

Effects of chemical etching and reduction activation on CO oxidation of CeO₂ nanorods supported ruthenium catalysts

Yifan Wang, Ruigang Wang

Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States

ARTICLE INFO

Article history:

Received 28 October 2021

Received in revised form 9 January 2022

Accepted 9 January 2022

Keywords:

CeO₂ nanorods support

Chemical etching

CO oxidation

In-situ DRIFTS

Ruthenium

ABSTRACT

In this work, pristine and NaBH₄ etched CeO₂ nanorods supported ruthenium (Ru) catalysts were synthesized and employed to investigate the effects of chemical etching and reduction activation treatment on CO oxidation. With 1 wt% Ru loading, the CeO₂ nanorods supported catalyst sample, after 6 wt% NaBH₄ etching treatment, showed significantly promoted H₂ consumption under 100 °C and low apparent activation energy (E_a ~ 31.2 kJ/mol) for CO oxidation. *In-situ* CO-DRIFTS profiles revealed that, for the reduced sample, the observed CO adsorption at ~ 2020 cm⁻¹ at 40 °C may be related to a strong RuO_x-CeO₂ interaction induced by the NaBH₄ etching process, which were consistent with the oxygen vacancy analysis results of X-ray photoelectron spectroscopy and CO-temperature programmed desorption. The enriched surface defects on CeO₂ support surface due to the chemical etching and reduction treatment are believed to promote the interaction between RuO_x species and CeO₂, which is responsible for the enhanced activity of CO oxidation.

© 2021

1. Introduction

CO oxidation, as a fundamental reaction in vehicle three-way catalytic converters, is still one of the most important and extensively studied catalytic reactions. Compared to other commonly used platinum group elements, such as palladium (Pd), platinum (Pt) and rhodium (Rh), ruthenium (Ru) has recently attracted significant attention in the fields of noble-metal catalysts with various applications including electrocatalytic CO₂ reduction and reuse, water splitting, and CO/hydrocarbon catalytic oxidation due to its comparably lower cost and excellent activity. Especially for CO oxidation, Ru-based catalysts exhibit enormous potential with outstanding activity at low temperatures. For example, Huang et al. [1] reported on novel solid-solution alloy nanoparticles of Ru and Cu, demonstrating higher CO oxidation activity than fcc Ru which is one of the best monometallic CO oxidation catalysts. Wang et al. [2] constructed a Ru-Co₃O₄ interface, which can activate the O₂ species at the interface, resulting in lowered activation energy and boosted catalytic performance of CO oxidation. Kim et al. [3] prepared Ru catalysts supported on various aluminum oxides with different crystalline phases and found Ru/α-Al₂O₃ can reduce a high inlet concentration of CO to less than 10 ppm even in the presence of H₂O and CO₂ over a wide temperature range.

Ceria (CeO₂) is well-known for its excellent oxygen storage capacity and high redox ability via a reversible Ce⁴⁺ to Ce³⁺ transition [4,5]. CeO₂ can act as an active component in many redox-related catalytic reactions and has been extensively studied. CeO₂ nanocrystals with differ-

ent morphologies, such as nanooctahedra, nanospheres, nanocubes, and nanorods (NR) have been studied to understand the effects of nanoparticle morphology and exposed crystal planes on the activity and selectivity of CeO₂ supported metal or metal oxide catalysts [6–8]. According to others' and our previous work [9–11], CeO₂ nanorods (CeO₂NR) supported metals or metal oxides (i.e. Ru and CuO_x) show superior activity in water–gas shift reaction and CO oxidation compared to CeO₂ nanocubes (CeO₂NC) and nanooctahedra (CeO₂NO) supported metals or metal oxides, thanks to the exposed crystal planes and surface defects.

In addition to utilization of catalytically active supports, surface modification of supports and catalysts has also been widely adopted to further enhance the performance of existed catalysts system for economic and large-scale practical applications [12,13]. For instance, Gao et al. [14] reported that surface engineering of CeO₂NR by chemical redox etching resulted in rough, high porosity catalyst surfaces, which can increase the catalytic activity for CO oxidation due to the enhancement of specific surface area, oxygen vacancy content and the surface Ce³⁺ fraction of CeO₂NR. Han et al. [15] reported the effect of sulfate acid pretreatment on CeO₂/ZrO₂ catalysts to promote the selective catalytic reduction. Furthermore, Baechong et al [16] studied the catalytic activity of nanoscale zero-valent iron (Fe⁰) after NaBH₄ etching for reduction of p-nitrophenol and found that the addition of NaBH₄ initiated the disintegration of iron species into smaller clusters with increased reactive surface.

Based on the literature and above findings, chemical etching (or surface modification) can directly modify the surface of CeO₂NR support

<https://doi.org/10.1016/j.jcis.2022.01.062>

0021-9797/© 2021

and show significant influence on the catalytic activity of supported transition metal catalysts. However, the exact effects of chemical etching to CeO_2 supported catalysts need to be revealed to further comprehensively understand the role of surface chemistry in the interaction between Ru species and CeO_2NR support. In this study, CeO_2NR was first chemically etched by strong reducing agent NaBH_4 (hereinafter referred to as mCeO_2NR ; “m” refers to “modified”) and then mCeO_2NR supported 1 wt% ruthenium oxide catalysts were prepared and used to study the effect of chemical etching on the surface chemistry and resulting CO oxidation. Temperature and time dependent *in-situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to elucidate the mechanisms of CO adsorption, which can be further used to investigate the catalysts behavior during CO oxidation. The effect of strong interactions between Ru species and mCeO_2NR on CO oxidation is discussed.

2. Experiment

2.1. Preparation of pristine CeO_2NR support

A hydrothermal method was used to synthesize CeO_2NR support. According to our previous study [17,18], 8.8 mmol cerium nitrate hexahydrate ($\text{Ce}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$, Sigma Aldrich, 99%) was dissolved in 88 mL deionized water (DI water). Then, 8 mL of aqueous solution containing 48 mmol NaOH was added dropwise with a pipette into the $\text{Ce}(\text{NO}_3)_3$ solution with simultaneous mild stirring until the formation of a milky slurry. After that, the mixture was transferred into a Teflon lined stainless-steel autoclave and aged at 90 °C for 48 h. To obtain dry, pristine CeO_2NR powder, the sample was filtered and dried at 60 °C overnight.

2.2. NaBH_4 chemical etching treatment of CeO_2NR powder

To obtain surface modified CeO_2NR ($\text{m-CeO}_2\text{NR}$) support, strong reducing agent NaBH_4 was used to etch and tune the surface structure/chemistry of the pristine CeO_2NR powder in the following steps [19]. 0.5 g CeO_2NR powder was dispersed in 250 mL of DI water with vigorous stirring, and 6 wt% NaBH_4 (powder, ≥98.0% from Sigma-Aldrich) was added to the CeO_2NR suspension. After stirring at room temperature for 12 h, the mixture suspension was then filtered and dried at 60 °C overnight. Then the powder sample was finally calcined at 300 °C for 5 h in air.

2.3. Deposition of ruthenium oxide catalysts on CeO_2NR

$\text{CeO}_2\text{NR}/\text{mCeO}_2\text{NR}$ supported RuO_x catalysts were prepared by co-precipitation method. First, 0.5 g of CeO_2NR or mCeO_2NR was added to 100 mL DI water with mild stirring on a magnetic stirrer. Then the required amount of Ru precursor ($\text{Ru}(\text{NO})(\text{NO}_3)_3$, Alfa Aesar) was added to the CeO_2 suspension to obtain 1 wt% of Ru loading. Aqueous ammonia ($\text{NH}_3 \cdot \text{H}_2\text{O}$) was added dropwise into the $\text{Ru}(\text{NO})(\text{NO}_3)_3/\text{CeO}_2\text{NR}$ or $\text{Ru}(\text{NO})(\text{NO}_3)_3/\text{mCeO}_2\text{NR}$ suspension until a pH value of 7 was reached. The resulting solution was heated to 80 °C for 4 h on a hot plate, and then the temperature was increased to 100 °C until a complete water evaporation. The dried catalyst powders were calcined at 300 °C for 5 h under air flow with a heating ramp of 10 °C /min to obtain homogeneous supported RuO_x catalysts. The calcined samples were denoted as $\text{RuO}_x\text{-CeO}_2\text{NR-o}$ or $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$ (1 wt% = $[\text{Ru}/(\text{Ru} + \text{CeO}_2)]_{\text{wt}} \times 100\%$). The reduced supported RuO_x catalysts were synthesized by reducing part of the oxidized Ru catalysts at 300 °C for 5 h with a heating ramp of 10 °C /min in a 5.0 vol% H_2/Ar flow (200 mL/min). Finally, $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ or $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ catalysts were obtained after the furnace was cooled down to room temperature with the same 5.0 vol% H_2/Ar flow.

2.4. Catalyst characterizations

The crystalline structure of supported RuO_x catalysts was analyzed by X-ray diffraction on a Philips X'Pert MPD diffractometer with $\text{Cu K}\alpha$ radiation source ($\lambda = 1.5418 \text{ \AA}$). The XRD profiles were recorded in a range of 20 from 5° to 90° with scanning rate of 0.01° per second. The working voltage and current for the X-ray diffractometer were 45 kV and 40 mA, respectively. The Ru content of supported RuO_x catalysts were determined using Apreo scanning electron microscope with an energy-dispersive X-ray spectroscopy (Bruker XFlash EDS) detector at the accelerating voltage of 20 kV. The samples of EDS were prepared by placing small amount of powder on conductive carbon tapes with a flat surface.

