembly
paths to reach the final state where all the S species present,
and there are (25 — 2) possible subcommunities (with at least
one and at most § — 1 species). If there are some subcom-
munities that do not have feasible boundary equilibria, they
will serve as roadblocks in some assembly paths (or isolated
nodes in the assembly graph, e.g., {2, 3} in Fig. 1(b). For large
S, we know that both S! and (25 — 2) are notoriously large,
rendering the construction of the assembly graph computa-
tionally intractable. Without the assembly graph at hand, it
is very hard, if not impossible, to identify which assembly
paths (of optimal length §) will lead to the final state with all
S species present. Moreover, once we encounter a roadblock
in a particular assembly path, it is very challenging to pre-
dict exactly how many recurrent invasions will be needed to
eventually reach the final state with all S species present if we
do not have the assembly graph. Therefore, for ecosystems
with only one attracting interior equilibrium, even though
the community assembly with recurrent invasions allowed is
trivially history independent in the long run, it becomes highly
nontrivial without recurrent invasions.

III. MODEL DEFINITION

In this paper, we choose the classical gLV model to
quantitatively study the impact of colonization history on
community composition. This model includes parameters that
govern the intrinsic growth rates of different species and pair-
wise interactions among different species, and it is tractable
enough to allow us to investigate the conditions under which
community composition depends on colonization history.

The gLV model can be written as follows:

dNy(t) _ N(I)(

S
yr ri+ZAiij(t)>,i:1,--~ .S, ()

j=1

where N; is the abundance (or biomass) of species-i, S cor-
responds to the number of species in the community, A =
[Aijlg. ¢ 1s the interaction matrix whose elements denote the
per capita effect of one species on the per capita growth rate
of another species, and r; is the intrinsic growth rate of species
i

To ensure that the S species can coexist at a unique inte-
rior equilibrium, following previous studies [28,29], we focus
on diagonally stable interaction matrices A (i.e., there is a
positive definite diagonal matrix D such that DA + A™D is a
negative definite symmetric matrix [30]). A diagonally stable
interaction matrix A guarantees that the gLV model has a
single, globally, attractive equilibrium [31]. We emphasize
that the assumption of a diagonally stable interaction matrix A
is deeply driven by the complexity of this problem and allows
us to focus on the feasibility of the system—the necessary
condition for species coexistence [32,33].

To construct the A matrix, we first capture its binary
structure by constructing an Erd6s-Rényi (ER) random graph.
We begin with S isolated nodes (species). For each of the
S(S — 1)/2 node pairs, we construct an undirected edge be-
tween the two nodes with probability C. It is worth noting that
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C represents the connectance of the community (i.e., the ratio
between actual and potential interactions in the ecological
network). Once the ER graph is constructed, we assign the
interspecific interaction strengths to the edges (here we treat
edges as bidirectional). The interaction strengths A;;(i # j)
are drawn from a normal distribution N (0, o2), where o =
1/4/S(2 + €) denotes the characteristic interspecific interac-
tion strength and € is a constant [34]. The diagonal elements
are set to be A;; = —d, with d representing the intrinsic damp-
ing time scale of each species.

We consider three interaction types: (1) Random (no
sign structure). A;; and Aj; are independently sampled from
N(0, ?). (2) Predator-prey (+, —): We generate a random
number p from a uniform distribution [0, 1]. If p < 0.5, we
draw A;; from a half-normal distribution |N(0, o2)|, and A ji
from —|N(0, 02)|. If p > 0.5, we do the opposite. (3) Mixture
of competition (—, —) and mutualism (4, +): We generate a
random number p from U[0, 1]. If p < 0.5, we draw A;; and
Aj; independently from |N(0, a?)|. If p > 0.5, we draw Ajj
and A ;; independently from —|N(0, o).

To ensure the randomly generated interaction matrix A is
diagonally stable, we set € = 0.01 and d = 1 [34]. Further-
more, to ensure the coexistence of the whole community with
S species, we use the feasibility domain to construct feasible
vector of intrinsic growth rates [35]. When the interaction
matrix A is given, the feasibility domain can be determined
as an algebraic cone,

Dp(A) ={r = Nj'vi +--- + N{vg}, 2)

where N > 0 is the equilibrium abundance of species i, and
v; is the spanning vector of the algebraic cone, whose jth
A —. If the vector of in-

b Zf:]Ak'

trinsic growth rates r is chosen inside the feasibility domain
Dr(A), the community with S species will always be feasible.
This feasible vector can be defined as follows: r = Zf:] niv;,
where n} € (0,1) and Zis=1 n = 1. This procedure guaran-
tees that there is at least one assembly path that can given rise
to the whole community formed by S-coexisting species.