Horiba Labram HR 800 Raman Spectrometer was used for the Raman spectra of catalysts, using 532 nm laser module scanned in the range of 100–1500 cm^{-1} . A FEI Tecnai F20 operated at 200 kV, equipped with a high angle annular dark field detector (HAADF) and an EDAX detector, was used for transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with EDS analysis. The samples were prepared by dispersing powder in ethanol with ultrasonic and then dropping onto an ultrathin holey carbon film supported on copper grid (from Ted Pella). A Kratos Axis Ultra DLD spectrometer with monochromatic $\text{Al K}\alpha$ radiation ($h\nu = 1486.6 \text{ eV}$) was used under ultra-high vacuum (UHV) conditions with base pressure under 8×10^{-10} Torr for X-ray photoelectron spectroscopy (XPS) data acquisition and CASAXPS software for data analysis. After mixing catalyst powders into ethanol with ultrasonic, the 2–3 droplets of suspension were then transferred on flat silicon wafer. The final thin-film sample were obtained after ethanol evaporation in air. The carbonaceous C 1s line at 284.8 eV was used to calibrate the binding energies as an internal standard.

The specific surface areas of the powder samples were obtained according to the Brunauer-Emmett-Teller method (BET) by measuring N_2 adsorption/desorption at ~ -196 °C through the signal from a thermal conductivity detector (TCD) on the Micromeritics AutoChem II 2920 chemisorption analyzer. Hydrogen temperature programmed reduction ($\text{H}_2\text{-TPR}$), carbon monoxide temperature programmed desorption (CO-TPD) and oxygen temperature programmed desorption ($\text{O}_2\text{-TPD}$) were carried out on the same chemisorption analyzer to acquire information on the reducibility and CO adsorption/desorption ability of the samples, respectively. For a typical $\text{H}_2\text{-TPR}$ experiment, powder sample (~ 90 mg) was placed in a quartz U-tube reactor and heated up from 30 °C to 900 °C at a heating rate of 10 °C /min with 10% H_2/Ar gas flow (flow rate: 50 mL/min). For $\text{CO-TPD}/\text{O}_2\text{-TPD}$, 50 mg of catalyst was first pretreated with He gas flow (flow rate 50 mL/min) at 400 °C for 1 h to remove residual surface moisture. Second, the catalyst was saturated by 10% CO/He gas flow for CO-TPD or 5% O_2/He gas flow for $\text{O}_2\text{-TPD}$ (flow rate 50 mL/min) at 30 °C for 1 h, and then flushed with He gas flow (flow rate 50 mL/min) from 30 °C to 900 °C to monitor the desorption behavior.

A Bruker Vertex 70 FTIR spectrometer equipped with a Harrick cell and a room temperature DLaTGS detector was used for *In-situ* diffuse reflectance infrared spectroscopy (DRIFTS). The catalyst powders were flushed by UHP N_2 gas inside the cell with a flow rate of 30 mL/min at 200 °C for 30 min to remove residual surface moisture. After temperature back to 35 °C, the background spectrum was collected at the same flow of N_2 . The temperature-dependent *in-situ* DRIFTS spectra were collected with 30 mL/min 5 vol% CO/95 vol% Ar mixture feeding gas with the temperature ramping from 35 °C to 150 °C with a heating rate of 10 °C/min. The interval of each spectrum for temperature dependences is 10 °C and the first one started at 40 °C. For the time-dependent *in-situ* DRIFTS spectra, the catalysts went through the same pre-treatment as the temperature-dependent experiments. After the collection of background spectrum, the feed gas switched to a 30 mL/min 5 vol% CO/95 vol% Ar mixture feeding gas for 40 min, after which the

flow was switched back to 30 mL/min UHP N₂ gas for 40 min. During the whole time, the DRIFTS spectra were continuously recorded every 10 min by collecting 64 scans with a resolution of 4 cm⁻¹.

2.5. Catalytic activity measurements

The CO oxidation activity toward CO conversion were carried out with a fixed bed plug flow reactor system, loaded 50 mg of catalyst with quartz wool. The total flow rate of the feed gas (1 vol% CO/20 vol% O₂/He gas flow) was 30 mL/min, corresponding to a weight hour space velocity (WHSV) of 36,000 mL h⁻¹ g_{cat}⁻¹. The measurements were carried out by heating the reactor from room temperature to 400 °C. The reactants and products were analyzed by an online gas chromatograph (SRI multiple gas analyzer GC, 8610C chassis) system. The catalytic stability test for CO conversion was carried out with the same system of the activity test. The sample was heated to the experimental temperature that provides ~ 90% CO conversion and was kept at that temperature for 24 h. The effect of water vapor was studied with RuO_x-mCeO₂NR-r. The water vapor was carried by N₂ through a water bubbler at room temperature. The conversion of CO (C_{CO}) was defined according to the following equation:

$$C_{CO} (\%) = ([CO]_{in} - [CO]_{out})/[CO]_{in} \times 100$$

Where [CO]_{in} is the influent CO concentration and [CO]_{out} is the effluent CO concentration.

3. Results and discussion

3.1. Morphological and structural characterizations

The XRD patterns of Ru catalysts supported by unmodified/modified CeO₂NR before and after reduction treatment at 300 °C in 5.0 vol% H₂/Ar are shown in Fig. 1. Among the four samples, there is no observable phases for Ru species, owing to the low content of Ru (1 wt%) and/or the excellent dispersion/diffusion of Ru species into CeO₂NR lattice. It has been reported previously that the surface defects of CeO₂NR support promote the ionic diffusion interaction between catalyst and support [9]. All observed diffraction peaks at 28.5, 33.1, 47.5, 56.3, 59.1 69.4, 76.7, 79.1 and 88.4° correspond to the face-centered cubic CeO₂ phase with fluorite structure (JCPDS #34–0394). For the unmodified/

modified CeO₂NR supports without Ru loading, they showed very similar XRD patterns according to our previous work [20].

It can be clearly observed from the Raman spectra in Fig. S1 that the integrated area of D band follows the order of RuO_x-mCeO₂NR-r > RuO_x-CeO₂NR-r > RuO_x-mCeO₂NR-o > RuO_x-CeO₂NR-o, which is consistent with the results of oxygen vacancy obtained from the XPS spectra of O 1 s region. Moreover, RuO_x-mCeO₂NR-r shows a redshift of peak for 2TA mode vibration, indicating the lower symmetry of Ce-O bond or lattice distortion due to the possible formation of the Ru-O-Ce bonds.

The TEM and HRTEM images of four Ru/CeO₂NR catalysts are shown in Fig. 2. It can be observed that the unmodified CeO₂NR support has a length of 50–80 nm and diameter of 5–10 nm after the Ru loading and thermal treatments. And the modified CeO₂NR after the oxidation treatment has a length of 30–70 and diameter of 3–7 nm, which is a little shorter and thinner than unmodified CeO₂NR. There is no significantly visible change of particle size or shape after the reduction treatment. The HRTEM images of individual support particles exhibit a lattice fringes spacing with 0.31 nm that can be assigned to (1 1 1) surface termination of CeO₂, and the lattice spacing of 0.27 nm is associated with the (2 0 0) surface of CeO₂. In these supported catalyst particles the apparent absence of large Ru clusters or nanoparticles suggests good Ru dispersion on the CeO₂NR and/or possible Ru-O-Ce alloying, which is consistent with the XRD analysis. In addition, Fig. S2–S5 show the STEM images and EDS elemental mapping for RuO_x-CeO₂NR-o, RuO_x-mCeO₂NR-o, RuO_x-CeO₂NR-r and RuO_x-mCeO₂NR-r, respectively. The EDS mapping results in Fig. S2–S4 exhibit the good dispersion of Ru species on CeO₂NR supports.

3.2. Catalytic properties and XPS analysis

The H₂-TPR profiles of pristine and NaBH₄ modified CeO₂NR supported Ru catalysts, after oxidation or reduction treatment, are presented in Fig. 3(a). Owing to the strong H₂ consumption at low temperature region (below 250 °C) [9,20], the hydrogen consumption peak at higher temperature region was attributed to the surface and bulk reduction of CeO₂NR and mCeO₂NR supports, which was relatively small when compared to low temperature reduction, suggesting a dominant low temperature RuO_x-related reduction. For the low temperature region, RuO_x-CeO₂NR-o sample showed three reduction peaks at 100, 117 and 130 °C, while RuO_x-mCeO₂NR-o sample presented two reduction peaks at 110 and 125 °C. The presence of multiple reduction peaks for oxidized Ru catalysts indicates different coordination environments of Ru or different valence states of Ru species on the surface of CeO₂NR [21]. The peak appeared at 100 °C for RuO_x-CeO₂NR-o was ascribed to the well-dispersed smaller size RuO_x species that can be reduced at much lower temperature when compared to the well-crystallized or aggregated RuO₂ [9], which explains the existence of peaks at 125 and 130 °C. Compared to the reduction peak at 100 °C, the extra peak at 117 °C for RuO_x-CeO₂NR-o might be owing to the well-dispersed RuO_x on CeO₂NR surface [22]. The peak at 110 °C of the mCeO₂NR supported Ru catalyst can be assigned to the chemisorbed oxygen (O[·] or O_x[·]) promoted RuO_x reduction, which is similar to Wu et al's report that Ag catalysts supported by CeO₂ with different surface oxygen species were reduced at different temperature [23]. For the reduced samples, one main peak at 94 °C and a shoulder peak at 102 °C were showed for the RuO_x-CeO₂NR-r sample. And the RuO_x-mCeO₂NR-r sample showed similar profiles with one main peak at 94 °C and a shoulder peak at 82 °C. The main reduction peak can be ascribed to the reduction of RuO_x with strong RuO_x-CeO₂ interaction, which is because the Ru species activate oxygen ions on CeO₂NR surface and can be easily transferred and employed [24]. The different reduction temperature of two shoulders may be owing to different chemically coordinated states of Ru species. According to our previous study [19,20], NaBH₄ modified CeO₂NR presented more surface defects and these defects acted as active sites for

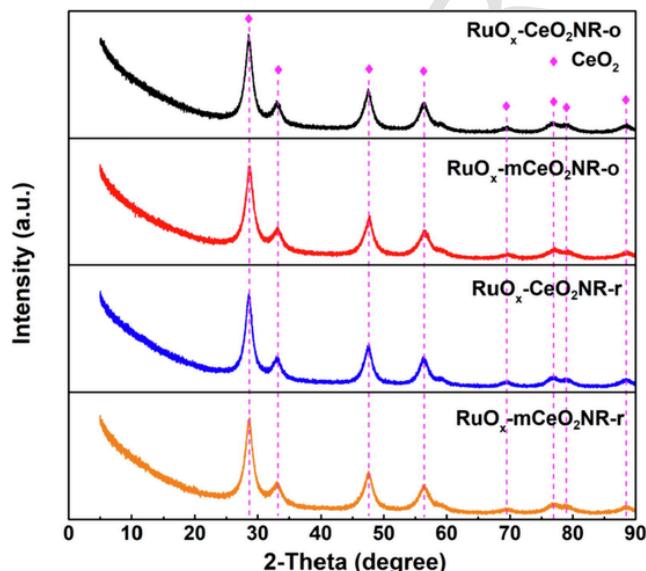


Fig. 1. XRD patterns of unmodified/modified CeO₂NR supported Ru catalysts before and after the reduction treatment.

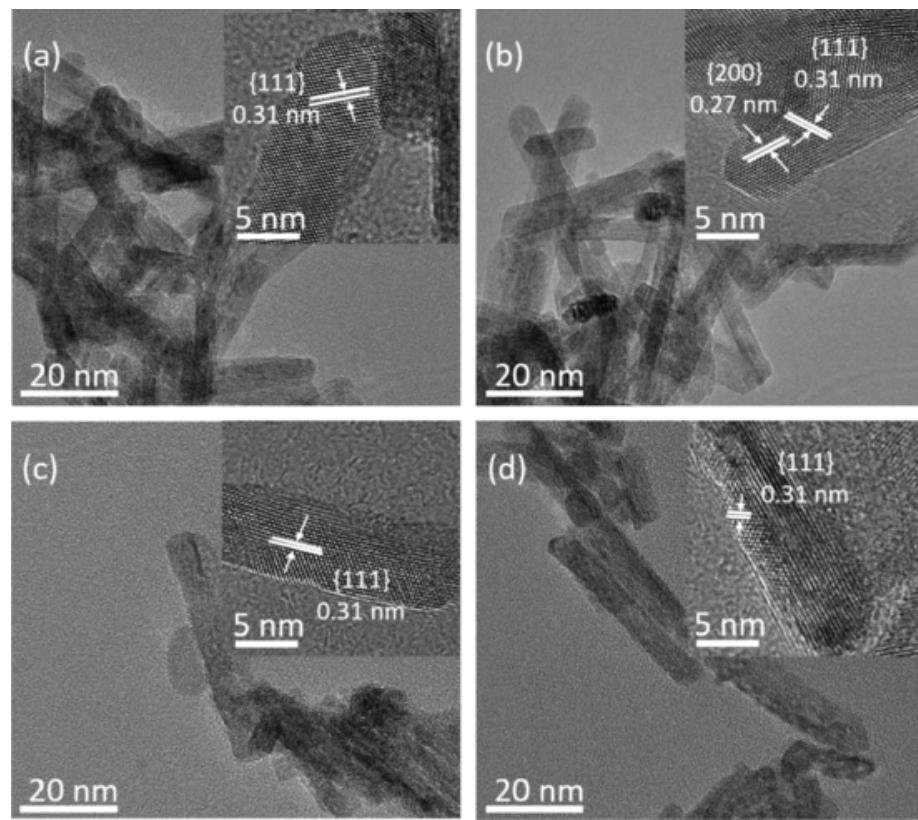


Fig. 2. TEM and HRTEM images of (a) $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, (b) $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$, (c) $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$ and (d) $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$.

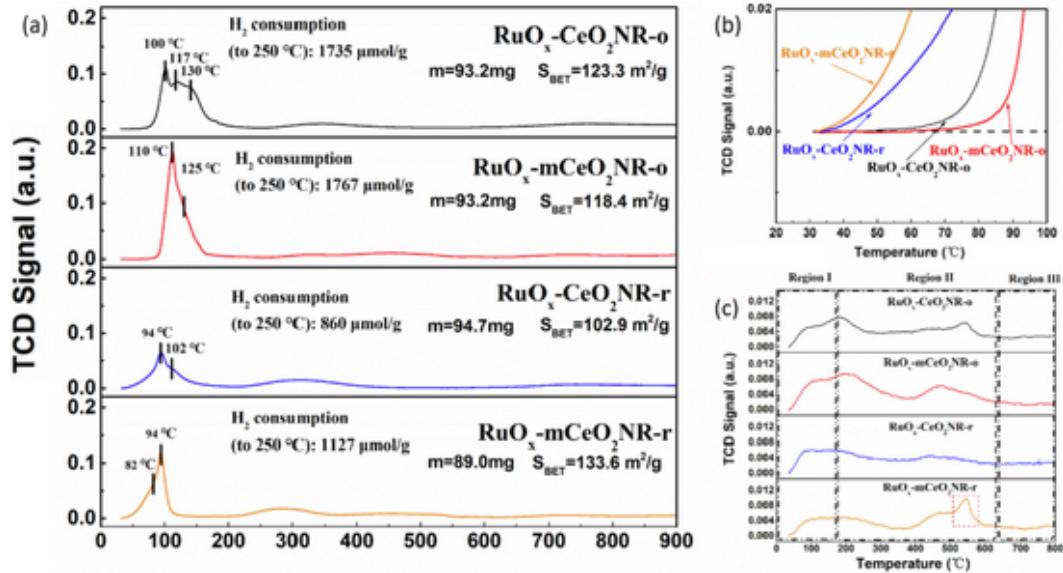


Fig. 3. (a) H_2 -TPR profiles of unmodified/modified CeO_2NR supported Ru catalysts before and after the reduction treatment and (b) low temperature TPR region showing the initial reduction between 20 and 100 °C. (c) CO-TPD profiles.

catalyst clusters trapping and anchoring. Therefore, the Ru species with defect rich $\text{m-CeO}_2\text{NR}$ surface showed stronger $\text{RuO}_x\text{-CeO}_2$ interaction that can be reduced at lower temperature. On the other hand, the higher H_2 consumption of $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ also supports the enhancement effect of chemical etching modification on low temperature reduction as shown in Table 1. The BET surface area of the $\text{RuO}_x\text{-CeO}_2\text{NR-o}$ ($123.3 \text{ m}^2/\text{g}$) and $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$ ($118.4 \text{ m}^2/\text{g}$) sample are similar. However, the BET surface area of the unmodified CeO_2NR supported Ru catalysts decreased after reduction treatment, which might be attrib-

uted to the sintering of Ru species during the high temperature reduction treatment.

Fig. 3(b) showed the on-set reduction temperature of four supported Ru catalysts. It can be observed that: the reduced Ru catalysts presented much lower “onset” reductivity when compared to the oxidized catalysts, indicating that the reduction treatment may promote a strong $\text{RuO}_x\text{-CeO}_2$ interaction. As a result of NaBH_4 modification, $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ apparently showed the lowest reduction onset temperature, which agrees with the result of H_2 consumption summarized in Table 1. On the other hand, compared with the unmodified CeO_2NR

Table 1

Ru content, BET surface area, H₂ consumption and initial reduction temperature of Ru catalysts supported by CeO₂NR.

Sample	Ru content (wt.%)	BET surface area m ² /g	H ₂ consumption (30 °C to 250 °C) μmol/g	Onset reduction temperature °C	Initial H ₂ consumption rate (30 °C to 90 °C) μmol/(g*s)
RuO _x -CeO ₂ NR-o	0.94	123.3	1735	78	0.36
RuO _x -mCeO ₂ NR-o	0.78	118.4	1767	91	0.03
RuO _x -CeO ₂ NR-r	0.89	102.9	860	57	0.66
RuO _x -mCeO ₂ NR-r	0.75	133.6	1127	50	1.36

supported Ru catalysts, RuO_x-mCeO₂NR-o and RuO_x-mCeO₂NR-r showed an extra reduction peak and lower reduction temperature between 200 °C and 900 °C (Fig. S6), indicating the promotion effect of NaBH₄ etching on the reducibility of the CeO₂NR supports and supported catalysts.