component is given by v;; =

IV. ANALYSIS AND RESULTS

As noted in the simple rules mentioned in Sec. II, whether
all subsets of species can coexist at their boundary equilibria
will determine if the community composition depends on col-
onization history. Under the gLV dynamics, this coexistence is
guaranteed if the equilibria of system (1) are feasible (i.e., all
present species have positive abundance) and globally stable
for all subcommunities. It has been proved that if the interac-
tion matrix A is diagonally stable, then all submatrices (A) are
diagonally stable as well [30], and the nontrivial positive equi-
librium will be globally asymptotically stable (that is, species
can stably coexist) [31]. These matrix properties imply that we
only need to guarantee the feasibility of the boundary equilib-
ria for all subcommunities. The unique boundary equilibrium
of every subcommunity with k species (k < S) under gLV
dynamics can be calculated as N* = (N*, . ,N]:‘) = —A’lf‘,
where A and f are the reduced interaction matrix (k x k)
and intrinsic growth rate vector (k x 1) of the corresponding
subcommunity, and when Nl* >0@G(=1,---,k), this sub-

community is feasible, otherwise, it is infeasible. Thus, we can
obtain a numerical scheme to determine for the gLV model
whether the community composition depends on colonization
history: For a community {S} that follows the gLV dynamics
characterized by a diagonally stable interaction matrix A and
a feasible intrinsic growth rate vector r, in the absence of
recurrent invasions, if there exists an infeasible subcommunity
{7}, then the final community composition of the community
{S} depends on colonization history. Otherwise, it will be
colonization-history independent.

A. Examples of small communities

To illustrate the application of the above numerical scheme,
we consider the two three-species communities shown in
Fig. 1. The community shown in Fig. 1(a) is characterized
by a feasible intrinsic growth rate vector r = (%, % %)T and a
diagonally stable interaction matrix:

—-1.00 —-0.01 0.46
A=|-010 -1.00 -1.02
-0.58 089 —1.00

In this case, we can verify that there exists a feasible in-
terior equilibrium N* = (0.417, 0.104, 0.184)" for the three
species but there is no feasible boundary equilibrium for the
species-pair {2, 3}. Thus, based on the above result, the final
community composition will depend on the colonization his-
tory. Indeed, Fig. 1(c) shows two different final states obtained
by two assembly paths. Figure 1(d) shows a community char-
acterized by the same feasible intrinsic growth rate vector r
but with a different diagonally stable interaction matrix:

—-1.00 -0.37 —-0.19
A=|-040 -1.00 0.06
-025 -0.19 -1.00

In this case, all subsets of species have unique and feasible
boundary equilibria. Thus, the final community composition
does not depend on the colonization history: Any assembly
path will eventually yield the same final community com-
position of the three species (see Fig. 1(f) for examples of
assembly paths).

B. Effects of community properties

A big advantage of our numerical scheme is that it allows
us to perform extensive numerical simulations to investigate
which properties of the community and individual species can
affect the probability that community composition depends
on colonization history. In particular, for a given community
{S} with gLV dynamics, we can numerically check all subsets
(subcommunities) to search whether there exists any infeasi-
ble subset {7} and, if so, we conclude that the community
is history dependent. Furthermore, to study the impact of
community properties on the history dependence, we sys-
tematically generate diagonally stable interaction matrices A
with different community size (S), network connectance (C),
and interaction types. In particular, for each interaction type
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FIG. 2. The probability P that community composition depends on colonization history as a function of community properties. P is
calculated as a function of community properties: community size S, connectance C, and interaction types, using the gLV model (line
plots with error bars) or the null model (lines). (Top) P as a function of connectance C, with fixed community size S = 10. Bottom: P as a
function of community size S, with fixed connectance C = 0.5. Each column corresponds to a particular interaction type: random interactions,

predator-prey, and mixture of competition and mutualism.

and given (C, S) values, we first randomly construct an in-
teraction matrix A, and then generate 2000 feasible intrinsic
growth rate vectors r € Dr(A). From the 2000 communi-
ties (A, r), we count how many communities have infeasible
subcommunities to calculate the probability that commu-
nity composition depends on colonization history, denoted
as P, for a given interaction type and (C,S) values. We
repeat this process for an ensemble of 50 different real-
izations of A, and then calculate the standard error of the
mean (SEM) of P for a given interaction type and (C, S)
values.

We find that the probability P always increases with the
community size S (Fig. 2, top) or network connectance C
(Fig. 2, bottom), regardless of the interaction type. This in-
dicates that the community composition will almost surely be
dependent on colonization history when an ecological system
is composed of a large number of species or when species are
highly connected.

To check how this result holds beyond expectations, we
consider a simple null model as follows. We assume that a
random subset of species has a fixed probability p to have a
feasible boundary equilibrium. Then, the probability to have
at least one subset of species that does not have a feasible
boundary equilibrium is given by 1 — p", where n = 25 — 2 is

the number of possible subsets with at least one and at most
(§ — 1) species. According to the above result, we conclude
that the probability that community composition depends on
colonization history is Py = 1 — p”, where the subscript null
stands for the null model.