The CO-TPD profiles of the CeO₂NR supported Ru catalysts are illustrated in Fig. 3(c). The CO desorption profiles of the supported catalysts can be divided into three different peak regions [25–27]. The peak region I from room temperature to 180 °C is assigned to the CO₂ desorption from CO oxidation with overactive surface oxygen species, and the peak region II from 180 °C to 650 °C can be assigned to the CO₂ desorption from CO oxidation through lattice oxygen species of CeO₂ and the conversion of surface and interface carbonates. The peak region III from 650 °C to 800 °C corresponds to the CO₂ desorption from decomposition of carbonate species. It should be noted that the strong peak for RuO_x-mCeO₂NR-r near 550 °C indicates a different type of CO₂ desorption site, which could be due to the different oxygen species on the

modified CeO₂NR surface. Additionally, according to the O₂-TPD patterns from Fig. S7, all the Ru catalysts show the better oxygen adsorption than CeO₂NR supports with/without modification. Moreover, RuO_x-mCeO₂NR-r shows the highest total amount of chemically adsorbed oxygen species, which is consistent with the results obtained from Raman and XPS.

By analyzing the Ce 3d spectra, the chemical states and concentration of cerium ions (Ce³⁺/Ce⁴⁺) on the surface of different CeO₂NR supports were investigated and shown in Fig. 4(a). The calculated concentrations of cerium, ruthenium and oxygen species are summarized in Table 2. Corresponding to the 3d_{3/2} and 3d_{5/2} spin-orbit coupling, the spectra of Ce 3d can typically be divided into 10 peaks, where the peaks v₀, v', u₀ and u' ascribe to the Ce³⁺ state, while the peaks v, v'', u, u'', u''' attribute to the Ce⁴⁺ state [28]. The concentration fraction of Ce³⁺ to the total Ce species was calculated by the integrated peak areas of Ce³⁺ and Ce⁴⁺ from the Ce 3d spectra [29]. As shown in Fig. 4a, the concentration fraction of Ce³⁺ is 9.0% for RuO_x-CeO₂NR-o, 9.3% for RuO_x-mCeO₂NR-o, 10.4% for RuO_x-CeO₂NR-r and 10.8% for RuO_x-mCeO₂NR-r. It is known that Ce³⁺ ions prefer to form with the vicinity of oxygen vacancy and other types of surface defects [30]. On the other hand, Ce³⁺ can also present near the doping sites of Ru ions to balance the charge difference (Ru⁴⁺, Ru⁶⁺ and Ce⁴⁺). Table 3

The O 1s spectra for the CeO₂NR supported Ru catalysts are displayed in Fig. 4(b). In literature, the observed O 1s peaks around 530 eV in CeO_{2-x} (0 ≤ x ≤ 0.5) are typically ascribed to three kinds of oxygen species: lattice oxygen (O_L); vacancy related oxygen species (O_V); and surface-chemisorbed oxygen species (O_C) or oxygen in hydroxyl groups (O_{OH}) [11,31]. Due to the high surface concentration of oxygen vacancy in the prepared CeO₂NR [14–17,24], the peaks at 529.4, 531.5 eV, 532.3 eV and 533.8 eV are assigned to lattice oxygen (O_L), oxygen vacancy/defects (O_V), surface-chemisorbed oxygen species (O_C) or oxygen in hydroxyl groups (O_{OH}) on the surface of CeO₂NR, respectively. Pu et al [32] studied the Pr- and Cu-doped CeO₂ catalysts, proposing a possible pathway for CO oxidation, where the first step was believed to involve the O₂ chemisorption on the catalyst surface and highly associate with sites like the oxygen vacancy (O_V). As shown in Fig. 4(b), the relative concentration of O_V is calculated by the

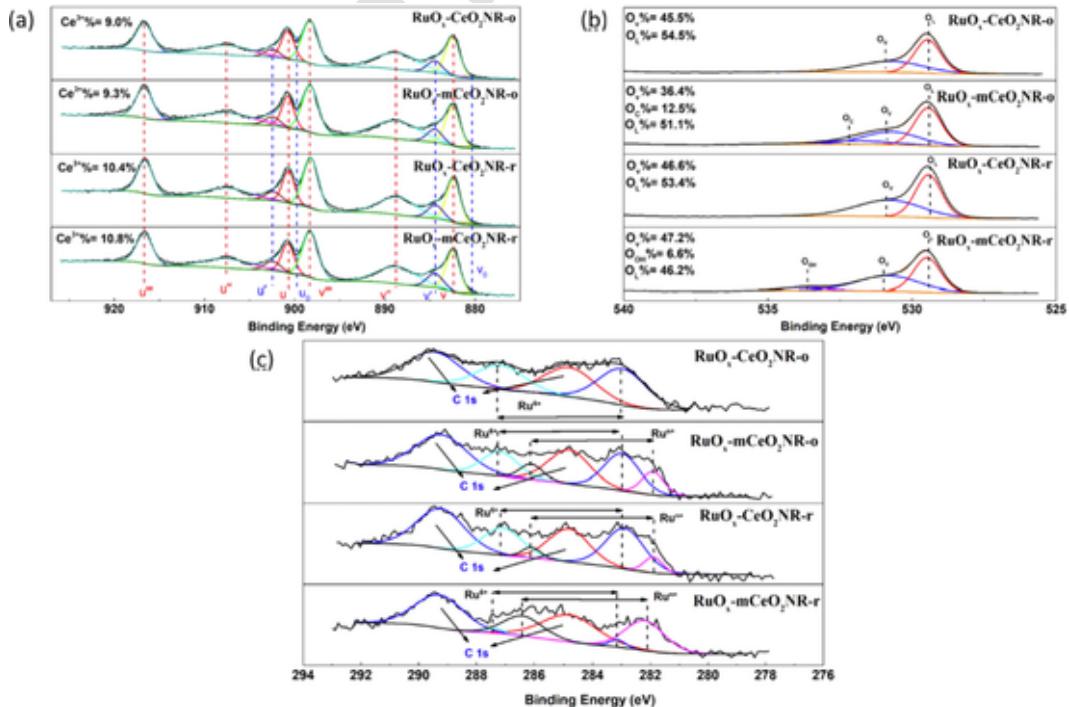


Fig. 4. XPS spectra of (a) Ce 3d, (b) O 1s, and (c) Ru 3d for unmodified/modified CeO₂NR supported Ru catalysts before and after the reduction treatment.

Table 2Concentration of Ce^{3+} , Ru^{6+} / Ru^{n+} and O_v of Ru catalysts.

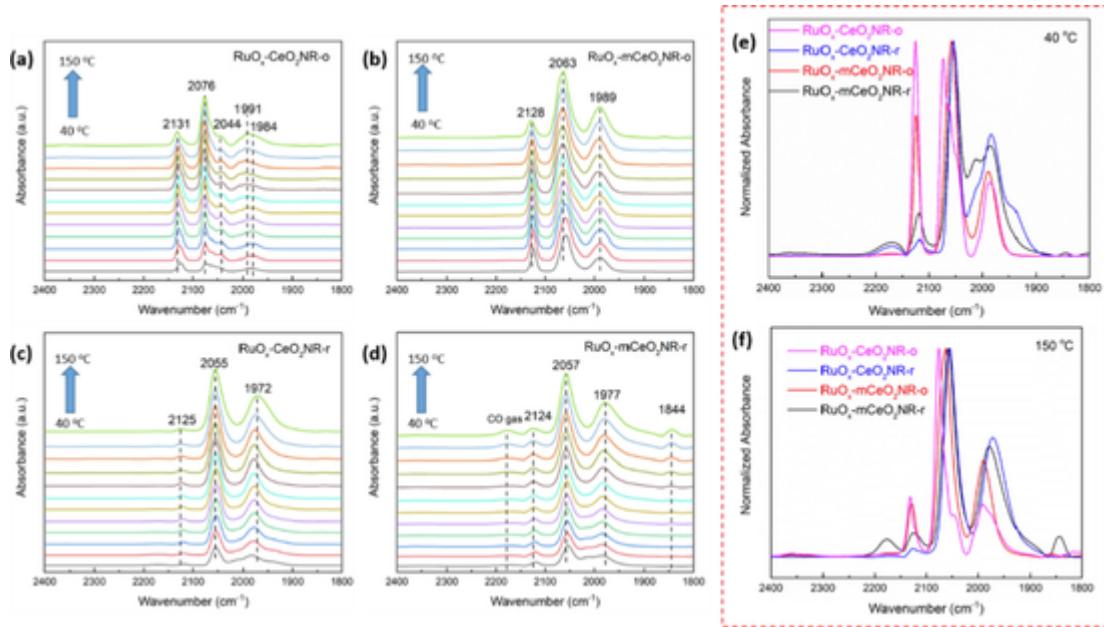
Sample	Ce^{3+} (at.%)	Ru^{6+} (at.%)	Ru^{n+} (at.%)	$\text{O}_v/\text{O}_{\text{total}}$ (at.%)
$\text{RuO}_x\text{-CeO}_2\text{NR-o}$	9.0	100	0	45.5
$\text{RuO}_x\text{-mCeO}_2\text{NR-o}$	9.3	71.7	28.3	36.4
$\text{RuO}_x\text{-CeO}_2\text{NR-r}$	10.4	82.2	17.8	46.6
$\text{RuO}_x\text{-mCeO}_2\text{NR-r}$	10.8	8.6	91.7	47.2

Table 3Peak assignments of *in situ* DRIFTS spectra for CeO_2NR supported Ru catalysts.

Wavenumber (cm^{-1})	Description	Ref
~2180	CO gas	[39]
~2130/	CO- $\text{Ru}^{\delta+}$	[39,
~2060		40]
~2044	CO- Ru^0	[41,
		42]
~2020	CO- Ru^0	[43]
~1999	CO adsorbed on oxygen vacancies or the CO IR-adsorption band which is unique to Ru-doped CeO_2	[39,
		44]
~1977	CO- Ru at Ru-CeO_2 interface	[45]
~1873/	CO- O_v at Ru-CeO_2 interface	[43]
~1844		

integrated peak area of the oxygen species. The values of the concentration are 45.5%, 36.4%, 46.6% and 47.2% for $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$, $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ and $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$, respectively. In addition, the presence of O_c in $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$, which is consistent with the $\text{H}_2\text{-TPR}$ results, indicates that more surface defects and chemisorbed oxygen species were generated by a combination of the NaBH_4 etching and RuO_x deposition on the defect rich CeO_2NR surface. These results clearly show the NaBH_4 etching effect on chemical and structural changes on the support surface, particularly leading to active surface oxygen species which may be related to their catalytic performance.

Fig. 4(c) shows the XPS spectra of Ru 3d for $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$, $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ and $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$. With a little tricky analysis of the Ru 3d_{5/2} peaks, the peak at around 282.9 eV can be assigned to the Ru^{6+} for $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$ and $\text{RuO}_x\text{-CeO}_2\text{NR-r}$. The peaks at around 281.9 eV are associated with the Ru^{n+} ($4 \leq n \leq 6$) for $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$ and $\text{RuO}_x\text{-CeO}_2\text{NR-r}$. It can be observed that the peaks for Ru^{6+} and Ru^{n+} for $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ shifted to higher binding energy when compared to other Ru catalysts. According to Guo et al's study [33], the charge density of Ru deposits is highly affected by the interfacial charge transfer, indicating that their oxidation states are extremely correlated with the strength of electronic interaction between RuO_x and CeO_2 . They found that the Ru catalysts with stronger electronic interaction show slightly higher average valence state of Ru species, exhibiting higher binding energy. Therefore, the higher binding energy of Ru^{n+} and larger amount of Ru^{n+} species imply the stronger $\text{RuO}_x\text{-CeO}_2$ interaction for $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$, which is promoted by the surface defects on modified CeO_2NR surface. The other two intense peaks at around 284.8 eV and 289.2 eV are for C 1s peaks. For the oxidized Ru catalysts, it can be observed that the concentration of Ru^{n+} species increased on mCeO₂NR surface when compared to that of $\text{RuO}_x\text{-CeO}_2\text{NR-o}$. This can be explained by that Ru^{n+} are most likely formed from the small RuO_x ($0 \leq x \leq 1$) clusters with the strong $\text{RuO}_x\text{-CeO}_2$ interaction at the interface. Compared to the unmodified CeO_2NR supports, the CeO_2NR supports after NaBH_4 modification generated large amount of surface defects including oxygen vacancies, steps and voids, which can help anchor and trap Ru ion species and strengthen the interaction between RuO_x and CeO_2 [34]. For the re-


duced Ru catalysts, the concentration of Ru^{n+} species further increased to 91.7% for $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$, which is owing to the combination of surface etching effect and reduction treatment induced defects. Both Bhaskar et al [35] and Qadir et al [36] reported that the reduction treatment boosted the formation of Ru^{n+} , which is consistent with the results in this study. Clearly the results of XPS spectra for O 1s region show that $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ possesses the highest concentration of oxygen vacancy (O_v).

3.3. *In-situ* DRIFTS study

The temperature dependent *in-situ* DRIFTS spectra of CO adsorption on $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$, $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ and $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ are shown in Fig. 5(a ~ d). The initial state (40 °C) and final state (150 °C) of the *in-situ* DRIFTS spectra for four samples are summarized and compared in Fig. 5(e, f). Except for the gas-phase CO signals at around 2180 cm^{-1} , the high-frequency peak at around 2130 cm^{-1} /2060 cm^{-1} for CO adsorption spectra can be assigned to the multicarbonyl species formed by binding two or three CO ligands to $\text{Ru}^{\delta+}$ sites [37,38]. The weak band at around 2044 cm^{-1} for $\text{RuO}_x\text{-CeO}_2\text{NR-o}$ can be assigned to the C—O vibrations of linearly adsorbed CO on Ru^0 sites [39,40]. The very weak band at around 2020 cm^{-1} for $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ and $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ are associated to another linearly adsorbed CO on high defect concentration sites and/or isolated Ru^0 species surrounded by partially oxidized Ru, [CO- Ru^0] [40]. The strong band at around 1990 cm^{-1} for $\text{RuO}_x\text{-CeO}_2\text{NR-o}$ and $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$ is attributed to CO adsorbed on oxygen vacancies or the CO IR-adsorption band which is unique to Ru-doped CeO_2 [37,41]. The similar band at around 1977 cm^{-1} for $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ and $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ is ascribed to the bridged CO bonded to Ru at Ru-CeO_2 interface [42]. The unique band at 1844 cm^{-1} for $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$ can be assigned to the bridged CO bonded with Ru-CeO_2 interface [Ru₂(CO)] [40].

For $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, all bonds including CO- $\text{Ru}^{\delta+}$, CO- Ru^0 and CO- O_v became stronger with increasing temperature, indicating strong thermal stability at higher temperature (up to 150 °C). For $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$, all CO adsorption bands are similar to those of $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, except for the CO- Ru^0 bond. There is no significant signal for CO- Ru^0 in $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$, indicating the absence of Ru^0 state on surface. Kim et al [43] synthesized Pt/TiO₂ catalysts with different Pt valence state and chemisorbed oxygen species. Their DRIFTS analysis showed that the chemisorbed oxygen species were involved in the formation of formate species, which would react with moisture and form CO-Pt⁰ bonds. Therefore, the absence of CO- Ru^0 in $\text{RuO}_x\text{-mCeO}_2\text{NR-o}$ may be due to the inhabitation effect of chemisorbed oxygen species on surface, which would form formate with CO flow rather than direct linear adsorption. This result is consistent with the $\text{H}_2\text{-TPR}$ and XPS results.

For $\text{RuO}_x\text{-CeO}_2\text{NR-r}$, the similar bands shifted to lower wavenumber when compared to those of $\text{RuO}_x\text{-CeO}_2\text{NR-o}$, indicating the lower average valence state of Ru [44]. And there are strong signals for CO gas at around 2180 cm^{-1} , which is even more obvious in Fig. 5(e). The existence of CO gas in spectra reveals the weaker CO absorption capacity of the reduced Ru catalysts than that of the oxidized Ru catalysts. On the other hand, $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ displays no signal at around 2044 cm^{-1} for CO- Ru^0 . But it shows another CO- Ru^0 band at around 2020 cm^{-1} , which was very weak and the absorbance decreased with increasing temperature, indicating the poor thermal stability at higher temperature. When temperature reached 150 °C, the signals of CO- Ru^0 and CO gas bonds seem disappeared, implying that the CO- Ru^0 was transformed to CO- $\text{Ru}^{\delta+}$ and/or CO- O_v bonds and the CO adsorption was promoted. For $\text{RuO}_x\text{-mCeO}_2\text{NR-r}$, there is a stronger CO- Ru^0 at around 2020 cm^{-1} , indicating it has a better CO adsorption ability than $\text{RuO}_x\text{-CeO}_2\text{NR-r}$ at low temperature, which is consistent with $\text{H}_2\text{-TPR}$ results. With temperature increasing to 150 °C, CO- Ru^0 disappeared and a new band CO- O_v