In the top panel of Fig. 2, for a given community size S,
we plot P,y based on different values of p (horizontal lines).
Clearly, lower p yields higher P,,;, regardless of the con-
nectance C. For example, for § = 10, we have Py ~ 0.1 for
p = 0.9999 (green line), and Py ~ 1 for p = 0.99 (yellow
line). However, our calculation based on the gLV model indi-
cates that P increases monotonically with increasing C, and
for § = 10 we have P — 1 only if C is above 0.6, regardless
of the interaction types. In the bottom panel of Fig. 2, for a
given value of p, we plot Py as a function of the community
size S, finding that P, increases monotonically with S. Note
that the S -dependency of P, is heavily driven by the value
of p. For example, for p = 0.999 (or 0.9), P, will always
underestimate (or overestimate, respectively) P for S < 12,
regardless of the interaction types. The difference between
Paun and P shown here suggests that ecological dynamics (as
simple as they can be) can fundamentally alter the dependency
of the community composition on colonization history. That
is, this probability cannot be precisely predicted from the
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FIG. 3. The probability P that community composition depends on colonization history as a function of intrinsic properties of species. The
probability is calculated for different levels of interspecific variation £ (intrinsic growth rate) and interaction types, using the gLV model (line
plots with error bars) or the null model (lines). We fix community size S = 8 and network connectance C = 0.4. Each column corresponds to
a particular interaction type: random interactions, predator-prey, and mixture of competition and mutualism.

probability of feasibility of each individual subset (as assumed
in the null model).

C. Effects of intrinsic properties

To investigate the extent to which the variation of intrinsic
properties across species affects the history dependence, we
systematically generate feasible vectors of intrinsic growth
rates r with different levels of variability across the elements.
In particular, for different interaction types, we sample 2000
feasible vectors r € Dr(A) for each randomly generated in-
teraction matrix A with community size S = 8 and network
connectance C = 0.4, and then in each case we can calculate
different interspecific variations of intrinsic growth rates & =

= 2:2. We categorize them (with bin width = 0.05) according
to the variation (£) across their elements, and use the curves to
replace the histogram to show the expected value. Similarly,
here we sample 50 different realizations of the matrix A to
calculate the SEM of P for each & bin.

From Fig. 3, we can observe that P increases monoton-
ically with increasing &, regardless of the interaction type.
In other words, the higher the interspecific variation within
a community, the higher the probability that community
composition depends on colonization history. An intuitive ex-
planation of this phenomenon is as follows. As we increase &,
different species tend to have quite different intrinsic growth
rates and hence play different roles in the community assem-
bly, rendering higher probability that community composition
depends on colonization history.

Here, for the given community size S, we also plot Py
based on different values of p. As shown in Fig. 3 (horizontal
lines), lower p yields higher Py, regardless of the interspe-
cific variation £ and interaction types. For example, for § = 8§,
we have Py ~ 0.01 for p = 0.9999 (green line) and P,y ~
0.9 for p = 0.99 (yellow line). However, our calculation based
on the gLV model indicates that P increases monotonically
with increasing &, and for S = 8 we have P — 1 if £ is above
2, regardless of the interaction types. The difference between
P and P underscores the impact of interspecific variation
on the probability that community composition depends on
colonization history, which cannot be predicted from the null

model. This is acceptable because the simple null model only
contains two parameters p and S, while the gLV model of
N species contains N + N? parameters (stored in r and A).
Although the null model cannot accurately fit the simulation
results of the gLV model, it can still offer a theoretical guide
to predict the qualitative trend so we can better appreciate
why the colonization history matters for large and complex
ecological communities.

V. DISCUSSION

In summary, here we offered simple rules linking coloniza-
tion history and community composition in the absence of
multiple interior equilibria and recurrent invasions. Moreover,
we applied those rules to communities that are governed by
gLV dynamics and proposed a numerical scheme to mea-
sure the probability that community composition depends
on colonization history. Through extensive simulations, we
demonstrated that this probability increases monotonically
with community size, network connectance, and variation of
intrinsic growth rates across species. Moreover, we proposed a
simple null model to fit the above numerical results. However,
due to the complexity of the gLV model, especially the various
parameter settings of species number, network connectance,
or growth rate heterogeneity, the effects cannot be precisely
predicted from the null model that only considers the proba-
bility of feasibility of each subcommunity of species.

It is worth noting that our current framework has several
limitations. First, it focuses on the coexistence of species
at a globally stable interior equilibrium [36] based on the
assumption of a diagonally stable interaction matrix. But the
coexistence of species could be driven by not only an equilib-
rium state but also different dynamical behaviors, such as limit
cycles or chaos. Those more complicated scenarios deserve a
more dedicated research effort [37].

Second, the simulation framework is applicable to gLV
dynamics with linear functional responses. Extending the
calculations to population dynamics models with a more com-
plicated functional response will also be an interesting future
direction [33,38].
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Third, our explanation of the probability P increasing with
the variation £ of species’ intrinsic growth rates (Fig. 3) is
very conceptual. We call for more quantitative explanations of
this very interesting phenomenon. Despite those limitations,
the simplicity of our work allows us to provide a first-order
classification of the conditions modulating the impact of col-
onization history. This paper can serve as a basis for future
work aiming to study the extent to which it is possible to re-
construct (or to partially reconstruct) the species arrival order
in a community.
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