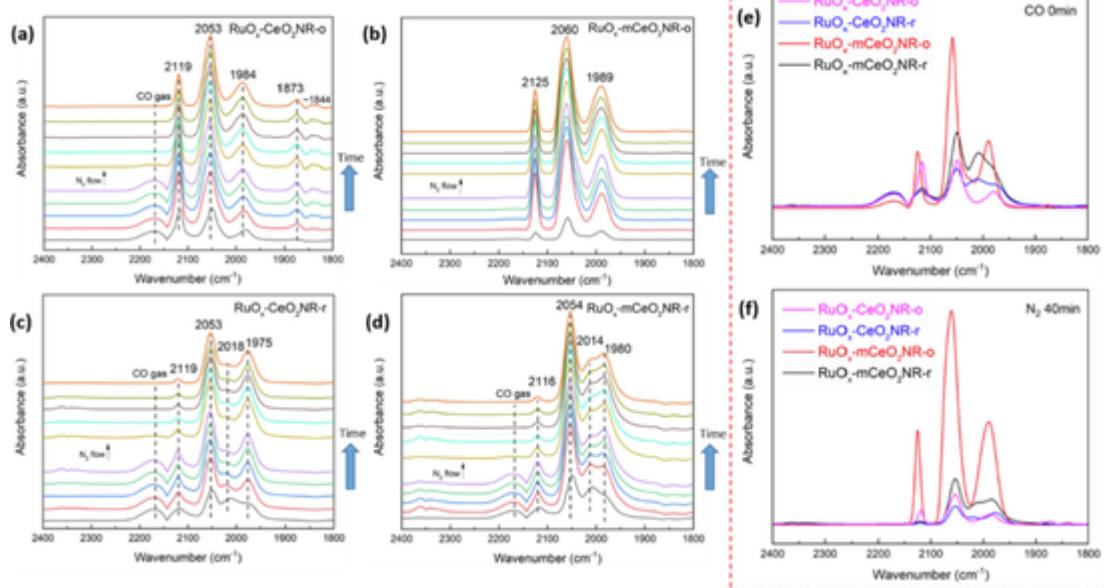
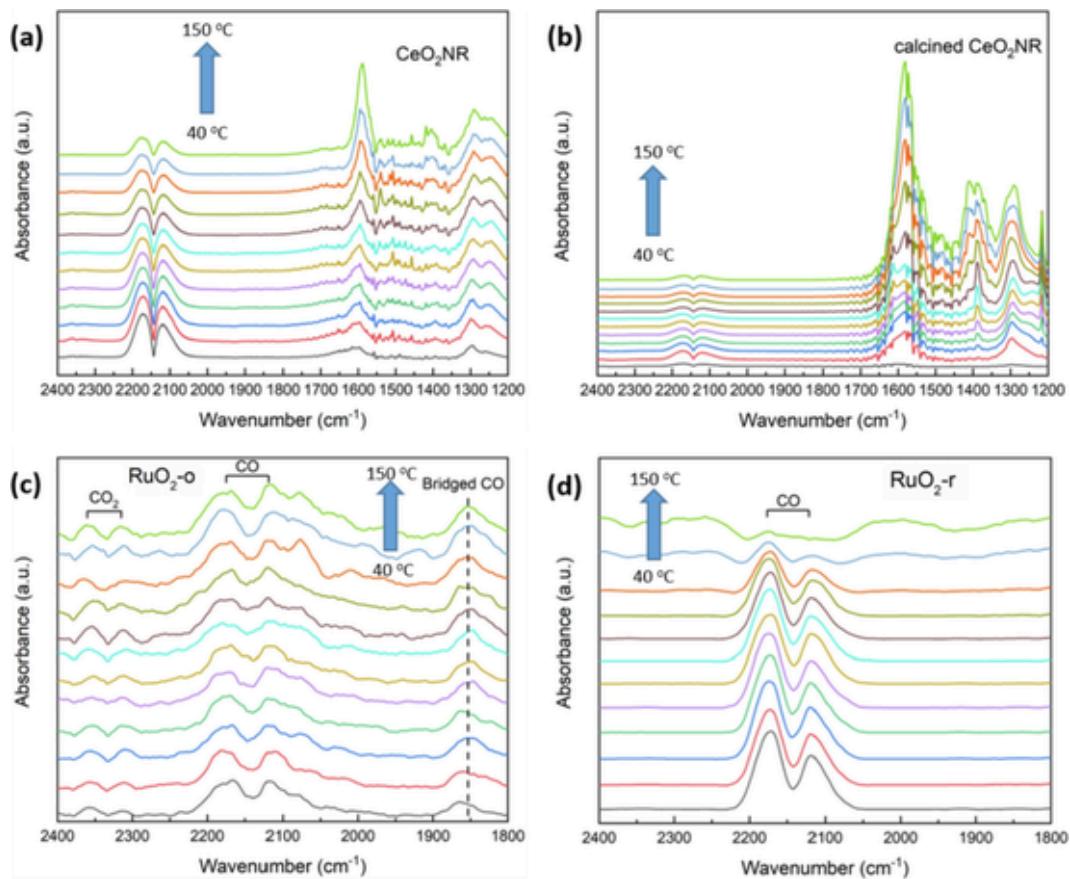


Fig. 5. *In situ* DRIFTS spectra of CO adsorption on (a) RuO_x-CeO₂NR-o, (b) RuO_x-mCeO₂NR-o, (c) RuO_x-CeO₂NR-r and (d) RuO_x-mCeO₂NR-r. The figures of (e) initial and (f) final state for *In-situ* DRIFTS spectra are summarized.


at the Ru-CeO₂ interface formed. Li et al [11] synthesized and ran temperature-dependent *in-situ* DRIFTS of CO oxidation for 5.0 wt% Ru/CeO₂NR. They observed the CO-Ru⁰ at 2029 cm⁻¹ and also found the increasing absorbance of CO-O_v at 1850 cm⁻¹ with decreasing absorbance of CO-Ru⁰ when temperature increased, which agrees well with the results in this study. And Kroner et al [45] also demonstrated that bridged CO species were suggested to form with Ru⁰ sites, which is similar to the case of Ru/CeO₂ in this study. In addition, the bridged CO shows excellent activity for the oxidation of CO, even better than the linear bonded CO in the case of FeO_x/Pt/TiO₂ catalysts with H₂ flow. Therefore, both the strong CO-Ru⁰ bond at low temperature and the bridged CO adsorption CO-O_v at high temperature attribute to the outstanding activity of CO catalytic oxidation.

Similar to the temperature dependent *in-situ* DRIFTS as shown in Fig. 6 (a ~ d), the assignment of time dependent *in-situ* DRIFTS spectra of CO adsorption for as-prepared Ru catalysts can be concluded that: the peaks at around 2120 cm⁻¹/2060 cm⁻¹ for CO adsorption spectra is for the multicarbonyl species formed with CO ligands to Ru^{δ+} sites. The bands at around 2020 cm⁻¹ for RuO_x-CeO₂NR-r and RuO_x-mCeO₂NR-r are associated to linearly adsorbed CO with Ru⁰. The peaks at 1990 cm⁻¹ and 1980 cm⁻¹ are associated with the CO adsorbed on oxygen vacancies and bridged CO bonded to Ru at Ru-CeO₂ interface, respectively. The band at 1873 cm⁻¹/1844 cm⁻¹ can be assigned to the bridged CO bonded to oxygen vacancy.

By comparison of the time-dependent DRIFTS spectra of CO adsorption on two oxidized Ru catalysts, the RuO_x-CeO₂NR-o shows two CO-O_v peaks at 1873 cm⁻¹ and 1844 cm⁻¹ different from those of RuO_x-

Fig. 6. Time-dependent *in-situ* DRIFTS spectra of CO adsorption on (a) RuO_x-CeO₂NR-o, (b) RuO_x-mCeO₂NR-o, (c) RuO_x-CeO₂NR-r and (d) RuO_x-mCeO₂NR-r. (e) and (f) compare the initial and final state for *In-situ* DRIFTS spectra.

Fig. 7. Temperature-dependent *in situ* DRIFTS spectra of CO adsorption on (a) CeO₂NR, (b) calcined CeO₂NR, (c) commercial RuO₂-o and (d) commercial RuO₂-r.

mCeO₂NR-o. The first profiles (CO for 0 mins) and last profiles (N₂ for 40 mins) of the time-dependent *in-situ* DRIFTS spectra are summarized in Fig. 6 (e-f). The absorbance of RuO_x-mCeO₂NR-o is significantly higher than RuO_x-CeO₂NR-o at the initial state (CO for 0 mins) and this difference is kept to final state (N₂ for 40 mins). This enhanced CO adsorption ability may be owing to the extra CO adsorption to formate species with chemisorbed oxygen induced by the NaBH₄ modification. For the reduced Ru catalyst samples, there are two peaks at 2018 cm⁻¹ and 2014 cm⁻¹, which correspond to the CO-Ru⁰ bonds for RuO_x-CeO₂NR-r and RuO_x-mCeO₂NR-r, respectively. The absorbance of this CO-Ru⁰ bond for RuO_x-mCeO₂NR-r is much larger than that for RuO_x-CeO₂NR-r, which is consistent with the DRIFTS spectra of the temperature-dependent results. In addition, this bond existed at the initial state and was not be transferred during the whole process, indicating the strong bonding energy between CO molecules and Ru⁰ sites, which can only be destroyed at high temperature. By comparison for the dominated bands at around 2120 cm⁻¹/2060 cm⁻¹ of the samples before and after reduction, the RuO_x-CeO₂NR-o sample shows higher absorbance than the RuO_x-CeO₂NR-r sample, and the RuO_x-mCeO₂NR-o shows higher absorbance than the RuO_x-mCeO₂NR-r sample, both in the first and the last profiles. The result of this order is similar to the previous results including the H₂ consumption and concentration of Ruⁿ⁺, indicating that the Ru species shown lower valence state express better reducibility and CO adsorption capability.

However, according to the temperature-dependent *in-situ* DRIFTS spectra of CO adsorption for CeO₂NR, calcined CeO₂NR, commercial RuO₂-o and commercial RuO₂-r in Fig. 7 (a-d), there are no relatively strong CO adsorption bonds can be observed at the region between 2200 cm⁻¹ to 1800 cm⁻¹ except for the signals of gas-phase CO, when compared with the CeO₂NR supported Ru catalysts. This is consistent with Liu et al's work [7] that there is very weak or no significant CO adsorption behaviour for pristine RuO₂ compared with the supported one.

These results indicate that the strong interaction between RuO_x and CeO₂NR helped reinforce the CO adsorption on Ru sites at the RuO_x-CeO₂ interface. These CO species formed with that interaction enhanced the migration of CO during CO oxidation and finally promoted the activity of the Ru catalysts for catalytic reaction.

3.4. CO oxidation performance

Fig. 8 (a) shows the CO light-off profiles for four CeO₂NR supported Ru catalysts. It can be noted that the sequence of CO conversion for 100%: RuO_x-mCeO₂NR-o (over 400 °C) > RuO_x-CeO₂NR-o (278 °C) > RuO_x-CeO₂NR-r (273 °C) > RuO_x-mCeO₂NR-r (176 °C), which agrees with the on-set temperature results (Fig. 3(b)) from H₂-TPR. Even though RuO_x-mCeO₂NR-o exhibited the highest CO absorbance intensity for time-dependent *in-situ* DRIFTS, the reduced Ru catalysts present relatively higher conversion at low temperature region (below 100 °C) owing to the CO-Ru⁰ bonds at around 2020 cm⁻¹ for temperature dependent *in-situ* DRIFTS. In addition, the presence of CO-Ru⁰ sites at around 2044 cm⁻¹ for RuO_x-CeO₂NR-o leads to the high activity at low temperature when compared to RuO_x-mCeO₂NR-o. When temperature is above 100 °C, there is no CO-Ru⁰ adsorption pattern for all Ru catalysts. But the particular formation of CO-O_v on Ru-CeO₂ interface for RuO_x-mCeO₂NR-r reinforces the further CO adsorption and finally promotes the CO catalytic oxidation reaction, leading to the lowest conversion temperature for a complete oxidation. The apparent activation energies for CeO₂NR supported Ru catalysts are shown in Fig. 8(b). The values of the activation energies for Ru/CeO₂NR-o, Ru/CeO₂NR-r, Ru/mCeO₂NR-o, and Ru/mCeO₂NR-r are 34.5, 59.4, 43.6, and 31.2 kJ/mol, respectively. This result suggests that these Ru catalysts were activated by the reduction treatment, which is consistent with the *in-situ* DRIFTS results that the presence of new Ru state and extra

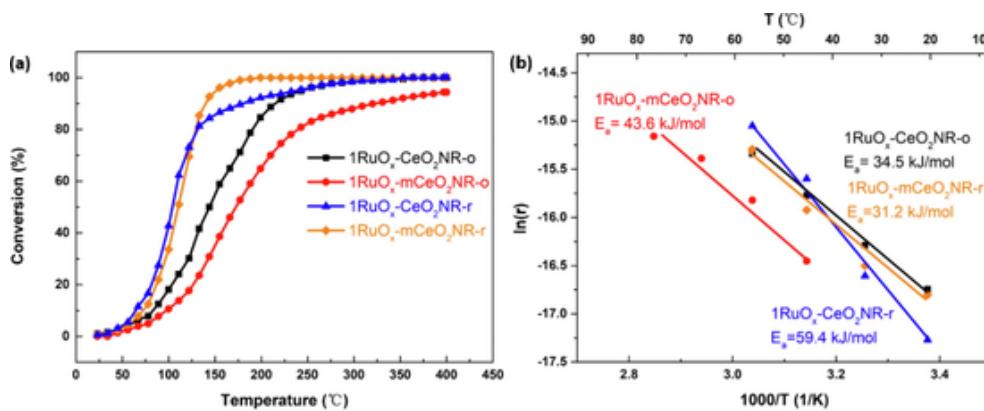


Fig. 8. (a) CO conversion of unmodified/modified CeO₂NR supported Ru catalysts and (b) Arrhenius plots.

CO-Ru⁰ adsorption promoted the performance of CO oxidation. It should be noted that these activation energies were calculated at different temperature ranges to better fit into the power law rate equation. Fig. S8 shows the stability test results of RuO_x-CeO₂NR-o, RuO_x-mCeO₂NR-o, RuO_x-CeO₂NR-r, and RuO_x-mCeO₂NR-r. It can be observed that all four catalysts were relatively stable during the dwell time of 24 h, indicating that the NaBH₄ etching treatment is a thermally effective and stable method to enhance the catalytic activity of the prepared catalysts for CO oxidation. Fig. S9 shows the comparison results of CO conversion under dry gas and humid gas (1 vol% H₂O) for RuO_x-mCeO₂NR-r, which performed better under dry gas, indicating a negative effect of 1 vol% H₂O on CO oxidation.

4. Conclusions

In conclusion, unmodified and modified CeO₂NR were synthesized and applied as supports to load 1 wt% of RuO_x catalysts for CO oxidation. It was observed that the chemical etching and reduction treatment highly influenced the CO adsorption behavior and CO oxidation activity. The modified CeO₂NR supported reduced Ru catalysts showed the highest concentration of oxygen vacancies, superior low-temperature reducibility, strongest RuO_x-CeO₂ interaction and highest CO oxidation activity (100 % conversion at 176 °C). However, regarding to RuO_x-CeO₂NR-r, the less amount of Ruⁿ⁺ species on surface and lower reducibility resulted in the inferior catalytic activity. There is a dominating factor contributing to these variances: surface chemical environment of catalyst clusters. XPS revealed the promotion effect of surface oxygen vacancies and XRD exhibited the boosted dispersion of RuO_x species after chemical etching treatment and reduction activation, which lead to more active sites on the surface or at interface. As a result of that, the modified CeO₂NR supported reduced Ru catalysts performed better ability to trap and anchor RuO_x species on surface, resulting in stronger interaction between RuO_x and CeO₂ support. *In-situ* DRIFTS presented that oxygen species and Ruⁿ⁺ species on surface with strong interaction remarkably enhanced the CO adsorption capability for CO oxidation, which is crucial for the low temperature CO oxidation reaction with Ru/CeO₂ catalysts.

CRediT authorship contribution statement

Yifan Wang: Investigation, Methodology, Formal analysis, Writing – original draft, Writing – review & editing. **Ruigang Wang:** Conceptualization, Investigation, Methodology, Supervision, Formal analysis, Writing – review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work is supported by National Science Foundation (CBET 1856729 and IIP 2044733). The use of TEM facilities at the Alabama Analytical Research Center (AARC) of The University of Alabama is gratefully acknowledged. The authors also gratefully acknowledge the University of Alabama College of Engineering and College of Arts and Sciences' shared analytical facility for providing the use of a Fourier transform infrared spectrometer.

Appendix A. Supplementary material

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.jcis.2022.01.062>.

References

- [1] B.O. Huang, H. Kobayashi, T. Yamamoto, S. Matsumura, Y. Nishida, K. Sato, K. Nagaoka, S. Kawaguchi, Y. Kubota, H. Kitagawa, Solid-Solution Alloying of Immiscible Ru and Cu with Enhanced CO Oxidation Activity, *J. Am. Chem. Soc.* 139 (13) (2017) 4643–4646.
- [2] C. Wang, S. Liu, D. Wang, Q. Chen, Interface engineering of Ru–Ce₃O₄ nanocomposites for enhancing CO oxidation, *J. Mater. Chem. A* 6 (23) (2018) 11037–11043.
- [3] Y.H. Kim, E.D. Park, The effect of the crystalline phase of alumina on the selective CO oxidation in a hydrogen-rich stream over Ru/Al₂O₃, *Appl. Catal. B* 96 (1–2) (2010) 41–50.
- [4] R. Wang, P.A. Crozier, R. Sharma, Structural Transformation in Ceria Nanoparticles during Redox Processes, *J. Phys. Chem. C* 113 (14) (2009) 5700–5704.
- [5] Z. Liu, J. Li, R. Wang, CeO₂ nanorods supported M-Co bimetallic oxides (M = Fe, Ni, Cu) for catalytic CO and C₃H₈ oxidation, *J. Colloid Interface Sci.* 560 (2020) 91–102.
- [6] H. Huang, Q. Dai, X. Wang, Morphology effect of Ru/CeO₂ catalysts for the catalytic combustion of chlorobenzene, *Appl. Catal. B* 158–159 (2014) 96–105.
- [7] Z. Liu, Y. Lu, M.P. Confer, H. Cui, J. Li, Y. Li, Y. Wang, S.C. Street, E.K. Wujcik, R. Wang, Thermally Stable RuO_x-CeO₂ Nanofiber Catalysts for Low-Temperature CO Oxidation, *ACS Appl. Nano Mater.* 3 (8) (2020) 8403–8413.
- [8] Y. Ma, P. Ou, Z. Wang, A. Zhu, L. Lu, Y. Zhang, W. Zeng, J. Song, J. Pan, Interface engineering in CeO₂ (111) facets decorated with CdSe quantum dots for photocatalytic hydrogen evolution, *J. Colloid Interface Sci.* 579 (2020) 707–713.
- [9] J. Li, Z. Liu, R. Wang, Support structure and reduction treatment effects on CO oxidation of SiO₂ nanospheres and CeO₂ nanorods supported ruthenium catalysts, *J. Colloid Interface Sci.* 531 (2018) 204–215.
- [10] L. Li, L. Song, H. Wang, C. Chen, Y. She, Y. Zhan, X. Lin, Q.i. Zheng, Water-gas shift reaction over CuO/CeO₂ catalysts: Effect of CeO₂ supports previously prepared by precipitation with different precipitants, *Int. J. Hydrogen Energy* 36 (15) (2011) 8839–8849.
- [11] J. Li, Z. Liu, D.A. Cullen, W. Hu, J. Huang, L. Yao, Z. Peng, P. Liao, R. Wang, Distribution and Valence State of Ru Species on CeO₂ Supports: Support Shape Effect and Its Influence on CO Oxidation, *ACS Catal.* 9 (12) (2019) 11088–11103.

[12] Y. She, Q.i. Zheng, L. Li, Y. Zhan, C. Chen, Y. Zheng, X. Lin, Rare earth oxide modified CuO/CeO₂ catalysts for the water–gas shift reaction, *Int. J. Hydrogen Energy* 34 (21) (2009) 8929–8936.

[13] Y. Tanaka, T. Utaka, R. Kikuchi, T. Takeguchi, K. Sasaki, K. Eguchi, Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide, *J. Catal.* 215 (2) (2003) 271–278.

[14] W. Gao, Z. Zhang, J. Li, Y. Ma, Y. Qu, Surface engineering on CeO₂ nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation, *Nanoscale* 7 (27) (2015) 11686–11691.

[15] Z. Han, X. Li, X. Wang, Y.u. Gao, S. Yang, L. Song, J. Dong, X. Pan, Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO₂/ZrO₂ catalysts, *J. Colloid Interface Sci.* 608 (2022) 2718–2729.

[16] S. Bae, S. Gim, H. Kim, K. Hanna, Effect of NaBH₄ on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol, *Appl. Catal. B* 182 (2016) 541–549.

[17] R. Wang, R. Dangerfield, Seed-mediated synthesis of shape-controlled CeO₂ nanocrystals, *RSC Adv.* 4 (7) (2014) 3615–3620.

[18] S.T. Hossain, Y. Almesned, K. Zhang, E.T. Zell, D.T. Bernard, S. Balaz, R. Wang, Support structure effect on CO oxidation: A comparative study on SiO₂ nanospheres and CeO₂ nanorods supported CuOx catalysts, *Appl. Surf. Sci.* 428 (2018) 598–608.

[19] Y. Wang, Z. Liu, M.P. Confer, J. Li, R. Wang, In-situ DRIFTS study of chemically etched CeO₂ nanorods supported transition metal oxide catalysts, *Molecular Catalysis* 509 (2021) 111629, <https://doi.org/10.1016/j.mcat.2021.111629>.

[20] Y. Wang, Z. Liu, R. Wang, NaBH₄ Surface Modification on CeO₂ Nanorods Supported Transition-Metal Catalysts for Low Temperature CO Oxidation, *ChemCatChem* 12 (17) (2020) 4304–4316.

[21] F. Wang, C. Li, X. Zhang, M. Wei, D.G. Evans, X. Duan, Catalytic behavior of supported Ru nanoparticles on the {1 0 0}, {1 1 0}, and {1 1 1} facet of CeO₂, *J. Catal.* 329 (2015) 177–186.

[22] J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham, S.R. Challa, G. Qi, S. Oh, M.H. Wiebenga, X.I.P. Hernández, Thermally stable single-atom platinum-on-ceria catalysts via atom trapping, *Science* 353 (6295) (2016) 150–154.

[23] S. Wu, Y.u. Yang, C. Lu, Y. Ma, S. Yuan, G. Qian, Soot Oxidation over CeO₂ or Ag/CeO₂: Influences of Bulk Oxygen Vacancies and Surface Oxygen Vacancies on Activity and Stability of the Catalyst, *Eur. J. Inorg. Chem.* 2018 (25) (2018) 2944–2951.

[24] H.Y. Kim, H.M. Lee, G. Henkelman, CO Oxidation Mechanism on CeO₂-Supported Au Nanoparticles, *J. Am. Chem. Soc.* 134 (3) (2012) 1560–1570.

[25] W. Song, A.S. Poyraz, Y. Meng, Z. Ren, S.-Y. Chen, S.L. Suib, Mesoporous Co₃O₄ with Controlled Porosity: Inverse Micelle Synthesis and High-Performance Catalytic CO Oxidation at –60 °C, *Chem. Mater.* 26 (15) (2014) 4629–4639.

[26] C.-W. Tang, L.-C. Hsu, S.-W. Yu, C.-B. Wang, S.-H. Chien, In situ FT-IR and TPD-MS study of carbon monoxide oxidation over a CeO₂/Co₃O₄ catalyst, *Vib. Spectrosc.* 65 (2013) 110–115.

[27] J. Li, G. Lu, G. Wu, D. Mao, Y. Wang, Y. Guo, Promotional role of ceria on cobaltosic oxide catalyst for low-temperature CO oxidation, *Catal. Sci. Technol.* 2 (9) (2012) 1865–1871.

[28] Y. Yu, Z. Dong, L. Tan, N. He, R. Tang, J. Fang, H. Chen, Enhanced hydrogen evolution reaction in alkaline solution by constructing strong metal-support interaction on Pd-CeO₂-x-NC hybrids, *J. Colloid Interface Sci.* 611 (2022) 554–563.

[29] W.C. Chueh, A.H. McDaniel, M.E. Grass, Y. Hao, N. Jabeen, Z. Liu, S.M. Haile, K.F. McCarty, H. Bluhm, F. El Gabaly, Highly Enhanced Concentration and Stability of Reactive Ce³⁺ on Doped CeO₂ Surface Revealed In Operando, *Chem. Mater.* 24 (10) (2012) 1876–1882.

[30] K. Košmíder, V. Brázdová, M.V. Ganduglia-Pirovano, R. Pérez, Do Au Atoms Titrate Ce³⁺ Ions at the CeO₂-x(111) Surface? *J. Phys. Chem. C* 120 (2) (2016) 927–933.

[31] Z. Liu, J. Li, M. Buettner, R.V. Ranganathan, M. Uddi, R. Wang, Metal-Support Interactions in CeO₂- and SiO₂-Supported Cobalt Catalysts: Effect of Support Morphology, Reducibility, and Interfacial Configuration, *Acs Appl. Mater. Interfaces* 11 (18) (2019) 17035–17049.

[32] Z.-Y. Pu, X.-S. Liu, A.-P. Jia, Y.-L. Xie, J.-Q. Lu, M.-F. Luo, Enhanced Activity for CO Oxidation over Pr- and Cu-Doped CeO₂ Catalysts: Effect of Oxygen Vacancies, *J. Phys. Chem. C* 112 (38) (2008) 15045–15051.

[33] Y.u. Guo, S. Mei, K. Yuan, D.-J. Wang, H.-C. Liu, C.-H. Yan, Y.-W. Zhang, Low-Temperature CO₂ Methanation over CeO₂-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal-Support Interactions and H-Spillover Effect, *ACS Catal.* 8 (7) (2018) 6203–6215.

[34] L.j. Atanasoska, W.E. O'grady, R.T. Atanasoski, F.H. Pollak, The surface structure of RuO₂: A lead, auger and XPS study of the (110) and (100) faces, *Surf. Sci.* 202 (1–2) (1988) 142–166.

[35] S. Bhaskar, P.S. Dabal, S.B. Majumder, R.S. Katiyar, X-ray photoelectron spectroscopy and micro-Raman analysis of conductive RuO₂ thin films, *J. Appl. Phys.* 89 (5) (2001) 2987–2992.

[36] K. Qadir, S.H. Joo, B.S. Mun, D.R. Butcher, J.R. Renzas, F. Aksoy, Z. Liu, G.A. Somorjai, J.Y. Park, Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS, *Nano Lett.* 12 (11) (2012) 5761–5768.

[37] J. Assmann, V. Narkhede, L. Khodeir, E. Löffler, O. Hinrichsen, A. Birkner, H. Over, M. Muhler, On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy, *J. Phys. Chem. B* 108 (38) (2004) 14634–14642.

[38] G. Yokomizo, C. Louis, A. Bell, An infrared study of CO adsorption on reduced and oxidized RuSiO₂, *J. Catal.* 120 (1) (1989) 1–14.

[39] C.H.F. Peden, D.W. Goodman, M.D. Weisel, F.M. Hoffmann, In-situ FT-IRAS study of the CO oxidation reaction over Ru (001): I. Evidence for an Eley-Rideal mechanism at high pressures? *Surf. Sci.* 253 (1–3) (1991) 44–58.

[40] S.Y. Chin, C.T. Williams, M.D. Amiridis, FTIR Studies of CO Adsorption on Al₂O₃- and SiO₂-Supported Ru Catalysts, *J. Phys. Chem. B* 110 (2) (2006) 871–882.

[41] J. Aßmann, E. Löffler, A. Birkner, M. Muhler, Ruthenium as oxidation catalyst: bridging the pressure and material gaps between ideal and real systems in heterogeneous catalysis by applying DRIFT spectroscopy and the TAP reactor, *Catal. Today* 85 (2–4) (2003) 235–249.

[42] H.-T. Chen, First-principles study of CO adsorption and oxidation on Ru-doped CeO₂ (111) surface, *J. Phys. Chem. C* 116 (10) (2012) 6239–6246.

[43] G.J. Kim, S.M. Lee, S. Chang Hong, S.S. Kim, Active oxygen species adsorbed on the catalyst surface and its effect on formaldehyde oxidation over Pt/TiO₂ catalysts at room temperature; role of the Pt valence state on this reaction? *RSC Adv.* 8 (7) (2018) 3626–3636.

[44] L.F. Bobadilla, A. Muñoz-Murillo, O.H. Laguna, M.A. Centeno, J.A. Odriozola, Does shaping catalysts modify active phase sites? A comprehensive in situ FTIR spectroscopic study on the performance of a model Ru/Al₂O₃ catalyst for the CO methanation, *Chem. Eng. J.* 357 (2019) 248–257.

[45] A.B. Kröner, M.A. Newton, M. Tromp, O.M. Roscioni, A.E. Russell, A.J. Dent, C. Prestipino, J. Evans, Time-resolved, in situ DRIFTS/EDE/MS studies on alumina-supported rhodium catalysts: effects of ceriation and zirconiation on rhodium-CO interactions, *Chemphyschem : A Eur. J. Chem. Phys. Phys. Chem.* 15 (14) (2014) 3049–3059.